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Abstract We present an overview of the techniques developed under the SAFE

project. The goal of SAFE was to create a practical lightweight framework to ver-
ify simple properties of realistic Java applications. The work on SAFE covered a lot
of ground, starting from typestate verification techniques [18, 19], through inference
of typestate specifications [34, 35], checking for absence of null derefences [26], au-
tomatic resource disposal [13], and an attempt at modular typestate analysis [42]. In
many ways, SAFE represents a modern incarnation of early ideas on the use of static
analysis for software reliability (e.g., [21]). SAFE went a long way in making these
ideas applicable to real properties of real software, but applying them at the scale
of modern framework-intensive software remains a challenge. We are encouraged
by our experience with SAFE, and believe that the technique developed in SAFE can
serve as a solid basis for future work on practical verification technology.

1 Introduction

Statically checking if a program satisfies specified safety properties (e.g., [21, 14,
29, 28, 8, 12, 5, 22, 20, 4, 30, 11, 17]) can help identify defects early in the develop-
ment cycle, thus increasing productivity, reducing development costs, and improv-
ing quality and reliability.

Typestate [37] is an elegant framework for specifying a class of temporal safety
properties. Typestates can encode correct usage rules for many common libraries
and application programming interfaces (APIs) (e.g. [39, 1]). For example, type-
state can express the property that a Java program should not read data from
java.net.Socket until the socket is connected.

The SAFE project focused on various aspects of typestate verification and infer-
ence with the ultimate goal of being able to verify nontrivial properties over realistic
programs.
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1.1 Challenges

We focus on sound analysis; if the verifier reports no violation, then the program
is guaranteed to satisfy the desired properties. However, if the verifier reports a
potential violation, it might not correspond to an actual program error. Imprecise
analysis can lead a verifier to produce “false alarms”: reported problems that do not
indicate an actual error. Users will quickly reject a verifier that produces too many
false positives.
Scaling to Real Software. While sophisticated and precise analyses can reduce false
positives, such analyses typically do not scale to real programs. Real programs often
rely on large and complex supporting libraries, which the analyzer must process in
order to reason about program behavior.
Aliasing. There is a wide variety of efficient flow-insensitive may-alias (pointer)
analysis techniques (e.g. [10, 24, 36]) that scale to fairly large programs. These
analyses produce a statically bounded (abstract) representation of the program’s
runtime heap and indicate which abstract objects each pointer-valued expression
in the program may denote. Unfortunately, these scalable analyses have a serious
disadvantage when used for verification. They require the verifiers to model any op-
eration performed through a pointer dereference conservatively as an operation that
may or may not be performed on the possible target abstract objects identified by
the pointer analysis – this is popularly known as a “weak update” as opposed to a
“strong update” [6].

To support strong updates and more precise alias analysis, we present a frame-
work to check typestate properties by solving a flow-sensitive, context-sensitive
dataflow problem on a combined domain of typestate and pointer information. As
is well-known [9], a combined domain may yield improved precision compared to
separate analyses. Furthermore, the combined domain allows the framework to con-
centrate computational effort on alias analysis only where it matters to the typestate
property. This concentration allows more precise alias analysis than would be prac-
tical if applied to the whole program.

Using a domain that combines precise aliasing information with other property-
related information is a common theme in our work ([17, 33, 18, 19, 34, 35, 26, 26,
42]). Our precise treatment of aliasing draws some ideas from our experience with
shape analysis [32]. In the rest of this paper we describe the combined domains we
used for typestate verification (Sec. 2), inference of typestate specifications (Sec. 3),
and verifying the absence of null derefences (Sec. 4).
Getting Specifications. Typestate verification requires typestate specifications. It is
not always easy, or possible, to obtain such formal specifications from programmers.
This raises the research question of whether such specification can be obtained auto-
matically. Indeed, much research has addressed mining specifications directly from
code [1, 2, 7, 38, 40, 41, 25, 16, 23, 27, 15].

Most such research addresses dynamic analysis, inferring specifications from ob-
served behavior of representative program runs. Dynamic approaches enjoy the sig-
nificant virtue that they learn from behavior that definitively occurs in a run. On
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the flip side, dynamic approaches can learn only from available representative runs;
incomplete coverage remains a fundamental limitation.

The approach we have taken in SAFE is to obtain specifications using static client-
side specification mining. The idea in client-side specification mining is to examine
the ways client programs use that API. An effective static client-side specification
mining shares many of the challenges with typestate verification. In particular, it
also requires relatively precise treatment of aliasing to track the sequence of events
that may occur at runtime for every object of interest.

2 Typestate Verification

Consider the simple program of Fig. 1. We would like to verify that this program
uses Sockets in a way that is consistent with the typestate property of Fig. 2.

As mentioned earlier, we would like our verifier to be sound in the presence dy-
namic allocation and aliasing. We now informally present a number of abstractions
in attempt to verify our example program.

1 open(Socket s) { s.connect();}
2 talk(Socket s) { s.getOutputStream()).write(’’hello’’); }
3 dispose(Socket s) { s.close(); }
4 main() {
5 Socket s = new Socket(); //S { <S,init> }
6 open(s); { <S,init>, <S,conn> }
7 talk(s); { <S,init>, <S,conn>, <S,err> }
8 dispose(s);
9 }

Fig. 1 A simple program using Socket.
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Fig. 2 Partial specification for a Socket.
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Naming Objects in an Unbounded Heap. The idea behind all of our abstraction is
to combine aliasing information with typestate information. The first component of
our abstraction is a global heap graph, obtained through a flow-insensitive, context-
sensitive subset based may points-to analysis [3]. This is fairly standard and pro-
vides a partition of the set objects\ into abstract objects. In this discussion, we de-
fine an instance key to be an abstract object name assigned by the flow-insensitive
pointer analysis. The heap graph provides for an access path e, the set of instance
keys it may point-to and also the set of access paths that may be aliased with e.
Base Abstraction. Our initial abstraction attempt is an abstraction referred to as a
base abstraction in [18]. This abstraction tracks the typestate state for every alloca-
tion site in the program. The results for this abstraction are shown as annotations in
Fig. 1. We use a tuple 〈Ob j,St〉 to denote the fact that the abstract state contains an
object Ob j that is in the state St. The abstract state is a set of tuples of this form.

In the example of Fig. 1, a Socket object is allocated in line 5, leading to an
abstract state {〈S, init〉}. After the call to open(s), the abstract state contains two
possibilities {〈S, init〉,〈S,connected〉}. This is because when performing the call
s.connect(), we do not have sufficient information to perform a strong update.
The abstract object S potentially represent multiple objects of type socket. Invoking
s.connect() does not make all of these objects change their state to connected.
Therefore, to be sound, we have to assume that it is possible for the state to con-
tain other objects, that may be pointed to by s, and that remain in their initial state
init. This sound assumption makes our analysis report a false alarm when invoking
talk(s).
Unique Abstraction. The example of Fig. 1 actually allocates a single Socket object,
and there is no justification for the loss of precision in such simple (and common)
cases. To deal with cases in which an allocation site is only used to allocate a sin-
gle object, we introduce a slightly refined abstraction, tracking tuples of the form
〈Ob j,Un,St〉 representing the fact that the abstract state contains an object Ob j in
the state St, and a boolean flag Un denotes whether this is the only object allocated
at the site Ob j.

1 open(Socket s) { s.connect();}
2 talk(Socket s) { s.getOutputStream()).write(’’hello’’); }
3 dispose(Socket s) { s.close(); }
4 main() {
5 Socket s = new Socket(); //S { <S,U,init> }
6 open(s); { <S,U,conn> }
7 talk(s); { <S,U,conn> }
8 dispose(s);
9 }

Fig. 3 A simple program using Socket with Unique abstraction.

The result of using this abstraction for the simple example program are shown
in Fig. 3. Tracking the fact that the allocation site S only allocates a unique object
allows us to perform a strong update on 〈S,unique, init〉 when connect(s) is in-
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voked. This results in the single tuple 〈S,unique,conn〉, and thus with successful
verification of this example. However, it is easy to see that whenever an allocation
site is executed inside a loop, the unique abstraction may be insufficient and result in
false alarms similar to the ones we had with the base abstraction. We therefore intro-
duce a family of abstractions that integrate typestate information and flow-sensitive
must (and may) points-to information enabling to handle destructive updates on
non-unique abstract objects.

2.1 Integrating Typestate and Must Points-to Information

The simple abstractions presented earlier are used as preceding phases of the SAFE

analyzer to dismiss simple cases. The real strength of SAFE comes from the inte-
grated verifier that tracks must points-to information using access paths and com-
bines it with typestate information.

Technically, our abstract semantics uses a combination of two representations
to abstract heap information: (i) a global heap-graph representation encoding the
results of a flow insensitive points-to analysis; (ii) enhanced flow-sensitive must
points-to information integrated with typestate checking.

2.1.1 Parameterized Typestate Abstraction

Our parameterized abstract representation uses tuples of the form:
〈o,unique, typestate,APmust,May,APmustNot〉 where:

• o is an instance key.
• unique indicates whether the corresponding allocation site has a single concrete

live object.
• typestate is the typestate of instance key o.
• APmust is a set of access paths that must point-to o.
• May is true indicates that there are access paths (not in the must set) that may

point to o.
• APmustNot is a set of access paths that do not point-to o.

This parameterized abstract representation has four dimensions, for the length and
width of each access path set (must and must-not). The length of an access path set
indicates the maximal length of an access path in the set, similar to the parameter
k in k-limited alias analysis. The width of an access path set limits the number of
access paths in this set.

An abstract state is a set of tuples. We observe that a conservative representation
of the concrete program state must obey the following properties:

(a) An instance key can be indicated as unique if it represents a single object for this
program state.
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(b) The access path sets (the must and the must-not) do not need to be complete. This
does not compromise the soundness of the staged analysis due to the indication
of the existence of other possible aliases.

(c) The must and must-not access path sets can be regarded as another heap parti-
tioning which partitions an instance key into the two sets of access paths: those
that a) must alias this abstract object, and b) definitely do not alias this abstract
object. If the must-alias set is non-empty, the must-alias partition represents a
single concrete object.

(d) If May = f alse, the must access path is complete; it contains all access paths to
this object.

1 class SocketHolder { Socket s; }
2 Socket makeSocket() {
3 return new Socket(); // A
4 }
5 open(Socket t) { { <A,¬U,init,{},May,{}> }
6 t.connect(); { <A,¬U,init,{},May,{ ¬t }>, <A,¬U,conn,{ t },May,{}> }
7 }
8 talk(Socket s) {
9 s.getOutputStream()).write( hello );

10 { <A,¬U,init,{},May,{ ¬g,¬s }>, <A,¬U,conn,{ g,s },May,{}>}
11 }
12 main() {
13 Set<SocketHolder> set = new HashSet<SocketHolder>();
14 while( ) {
15 SocketHolder h = new SocketHolder();
16 h.s = makeSocket();
17 set.add(h); { <A,U,init,{ h.s },May,{}> }
18 }
19 for (Iterator<SocketHolder> it = set.iterator(); ) {
20 Socket g = it.next().s;
21 open(g);
22 talk(g); { <A,¬U,init,{},May,{ ¬g }>, <A,¬U,conn,{ g },May,{}>}
23 }
24 }

Fig. 4 A program using Sockets stored inside a collection.

The focus operation. A key element of SAFE’s abstraction is the use of a focus opera-
tion [32], which is used to dynamically (during analysis) make distinctions between
objects that the underlying basic points-to analysis does not distinguish.

We now describe the focus operation, which improves the precision of the anal-
ysis. As a motivating example, consider the statement t.connect() in line 6 of
the example. Since this statement is invoked on sockets coming from the iterator
loop of lines 20-23, we have an incoming tuple representing all of the sockets in
the collection, and, hence, we cannot apply a strong update to the tuple, which can
subsequently cause a false positive.

The focus operation replaces the single tuple with two tuples, one representing
the object that t points to, and another tuple to represent the remaining sockets. For-
mally, consider an incoming tuple 〈o,unique, typestate,APmust, true,APmustNot〉
at an observable operation e.op(), where e 6∈ APmust, but e may point to o (accord-
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ing to the flow-insensitive points-to solution). The analysis replaces this tuple by the
following two tuples:

〈o,unique, typestate,APmust ∪{e}, true,APmustNot〉
〈o,unique, typestate,APmust, true,APmustNot ∪{e}〉

In our example under consideration, the statement t.connect() is reached by
the tuple 〈A,¬U, init, /0,May, /0〉. Focusing replaces this tuple by the following two
tuples:

〈A,¬U, init,{t}, true, /0〉
〈A,¬U, init, /0, true,{t}〉

The invocation of t.connect() is analyzed after the focusing. This allows for a
strong update on the first tuple and no update on the second tuple resulting in the
two tuples:

〈A,¬U,conn,{t}, true, /0〉
〈A,¬U, init, /0, true,{t}〉

We remind the reader that the unique component tuple merely indicates if mul-
tiple objects allocated at the allocation site o may be simultaneously alive. A tuple
such as 〈A, f alse,conn,{t}, true, /0〉, however, represents a single object at this point,
namely the object pointed to by t, which allows us to use a strong update.

The analysis applies this focus operation whenever it would otherwise perform a
weak update for a typestate transition. Thus, focus splits the dataflow facts tracking
the two typestates that normally result from a weak update.

3 Static Specification Mining

Static analyses for specification mining can be classified as component-side, client-
side, or both. A component-side approach analyzes the implementation of an API,
and uses error conditions in the library (such as throwing an exception) or user
annotations to derive a specification.

In contrast, client-side approaches examine not the implementation of an API,
but rather the ways client programs use that API. Thus, client-side approaches can
infer specifications that represent how a particular set of clients uses a general API,
rather than approximating safe behavior for all possible clients. In practice, this is a
key distinction, since a specification of non-failing behaviors often drastically over-
estimates the intended use cases.

The SAFE approach provides static analysis for client-side mining, applied to API
specifications for object-oriented libraries.

Consider the program of Fig. 5. We would like to extract the specification of
how this program uses objects of type SocketChannel. The central challenge is
to accurately track sequences that represent typical usage patterns of the API. In
particular, the analysis must deal with three difficult issues:
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1 class SocketChannelClient {
2 void example() {
3 Collection<SocketChannel> channels = createChannels();
4 for (SocketChannel sc : channels) {
5 sc.connect(new InetSocketAddress("tinyurl.com/23qct8",80));
6 while (!sc.finishConnect()) {
7 // ... wait for connection ...
8 }
9 if (?) {

10 receive(sc);
11 } else {
12 send(sc);
13 }
14 }
15 closeAll(channels);
16 }
17 void closeAll(Collection<SocketChannel> chnls) {
18 for (SocketChannel sc : chnls) { sc.close(); }
19 }
20 Collection<SocketChannel> createChannels() {
21 List<SocketChannel> list = new LinkedList<SocketChannel>();
22 list.add(createChannel("http://tinyurl.com/23qct8", 80));
23 list.add(createChannel("http://tinyurl.com/23qct8", 80));
24 //...
25 return list;
26 }
27 SocketChannel createChannel(String hostName, int port) {
28 SocketChannel sc = SocketChannel.open();
29 sc.configureBlocking(false);
30 return sc;
31 }
32 void receive(SocketChannel x) {
33 File f = new File("ReceivedData");
34 FileOutputStream fos = new FileOutputStream(f,true);
35 ByteBuffer dst = ByteBuffer.allocateDirect(1024);
36 int numBytesRead = 0;
37 while (numBytesRead >= 0) {
38 numBytesRead = x.read(dst);
39 fos.write(dst.array());
40 }
41 fos.close();
42 }
43 void send(SocketChannel x) {
44 for (?) {
45 ByteBuffer buf = ByteBuffer.allocateDirect(1024);
46 buf.put((byte) 0xFF);
47 buf.flip();
48 int numBytesWritten = x.write(buf);
49 }
50 }
51 }

Fig. 5 A simple program using APIs of interest.

• Aliasing. Objects from the target API may flow through complex heap-allocated
data structures. For example, objects in the program of Fig. 5 are passed through
Java collections.

• Unbounded Sequence Length. The sequence of events for a particular object
may grow to any length; the static analysis must rely on a sufficiently precise yet
scalable finite abstraction of unbounded sequences. For example, Fig. 6 shows a
sample concrete history for the program of Fig. 5.
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Statement Concrete History
sc = open() //����������������
sc.config //�������� c f g //����������������
sc.connect //�������� c f g //�������� cnc //����������������
sc.finCon //�������� c f g //�������� cnc //�������� f in //����������������
. . .

sc.finCon //�������� c f g //�������� cnc //�������� f in // . . .
f in //����������������

x.read //�������� c f g //�������� cnc //�������� f in // . . .
f in //�������� rd //����������������

. . .

x.read //�������� c f g //�������� cnc //�������� f in // . . .
f in //�������� rd // . . . rd //����������������

sc.close //�������� c f g //�������� cnc //�������� f in // . . .
f in //�������� rd // . . . rd //�������� cl //����������������

Fig. 6 Example of concrete histories for an object of type SocketChannel in the example program.

• Noise. The analysis will inevitably infer some spurious usage patterns, due to
either analysis imprecision or incorrect client programs. A tool must discard spu-
rious patterns in order to output intuitive, intended specifications.

We present a two-phase approach consisting of (1) an abstract-trace collection to
collect sets of possible behaviors in client programs, and (2) a summarization phase
to filter out noise and spurious patterns.

In this paper we focus on the abstract trace collection phase, details about sum-
marization can be found in [34, 35]. Experimental results in [34, 35], indicate that
in order to produce reasonable specifications, the static analysis must employ suf-
ficiently precise abstractions of aliases and event sequences. Based on experience
with the prototype implementation, we discuss strengths and weaknesses of static
analysis for specification mining. We conclude that this approach shows promise as
a path to more effective specification mining tools.

3.1 Abstract Trace Collection

The abstract trace collection requires abstraction on two unbounded dimensions:
(i) abstraction of heap-allocated objects; (ii) abstraction of event sequences.

The abstraction we use for specification mining is based on the abstraction used
for verification as described in Sec. 2. Both verifying a typestate property, and min-
ing it, require precise reasoning on the sequences of events that can occur during
program execution. The main difference is that mining typestate properties requires
recording traces of events, where typestate verification only requires tracking of the
state in a known typestate property.
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An abstract program state consists of a set of tuples, called “factoids.” A factoid
is a tuple 〈o,heap-data,h〉, where

• o is an instance key.
• heap-data consists of multiple components describing heap properties of o (de-

scribed below).
• h is the abstract history representing the traces observed for o until the corre-

sponding execution point.

An abstract state can contain multiple factoids for the same instance key o, rep-
resenting different alias contexts and abstract histories.

The heap-data component of the factoid is crucial for precision; we
adopt the heap-data abstractions of [18], as described in Sec. 2. Tech-
nically, the heap-data component of the factoid uses tuples of the form:
〈unique,APmust,May,APmustNot〉 as described earlier. Intuitively, the heap ab-
straction relies on the combination of a preliminary scalable (e.g. flow-insensitive)
pointer analysis and selective predicates indicating access-path aliasing, and infor-
mation on object uniqueness. Informally, a factoid with instance key o, and with
heap-data = {unique = true,must = {x. f},mustNot = {y.g},may = true} repre-
sents a program state in which there exists exactly one object named o, such that
x. f must evaluate to point to o, y.g must not evaluate to point to o, and there may
be other pointers to o not represented by these access-paths . Crucially, the tracking
of must point-to information allows strong updates [6] when propagating dataflow
information through a statement.

While a concrete history describes a unique trace, an abstract history typically
encodes multiple traces as the language of the automaton. Different abstractions
consider different history automata (e.g. deterministic vs. non-deterministic) and
different restrictions on the current states (e.g. exactly one current state vs. multiple
current states). We denote the set of abstract histories by H .

The remainder of this section considers semantics and variations of history ab-
stractions.
Abstracting Histories. In practice, automata that characterize API specifications are
often simple, and further admit simple characterizations of their states (e.g. their
ingoing or outgoing sequences). Exploiting this intuition, we introduce abstractions
based on quotient structures of the history automata, which provide a general, sim-
ple, and in many cases precise, framework to reason about abstract histories.

Given an equivalence relation R, and some merge criterion, we define the
quotient-based abstraction of R as follows.

• The abstraction h0 of the empty-sequence history is QuoR(h\0) = h0, i.e. the
empty-sequence history.

• The extend transformer appends the new event σ to the current states, and con-
structs the quotient of the result. More formally, let h = (Σ ,Q, init,δ ,F ). For
every qi ∈F we introduce a fresh state, ni 6∈Q. Then extend(h,σ) = QuoR(h′),
where h′ = (Σ ,Q ∪ {ni | qi ∈ F}, init,δ ′,{ni | qi ∈ F}) with δ ′(qi,σ) =
δ (qi,σ)∪ {ni} for every qi ∈ F , and δ ′(q′,σ ′) = δ (q′,σ ′) for every q′ ∈ Q
and σ ′ ∈ Σ such that q′ 6∈F or σ ′ 6= σ .
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• The merge operator first partitions the set of histories based on the given merge
criterion. Next, the merge operator constructs the union of the automata in each
partition, and returns the quotient of the result.

To instantiate a quotient-based abstraction, we next consider options for the req-
uisite equivalence relation and merge criteria.

Past-Future Abstractions

In many cases, API usages have the property that certain sequences of events are
always preceded or followed by the same behaviors. For example, a connect event
of SocketChannel is always followed by a finishConnect event.

This means that the states of the corresponding automata are characterized by
their ingoing and/or outgoing behaviors. As such, we consider quotient abstractions
w.r.t. the following parametric equivalence relation.

End of for  

iteration 0 1 
cfg 

2 
cnc 

3 
fin 

fin 

rd 

rd 

4 0 1 
cfg 

2 
cnc fin 

fin 

3 0 1 
cfg 
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fin 

wrt 

wrt 

5 

sc.connect(2) 0 1 
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cfg cnc 
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4 
rd 

rd 
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2 0 1 
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wrt 
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2 

After merge 

wrt 

rd 

1 
cfg cnc 

3 
fin 

fin 

cnc 

2 

4 

rd 

5 

wrt 
cnc 

cnc 

0 

No change 

Fig. 7 Abstract interpretation with past abstraction (Exterior merge).

Definition 3.1 (Past-Future Relation) Let q1,q2 be history states, and k1,k2 ∈ N.
We write (q1,q2) ∈ R[k1,k2] iff ink1(q1);outk2(q1)∩ ink1(q2);outk2(q2) 6= /0, i.e. q1
and q2 share both an ingoing sequence of length k1 and an outgoing sequence of
length k2.

We will hereafter focus attention on the two extreme cases of the past-future ab-
straction, where either k1 or k2 is zero. Recall that in0(q) = out0(q) = {ε} for every
state q. As a result, R[k,0] collapses to a relation that considers ingoing sequences
of length k. We refer to it as Rk

past , and to the abstraction as the k-past abstraction.
Similarly, R[0,k] refers to outgoing sequences of length k, in which case we also
refer to it as Rk

f uture. We refer to the corresponding abstraction as the k-future ab-
straction. Intuitively, analysis using the k-past abstraction will distinguish patterns
based only on their recent past behavior, and the k-future abstraction will distin-
guish patterns based only on their near future behavior. These abstractions will be
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Fig. 8 Abstract interpretation with future abstraction (Exterior merge).

effective if the recent past (near future) suffices to identify a particular behavioral
sequence.
Merge Criteria. Having defined equivalence relations, we now consider merge crite-
ria to define quotient-based abstractions. A merge criterion will determine when the
analysis should collapse abstract program states, thus potentially losing precision,
but accelerating convergence.

We consider the following merge schemes.

• None: each history comprises a singleton set in the partition. This scheme is most
precise, but is impractical, as it results in an exponential blowup.

• Total: all histories are merged into one.
• Exterior: the histories are partitioned into subsets in which all the histories have

compatible initial states and compatible current states. Namely, histories h1 and
h2 are merged only if (a) (init1, init2) ∈R; and (b) for every q1 ∈F1 there exists
q2 ∈F2 s.t. (q1,q2) ∈R, and vice versa.

Intuitively, the total criterion forces the analysis to track exactly one abstract
history for each “context” (i.e. alias context, instance key, and program point).

The exterior criterion provides a less aggressive alternative, based on the intuition
that the distinguishing features of a history can be encapsulated by the features of
its initial and current states. The thinking follows that if histories states differ only
on the characterization of intermediate states, merging them may be an attractive
option to accelerate convergence without undue precision loss.
Example. Fig. 7 presents abstract histories produced during the analysis of the sin-
gle instance key in our running example, using the 1-past abstraction with exterior
merge. The first row describes the histories observed at the end of the first iteration
of the for loop of example().

These all hold abstract histories for the same instance key at the same abstract
state. Each history tracks a possible execution path of the abstract object.
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Although these histories refer to the same instance key and alias context, exterior
merge does not apply since their current states are not equivalent. The second row
shows the result of applying the extend transformer on each history after observing
a connect event.

Fig. 8 presents the corresponding abstract histories using the 1-future abstraction
with exterior merge (in fact, in this case total merge behaves identically). Unlike
the case under the past abstraction, merge applies at the end of the first loop iter-
ation, since the initial and current states are equivalent under the 1-future relation.
As a result, the analysis continues with the single merged history. The second row
shows the result of applying the extend transformer on it after observing a connect
event.

4 Verifying Dereference Safety

Null-pointer dereferences represent a significant percentage of defects in Java ap-
plications. Furthermore, a null dereference is often a symptom of a higher-level
problem; warning the programmer about a potential null dereference may help in
exposing the more subtle problem. The general approach presented in the previ-
ous sections can be used to address the problem of verifying the safety of pointer
dereferences in real Java programs.

We present a scalable analysis via lazy scope expansion. Unlike most existing
bug-finding tools for detecting null dereferences our analysis is sound.

Our abstract domain is a product of three domains: (i) the abstract domain used
for the may-alias analysis, (ii) the abstract domain used for the must-alias analysis,
and (iii) a set APnn of access paths that are guaranteed to have a non-null value. We
guarantee that the abstract domain is finite by placing a (parameterized) limit on the
size of the APnn sets and on the maximal length of the access paths that they may
contain.1 We refer to the size of the access path set APnn as the width of APnn and to
the maximal length of an access path ap ∈ APnn as the length of APnn.

Note that domains (i) and (ii) above are the same ones used for typestate verifi-
cation and specification mining in Sections 2 and 3.

For details on how elements of the third domain are updated, see [26]. Here, we
wish to focus on another aspect, which is the notion of expanding scopes.

The idea is to break the verification problem into modular sub-problems. Specif-
ically, our analysis operates on program fragments, and gradually expands the anal-
ysis scope in which a fragment is considered when additional context information
is required. While this idea has been presented in [26] in the context of verifying
dereference safety, it is applicable to all of the other analyses we presented here,
and in particular to the typestate verification and typestate mining of the previous
sections.

1 The length of access path 〈v,〈 f1, . . . , fk〉〉 is defined to be k+1.
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Expanding-Scope Analysis. We present a staged analysis that adapts the cost of the
analysis to the difficulty of the verification task. Our analysis breaks the verifica-
tion problem into multiple subproblems and adapts the analysis of each subproblem
along two dimensions: the precision dimension and the analysis-scope dimension.
Our analysis adapts the precision (and thus the expected cost) of the abstract inter-
pretation [9] to the difficulty of verifying the subproblem. In this aspect, it is similar
to the staging in [18].

The novelty of our approach lies in its ability to adapt the scope of the analyzed
program fragment to the difficulty of the verification task. Unlike existing staged
techniques, which analyze whole programs (e.g., [18]), our analysis operates on
program fragments. The basic idea, inspired by Rountev et. al. [31], is to break the
program into fragments and analyze each fragment separately, making conservative
assumptions about the parts of the program that lie outside the fragment. However,
if the property cannot be verified under the conservative context assumptions, our
approach provides for gradually expanding the scope of the analyzed fragment.

The premise of this approach is that a large percentage of the potential points of
failure in a program can be verified by (i) using a scalable imprecise analysis that
conservatively approximates context information, and (ii) employing more precise
analyses that consider a limited scope, which may be expanded as needed.

Our approach is based on the principle of expanding scopes; it applies this prin-
ciple to the problem of dereference safety, which is particularly challenging due to
its dependence on aliasing information.

Another approach to modular analysis, that is based on symbolic representation
of procedure summaries, can be found in [42].

5 Conclusion

In this paper, we surveyed some of the techniques developed in the SAFE project.
Despite the sophisticated techniques used, the end result is that scalability of the
approach remains limited. One of the main difficulties remains the sound treatment
of large libraries. This is becoming more of a hurdle as software is becoming heavily
based on framework code. We believe that practical success lies in the combination
of static and dynamic techniques, as well as in moving to higher level languages that
enable modular reasoning.
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