
PHALANX: Parallel Checking of Expressive Heap Assertions

Martin Vechev
IBM Research

Eran Yahav
IBM Research

Greta Yorsh
IBM Research

Unrestricted use of heap pointers makes software systems dif-
ficult to understand and to debug. To address this challenge, we
developed PHALANX — a practical framework for dynamically
checking expressive heap properties such as ownership, sharing and
reachability. PHALANX uses novel parallel algorithms to efficiently
check a wide range of heap properties utilizing the available cores.

PHALANX runtime is implemented on top of IBM’s Java pro-
duction virtual machine. This has enabled us to apply our new tech-
niques to real world software. We checked expressive heap proper-
ties in various scenarios and found the runtime support to be valu-
able for debugging and program understanding. Further, our ex-
perimental results on DaCapo and other benchmarks indicate that
evaluating heap queries using parallel algorithms can lead to signif-
icant performance improvements, often resulting in linear speedups
as the number of cores increases.

To encourage adoption by programmers, we extended an exist-
ing JML compiler to translate expressive JML assertions about the
heap into their efficient implementation provided by PHALANX. To
debug her program, a programmer can annotate it with expressive
heap assertions in JML, that are efficiently checked by PHALANX.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]; D.2.4 [Software/Program Verification]: Assertion checkers

General Terms Algorithms, Reliability

Keywords ownership, parallel garbage collector, virtual machine

1. Introduction
Modern programming languages increase programmer productivity
by providing correctness-checking mechanisms for common low-
level programming errors (e.g., dereferencing of a null pointer).
However, such low-level errors are often only a symptom of mis-
handling of pointer aliasing. Incidental and accidental pointer alias-
ing result in unexpected side effects of seemingly unrelated oper-
ations, and are a major source of system failures. This problem is
exacerbated in the presence of concurrency.

Despite significant advances in checking and verification of
heap properties, practical adoption of such approaches remains lim-
ited. Static approaches are either imprecise (e.g., [3, 28]), do not
scale to large applications (e.g., [13, 26, 29]), or focus on spe-
cific properties (e.g., [9]). Most of these approaches do not handle
concurrent programs. Dynamic approaches are more promising in
terms of scaling, but are either limited to local properties [10], re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c⃝ 2010 ACM 978-1-4503-0054-4/10/06. . . $10.00

quire heap snapshots to be analyzed offline [21], or support only a
limited set of simple heap queries [1, 4]. Specification languages
for Java such as JML [18] allow the programmer to specify expres-
sive heap assertions, but lack runtime support for checking them.

Ownership types hold great promise, as they simplify reasoning
about object-oriented programs by controlling the permitted alias-
ing. A wide variety of static approaches have been proposed for
enforcing ownership (e.g., [11]). These approaches typically im-
pose strict restriction on ownership transfer, requiring that unique-
ness holds on transfer (e.g., [2, 5, 16]), or impose a high annotation
burden. These factors have been an obstacle for wide adoption of
ownership types in practice.

We present PHALANX — a practical tool for dynamically check-
ing expressive heap properties that involve ownership, sharing and
reachability. Our approach complements existing static approaches
for enforcing ownership, such as ownership types (e.g., [8, 11, 12,
14, 23]), and may enable their wider adoption. In particular, our
approach may enable a type system to tentatively allow some cases
when ownership cannot be established, leaving an ownership check
to be performed at runtime. In addition, our approach can provide
an efficient alternative runtime support of ownership, required by
some ownership type systems (e.g., [23]).

With the advent of multicore systems, we envision that some
cores could be dedicated to performing software quality tasks as
part of extended language runtime. In particular, it will enable
checking properties that have been traditionally considered too
expensive even for debugging scenarios. This work makes a step
in that general direction by extending language runtime support to
a new level of expressivity.
Expressive Query Language The common heap queries we sup-
port are motivated by real usage scenarios, in which they proved to
be valuable. Many of these scenarios reflect challenges with com-
mon programming patterns, including ownership and aliasing con-
trol, resource management, and event handling mechanisms. Ef-
ficient runtime support of common heap queries enables the pro-
grammer to check properties that are difficult or practically impos-
sible to check otherwise, such as properties like sharing that con-
ceptually require traversing pointers backwards.

Our experience indicates that the heap queries required in prac-
tice are sometimes a significant refinement of the naive queries
one would write. For example, as demonstrated in Sec. 2, practi-
cal queries may require reasoning about reachability through paths
that avoid a certain set of objects, a property that cannot be phrased
as a simple reachability query. Similar adaptations are required for
making ownership and other queries useful in practice. This dic-
tates the need for efficient support of these refined queries.

To make the deployment of heap queries easy, we provide a
small set of simple primitives that can be used in JML assertions
for reasoning about the heap. Common heap queries can be natu-
rally expressed in JML using these new primitives, together with
quantifiers and set operations available in JML [18]. We provide a

modified version of the JML compiler to translate heap queries to
their efficient implementation in the PHALANX runtime.

To invoke a heap query, the program holds pointers to the rel-
evant objects in the heap. The user-intended meaning of the query
usually does not take such pointers into account. For example,
when a user writes a query to check whether an object is shared,
the query itself must hold a pointer to the object, which the user
probably does not want to account for as a source of sharing (oth-
erwise, unless the query holds the only pointer to the object, the
query will always return true, by definition). To clarify such sub-
tleties, we define a formal semantics for our heap queries. This also
helps us to prove that the algorithms implemented in the runtime
compute the intended results.
Efficient Runtime Support We provide efficient algorithms for
evaluating various heap queries, using a traversal over the program
heap. Much of the machinery necessary for evaluating these heap
queries is already available in modern virtual machines (VM), and
the tracing garbage collector (GC) makes use of this machinery
when traversing the heap. However, many useful heap queries can-
not be directly checked using the information obtained during GC.
Intuitively, a tracing GC computes reachability (transitive closure)
information, which tells us whether an object is reachable or not,
but it does not tell us how an object can be reached. The latter infor-
mation is required for checking path properties such as domination,
ownership and disjointness.

Every one of the common queries are evaluated using a sin-
gle linear-time traversal of the heap, matching the complexity of
GC traversal, and keeping auxiliary space to a minimum. This is
particularly challenging for queries such as disjointness and own-
ership. Moreover, we provide parallel versions of these algorithms
designed to take advantage of the available cores to speed up query
evaluation.

The overhead of query evaluation is highly dependent on how
many assertions are checked, where the assertions are in the pro-
gram, the shape (structure) of the heap, and the result of the query
(e.g., query checking whether an object is shared must traverse the
entire heap to return a negative answer, but when it returns a posi-
tive answer, it often completes very fast).
Production Virtual Machine Our algorithms are implemented
in IBM’s Java production virtual machine enabling us to achieve
efficiency that is very hard to obtain by other means. Further, the
integration with the production VM enables us to easily run real-
world applications.

While adding meaningful heap queries to such applications re-
quires intimate knowledge of the code, we experimented with sev-
eral heap queries that are of general applicability. Using these
queries we found a number of potential sources of bugs and in-
efficiencies.

The main contributions of this paper include:
• A set of common heap queries pertaining to global properties of

the heap (e.g., ownership, sharing, and reachability), and usage
scenarios where we found these heap queries to be useful.
• A small set of natural primitives that can be used to express

many heap queries as JML assertions, making the use of heap
queries easy and accessible.
• A modified JML compiler that maps common heap queries to

efficient implementations in the PHALANX runtime.
• New parallel algorithms for efficient evaluation of the common

heap queries, and implementation of the parallel algorithms in
a production virtual machine.
• Experimental evaluation of heap queries on synthetic bench-

marks as well as real-world applications, including a compar-
ison of the parallel implementation in a production VM to a
reference implementation outside of the VM that is based on
JVMTI.

This work enables checking of heap assertions beyond those ex-
pressed and checked by existing systems. We address all aspects of
assertion checking, from user interaction in JML to efficient run-
time implementation, assisting the user in the difficult task of de-
bugging large-scale applications.

1.1 Related Work

In this section we briefly discuss the most closely-related work.
QVM This work extends QVM [4] in the following aspects. We
support new queries about path properties such as reachability
through or avoiding certain objects. We provide parallel algorithms
for these queries and also significantly improve the algorithms
from [4] by reducing synchronization. We define formal seman-
tics of heap assertions, and show that the parallel algorithms, some
of which are quite subtle, correctly implement this semantics. We
provide a highly-optimized implementation of all the parallel algo-
rithms. We explore real-world usage scenarios for heap assertions,
and demonstrate their usefulness for debugging and program under-
standing. We evaluate the usefulness of heap assertions in existing
applications. We evaluate the scalability of the parallel implementa-
tion and compare it to reference implementation with JVMTI. We
define a language for specifying heap properties using new heap
primitives and set operations. We modified JML compiler to inter-
cept quantified JML queries and map them to PHALANX methods.
Heap Properties Mitchell [21] provides concise and informative
summaries of real world heap graphs arising in production appli-
cations. The summaries are computed offline and follow a set of
useful heuristic patterns for summarizing graphs. In contrast, our
goal is to check various user specified heap properties online. [22]
studies offline heap snapshots with the goal of finding inefficiencies
in memory usage caused by program design.

Various works have relied on the GC to find memory leaks.
Jump and McKinley [17] use the collector to help in suggesting
potential leaks. Shacham et. al [27] use the collector to track data-
structure utilization and identify bloat in Java collections. Bond
and McKinley [7] study efficient leak detection for Java.They make
use of runtime support and adaptive profiling techniques from [15]
applied on object use sites, in order to reduce the space and time
overheads. This concept can be used in PHALANX as well.

In [1], the authors suggest the idea of “piggybacking on a GC
traversal” to check various heap properties. That is, the method
of [1] reuses the work done by GC traversal to evaluate queries
about the heap. In our work, we do the opposite: GC traversal can
reuse the work performed by query evaluation. Note that we do
reuse GC traversal components to implement query evaluation.

In [1], the main concern is what properties can be checked by
piggybacking on a GC traversal. Our concern is different, namely,
to check expressive path-based queries such as ownership and dis-
jointness. Reusing the work of GC for query evaluation, as done
in previous work [1], is inherently limiting the kinds of queries
that can be computed: as we explained earlier, GC traversal only
computes whether an object is reachable, while checking proper-
ties such as ownership requires information on how the object is
reachable, via what paths. Our experience has revealed the need
for more expressive queries, such as ownership, disjointness, and
reachability through or avoiding certain objects. Such queries can-
not be piggybacked on GC traversal, but our algorithms are de-
signed such that GC traversal can reuse the traversal work done by
query evaluation. Further compared to [1], we support heap queries
specified in JML and provide novel parallel algorithms with fine-
grained synchronization for evaluation of common queries.

1 p u b l i c c l a s s Da t a b a s e {
2 p r i v a t e Connec t ionManager cm ;
3 p u b l i c i n t i n s e r t (. . .) throws MappingEx {
4 C o n n e c t i o n c = cm . g e t C o n n e c t i o n (. . .) ;
5 / / @ a s s e r t \num of Thread t ; Phalanx . r u n n i n g () . has (t) ;
6 / / @ Phalanx . reach (t , cm . conns . v a l u e s ()) . has (c))<=1
7 . . .
8 }
9 . . . }

10 p u b l i c c l a s s Connec t ionManager {
11 p r i v a t e /∗@ s p e c p u b l i c @∗ / Map conns =
12 C o l l e c t i o n s . synchron izedMap (new HashMap ()) ;
13 p u b l i c Co n n e c t i o n g e t C o n n e c t i o n (S t r i n g s)
14 throws MappingExcep t ion {
15 t r y {
16 C o n n e c t i o n S o u r c e c = conns . g e t (s) ;
17 i f (c != n u l l) re turn c . g e t C o n n e c t i o n () ;
18 throw new MappingExcep t ion (. . .) ;
19 } catch (SQLEx e) { . . . }
20 }
21 }
22 p u b l i c c l a s s C o n n e c t i o n S o u r c e {
23 p r i v a t e C o n n e c t i o n conn ;
24 p r i v a t e boolean used ;
25 p u b l i c Co n n e c t i o n g e t C o n n e c t i o n () throws SQLEx {
26 i f (! used) {
27 used = t rue ;
28 re turn conn ;
29 }
30 throw new SQLEx (. . .) ;
31 }}

Figure 1. Code fragment from JdbF.

2. Motivating Example
In this section, we provide a simple motivating example for the use
of heap assertions, and explain the meaning of some assertions in
an informal manner. A more formal treatment is provided in Sec. 3.

Fig. 1 shows a code fragment from JdbF, a system for stor-
ing and retrieving objects in a relational database. The Database
class provides an interface to clients of JdbF for performing var-
ious operations on the database. Each operation acquires a con-
nection, performs its task on the database, and releases the con-
nection. The ConnectionManager class maintains a map of all
available connections. Each Connection object is confined in a
ConnectionSource object. The invariant of the JdbF library is
that every Connection is used by at most one database operation
at a time. A race in the original program, first reported in [24], vi-
olates this invariant. Since getConnection methods are not syn-
chronized, two threads can concurrently pass the !used guard on
line 27 and wind up with the same Connection object. An exam-
ple of such memory configuration is shown in Fig. 2, where the
connection object in the middle is shared by two running threads.

Instead of resorting to various methods for race-detection, the
programmer can detect that her code violates the invariant. In our
example, the programmer may want to check that a connection
object is reachable from at most one thread. This property can
be expressed in JML by (\num of Thread t; t.isAlive();
\reach(t).has(c))<=1.

The quantifier \num of returns the number of thread objects t
that satisfy both assertions t.isAlive() and \reach(t).has(c).
The primitive \reach, built-in in JML, returns the set of all objects
reachable from the object referenced by t. The method call has(c)
returns true when the Connection object c is in the set.

Efficient evaluation of the above heap query is nontrivial. The
query iterates over the set of executing threads and checks (transi-
tive) reachability from each one of these threads. Indeed, the JML
compiler treats it as a non-executable assertion.

Thread Thread

Running

Stack

Database

root

Running

Stack

HashMap

Connection

Source

Connection

Source

Connection Connection

static

Connection

Source

Connection

Connection

Manager

ct

Figure 2. Example graph that represents a state of the program JdbF
from Fig. 1. We use dashed line for the special nodes, which do not represent
heap-allocated objects. All other nodes represent objects labeled with their
(short) class name. We omit some details of Map implementation for clarity.

PHALANX can efficiently evaluate this assertion, using
parallel heap traversal to implement the reachability check
\reach(t).has(c). PHALANX also provides a new primitive
running, which returns the set of all executing threads. This prim-
itive is easy to implement efficiently in PHALANX, which has ac-
cess to the VM’s internal information. Finally, PHALANX evalu-
ates this assertion atomically: all subexpressions are evaluated on
the same snapshot of the heap and the application threads are sus-
pended during evaluation. Otherwise, a thread may be alive when
we begin evaluating the assertion, but dead by the time we finish
the iteration; or a thread may be modifying reference fields while
the assertion is being evaluated, altering reachability.

Even if the clients of JdbF are synchronized, the above asser-
tion fails. In fact, all connection objects are reachable from all
client threads, through the connection manager’s connection map,
as shown in Fig. 2. Such path properties go beyond reachability.

Path properties cannot be expressed in JML in a natural way.
Fortunately, JML language is designed to be easily extensible:
new primitives are simply calls to (pure) methods implemented
elsewhere. PHALANX uses this capability to provide primitives that
capture path properties, such as reachability through or avoiding
certain objects, and domination.

Using the primitives running and reach provided by PHA-
LANX, the assertion can be expressed in JML (see Fig. 1, lines 5-6).

In Sec. 4, we describe a number of efficient algorithms for eval-
uating such heap queries. All of our algorithms have corresponding
efficient parallel versions, enabling optimal usage of the underlying
multi-core machine. The algorithms are not specific to our setup,
and can be implemented in any VM.

3. Expressive Language of Heap Queries
JML assertion language [18] supports quantifiers and set opera-
tions; extended with a few primitives about the heap, it gives us
a natural way to specify expressive heap properties. Additionally,
JML assertion language allows us to write rich assertions that com-
bine reasoning about the heap with reasoning about other aspects
of the program. We also benefit from JML’s support for method
specification, specification inheritance, invariant checking, etc.

In this section, we start by defining the meaning of heap queries.
We present the core primitives supported by PHALANX and their
semantics in Table 1. Common heap queries that arise in many
real-world usage scenarios can be written using the new primitives

together with standard quantifiers and set operations, as shown
in Table 2.

3.1 Semantics of Heap Queries
To define the meaning of heap queries, we represent Java program
states as graphs. It allows us to define the semantics using standard
set and graph operations. It also simplifies the reasoning about
correctness of our parallel implementation of the common heap
queries, described in Sec. 4.
Graph definition g(s): For a state s, we define a directed graph
g(s) whose nodes include the heap-allocated objects labeled by
types, and whose edges represent references between objects. The
meaning of heap queries is defined by graph- and set-theoretic
operations on g(s). Graph g(s) is a tuple ⟨V,E, L⟩ where V is the
set of nodes, E ⊆ V ×V is the set of edges, and L : V → Classes∪
{root, stack, running, static} is the node-labeling function.
Graph Notations We now introduce some standard notations for
the graph operations which we use in the definition of the primi-
tives. Let g(s) = ⟨V,E,L⟩ be a graph as above. A path in g(s)
is a (non-empty) sequence of nodes v1, . . . , vm such that for all
i = 1, . . . ,m − 1, (vi, vi+1) ∈ E. We use src(π) and dst(π) to
denote the first and last nodes of the path π. For a path π, we use
nodes(π) to denote the set of nodes on the path, including the end-
points. The set of all paths in the graph g(s) is denoted by Πg(s).
We use Πg(s)(v, v

′) to denote the set of paths in g(s) from v to v′,
defined by Πg(s)(v, v

′)
def
= {π ∈ Π | src(π) = v, dst(π) = v′}.

EXAMPLE 3.1. Consider a state of the JdbF program of Fig. 1,
in which two threads concurrently execute insert on the same
Database object. Fig. 2 shows the corresponding graph. In this
graph, nodes with solid boundary lines represent heap allocated
objects. Nodes with dashed lines represent additional information
such as threads runtime information and thread stacks. In Fig. 2,
the database contains three elements of ConnectionSource, each
of which has a field pointer to its Connection object. Each thread
has a stack pointer to a Connection object, via local variable c.
For each thread, this stack pointer goes from the corresponding
stack node in the graph. Each thread also has a field pointing to
the shared Database object. This heap pointer goes directly from
the Thread object to the Database object. Every Connection
object is transitively reachable from all running threads through
the HashMap object. Furthermore, both running threads refer to
the same Connection object from their stack.

Heap Primitives Provided by PHALANX The primitives sup-
ported by PHALANX runtime and their semantics are shown in Ta-
ble 1. The primitive dom returns boolean. All the other primitives
return JMLObjectSet, a set implementing standard set-operations
such as membership test, intersection, and size.

We use a standard Java semantics to evaluate the formal param-
eters of the primitives and require that the their values are non-null.
The semantics of a parameter o of type Object in a state s is the
node in g(s) that represents the object pointed to by o in state s.
Similarly, the semantics of a parameter a of type array of Object,
is the set of nodes in g(s) that represent the objects in the array. We
abuse the notations slightly and use o and a to represent both the
parameters and their semantics in s.

EXAMPLE 3.2. Suppose that the following JML assertion is added
to the program of Fig. 1, after line 4: pred(c).size() == 1. It
uses the primitive pred to check the Connection object pointed to
by c has exactly one predecessor. This assertion is satisfied in the
state shown in Fig. 2 because only a single object in the heap, of
type ConnectionSource, has a field pointing to c.

The assertion dom(stack(Thread.currentThread()), c)
is not satisfied because the Connection object in the center is

pointed to from the stacks of both client threads. Suppose that the
client threads are correctly synchronized, i.e., only one of them
has a stack pointer to c. Then, according to the semantics defined
above, the assertion would hold.

When the query dom(o1,o2) is evaluated, the thread that in-
vokes it is the current thread ct, and it has at least one stack pointer
to the object pointed to by o2, namely the argument o2 of the query.
Therefore, the object pointed to by o2 is not dominated by the ob-
ject pointed to by o1. Intuitively, the stack pointer to the object
pointed to by o2 should be ignored for the purpose of domination
check, because it exists solely for invoking the query, but does not
violate the domination/ownership relation that the user intended to
check with this query. Similarly, it is possible that there are multi-
ple pointers from other stack frames of the current thread that are
there solely for acquiring the pointer to o2 to invoke the query.

To address it, the semantics of dom ignores all paths that go
through the stack of the current thread. It is possible that this
semantics is ignoring paths that violate thread-local ownership
through the stack (unlike ownership defined in [12]). The semantics
does consider paths that go through stacks of other running threads
as violating domination. This allows us to check ownership proper-
ties pertaining to synchronization between threads.

3.2 Common Heap Queries and their Usage Scenarios
Table 2 shows how to express common heap queries using JML
assertions with the heap primitives provided by PHALANX.

The last column of Table 2 lists names of corresponding heap
probes — PHALANX runtime methods that efficiently imple-
ment these queries, as described in Sec. 4. For example, object-
ownership query dom(x,y) is implemented by isObjectOwned
probe. Thread-ownership is just a special case of object-ownership
where the owner is Thread.currentThread(), the current thread
object. Queries related to threads (e.g., getThreadReach and isThread-
Owned) can have 3 versions: stack only, thread object only, and
both. The semantics supports such distinctions by having 3 nodes
for every running thread of g(s), where the nodes labelled with
stack and running do not represent objects, but were introduced to
refine the notion of reachability from threads.

Along with the heap primitives shown in Table 1, PHALANX
provides a useful shorthand that returns all the “roots” of a given
thread; roots(Thread t) returns the JMLObjectSet which con-
sists of all objects pointed from the thread’s stack and the thread
object itself: roots(Thread t)

def
= stack(t).insert(t).

4. Heap Probe Algorithms
In this section, we present the algorithms for computing the heap
probes listed in Table 2. We begin by discussing the design deci-
sions we made to create efficient algorithms.
Low-overhead Evaluation of heap queries involves computing
transitive closure of the heap graph. Transitive closure can be pre-
computed in O(V ×(V +E)) operations (for a heap with V objects
and E references), and updated using incremental algorithms (e.g.,
Roditty [25]). However, pre-computation incurs a prohibitive space
overhead, as well as a significant time overhead when the heap is
modified frequently. Furthermore, this approach does not support
path queries which we show to be of practical importance (e.g., for
ownership and reachability with an avoidance set).

For these reasons, we chose to evaluate queries directly on the
heap graph, using a heap traversal. The worst-case time complexity
for all our algorithms is O(V + E) operations for a heap with V
objects and E references. Evaluating P of them could take O(P ×
(V +E)) operations. However, in practice, we expect P ≪ V and
heap queries are much less frequent than heap updates, and hence
for large program heaps, this approach is likely to be superior to

Name Semantics Description
running() {r.obj | L(r) = running} Running threads
stack(Thread t) {v | (r.stack, v) ∈ E ∧ L(r) = running ∧ r.obj = t} Objects pointed-to from the stack of thread t
reach() {v | L(v) ∈ Classes ∧Π(root, v) ̸= ∅} Reachable objects
reach(Object o) {v | Π(o, v) ̸= ∅} Objects reachable from object o
reach(Object o,Object[] a) {v | ∃π ∈ Π(o, v).nodes(π) ∩ a = ∅} Objects reachable from object o

without going through any of the objects in a
pred(Object o) {v | (v,o) ∈ E ∧ L(v) ∈ Classes ∧Π(root, v) ̸= ∅} Reachable objects pointing to object o
dom(Object o1,Object o2) ∃π ∈ Π(o1,o2)∧ There is a path from o1 to o2, and

∀π ∈ Π(root,o2).o1 ∈ nodes(π) ∨ ct.stack ∈ nodes(π) every path from root to o2 goes through o1

Table 1. Primitives for reasoning about the heap and their semantics in state s, where g(s) = ⟨V,E,L⟩.

Query Description Probe Name
pred(o).size() > 0 Is o pointed to by a heap object? isHeap(Object o)
pred(o).size() > 1 Is o pointed to by two or more heap objects? isShared(Object o)
reach(src).has(dst) Is dst reachable from src? isReachable(Object src, Object dst)
!(exists Object v; Is there no object reachable isDisjoint(Object o1, Object o2)
reach(o1).has(v) ; reach(o2).has(v)) from both o1 and o2?

!(exists Object v ; Does o dominate all objects isUniqueOwner(Object o)
reach(o).has(v) ; !dom(o,v)) reachable from it?

!reach(o1,cut).has(o2) Does every path from o1 to o2 reachThrough(Object o1, o2, Object[] cut)
go through an object in cut

dom(o1, o2) Does the object o1 dominate o2? isObjectOwned(Object o1, Object o2)
dom(Thread.currentThread(), o) Does the current thread’s object dominate o? isObjectOwned(Object o1, Object o2)

(where o1 is currentThread and o2 is o)
dom(stack(Thread.currentThread()), o) Does the current thread’s stack dominate o? isThreadStackOwned(Object o)
dom(roots(Thread.currentThread()), o) Does the current thread dominate o? isThreadOwned(Object o)
{Thread t | running().has(t) Threads from which object o getThreadReach(Object o, Object [] avoid)
&& (reach(t,avoid).has(o) is reachable not through avoid
|| reach(stack(t),avoid).has(o))}

Table 2. Common heap queries and their corresponding probe names.

incrementally updating a pre-computed transitive closure when the
heap is modified. In practice, constants matter and it is important to
perform as few passes over the heap as possible.
Portability Our algorithms are not specific to a particular VM and
hence can be implemented in any VM desiring support for heap
assertions, e.g. Javascript, C#, etc. The algorithms are designed
to use standard components already present in these VMs, such
as heap traversal machinery, synchronization primitives, auxiliary
object data. The algorithms can take advantage of existing efficient
implementation of these components, e.g., load balancing [20], and
future advances in their technology.

Moreover, we designed the algorithms in a way where any work
done for query evaluation can be reused for garbage collection.
Note that the converse is not true: many probes cannot be imple-
mented by only relying on information computed by the GC. In
this section, we present the algorithms independently of our run-
time. In Sec. 5, we discuss various challenges in integrating them
into a production virtual machine.

We designed the algorithms to leverage available cores in the
system for speeding up heap queries. Our algorithms operate effi-
ciently in both sequential and parallel settings. A single heap query
can be computed by a single thread or by multiple threads, if avail-
able. Our algorithms operate by stopping the application, evaluat-
ing the heap query on the program heap, and resuming the applica-
tion. Fig. 4 shows the pseudo-code, including synchronization.

We first review the standard heap traversal components (Sec. 4.1),
then we explain how our query evaluation algorithms work in a se-
quential setting (Sec. 4.2), and finally we discuss the necessary
synchronization for ensuring correct and efficient parallel query
evaluation (Sec. 4.3).

4.1 Heap Traversal Components

Fig. 3 shows the standard heap traversal components provided by
most virtual machines.

The set Ta denotes the set of (running) application threads in the
system at the time a probe is invoked. For an application thread ta,
we use ta.stack and ta.obj to denote the thread’s stack and object.

The procedure mark-thread() marks the objects directly
pointed to by an application (running) thread’s stack and thread’s
object, but does not perform further traversal from that set. The
procedure trace() performs heap traversal to compute the set of
objects reachable from the set pending. The marking proceeds as
usual in garbage collection, but we have added callback procedures
trace-step and tag-step, which are called on each newly-
encountered reference. Different implementations of the various
heap probes customize these routines in specific ways. The default
return value of tag-step is true. The default implementation of
trace-step is empty.

4.2 Sequential Algorithms

Fig. 4 shows the parallel algorithms for our heap queries. The
algorithms are designed in a way where one can simply elide
all synchronization constructs (explained in Sec. 4.3) and easily
obtain a correct and efficient sequential algorithm. This is useful
in settings where only a single core is dedicated to heap query
evaluation. In this section, we explain how the algorithms work
when only a single thread evaluates the query. In the next section,
we discuss the challenges with parallel evaluation.
isThreadOwned The implementation of isThreadOwned(ta, o)
is shown in Fig. 4(b). This probe checks if object o is reachable
only from the calling application thread ta. To compute this, we
trace from all application threads except from ta. If object o is

marked, then it is not owned by ta and we return false, otherwise
we return true. This probe assumes that ta is the application thread
that invokes the probe, hence object o is always reachable from ta
(and we do not need to explicitly check that).

The operation of this probe is similar to tracing collectors, with
the key difference being the specific order in which threads are
processed. If we would like to perform garbage collection after this
probe completes, we can proceed to mark and trace from the roots
of the current application thread ta. That is, collection can reuse
the work that was done for the probe.
isObjectOwned The implementation of isObjectOwned(src,
tgt) is shown in Fig. 4(d). Recall that this probe only returns true
when all paths to tgt go through src and there is at least one such
path. The algorithm uses a special sequence for processing nodes,
and only uses the single set Marked. The basic idea is to mark src
without tracing from it, and then trace through all other roots. Since
src is marked during tracing, it will not be traced through and all
objects that are reachable only through src will remain unmarked.

First, the algorithm uses tag-object() to mark the src object
without tracing from it. Then, the algorithm switches to skip phase
and marks all objects pointed to from the roots (except tgt) with-
out tracing from them yet. The purpose of this phase is to avoid
marking tgt if it is pointed directly from the roots as we want to
reason only about heap paths. Then, the phase is switched to none
to perform tracing as usual. During tracing, if the object src is en-
countered, tracing will not continue to trace from it because it is
already in the Marked set. Upon completion of the tracing phase,
we check whether tgt is marked. If it is marked, the probe returns
false. Otherwise, if tgt is reachable from src, it returns true.

We need to manage the object src carefully, to allow garbage
collection to be performed during this probe. The src object is
marked during the probe but it is not placed in the pending set.
If we continue with a garbage collection after this probe, we need
to make sure that src is added to pending.

One of the challenges of implementing probes of this type in
a VM is dealing with stack pointers. In particular, objects src and
tgt are always reachable from the stack of the application thread
that invoked the heap probe. Our current implementation focuses
on domination through heap paths, and ignores all stack pointers
from the current thread to tgt. Alternative implementations could
identify which stack pointers to consider and which stack pointers
to ignore, but this is very challenging in practice, especially due to
JIT optimizations.
getThreadReach The implementation of getThreadReach(o,
avoid) is shown in Fig. 4(f). This probe returns all application
thread objects which can reach object o without going through
any object in the avoid set. We consider each application thread
ta in turn, to see if o can be reached from that thread. As in
isThreadOwned, we first tag all objects in the avoid set. Then
we compute the transitive closure from that thread. If after that, o is
marked, then the application thread is inserted into the result set,
otherwise, we do not insert it. After processing each application
thread, the Marked set is initialized to ∅.

This probe tracks reachability from both thread stacks and
thread objects. In Table 2, we specialize it further to track reacha-
bility only from thread stacks or only from thread objects.
reachThrough The implementation of reachThrough(o1, cut,
o2) is shown in Fig. 4(e). This probe checks that all paths from ob-
ject o1 to object o2 go through at least one object in the set cut. The
algorithm uses a similar trick to isObjectOwned. First, it marks
all objects in cut but does not trace from them. Then it marks and
traces from object o1. If during this process, we encounter an ob-
ject in the cut, we will not trace through the object as it was already
marked. At the end of the tracing from o1, if we see that object o2

trace()
while (pending ̸= ∅)

remove s from pending
for each o ∈ {v | (s, v) ∈ E}

trace-step(s, o)
mark-object(o)

tag-object(o)
if (tag-step(o) = false)
return false

atomic
if (o ̸∈ Marked)
Marked← Marked ∪ {o};
return true

else return false

mark-object(o)
if (tag-object(o) = true)

push-object(o)

push-object(o)
pending← pending ∪ {o}

mark-thread(ta)
for each o ∈ roots(ta.stack)

mark-object(o)
mark-object(ta.obj)

mark-roots(T)
for each ta ∈ T

mark-thread(ta)
mark-object(static)

Figure 3. Basic Components for Heap Traversal

is marked, then there must have been a path from o1 to o2 not go-
ing through any object in the set cut. In that case, the probe returns
false. Otherwise, the probe returns true.

4.3 Synchronization
To evaluate heap queries in parallel, we use a set of evaluator
threads. Theoretically, the algorithm places no limits on the number
of these threads, although in practice, we can create one thread for
each available processor. To ensure correct operation when multiple
threads are evaluating the heap query, the algorithms make careful
use of the following synchronization primitives:

Barrier: A barrier is provided by barrier(). When an evalu-
ator thread calls barrier(), it blocks and waits for all other eval-
uator threads to arrive at the barrier. When they have all called
barrier(), all evaluator threads are released to continue.

Barrier with Master thread: One of the evaluator threads is
designated as the master thread. When a thread calls the func-
tion barrier-and-release-master(), it blocks, just like in
the case of barrier(). When all of the evaluator threads have
called the function, only the master thread is released and al-
lowed to continue, while the other threads remain blocked. These
threads remain blocked until the master releases them by a call
to the function release-blocked-evaluators(). The proce-
dure barrier-and-release-master() returns true for the mas-
ter thread and false for all others threads.

In the rest of this section, we explain the synchronization used
in the algorithms in Fig. 4. The variables result, phase, Owned,
Marked, Ta are shared, all other variables are local to the eval-
uator thread. To avoid clutter, we abstract away the internal load
balancing mechanism of the VM with the pending set. That is, the
VM may transparently move objects from one local pending set to
another, without affecting the correctness of the algorithms.
isReachable In the algorithm of Fig. 4(a), every evaluation thread
marks the src object, and then traces from it. All evaluation
threads eventually block at barrier-and-release-master().
When this happens, the object pointed to by tgt is guaranteed to
be marked if and only if it is reachable from src. At this point,
the master thread sets the return value based on whether the tgt
object is marked. This need only be done by one thread, hence
the use of the master. Then the master releases the other evalua-
tor threads. The algorithms for isThreadOwned, isShared, and
getThreadReach use barriers in a similar way.
isDisjoint In Fig. 4(g), in the beginning, every evaluator thread sets
the shared result variable to true and the shared phase variable
to dual. After tracing, all evaluator threads synchronize via the
barrier to ensure completion of the dual phase, before switching

isReachable(src, tgt)
mark-object(src)
trace()
if barrier-and-release-master()

if (tgt ∈ Marked) result← true
else result← false
release-blocked-evaluators()

(a) Reachability

isThreadOwned(ta, o)
mark-roots(Ta \ {ta})
trace()
if barrier-and-release-master()

if (o ∈ Marked) result← false
else result← true
release-blocked-evaluators()

(b) Thread ownership

isShared(o)
sources← ∅
mark-roots(Ta)
trace()
lock(allsources)
allsources← allsources ∪ sources
unlock(allsources)
if barrier-and-release-master()

if |allsources| > 1 result← true
else result← false
release-blocked-evaluators()

trace-step(s, t)
if (o = t) sources← sources ∪ {s}

(c) Shared from Heap

isObjectOwned(src, tgt)
tag-object(src)
result← false
phase← skip
barrier()
mark-roots(Ta)
barrier()
phase← none
trace()
barrier()
if (tgt /∈ Marked)

barrier()
push-object(src)
trace()
if barrier-and-release-master()

if (tgt ∈ Marked) result← true
release-blocked-evaluators()

tag-step(t)
if (phase = skip ∧ t = tgt)
return false

(d) Object ownership

reachThrough(o1, cut[], o2)
result← true
foreach c ∈ cut[] tag-object(c)
barrier()
mark-object(o1)
trace()
barrier()
if (o2 ∈ Marked) result← false

(e) Dominates Through

thread[] getThreadReach(o, avoid[])
foreach ta ∈ Ta

foreach a ∈ avoid[] tag-object(a)
barrier()
mark-thread(ta)
trace()
if barrier-and-release-master()

if (o ∈ Marked)
result← result ∪ ta.obj
Marked← ∅

release-blocked-evaluators()

(f) Get Reaching Threads

isDisjoint(o1, o2)
result← true
phase← dual
mark-object(o1)
trace()
if (o2 ∈ Marked) result← false
barrier()
phase← check
temp← result
barrier()
if (temp = true)

mark-object(o2)
trace()
barrier()

phase← none

trace-step(s, t)
if (phase = dual) Owned← Owned ∪ {t}
else if (phase = check ∧ t ∈ Owned)

result← false

(g) Disjointness

Figure 4. New parallel algorithms for evaluating common heap queries.

to the check phase. After synchronously switching to the check
phase, every evaluator thread reads the value of result into its
local variable temp. If after the barrier the result is still true, the
evaluator starts tracing from o2. Upon completion, the evaluator
threads synchronize and switch the phase to none. Barriers are
similarly used for switching phases in isObjectOwned.
isShared In Fig. 4(c), every evaluator thread uses a private set
sources to record the objects pointing to o that it encountered
during its traversal. By using private sets, we avoid synchronization
between evaluator threads during the tracing phase (e.g., this is an
alternative to incrementing a shared counter). When the tracing
phase completes, evaluator threads combine their local sets into
a global view by updating a global set allsources under a lock.
Combining the local sets is required as it is possible that o is shared
but each parallel evaluator reached it only once during its traversal.
Finally, the threads synchronize, the master thread computes the
result (if there is more than one object in allsource, we return true,
otherwise false) and releases the rest of the evaluator threads.

For clarity of presentation we do not include some optimiza-
tions. For example, if we do not require garbage collection to start
after probe computation, in isDisjoint, when result is set to
false by an evaluator thread, the probe can immediately return true.

5. Integration

We have extended IBM’s Java production virtual machine with
our heap probe algorithms. Production grade VMs are complex
pieces of code, and correctly implementing the desired heap query
semantics is quite challenging. In this section, we briefly describe
some of the practical integration issues, which we believe are useful
to anyone implementing these algorithms in other VMs.

5.1 Reuse of Infrastructure

Our VM already provides the basic components (Fig. 3) and syn-
chronization primitives (Sec. 4.3).
Evaluator Threads In our VM, when the application starts, evalu-
ator threads are created, one for each core. These evaluator threads
are initially blocked. The runtime uses these threads for parallel
garbage collection. However, we can reuse these threads for evalu-
ation of our heap queries.
Object Sets Our VM already provides efficient implementation of
various set operations. This facility is typically used by the garbage
collector to put objects in a marked set (implemented via marked
bits that can be efficiently set and cleared). For our algorithms,
when necessary, we use this capability to create and manipulate
other sets. For example, in isDisjoint, we use the set Owned in
addition to Marked and in getThreadReach, we can reuse the
machinery that sets Marked to be the empty set. In our setting,
this is possible to do efficiently as marked bits for each object can
reside in a contiguous memory region outside of the actual object
space itself, making it easy to re-initialize that marked set.

5.2 Garbage Collection Interaction

Sharing Heap Traversal Components Components used by our
heap probes are also used by the garbage collection algorithms.
Care must be taken to ensure that changes to these components do
not affect the operation of the normal collector. For example, as
mentioned in Sec. 4.1, heap traversal routines now contain calls to
trace-step or tag-step, which should not be invoked during
normal garbage collection cycles.

To distinguish an evaluator thread performing heap query evalu-
ation from a thread performing garbage collection, we re-use some

of the free space in each evaluator-thread structure to denote its
kind. The kind of a thread is set when the operation starts (i.e.,
query evaluation or garbage collection) and is used only when nec-
essary. An alternative implementation would be to add arguments
to existing internal functions, but this would have spanned changes
to a large number of modules, making the implementation less self-
contained and more error-prone.
GC during Heap Query Evaluation Our parallel algorithms are
specifically designed in a way that the work done during query eval-
uation can be re-used by the GC. Hence, in addition to answering
the required heap query, we have the option to perform garbage
collection right after the heap probe finishes, leveraging the work
done by the probe. That is, the collector can piggyback on our heap
query evaluation. Note that the opposite, computing results for our
probes only based on existing garbage collection is not possible as
our probes often require more involved computations over the heap.

Some of our algorithms require marking an object without trac-
ing from it (e.g., isObjectOwned). To enable reuse of the work
performed by heap evaluation for GC, we must keep track of such
objects. If garbage collection is performed when the probe compu-
tation finishes, these tracked objects must be pushed to pending
for GC. Failure to do so might lead to sweeping of live objects (the
ones reachable from the tracked objects).

If we do not wish to perform GC after the heap probe, then
the probe returns immediately. In this case, we make sure that all
intermediate state used by the probe is reset.

5.3 Integration with the JML Compiler

The original JML compiler does not produce code for quantified
expressions, as their evaluation cost may be prohibitive in prac-
tice (the compiler notifies the user that no code is generated in
these cases). We modified the JML compiler to identify common
queries and translate them into calls to heap probes supported by
PHALANX.

We managed to keep our changes to a minimum by modifying
the translation step in the compiler, where Java code is generated
from JML expressions. In this phase, we use simple pattern match-
ing on the AST to identify quantified expressions that match one of
the common heap queries, and replace each quantified expression
by a method call expression invoking the appropriate probe method
in PHALANX runtime. We extract the arguments for the probe from
the original JML expression, and use it to construct a new valid
expression for translation.

6. Evaluation
In this section, we discuss the effectiveness of our tool when ap-
plied to a variety of real world applications. Then, we evaluate the
scalability of the parallel algorithms on the popular DaCapo bench-
mark suite [6].

6.1 Applications

Adding meaningful heap assertions to real world applications re-
quires deep understanding of program invariants, which may be
difficult even for the original developer of the code.

Adding arbitrary assertions only to measure the total time that
the assertions take is also not ideal, as in many of the applications
we considered the assertions might be evaluated on different heap
graphs during different executions. Further, the cost of evaluating a
heap query depends on its answer, for example, when an object is
not shared, evaluating isShared on this object requires traversing
the entire heap. This may lead to significant variance in the cost of
assertions, especially in real applications where the behavior may
be non-deterministic and depend on an elaborate environment (e.g.,
concurrency, I/O).

Application LOC Probes Violations

AOI 111,333 10 0
Azureus 425,367 334 16

Freemind 70,483 16 2
Frostwire 245,959 184 2

JEdit 93,790 66 0
jrisk 20,807 45 12

rssowl 74,280 95 3
tvbrowser 105,471 40 1

TVLA 57,594 10 0

Table 3. Evaluation in real-world applications

To eliminate these factors, we conducted a controlled eval-
uation of performance with the synthetic benchmarks described
in Sec. 6.2. In this section, we evaluate the usefulness of heap as-
sertions on several real-world applications in two ways:
• we pick two applications that we are fairly familiar with, and

manually add meaningful heap assertions after careful inspec-
tion of the code.
• we use a script to add a large number of assertions based on two

common scenarios that are of general applicability.
Table 3 shows the applications we use in this study. For each

application, the table shows the number of lines of Java code
(generated using David A. Wheeler’s SLOCCount), and the number
of probes we inserted into the code.

Manually Added Assertions
In TVLA and AoI we manually added assertions that were picked
after careful examination of the code. The assertions we manually
added were not violated in any of our test runs, and incurred no
observable slowdown in the operation of the application when
running with PHALANX.
AoI ArtOfIllusion (AoI) is an open source application for 3-
D modelling, animation and rendering, written entirely in Java.
Our benchmark consists of loading and rendering 11 existing 3-
D models, which present complex scenes with many hundreds
of 3-D objects, as well as several lights and cameras, created by
professional artists for production purposes.

The 3-D objects in a scene are arranged hierarchically, such
that moving, scaling and rotating a parent object can result in the
children objects also being transformed. Moreover, several 3-D
objects can share graphic elements, such as textures and skeleton
objects for controlling animation.

To speed up rendering, AoI automatically creates a number of
worker threads based on the number of available processors. Each
worker thread repeatedly executes small tasks such as tracing a ray
through a single pixel or shading a triangle.

We added assertions to check (i) structural properties of the
scene, and (ii) correct coordination of rendering threads.
TVLA TVLA [19] is a parametric framework for shape analy-
sis that can be instantiated to create different kinds of analyzers.
To reduce space usage, TVLA uses shared representation of log-
ical structures and formulas. We check that the implementation
of abstract transformers copies the structures it modifies. We also
added assertions to check that operations of formulas do not violate
the structural properties of formulas. Another optimization, in the
chaotic iteration, maintains a pending list of structures to process
with only the structures that changed. We added assertions to check
that the pending list is correctly manipulated.

Automatically Added Assertions
For the rest of the applications, we used scripts to automatically in-
sert heap-assertions for several scenarios. Unfortunately, we could

not make the JML compiler compile these real-world applications,
and in these applications we added direct calls to PHALANX probes.

Most of the applications we considered are interactive ones, thus
the specific probes executed often depend on user interactions.
Sharing of Disposed Resources Many of the applications in Ta-
ble 3 use a GUI based on the Standard Widget Toolkit (SWT). GUI
elements in SWT have to be manually allocated and disposed by
the programmer. Disposing an SWT resource is performed by ex-
plicitly invoking the method dispose() on it. Failure to properly
dispose SWT resources leads to leakage of OS-level resources and
may gradually hinder performance and even lead to a system crash.
In many cases, programming patterns help. But widely-shared re-
sources like Colors, Fonts, and Images, are notoriously hard to
manage properly.

Our heap assertions allow the programmer to check, at the point
of calling dispose(), whether the resource about to be disposed
is shared. Using our heap queries, the programmer can also get a
list of threads that can reach the resource, which is extremely useful
for debugging. To identify such potential cases, we replace code of
the form exp.dispose() with code of the form
i f (Pha l anx . i s S h a r e d (exp)) warn ing (exp) ;
exp . d i s p o s e () ;

We ran our benchmarks with the added assertions. For the most
part, the frequency of resource disposal is low enough that the
application exhibits very little observable slowdown when running
on our heap query enabled VM. We observed that in several of the
applications our assertions are sometimes violated, and disposed
resources are indeed shared.

In Azureus, we added reporting of stack-trace information
when the assertion is violated, and identified 16 program locations
in which disposed resources are shared. Of course, not every shared
resource leads to a problem at runtime, and this depends in part
on the user interaction with the application (whether the shared
resource is indeed used after it has been disposed). We note that
this dependency on user interaction makes such bugs very hard to
reproduce, and that currently there are several such open bugs in the
Azureues bug-tracker. Heap assertions make it easy to identify the
potential sources of these bugs.

Running the other applications for short user interactions, we
also found such suspicious disposal in: frostwire (2), freemind
(2), tvbrowser (1), and rssowl (3).
Redundant Synchronization for Owned Objects Fearing unex-
pected effects of concurrency, Java programmers often defensively
over-synchronize their programs. A programmer trying to improve
performance of a given code-base may want to remove redundant
synchronization. One common case in which synchronization can
be safely removed is when synchronized is used on a thread-
owned object. To identify such potential cases, we replace code of
the form synchronized(exp){...} where exp can be any pure
expression, with code of the form
synchronized (exp) {

i f (Pha l anx . dom (Thread . c u r r e n t T h r e a d () , exp)) warn ing (exp) ;
. . . }

We added such assertions to all points using synchronize in
our applications. In some applications (notably jrisk), automati-
cally adding assertions to all synchronized blocks resulted in asser-
tions added into the main UI event loop. Obviously, this had catas-
trophic results in terms of performance. Otherwise, when assertions
are removed from the main event loop, all applications suffered an
observable slowdown, but were still operational.

In several applications we found places that synchronized on
thread-owned objects. In jrisk we added reporting of stack-trace
information and found 12 synchronized blocks where an owned
object was used for synchronization. Of course, this does not mean

num. cores 1 2 4 8

antlr 1.9 1.9 1.9 1.9
bloat 7.2 4.2 2.9 2.7
chart 1.1 1.0 1.0 1.0

eclipse 1.0 1.0 1.0 1.0
fop 1.1 1.0 1.0 1.0

hsqldb 14.7 9.8 6.3 4.3
jython 1.6 1.4 1.2 1.2

luindex 3.3 2.5 2.1 1.9
lusearch 9.9 10.0 10.2 9.4

pmd 1.2 1.1 1.1 1.1

Table 4. Slowdown for DaCapo with varying number of cores.

that in different configurations of the system synchronization is not
needed, but this can direct a programmer to potential redundant
synchronization in her code.

In JEdit, we have identified several places where synchro-
nization is performed on a thread-owned object (by inspecting the
code). However, our heap probe checking thread ownership evalu-
ated to false. We used the probe getThreadReach to check what
threads are reaching the synchronization object, and found out that
the object is reachable from several AWT system threads, which
was not at all apparent from the application code.

6.2 Performance Evaluation
All of our experiments were conducted on an 8-core 2.4 GHz AMD
Opteron running Red Hat Linux with a 1.6.0 IBM Java VM.

For all of our heap probes, we performed a variety of experi-
ments with synthetic benchmarks on large and complex heaps with
growing number of cores dedicated to the evaluation of the heap
probe algorithm. Typically, when it had to traverse the entire heap
(e.g., when isShared returned false) the scalability of the paral-
lel algorithm was similar to that of the underlying parallel garbage
collector. This is to be expected as the probes are enabled to reuse
the same techniques for scalability (e.g. work stealing) as the un-
derlying collector.
JVMTI In addition to our parallel heap probes, we also imple-
mented a reference library using the JVMTI heap traversal inter-
face. JVMTI is a powerful native programming interface for use by
tools that need to access the JVM state for profiling, debugging,
and monitoring. Unfortunately, the JVMTI interface does not allow
for parallel heap traversal. We compare the performance of our
algorithms running with one evaluation thread (e.g. one core) vs.
JVMTI. JVMTI implementation was often suffering over 2x slow-
downs. This is to be expected as every time an edge is traversed,
JVMTI makes an external callback, which is avoided when the al-
gorithm is implemented within the VM. Based on this experience,
we did not use the JVMTI library further in any of our experiments.
DaCapo To evaluate the scalability of our assertions on a set
of known benchmarks, we chose the popular DaCapo benchmark
suite [6]. We instrumented each benchmark in the suite to check
the isShared heap property and measured the time it took to
execute the benchmark with the instrumented code and the time
it took to execute the benchmark with the base version without any
instrumentation. We ran each benchmark with the large input size
option. For a given number of cores, Table 4 reports the slowdowns
for the instrumented time over the base time.

As noted earlier, adding meaningful heap-assertions to existing
realistic applications such as the DaCapo benchmarks is very chal-
lenging. When instrumenting these benchmarks we followed a gen-
eral instrumentation scheme. For the benchmarks antlr, jython,
and pmd, that operate on ASTs, we checked that AST nodes are not
shared in some key operations performed on the AST. For bloat,

we check sharing of arguments when constructing the SSA rep-
resentation. For benchmarks such as chart, which dispose SWT
resources, we checked that the resource is not shared before dis-
posing it. For eclipse we added assertions in the DaCapo plugin.
For lusearch and luindex, we checked whether parameters to
the search/index methods are shared. For hsqldb we check shar-
ing of the parameters to client threads.

The results for bloat, hsqldb, luindex, and jython show
the benefits of parallelization. As the number of cores increases,
the running time improves, getting closer to the base time. The
results indicate that for all benchmarks but hsqldb, four cores are
sufficient to extract the parallelization benefits and adding more
cores has little to no effect.

For antlr and lusearch, adding more cores had little effect
on the probe evaluation. A possible reason is that heap graphs en-
countered at probe evaluation are inherently non-scalable (e.g. a
single linked list). For most of the benchmarks, e.g. fop, eclipse,
chart, and pmd, the overhead of the heap probe is relatively low or
non-observable as the number of executed probes with our instru-
mentation was very low.

7. Conclusion
In this paper, we presented PHALANX, a practical tool for dynami-
cally checking expressive heap queries. PHALANX is implemented
on top of a production Java virtual machine, enabling the use of
heap queries on real world applications.

To facilitate deployment by programmers, we extended the JML
compiler to make use of these queries: developers can use JML
annotations to effectively reason about heap properties. This al-
lows us to harness the full power of JML annotations and use heap
queries inside preconditions, postconditions, invariants, and asser-
tions. Common queries are translated by a modified JML compiler
into calls to PHALANX runtime, which uses efficient parallel algo-
rithms to evaluate them.

Our preliminary study shows that heap queries are useful for
real applications. We show how heap queries help us to easily detect
several cases of suspicious disposal of shared resources, and cases
of redundant synchronization over objects that are thread-owned.

By addressing all aspects of checking of expressive heap asser-
tions, from user interface in JML to efficient runtime implementa-
tion, we have provided a complete setup, making it simpler for pro-
grammers to write expressive assertions. We believe that this will
enable the wider adoption of practical assertion-based techniques.
Acknowledgements We thank Bard Bloom for his contributions
to early versions of this paper. We thank Emery Berger and Peter
Müller for their feedback on this work. We also thank the anony-
mous reviewers for many helpful comments that improved the pre-
sentation.

References
[1] AFTANDILIAN, E., AND GUYER, S. Z. GC assertions: using the

garbage collector to check heap properties. In PLDI (2009).
[2] ALDRICH, J., KOSTADINOV, V., AND CHAMBERS, C. Alias annota-

tions for program understanding. In OOPSLA (2002).
[3] ANDERSEN, L. O. Program Analysis and Specialization for the C

Programming Language. PhD thesis, DIKU, Univ. of Copenhagen,
May 1994.

[4] ARNOLD, M., VECHEV, M. T., AND YAHAV, E. QVM: an efficient
runtime for detecting defects in deployed systems. In OOPSLA (2008).

[5] BAKER, H. G. ’Use-once’ variables and linear objects - storage
management, reflection and multi-threading. SIGPLAN Notices 30,
1 (1995), 45–52.

[6] BLACKBURN, S. M., GARNER, R., HOFFMAN, C., KHAN, A. M.,
MCKINLEY, K. S., BENTZUR, R., DIWAN, A., FEINBERG, D.,
FRAMPTON, D., GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP,

M., LEE, H., MOSS, J. E. B., PHANSALKAR, A., STEFANOVIĆ,
D., VANDRUNEN, T., VON DINCKLAGE, D., AND WIEDERMANN,
B. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA (2006), pp. 169–190.

[7] BOND, M. D., AND MCKINLEY, K. S. Bell: bit-encoding online
memory leak detection. SIGOPS Oper. Syst. Rev. 40, 5 (2006), 61–72.

[8] BOYAPATI, C., LISKOV, B., AND SHRIRA, L. Ownership types for
object encapsulation. In POPL (2003), pp. 213–223.

[9] CALCAGNO, C., DISTEFANO, D., O’HEARN, P., AND YANG, H.
Compositional shape analysis by means of bi-abduction. In POPL
(2009), pp. 289–300.

[10] CHILIMBI, T. M., AND GANAPATHY, V. HeapMD: identifying heap-
based bugs using anomaly detection. In ASPLOS (2006), pp. 219–228.

[11] CLARKE, D. G. Object ownership and containment. PhD thesis,
University of New South Wales, New South Wales, Australia, 2003.

[12] CLARKE, D. G., POTTER, J. M., AND NOBLE, J. Ownership types
for flexible alias protection. In OOPSLA (1998), pp. 48–64.

[13] DISTEFANO, D., AND PARKINSON, M. J. jStar: towards practical
verification for Java. In OOPSLA ’08 (2008), pp. 213–226.

[14] GROTHOFF, C., PALSBERG, J., AND VITEK, J. Encapsulating objects
with confined types. ACM Trans. Prog. Lang. Syst. 29, 6 (2007), 32.

[15] HAUSWIRTH, M., AND CHILIMBI, T. M. Low-overhead memory
leak detection using adaptive statistical profiling. SIGPLAN Not. 39,
11 (2004), 156–164.

[16] HOGG, J. Islands: aliasing protection in object-oriented languages. In
OOPSLA ’91 (New York, NY, USA, 1991), ACM, pp. 271–285.

[17] JUMP, M., AND MCKINLEY, K. S. Cork: dynamic memory leak
detection for garbage-collected languages. In POPL (2007), pp. 31–
38.

[18] LEAVENS, G. T., CHEON, Y., CLIFTON, C., RUBY, C., AND COK,
D. R. How the design of JML accommodates both runtime assertion
checking and formal verification. Sci. Comput. Program. 55, 1-3
(2005), 185–208.

[19] LEV-AMI, T., AND SAGIV, M. TVLA: A framework for Kleene based
static analysis. In SAS (2000), vol. 1824, pp. 280–301.

[20] MICHAEL, M. M., VECHEV, M. T., AND SARASWAT, V. A. Idem-
potent work stealing. In PPoPP ’09 (2008), pp. 45–54.

[21] MITCHELL, N. The runtime structure of object ownership. In ECOOP
(2006), pp. 74–98.

[22] MITCHELL, N., AND SEVITSKY, G. The causes of bloat, the limits
of health. In OOPSLA (2007), pp. 245–260.

[23] MÜLLER, P., AND RUDICH, A. Ownership transfer in universe types.
In OOPSLA (2007), pp. 461–478.

[24] NAIK, M., AIKEN, A., AND WHALEY, J. Effective static race detec-
tion for java. In PLDI (2006).

[25] RODITTY, L. A faster and simpler fully dynamic transitive closure. In
SODA (2003), pp. 404–412.

[26] SAGIV, M., REPS, T., AND WILHELM, R. Parametric shape analysis
via 3-valued logic. (TOPLAS) 24, 3 (2002), 217–298.

[27] SHACHAM, O., VECHEV, M., AND YAHAV, E. Chameleon: adaptive
selection of collections. In PLDI (2009), pp. 408–418.

[28] STEENSGAARD, B. Points-to analysis in almost linear time. In POPL
(1996), pp. 32–41.

[29] YANG, H., LEE, O., BERDINE, J., CALCAGNO, C., COOK, B.,
DISTEFANO, D., AND O’HEARN, P. W. Scalable shape analysis for
systems code. In CAV (2008), pp. 385–398.

