
Learning to play chess selectively by acquiring move patterns

Lev Finkelstein and Shaul Markovitch

Computer Science Department

Technion, Haifa 32000

Israel

shaulm@cs.technion.ac.il

Abstract

Several researchers have noted that human chess players do not perceive a position
as a static entity, but as a collection of potential actions. Indeed, it looks as if human
chess players are able to follow promising moves without considering all the alternatives.
This work studies the possibility of incorporating such capabilities into chess programs.
We present a methodology for representing move patterns. A move pattern is a structure
consisting of a board pattern and a move that can be applied in that pattern. Move
patterns are used for selecting promising branches of the search tree, allowing a narrower,
and therefore deeper, search. Move patterns are learned during training games and are
stored in an hierarchical structure to enable fast retrieval. The paper describes a language
for representing move patterns, and algorithms for learning, storing, retrieving and using
them.

1 Introduction

Assume that a human chess player faces the board shown in Figure 1. Even a novice would

realize that the most promising action is to make a fork. The human player can do so

immediately without considering all the alternative moves [9]. Some people attribute such

capability to intuition. Others to experience. But is it possible to endow computers with

such capability: Selecting a good action without necessarily resorting to search?

rZ0ZkZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZNZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0J0Z0Z0Z
Z0Z0Z0Z0

r
Æ
��k

N
A
AAK
���*HHHY

1

2
3 4

Figure 1: An example of a fork. A human player would identify the pattern illustrated to the right

of the board.

1

The basic algorithm used by most of the current chess playing programs is the minimax

algorithm proposed by Shannon [26, 27], assisted by the �� pruning method [23]. Chess

search trees are growing very fast and various methods, mostly domain independent, have

been developed for their selective deepening and pruning such as quiescence search [27, 29, 2],

singular extensions [1] and B* [4]. Human players commonly use domain-speci�c knowledge

to decide which branches of the search tree should be pruned [9]. Such an approach, when

used by computer programs, is called plausible-moves generation. Using this approach, we

can reduce the branching factor signi�cantly, therefore allowing the search procedure to reach

much deeper levels of the game tree. Wilkins' PARADISE [32], for example, can reach a

depth of 19 plies.

Selecting a set of plausible moves out of the set of possible moves is a generalization of the

very common problem where an agent must choose between a set of alternative actions. One

approach to solve this problem is to pre-program the agent with a domain-speci�c decision

procedure. In complex domains, such as chess, however, such an approach is extremely

diÆcult. An alternative approach is to endow the agent with the capability of learning

this decision procedure from its experience. This problem of learning to act is the primary

interest of researchers in the �eld of reinforcement learning [17, 30]. However, since most

of the algorithms developed in this �eld require explicit representation of all the possible

states, they are not applicable to complex domains with very large state spaces such as chess.

Attempts have been made to generalize over states and actions using feature vectors to allow

handling a larger number of states. However, feature-based representation is not powerful

enough to describe domains with highly-structured states.

A comprehensive survey of recent work in the area of learning in chess can be found in

[12]. An interesting early attempt of learning to act in chess was undertaken by Pitrat [24],

whose system tried to learn winning moves by analyzing game trees. Minton [22] developed a

method, based on Pitrat`s approach, for recognizing \good" moves. A learning procedure is

supplied with examples of moves that are considered to be bene�cial and tries to determine

the weakest preconditions that enable the application of such moves. The learned knowledge

is encoded into production rules which recommend a set of moves for positions that match the

preconditions. Minton noted that his method was not eÆcient for chess learning due to the

complexity of the game, and therefore applied it to the simpler domain of Go-Moku. Other

programs are able to learn moves [10, 31, 25], but they focus on small sub-domains of chess.

CHUMP [14] uses a pattern-based approach to acquire patterns of boards with associated

moves. The patterns are extracted during learning using an eye-movement simulator [28]. The

Tal program [11] also acquires patterns called chunks with associated moves. The patterns

used by CHUMP are perceptual and are therefore limited in their generalization capabilities

[14]. A recent work by Levinson [19, 18, 20] introduces a new approach for representing

generalizations of structural knowledge. His approach assumes that a state can be described

by a set of objects and relations between them. Such a state is represented by a general

graph, and the subgraph relation is used to generate generalizations (called patterns). The

graphs are organized in a hierarchy, allowing a fast retrieval of states. This representation

scheme was tested with the Morph system which uses patterns to learn evaluation functions

for chess [20].

The work presented in this paper takes the pattern-based move-oriented approach similarly

to Gobet and Jansen [14], but uses an extension of the powerful pattern language designed by

Levinson for representing move patterns. This language allows us to learn generalizations that

save learning time, storage space and utilization time. For example, Figure 2 of Section 2.2

2

shows how to encode moving into a fork position (see Figure 1) regardless of the particular

location of the position on the board.

The basic principle behind the move-oriented approaches is to allow evaluation of moves

without an explicit exploration of their outcomes. Therefore, whereas the basic knowledge

representation element of Morph is a board pattern, the basic element of our approach is a

move pattern. A move pattern is a structure consisting of a board pattern and a move that

can be applied in that pattern. Each move pattern has an associated weight indicating the

potential bene�t of applying the move in the given context.

Move patterns allow a chess program to reason about moves in a way that is similar to

the way that human players reason [8, 9]. In Table 1 we show several simple situations where

using a plausible-move generator can save from one to three levels of search. The arrows

stand for attack/defend relationships and the circles stand for empty squares. The particular

representation will be further explained in Section 2. Here we just wish to illustrate the

intuition behind move patterns.

Move patterns are used for pruning branches of game trees by having the search proce-

dure explore only promising branches. The patterns are acquired during training games. They

are either extracted from the boards using an explanation-based generalization (EBG) ap-

proach similar in spirit to Morph's method, or are generated by intersecting existing patterns.

Weights are updated according to the change in the board value.

The rest of the paper is organized as follows. Section 2 describes the representation lan-

guage used for describing move patterns. Section 3 discusses the way that move patterns are

organized and utilized. Section 4 describes learning algorithms for acquiring move patterns.

Section 5 describes an implementation of the move pattern methodology. Finally, Section 6

concludes.

2 A language for representing move patterns

In this section we present a new pattern language which allows us to generalize over moves

and their context. We start by de�ning board patterns { for representing the context of moves

and continue with de�ning move patterns. Our language for representing board patterns is

an extension of the knowledge representation scheme proposed by Levinson [19, 18].

2.1 Representing the context of a move pattern

A pattern is a generalization of an object that contains its essential features. The essential

features of a chess board are the relationships within the set of pieces and squares. A natural

method for representing relationships within a set of objects is a graph (or a hypergraph).

The vertices of such a structure are the pieces and squares, and the edges are sets of vertices

that describe their relations.

The basic relationships between chess pieces are defense and attack. A �ner classi�cation

will distinguish between direct and indirect attack/defense. These types of relationships were

used in Levinson's Morph system and are suÆcient for representing the current static state

of the board. For example, look at the board shown in Table 2. The left graph shows the

above relations for this board: the black rook attacks a white pawn, the white king defends

the white rook etc. Since these relations reect only the current board, we call them static

relations and the corresponding patterns will be called static. Table 3 shows the two types of

edges in static patterns.

3

kZ0Z0Z0Z
ZpZ0Z0Z0
0l0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0o0Z
Z0Z0Z0Z0
0Z0L0Z0Z
J0Z0Z0Z0

p

Q
���

1

2
White can win a pawn by identi-
fying the pattern to the right of
the board without exploring all
the 24 legal moves.

kZ0Z0Z0Z
ZpZ0Z0Z0
0l0Z0Z0Z
Z0Z0o0Z0
0Z0Z0o0Z
Z0Z0Z0Z0
0Z0L0Z0Z
J0Z0Z0Z0

Æ
��

Q

p

���

@@R

1

2

3

p

Q
���

1

2

White can see that capturing a
pawn will cause the loss of the
queen and prunes this branch by
combining the two patterns. It
saves 2 levels of search.

kZ0Z0Z0Z
ZpZ0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Zr
0Z0Z0Z0Z
Z0Z0Z0Z0
KZ0Z0ZPO
ZRZ0Z0Z0

P P

r

��� 6
Æ
��

?

4

?

1 2

3

Æ
��
P

R

?

r

-
6

1

4

2

3

White can identify the two op-
tions available for defending his
pawn, saving a search of three
levels.

rZ0ZkZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0ZNZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0J0Z0Z0Z
Z0Z0Z0Z0

r
Æ
��k

N
A
AAK
���*HHHY

1

2
3 4 An example of a fork. A human

player will identify the shown
pattern. Minimax will �nd this
move only after 3-level analysis.

Table 1: The intuition behind the move pattern approach.

4

kZ0Z0Z0Z
ZpZ0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Zr
0Z0Z0Z0Z
Z0Z0Z0Z0
KZ0Z0ZPO
ZRZ0Z0Z0

k

K

p

R

P

r

P

?

s

R

6

k

j

K

p

j

R

P

r

j

P
j

s

R

?

�

?

-6

6��>

6
-�

?

6

?

Table 2: An example of a board with its associated patterns. The patterns in the center cell are

static. The pattern in the right cell is dynamic.

Edge type Arity Meaning Example

F1F2 2 F1 directly attacks/defends F2 B q
-

F1F2F3 3 F1 indirectly attacks/defends F3 through F2 B R k
-

Table 3: The two types of edges in static patterns. F stands for \Figure" (or pawn).

Static patterns, however, have limited representation power. For example, while the static

language enables the representation of the black's ability to capture the pawn at h2, it is

unable to represent the two ways for the white to avoid it (Rh1 or h3). Therefore, we extend

the pattern language to allow representation of dynamic relations. Such relations represent

the ability to move and enable us to predict the consequences of move application. There are

many possible ways to de�ne dynamic relations. To keep the patterns reasonably compact,

we restrict our language to one-level extension of the static relations: the set of relations

suÆcient to describe all the static relations after performing one move. For example, after

playing the move Rb1{h1 in the position described by the board in Figure 2, the static

relation \white rook defends white pawn" (of the type FF) becomes true. The corresponding

dynamic relation in the current board will be \a white rook can move to a square from which

it defends a white pawn". Table 4 describes the set of dynamic relations. It is possible to

show that this set is suÆcient for describing all the preconditions of static patterns. The right

graph in Table 2 shows some of the signi�cant dynamic edges corresponding to the board at

the left.

Given a set of relations such as the one described in Table 4, we de�ne the full graph

of a board to be the graph describing all the relations in the board. A board pattern is any

subgraph of the full graph. The subgraph relation de�nes a generalization hierarchy over the

set of board patterns.

2.2 Representing moves of move patterns

The main goal of this research is to endow a system with the capability of learning move-

preferences. Such learning requires a generalization over board-move pairs. The previous

5

Edge type Arity Meaning Example

FS 2 F controls square S Q
i-

F1F2 2 F1 directly attacks/defends F2 B q
-

F1SF2 3 F1 controls square S, from where it would at-

tack/defend directly F2

Q i
N

HHj -

F1F2F3 3 F1 attacks/defends F3 indirectly through F2 B R k
-

F1SF2F3 4 F1 can move to square S, from where it will at-

tack/defend F3 indirectly through F2

B i
n r

HHj -

F1F2SF3 4 F1 directly attacks/defends F3, and F2 can be

wedged between them on square S

n

B
i

r
-AAU

F1F2F3S 4 F3 can move to square S, from where it will be

attacked/defended by F1 indirectly through F2 B n
i

r

-@@R

F1F2F3F4 4 F1 attacks/defends F4 indirectly through F2 and

F3
B p n r

-

F1F2SF3F4 5 F1 attacks/defends F4 indirectly through F3, and

F2 can be wedged between F1 and F3 on square S
i

n rB

p

-@@R

F1F2F3SF4 5 F1 attacks/defends F4 indirectly through F2, and

F3 can be wedged between F2 and F4 on square S B p
i

r

n

-@@R

Table 4: The types of edges in dynamic patterns. F stands for \Figure" (or pawn) and S stands for

\Square".

subsection presented a methodology for generalizing boards. In this subsection we describe a

representation scheme for a generalization over moves within a context of a certain board. A

move pattern is a pair, where the �rst element is a board pattern with its vertices uniquely

labeled, and the second element is a pair of the labels corresponding to the source and target

vertices. A move pattern can be generalized by generalizing over its board graph component.

The only restriction is that the nodes appearing in the move component of the move pattern

should not be deleted. In order to be able to use move patterns for determining precedence,

we associate a weight with each move pattern such that the larger the weight is, the more

attractive we consider this move pattern to be. The way that weights are assigned to move

patterns will be discussed in Section 4. Figure 2 shows an example of a move pattern with

its associated weight. We use the notation 1
+R
�! 2 to represent a move of a piece labeled by

(1) to a square labeled by (2) with a weight of +Rook.

2.3 Null-move patterns

Null-move patterns describe the opponent's possible actions when our move does not change

their local context. Unlike the move patterns described in the previous subsection, which can

be used for both single-agent search and adversary search, null-move patterns are tailored

6

r
Æ
��k

N
A
AAK
���*HHHY

1

2
3 4

1
+R
�! 2

Figure 2: An example of a move pattern.

0Z0s0Z0j
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0O
Z0J0Z0ZR

R

r
P

HHj

n
HHY

(4)

��>

(1)

(2)

(3)

r
P

n

K

HHj

HHY

(4)

(1)

(2)

(3)

r
P

n

R

HHj

HHY

(4)

(1)

(2)

(3)

r
P

n

P

HHj

HHY

(4)

(1)

(2)

(3)

1
0
�! 2 1

�P
�! 2 1

�P
�! 2 1

�P
�! 2

Figure 3: A set of move patterns describing that a pawn can be defended by a rook.

for adversary search. When a human player detects a threat, he implicitly assigns a negative

weight to all the moves that do not cancel this threat (without gaining a higher advantage).

Null-move patterns are an attempt to encode such reasoning into the move-pattern language.

The best way to explain the need for null-move patterns is to consider the following examples.

Assume that we are given the board shown in the left part of Figure 3. How can we use

move patterns to describe the situation, that black can capture pawn d4, and the only move

which prevents it is Rd1? If we use the method described in the previous section, we must

have at least the 4 move patterns shown to the right of the board. From these patterns we

can see that all the moves lead to loosing the pawn, except Rd1 which saves it. This set

r
P

n

Q

HHj

HHY

(4)

(1)

(2)

(3)

r
P

n

B

HHj

HHY

(4)

(1)

(2)

(3)

r
P

n

N

HHj

HHY

(4)

(1)

(2)

(3)

1
�P
�! 2 1

�P
�! 2 1

�P
�! 2

Figure 4: A set of additional move patterns describing that a pawn must be defended.

7

of move patterns does not cover positions with other white pieces. To cover such positions

we need to add the 3 move patterns shown in Figure 4. We therefore need a set of 7 move

patterns: 6 patterns telling that moves not related to the pawn lead to loosing this pawn,

and one showing how to defend it.

Assume now that we have the position shown in Figure 5 where the attacked pawn is

already defended by another pawn. The above 6 patterns give negative weight to each move

that does not defend the attacked pawn. The result will be an attempt by the program to

create a multiple defense of this piece. To prevent such incorrect behavior, the above patterns

must be overridden by the more speci�c patterns shown in the right part of Figure 5.

0Z0s0Z0j
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0O0Z0Z
Z0Z0O0Z0
0Z0Z0Z0O
Z0J0Z0ZR

B

r
P
P n

N

r
P
P n

P

r
P
P

n

K

r
P
Pn

Q

r
P
Pn

R

r
P
P

HHj

HHY

HHY
HHj

HHY

HHY
HHj

HHY

HHY
n

HHj

(5) HHY

HHY
HHj

HHY

HHY
HHj

HHY

HHY

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

(4)

Figure 5: The above 6 patterns have an associated move 1
0
�! 2. These patterns override the patterns

of the previous �gure to represent the fact that there is no need to defend a pawn, attacked by a rook,

if it is already defended by another pawn.

It is easy to see that in each case when we specify the opponent's attack pattern, we need

to add 6 additional patterns (for the six types of chess pieces). Multiplying the number of

patterns by 6 would not be so harmful, if these patterns were not so general: since their graph

structure is not connected (these patterns have at least 2 independent parts), the number of

matches by such patterns for any board will be very large. As the result, the matching process

will consume too much time, making the whole method inapplicable.

To overcome this problem we extend our representation scheme by a new type of move

patterns, called null-move patterns, that allow considering opponent's threats. The idea is to

evaluate the moves of the opponent as well as the moves of the player, and to add negative

weight to all the player's moves that do not cancel the opponent's threat (if any). For example,

for the board illustrated in Figure 3, only two move patterns are needed: "Black Rook can

take a White Pawn" (a null-move pattern) and "White Rook can defend a White Pawn"

(a regular move pattern). For the board in Figure 5, a single additional null-move pattern

"Black Rook can take a defended White Pawn" is needed. These three patterns are shown in

Figure 6.

8

P
rHHj

(2)

(1)

r
P

HHj

P
��>

(3)

(1)

(2)

R

r
P

HHj

n
HHY

(4)

��>

(1)

(2)

(3)

1
�P
�! 2 1

+R�P
�! 2 1

0
�! 2

Figure 6: The three move patterns that are suÆcient to describe a defense by a rook of a pawn

attacked by a rook and a defended pawn. The left two are null-move patterns.

Now a question arises: How would we know that a player's move cancels an opponent's

threat? Or, even more: How would we know that a player's move changes the evaluation of

opponent's moves? To answer these questions, we further extend our representation scheme.

In the extended scheme we associate with each move pattern the explanation for the weight

given to it. For example, if we have a pattern "White Rook at (1) attacks Black Pawn at (2)

defended by Black Pawn at (3)" (the reverted second pattern in Figure 6), we know that the

immediate weight of the move "White Rook at (1) captures Black Pawn at (2)" is +Pawn,

but the weight of the opponent's possible reply "Black Pawn at (3) captures White Rook at

(2)" will be �Rook. 1

The proposed scheme provides a very powerful tool for conict resolution. Look for

example at the board and the corresponding patterns shown in Figure 7. The notation

1
+B
�! 2 =)

n
3
�N
�! 2

o
represents a move from (1) to (2) weighted +Bishop with an associated

reply from (3) to (2) weighted �Knight. If we do not separate a move from its possible

replies, determining the weight of the move Nf4�g6 becomes very tricky. For example,

Morph would evaluate such a position as winning a bishop (see [20]), because a more general

board pattern (the second from the left) is suppressed by a more speci�c one (the third from

the left). If we use a reply information, however, we can see that in the case of Nf4�g6 we

will not win a bishop, since the reply f7�g6 matches the second pattern, but does not match

the third one.

3 Organization and utilization of move patterns

To make the above representation scheme usable, we must design a structure for eÆcient

storage and retrieval of move patterns. The generalization relation subgraph-of, described in

Section 2, de�nes a directed acyclic graph over the set of move patterns. We store move

patterns and null-move patterns according to their board patterns. We therefore developed

algorithms for inserting, updating and utilizing move patterns that are based on those devel-

oped by Levinson [19, 20]. We incorporated, however, many changes to handle the additional

complexity of the move pattern hierarchy:

1. The database is stored in a directly acyclic graph structure (DAG). Each node corre-

1We mark White Rook in the reply by (2) since after capturing a Black Pawn it takes its place.

9

0Z0Z0Z0s
Z0Z0ZpZp
0Z0Z0ZbZ
Z0Z0Z0Z0
0Z0Z0M0Z
Z0Z0Z0ZQ
0Z0Z0Z0Z
Z0Z0Z0Z0

b

N
��> (2)

(1)

p
b

HHj

N
��>

(3)

(1)

(2)
b

p

r

Q
��>

N

��+

(4)

6

(1)

(2)

(3)

(5)

Without reply 1
+B
�! 2 1

+B�N
�! 2 1

+B
�! 2

With reply 1
+B
�! 2=) fg 1

+B
�! 2

=)
n
3
�N
�! 2

o 1
+B
�! 2

=)
n
3
+R�N
�! 2

o

Figure 7: A partially speci�ed board (white to play). Without the reply information, the move Nf4-

g6 is erroneously considered to win a bishop. With the reply information it is correctly evaluated to

exchange a knight for a bishop.

sponds to a set of weighted move patterns sharing a common board pattern.

2. Each node is linked to all of its immediate successors. A pattern, however, can be a

generalization of another pattern in more than one way, depending on the mapping of

the vertices and edges. To make the search more eÆcient and to avoid redundant pattern

matching, we label each link with its associated mapping. In this way we preserve the

pattern matching information obtained while moving down the pattern hierarchy.

3. Patterns are inserted into the database using the same principles as proposed by Levin-

son [19, 20]. The extended links, however, complicates the implementation of the algo-

rithm.

4. To evaluate the moves for a particular board, we �rst represent it by its associated graph.

We then perform the matching process from the top of the hierarchy in a depth-�rst

fashion.

5. The central procedure of the whole process is pattern matching. Each edge is uniquely

encoded as a 32-bit integer representing its type (from the list of Table 4) and the color

and types of its participating �gures. The edges of each pattern are sorted by their

code. The encoding is designed to embed two heuristics into the order such that the

more restricting an edge is and the more vertices it instantiates, the higher priority it

gets. This implementation allows a very rapid pattern matching in most practical cases.

In particular, more complex patterns are often matched faster than simple ones.

6. While traversing the pattern hierarchy we use the above method to match the graph

representing the input board to the individual patterns. For each pattern, we get a

list of mappings, representing how the graph associated with the input board can be

mapped. These mappings prevent us from making errors due to the ambiguity of the

subgraph relation. The moves available in the given pattern are then translated to the

notation of the original board.

7. During the search, we mark the visited nodes to avoid repeated traversal of their de-

scendents. We also make sure that the same move will not be propagated up through

two paths.

10

8. If the same move gets di�erent evaluations from di�erent matching move patterns, then

the algorithm should resolve the conict.

Look, for example, at the board and the associated knowledge-base shown at Figure 8.

The move instances matching each one of the move patterns are shown in the table

in the same �gure. The utilization scheme that combines the estimates coming from

di�erent move patterns is rather complex and works using the following basic principles:

� The gold rule of hierarchical systems: if the same move matches two move patterns

connected by the relation subgraph-of, only the value for the most speci�c pattern

is taken into account. For the example above, we do not consider the evaluation

of the move Q�f4 from the pattern \White Queen moves to a square".

The same is correct for the null move patterns: Since a move pattern "White

Queen can Defend White Pawn from Black Queen" is more speci�c than "Black

Queen attacks White Pawn", we do not consider the evaluation of the latter while

calculating weight of the move Qe2.

� Moves with positive and negative evaluations are evaluated separately, and mixed

only at the �nal stage. If two move patterns, coming from di�erent branches,

match the same move, the move will be assigned the larger weight.

For example, Figure 9 shows a position where the move Nc7 gets a weight of

+Queen from one move pattern and a weight of +Rook from the other. The move

will be assigned the weight of +Queen.

� A similar reasoning applies for the weights of moves obtained from null move

patterns, except that the smaller weight is used.

� At the �nal stage of the weight evaluation, the weight associated with the oppo-

nent's moves is subtracted from the weight associated with the player's moves.

9. The list of returned moves is sorted by their weights. CHUMP [14] uses a similar method

but also considers the number of patterns that support each move.

The following weights are assigned to the moves shown in Figure 8:

1. Moves Qb4, Qd4, Qd6, Qd8, Qe3, Qf2 get an estimate of �Queen.

2. Moves Q�f4 and Q�a5 get an estimate of +Pawn�Queen.

3. Moves Qb2, Qd3, Qd5, Qd7, Qe2 get an estimate of 0.

4. All the rest of the moves get an estimate of �Pawn since the response of black will be

Q�b5.

4 Learning move patterns

In the previous section we showed how can move patterns be utilized to decide which move

to take. In this section we describe algorithms for learning move patterns from examples.

Move patterns are learned while playing against an external teacher. This teacher can be

a human, another chess program or the learning program itself. The reversed trace of the

game is passed to the learner which extracts training examples and generalizes them in the

following way:

11

kZ0Z0Z0Z
ZpZ0Z0Z0
0l0Z0Z0Z
oPZ0o0Z0
0Z0Z0o0Z
Z0Z0Z0Z0
0Z0L0Z0Z
J0Z0Z0Z0

Q p nQ Pq

Q n
p

Q n
q q

Q

P

n

-

(1) (2)

-

(1) (2)

-

(1) (2)

@
@R
-

(2)

(3)

(1)

Root

@
@R
-

(2)

(3)

(1)

-

6

-

(4)(3)

(1) (2)

?
�����)

PPPPPq

���������) ?

PPPPPPPPPq?

Patterns Weighted moves and replies Matching moves and replies

Q
i-
(2)(1) 1

0
�! 2 All white moves by queen

Q p
-

(2)(1) 1
+P
�! 2 1.Qf4, 1.Qa5

q P
-

(2)(1) 1
�P
�! 2 1. ... Qb5

i
p
@@R

Q
-

(3)
(2)(1)

1
0
�! 2 =)

n
3
�Q
�! 2

o
1.Qb4 ab; 1.Qd4 ed; 1.Qf4 ef; 1.Qe3 fe

i
q
@@R

Q
-

(3)
(2)(1) 1

0
�! 2 =)

n
3
�Q
�! 2

o
1.Qa5 Qa5; 1.Qd4 Qd4; 1.Qd6 Qd6;
1.Qd8 Qd8; 1.Qe3 Qe3; 1.Qf2 Qf2

Q

P

i

-
q

6
(2)
-

(4)(3)

(1)

1
0
�! 2 =)

n
3
�P+Q
�! 4

o
1.Qa5 Qb5; 1.Qb4 Qb5; 1.Qb2 Qb5;
1.Qd3 Qb5; 1.Qd5 Qb5; 1.Qd7 Qb5;
1.Qe2 Qb5

Figure 8: An example of utilization of move patterns. The pattern database (board patterns only) is

shown to the right of the board. The results of the matched move patterns are shown below.

12

rZ0ZkZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
ZqZNZ0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

r n k

N
A
AAK
���*HHHY

1

2
3 4 q nk

N
A
AAK
���*HHHY

1

2
3 4

Figure 9: Although the two move patterns indicating the winning of queen and rook after Nc7+, only

one �gure can actually be captured. Therefore, the move will be assigned a weight of +Queen.

rmblka0s
opopopop
0Z0Z0m0Z
Z0Z0Z0Z0
0Z0Z0ZPZ
O0Z0Z0Z0
0OPOPO0O
SNAQJBMR

n P-

(2)(1)

n P-

(2)(1) n
n
@
@R

P -

(3)

(2)(1)

1
+P
�! 2 1

�P
�! 2 1

0
�! 2 =)

n
3
�P
�! 2

o

Figure 10: Move patterns which can be generated from the trace 1. a3 Nf6 2. g4 Ng4 ... and the

board before 2. ... Ng4.

1. Training examples:

(a) When the evaluation of a move before it is performed is very di�erent from its

evaluation after it is performed (the evaluation of the best opponent's response), we

mark the board with its associated move as a training example. This is an instance

of the known learning strategy learning by surprise. This method forces the system

to learn increasingly complicated patterns trying to avoid being surprised. We

call patterns generated from such examples material patterns since they usually

represent a change in the material balance of the board. A fork pattern (see

Figure 1) is an example of a material pattern.

Assume that a learner gets the following trace of a game: 1. a3 Nf6 2. g4 Ng4

etc.2 Since the trace is reversed, the learner will discover that the move 2. ...

Ng4 wins a pawn. The move pattern reecting this fact and the corresponding

null-move pattern (its reection) are shown as the two leftmost move patterns in

Figure 10. After the patterns are acquired, the learner can infer that the move 2.

g4 was a mistake, and acquires an additional move pattern (with reply) shown as

the rightmost pattern in Figure 10.

2The learner plays white. Such a game can take place, since at the beginning of the learning process the

moves are almost random.

13

j

PPPPP

RNB

A
A
AAK

(2)

HHHHj
����� 6ZZ}��>

��

(1)

1 �! 2

Figure 11: An example of a positional pattern.

(b) If a move is performed by a stronger opponent (a teacher), then the learner assumes

that it is better than its alternatives, and takes it as a positive example. We call

patterns generated from such boards positional patterns. An example of such a

pattern is shown in Figure 11. This pattern is likely to be one of the �rst moves of

gnuchess which was used as an external teacher in the experiments described in the

following section and was learned by our program during its �rst game. Following

the acquisition of this pattern the program used it to perform Nf3 or Nc3 as one

of its �rst moves.

2. Self-generated training examples:

The training examples described above are all a result of actual moves played during

the training games. Sometimes, we would like to learn from moves that were not played

during the game, but are believed to potentially carry important information. In such

a case, the learning algorithm simulates the unplayed move and generates an example

that is then processed in a regular way.

(a) If the learning algorithm expects from the stronger opponent to make move X, but

the opponent makes move Y , then move X is analyzed more carefully (a deeper

search is performed). The algorithm assumes that the opponent knows something

about X that is not known to the learner yet, and therefore X should be explored.

The result is a move pattern for X that takes into account a deeper lookahead.

Assume that the learner knows some material patterns like those shown in Fig-

ure 10, but is not familiar with the pattern shown in Figure 12. Suppose now

that it examines its game (as white) against a stronger opponent, and analyzes a

game trace such as 1.e3 Nf6 2. g4 d5 etc. While analyzing the move 2. ... d5 the

learner will be surprised, because it would expect 2. ... Ng4. The deeper analysis

of 2. ... Ng4 discovers the reply 3. Qg4, and the pattern from Figure 12 will be

acquired too.

(b) When the learner gives a negative evaluation to all possible moves, it considers

the current board as a local minimum. To try escaping from the local minimum,

a deeper search is performed. If an escape move is found, then the corresponding

move pattern is acquired.

Suppose, for example, that the learner knows the patterns shown in Figure 10, but

still does not know how to defend an attacked pawn. After 1.e4 Nf6 the learner

will realize that all the moves lose at least a pawn. The deeper analysis, however,

shows that the pawn can be defended by moves 2.Nc3, 2.Qe2, 2.Qf3, 2.d3,

14

n
q
@
@R

N -

(3)

(2)(1)

1
0
�! 2 =)

n
3
�K
�! 2

o

Figure 12: A move pattern that can be learned by self-generating training examples from the trace

1.e3 Nf6 2. g4 d5.

2.f3, 2.Bd3, and that it is possible to escape the treat by 2.e5. As a result, the

patterns shown in Figure 13 will be added to the knowledge base.

P

n
P

HHj

n
HHY

(4)

��>

(1)

(2)

(3)

B

n
P

HHj

n
HHY

(4)

��>

(1)

(2)

(3)

N

n
P

HHj

n
HHY

(4)

��>

(1)

(2)

(3)

Q

n
P

HHj

n
HHY

(4)

��>

(1)

(2)

(3)

n

n6

P
��=

(2)

(3)

(1)

1
0
�! 2 =)n
4
�P+K
�! 3

o 1
0
�! 2 =)n
4
�P+K
�! 3

o 1
0
�! 2 =)n
4
�P+K
�! 3

o 1
0
�! 2 =)n
4
�P+K
�! 3

o 1
0
�! 2

=)
n
3

0
�! 1

o

Figure 13: Move patterns that can be learned by self-generating training examples from the trace

1.e4 Nf6.

3. Extracting patterns from examples: The outcome of the previous stage is a speci�c

move pattern which is used as the raw example. In the next stage the learner performs

Explanation-based generalization similar to the one used by Minton [22]. The learner

tries to �nd minimal preconditions that preserves the \surprise" (the di�erence between

pre-evaluation and post-evaluation) of the move. For positional patterns we eliminate

all pieces and squares that have no relation to the move. For material patterns we try

to remove pieces one by one. When any removal of a piece changes the di�erence of

evaluation, the process stops and the generalized pattern is acquired.

When the learner gets as a training example the board from Figure 10 and the move

1. ... Ng4, it deletes from the board almost all the pieces except the knight and the

pawn, and gets the two �rst patterns shown to the right of the board. These patterns

are acquired at the same step, because one of them is a reection of the other.

4. Assigning weights to the acquired move patterns: In the case of a material pattern we

set its weight to the value of the material di�erence. For positional patterns, we use the

frequency of its usage by the teacher to determine its weight. To enhance the statistics,

we employ a process called augmentation. A set of examples of moves, either from a

set of games played between two copies of the teacher, or from master databases, is

15

passed through the pattern-hierarchy to update the statistics of the positional patterns

(without allowing the acquisition of new patterns).

5. Incorporating new move patterns into the knowledge base: The new move patterns are

inserted into their location in the pattern hierarchy. The learner performs generalization

of the acquired move pattern by intersecting it with existing ones. An example for such

generalization is shown in Figure 14.

j

PPPPP

RNBKQ

A
A
AAK�

�
���

(2)

HHHHj
����� 6ZZ}��>

�
�
��>

���
(1)

j

PPPPP

QBNR

�
�
���A
A
AAU

(2)

�����
HHHHj6��> ZZ}

- - -�
(1)

j

PPPPP

RNB

A
A
AAK

(2)

HHHHj
����� 6ZZ}��>

��

(1)

Figure 14: Generalization of the two positional patterns to the left yields the positional pattern to

the right

5 SYLPH : a system that learns move patterns in chess

We have implemented the move-pattern learning methodology in a learning program called

SYLPH3. The system starts with very little knowledge: The basic rules of chess, the set of

prede�ned primitive relations (see Table 4) and the material value of pieces. SYLPH learns

by playing against a stronger opponent and gradually acquiring move patterns, merging them

into its move-pattern hierarchy.

We performed a set of experiments to test the plausibility of the move-pattern approach.

We start by describing the experimental methodology and continue by showing the results

obtained.

5.1 Experimental methodology

Our experimentation with SYLPH consists of a learning stage and a testing stage. The

learning stage included two parts. First, SYLPH performed online learning through a sequence

of 100 training games against a teacher (gnuchess). A snapshot of the acquired pattern

knowledge-base was saved after every 10 games to allow us studying the progress of the

system. This part was followed by an augmentation stage where the statistics of the acquired

patterns were updated by observing 50 games between two copies of the teacher.

Since the goal of the move-pattern methodology is to allow selective search, we tested the

acquired pattern knowledge-base by using it as a �lter at the top level of the search tree. In

Section 3, we describe the basic pattern-utilization function which, given a board, returns

the set of possible moves ordered by their priority. We use this function to de�ne two similar

�lters: fk, which selects the best k moves, and f , which selects the best portion of the

moves. This experimentation methodology follows the approach taken by Gobet and Jansen

[14].

3SYstem that Learns a Pattern Hierarchy.

16

A good �lter is characterized by its ability to select a small number of moves without alter-

ing the decision that would have been taken without it. Therefore, the principle measurement

used for most of the experiments was the estimated probability of the �lter to preserve the

decision of the search procedure. We accumulated the set of board-move pairs from 25 games

played between two copies of gnuchess level 4 (a total of above 2400 pairs). To avoid bias,

these games are di�erent than the games used for learning. The probability of a �lter to

success is measured by counting the number of times that the move chosen by gnuchess is

among the moves selected by the �lter.

The independent variables used for the experiments are:

1. The �ltering method: fk and f . For reference we also tested a random �lter, and ��

with depth limit of 1 to 4 (using material for evaluation).

2. k: Values of 1 to 10 were tried.

3. : Values of 0:1 to 1:0 were tried.

4. Learning stage: The number of training games.

5. Augmentation stage: The number of observed games used for augmentation.

5.2 The learning process

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 a

cq
ui

re
d

pa
tte

rn
s

Number of games

Material
Positional

Total

6

7

8

9

10

11

12

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 p
at

te
rn

 s
iz

e

Number of games

Material
Positional

Total

Figure 15: Progress during learning: The left �gure shows the number of frames in the database as a

function of the number of training games. The right �gure shows the average pattern size as a function

of the number of training games.

During the training games SYLPH acquired 4614 patterns. Figure 15 shows the num-

ber of patterns and the average pattern size as a function of the learning stage. We also

show a separate statistics for material and positional patterns. We measure the size of a

pattern by its number of edges. It is interesting to note that the average size of the ma-

terial patterns increases faster than the average size of the positional patterns. The reason

for this phenomenon is the di�erent methods that material and positional patterns are ac-

quired. The current version of SYLPH generates positional patterns by extracting the close

neighborhood of the di�erence between the position before and after the move. This strategy

yields limited-sized patterns. Material patterns are generated by an EBL algorithm that ex-

tracts the minimal graph which explains the unexpected outcome of the move. This strategy

17

leads to the generation of increasingly complex material patterns that explain more complex

situations.

5.3 The e�ect of learning resources on the performance

We have tested the progress of SYLPH by measuring the quality of the �lter with the pattern

databases saved during the learning process. We have used the f �lter with = 1

3
. The left

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100

E
st

im
at

ed
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Number of games

random

Alphabeta 1

Alphabeta 2

Alphabeta 3

Alphabeta 4

Sylph
Sylph non-augmented

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

E
st

im
at

ed
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Number of games

random

Alphabeta 1

Alphabeta 2

Alphabeta 3

Alphabeta 4

Figure 16: Progress during learning: the left graph shows the performance of SYLPH as a function

of the number of training games. The right graph shows the performance of SYLPH as a function of

the number of augmentation games.

graph of Figure 16 shows the performance of the �lters as a function of the number of training

games. The upper curve shows the performance with the augmented patterns and the lower

graph with the non-augmented patterns. We also show the performance of the random �lter

and the performance of �� of depth 1, 2 ,3 and 4 �lters. It is interesting to note that after 30

training games the SYLPH �lter outperforms a �lter that uses �� of depth 4. The right graph

of Figure 16 shows the performance of SYLPH as a function of the number of augmentation

games.

5.4 The e�ect of the �lter selectivity on the performance

We have tested the e�ect of the �lter selectivity on the performance of SYLPH. The per-

formance of the fk �lter was tested with values of k between 1 and 10. The performance of

the fgamma �lter was tested with values of between 0 and 1. Figure 17 shows the results

obtained. Here, again, we can see the superiority of SYLPH over the depth 4 �� �lter. Note

that even when SYLPH rejects the move selected by the teacher, it is not necessary an error.

It is quite possible that the moves selected by SYLPH are equivalent, but we could not check

it, since we use the teacher as a black box and do not have access to its internals.

5.5 Testing the generality of the acquired pattern

One important question to ask after viewing the last results is how general are the acquired

patterns. Since the patterns were acquired while playing against the teaching program, and

were tested against the same program, it is quite possible that SYLPH merely acquired a

model of its opponent [15, 16, 7] and is not able to use the patterns for �ltering the moves

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

E
st

im
at

ed
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Number of moves selected

Sylph
Sylph non-augmented

random
Alphabeta 1
Alphabeta 2
Alphabeta 3
Alphabeta 4

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
st

im
at

ed
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Portion of moves selected

Sylph
Sylph non-augmented

random
Alphabeta 1
Alphabeta 2
Alphabeta 3
Alphabeta 4

Figure 17: The performance of SYLPH as a function of the �lter selectivity. k = 5 means that the

�lter is allowed to select 5 moves. = 0:5 means that he �lter is allowed to select half of the available

moves.

of another player. To verify the generality of the acquired move patterns, we tested SYLPH

on 3830 moves performed by Mikhail Tal, taken from 100 games of the publicly available

database of Tal's games. Figure 18 shows the results obtained. The two graphs are analogical

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

E
st

im
at

ed
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Number of moves selected

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
st

im
at

ed
 s

uc
ce

ss
 p

ro
ba

bi
lit

y

Portion of moves selected

Figure 18: The performance of SYLPH as a function of the �lter selectivity. The tests were done

on 100 games taken from Tal's database.

to the two graphs in the previous subsection. One interesting observation is the di�erence in

performance between SYLPH and CHUMP which was tried on the same data. For example,

the result achieved by SYLPH for k = 4 is 0:577, while the best result achieved by CHUMP

is 0:194. We believe that the main reason for this di�erence is the better generalization

capabilities of abstract patterns compared with perceptual patterns [14].

5.6 Testing selective �� against non-selective one

To test the incorporation of the move �lter into a search procedure, we performed 50 games

by two versions of a depth-4 �� programs. The �rst is a regular non-selective �� which

uses material for evaluation. The second is the same program with the pattern-based �lter

applied to the top level of the search tree. We used the fk �lter with k = 5, i.e., only 5 moves

19

are selected. The selective program managed to score 6 wins, 6 losses and 38 draws while

searching much smaller trees. It had an average material advantage of 0.78 pawns at the end

of the game.

6 Conclusions

Human players are known to have the ability of intuitively exploring only promising moves.

This work studies the possibility of endowing chess programs with similar abilities by learning

patterns of promising moves. Using move patterns, a chess playing program can evaluate

chess moves without the exploration of their outcomes. Then, it can further explore only the

outcome of promising moves.

We have de�ned a knowledge representation scheme for representing patterns of moves,

devised a method for organizing move patterns in a hierarchical knowledge base, and de-

veloped algorithms for eÆcient manipulation of the knowledge base. We proceeded with

developing a methodology for learning move patterns from experience. An interesting feature

of the methodology presented here is its resemblance to the perception of human players.

Researchers [9, 5, 14, 13] have noted that human chess players do not perceive positions as a

static entity, but as a collection of potential actions.

Our methodology was implemented in the SYLPH chess learning system, and was tested

experimentally. The system was able to acquire thousands of move patterns after playing only

100 training games. The quality of these patterns was tested by using the patterns for a move

�lter. The experiments show that, indeed, the probability of the �lter throwing out the move

selected by the testing program reduces when SYLPH gains experience. The performance of

the pattern-based �lter became better than the performance of a �lter that uses a depth 4

�� with material evaluation function.

An alternative approach to the methodology presented here is to generate the set of next

boards, to evaluate each of them by, for example, MORPH, and to select the moves leading

to the best boards. It is possible to show that with a �xed number of moves selected at each

level, the number of boards processed by this approach increases linearly with the branching

factor, while the number of boards processed by SYLPH remains constant. On the other

hand, the complexity of processing each board is higher for SYLPH than for MORPH since

SYLPH uses a richer language and more complicated patterns. Therefore, we expect the

bene�t of the move-pattern approach to grow with the branching factor.

The framework proposed here is not speci�c to chess. To apply the framework to another

game, one needs to de�ne the set of relevant objects and set of relationships between them.

The framework can also be applied to single agent search. Most of the research in reinforce-

ment learning deals with assigning weights to actions in speci�c states. The move-pattern

hierarchy can be viewed as a sophisticated method for representing associations between gen-

eralized classes and actions, replacing the rigid state-action table used by the traditional

reinforcement learning algorithms.

Gobet and Jansen [14] classify the use of patterns in chess programs according to three

dimensions: the type of patterns (abstract or perceptual), the way that the patterns are

utilized (evaluation or move generation) and the way that the patterns are acquired (manually

or by learning). In this classi�cation, SYLPH learns and uses abstract patterns for move

generation. We borrowed the table from Gobet and Jansen and inserted SYLPH into it to

show its relationships to other pattern-oriented chess programs. The updated version is shown

20

in Table 5.

Abstract Perceptual

Use of patterns Learning No Learning Learning No Learning

Move generation SYLPH

Bratko/Michie [6],

Zobrist/Carlson [33],

Wilkins [32]

CHUMP

Evaluation MORPH Zobrist/Carlson CHUNKER I [3]

Table 5: A table by Gobet and Jansen that classi�es pattern-oriented chess program with SYLPH

added.

There are several directions for future research in the area of move patterns:

1. Rewrite and optimize SYLPH to allow experimentation with a larger number of pat-

terns. Chase and Simon [8] claim that human chess experts use 80,000-100,000 patterns.

We would like to test the performance of SYLPH with such a number of patterns. The

current version of the system is experimental and its code is not optimized. Apply-

ing the �lter takes about 300-500 milliseconds4. This �gure makes it reasonable to be

selective in the top 1-2 levels of the search tree. We believe that we can improve the

performance of SYLPH signi�cantly, which will allow us to apply the �lter in deeper

levels of the search.

2. Add selective retention [21] element to SYLPH, allowing it to delete patterns with low

utility.

3. The above change will allow us to modify the positional pattern acquisition technique to

learn larger patterns. The generalization element of SYLPH will intersect these larger

patterns and create the more generalized (and smaller) patterns. If indeed the relevant

pattern is small, the generalized pattern will remain and its descendents will be deleted

by the selective retention �lter. If, on the other hand, the larger pattern is relevant, it

will contain information beyond its ancestor, and will be retained.

4. Test the e�ect of the teacher on the system performance. In particular, we intend to

train SYLPH with master games.

5. Enriching the move-pattern language. The current language has some limitations that

slows down the learning. We intend to add generalization hierarchy over the pieces to

allow a generalized pattern such as \any white piece attacking any black piece". We

also intend to introduce properties for the individual pieces, sets of pieces and squares

such as the distance to the crowning row, the distance between two pieces, etc.

6. Applying the framework to other games. As we noted above, the framework is general

and can be applied to other games.

7. Applying the framework to single-agent search.

We believe that the move-pattern approach has a potential of advancing the state-of-the-

art in computer chess. Of course, to make it useful for real programs, we need to invest some

e�orts in making the manipulation of patterns fast by implementing fast pattern-manipulation

code and maybe with the aid of special purpose hardware.

4SYLPH is written in Common Lisp and runs on a quite old Sun

21

References

[1] T. S. Anantharaman, M. S. Campbell, and F. h. Hsu. Singular expressions: Adding

selectivity to brute-force searching. Arti�cial Intelligence, 43(1):99{110, 1990.

[2] D. F. Beal. A generalized quiescence search algorithm. Arti�cial Intelligence, 43(1):85{

98, 1990.

[3] Hans J. Berliner and M. Campbell. Using chunking to solve chess pawn endgames.

Arti�cial Intelligence, 23:97{120, 1984.

[4] Hans J. Berliner and Chris McConnell. B* probability based search. Arti�cial Intelli-

gence, 86:97{156, 1996.

[5] M. Botvinnik. Computers in Chess. Springer-Verlag, 1984.

[6] L. Bratko and D. Michie. Representation for pattern-knowledge in chess endgames. In

M. R. B. Clarke, editor, Advances in Computer Chess, volume 2, pages 31{56. University

Press, Edinburgh, 1989.

[7] David Carmel and Shaul Markovitch. Incorporating opponent models into adversary

search. In Proceedings of thirteenth National Conference on Arti�cial Intelligence (AAAI

96), Portland, Oregon, August 1996.

[8] W. G. Chase and H. A. Simon. The mind's eye in chess. In W. G. Chase, editor, Visual

Information Procesing, pages 215{281. Academic Press, New York, 1973.

[9] A. D. de Groot. Thought and Choice in Chess. The Hague, 1965.

[10] N. S. Flann and T. G. Dietterich. A study of explanation-based methods for inductive

learning. Machine Learning, 4:187{226, 1989.

[11] Stephen Flinter and Mark T. Keane. Using chunking for the automatic generation of

cases in chess. In M. Veloso and A. Aamodt, editors, Proceedings of the 1st International

Conference on Case Based Reasoning (ICCBR-95). Springer Verlag, 1995.

[12] Johannes F�urnkranz. Machine learning in computer chess: The next generation. Inter-

national Computer Chess Association Journal, 19(3):147{160, September 1996.

[13] Fernand Gobet. A pattern-regocnition theory of search in expert problem solving. Think-

ing and Reasoning, 3(4):291{313, 1997.

[14] Fernand Gobet and P. Jansen. Towards a chess program based on a model of human

memory. In H. J. van den Herik, I. S. Herschberg, and J. W. H. M. Uiterwijk, editors,

Advances in Computer Chess 7, pages 35{60. University of Limburg, 1994.

[15] H. Iida, Jos W. H. M. Uiterwijk, H. J. van den Herik, and I. S. Herschberg. Potential ap-

plications of opponent-model search, part I: The domain of applicability. ICCA Journal,

16(4):201{208, 1993.

[16] H. Iida, Jos W. H. M. Uiterwijk, H. J. van den Herik, and I. S. Herschberg. Potential

applications of opponent-model search, part II: Risks and strategies. ICCA Journal,

17(1):10{14, Mar 1994.

22

[17] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learn-

ing: A survey. Journal of Arti�cial Intelligence Research, 4:237{285, 1996.

[18] R. Levinson. Experience-based creativity. Department of Computer and Information

Sciences, University of California of Santa Cruz.

[19] R. Levinson. A self-organizing pattern retreival system and its applications. Technical

Report UCSC-CRL-89-21, University of California of Santa Cruz, 1989.

[20] R. Levinson and R. Snyder. Adaptive pattern-oriented chess. In Proc. of AAAI, pages

601{605. Morgan Kaufman, 1991.

[21] S. Markovitch and P. D. Scott. Information �ltering: Selection mechanisms in learning

systems. Machine Learning, 10(2), 1993.

[22] S. Minton. Contstraint based generalization-learning game playing plans from single

examples. In Proc. of AAAI. AAAI, 1984.

[23] A. Newell, J. Shaw, and H. Simon. Chess-playing programs and the problem of complex-

ity. IBM Journal of Research and Development, 2:320{335, 1958.

[24] J. Pitrat. A program for learning to play chess. In Pattern Recognition and Arti�cial

Intelligence. Academic Press, 1976.

[25] J. R. Quinlan. Learning e�ect classi�cation procedures and their application to chess

end games. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine

Leraning. Morgan Kaufmann, San Mateo, CA, 1983.

[26] C. E. Shannon. Programming a computer for playing chess. Philosophical Magazine,

41:256{275, 1950.

[27] C. E. Shannon. Programming a computer for playing chess. Scienti�c American, pages

48{51, 1950.

[28] A. H. Simon and M. Barenfeld. Information-processing analysis of perceptual processes

in problem solving. Psychological Review, 76(5):473{483, 1969.

[29] D. J. Slate and L. R. Atkin. Chess 4.5 : The northwestern university chess program.

In P. W. Frey, editor, Chess Skill in Man and Machine, pages 82{118. Springer-Verlag,

1977. 2nd edition, 1983.

[30] Richard Sutton. Learning to predict by the methods of temporal di�erences. Machine

Learning, 3(1):9{44, August 1988.

[31] P. Tadepalli. Lazy explanation-based learning: A solution to the intractable theory

problem. Proc. of the International Joint Conference on Arti�cial Intelligence, 1989.

[32] D. E. Wilkins. Using patterns and plans in chess. Arti�cial Intelligence, 14(2):165{203,

1980.

[33] A. Zobrist and R. Carlson. An advice-taking chess computer. Scienti�c American,

228:92{105, 1973.

23

