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Genes and proteins generate molecular circuitry that enables the
cell to process information and respond to stimuli. A major chal-
lenge is to identify characteristic patterns in this network of
interactions that may shed light on basic cellular mechanisms.
Previous studies have analyzed aspects of this network, concen-
trating on either transcription–regulation or protein–protein inter-
actions. Here we search for composite network motifs: character-
istic network patterns consisting of both transcription–regulation
and protein–protein interactions that recur significantly more of-
ten than in random networks. To this end we developed algorithms
for detecting motifs in networks with two or more types of
interactions and applied them to an integrated data set of protein–
protein interactions and transcription regulation in Saccharomyces
cerevisiae. We found a two-protein mixed-feedback loop motif,
five types of three-protein motifs exhibiting coregulation and
complex formation, and many motifs involving four proteins.
Virtually all four-protein motifs consisted of combinations of
smaller motifs. This study presents a basic framework for detecting
the building blocks of networks with multiple types of interactions.

Cellular processes are regulated by interactions between
various types of molecules such as proteins, DNA, and

metabolites (1–4). Among these, the interactions between pro-
teins and the interactions between transcription factors and their
target genes play a prominent role, controlling the activity of
proteins and the expression levels of genes. A significant number
of such interactions have been revealed recently by means of
high-throughput technologies such as yeast two-hybrid (5, 6) and
chromatin immunoprecipitation (7–10). By using these data,
one can build a network of interactions and thus describe the
circuitry responsible for a variety of cellular processes. The
analysis of this cellular circuitry is one of the major goals in
the postgenomic era.

What are the building blocks of this cellular circuitry? Recent
studies have analyzed the structure of the transcriptional net-
works of Escherichia coli (11) and Saccharomyces cerevisiae (10,
12), consisting solely of interactions between transcription fac-
tors and their target genes. These transcriptional networks were
shown to be composed, to a large extent, of a small set of network
motifs: patterns of interactions that recur in the cellular network
significantly more often than in randomized networks (11, 12).
Each of these motifs was suggested to perform a specific
information-processing role in the network. In parallel, the
network of protein–protein interactions (PPIs) in S. cerevisiae
has also been studied intensively and shown to consist of clusters
of interacting proteins (13–16). Yet, analyzing transcriptional
networks and PPI networks separately hides the full complexity
of the cellular circuitry, because many processes involve com-
binations of these two types of interactions.

Here we systematically analyze the cellular circuitry compris-
ing two types of interactions: those between transcription factors
and their target genes and those between proteins. To this end,

we extended the concept of network motifs to include motifs
involving these two types of interactions. We developed algo-
rithms for detecting composite motifs in networks comprising
two or more types of connections and apply them here to the
cellular network of the yeast S. cerevisiae.

Intriguingly, our analysis revealed a few network motifs in-
volving two or three proteins (by ‘‘protein’’ we refer both to the
protein and to the gene encoding it) and several four-protein
motifs, virtually all of which consisted of combinations of smaller
motifs. These findings suggest that the cellular network consists
of small network motifs that can be interpreted as basic building
blocks. Particularly, the smaller motifs we revealed were a
two-protein motif defining a mixed-feedback loop involving both
transcription–regulation interaction (TRI) and PPI and five
types of three-protein motifs. Two of these five motifs are purely
decoupled motifs of either TRIs or PPIs. The other three motifs
present biologically meaningful combinations of the two types of
interactions. Altogether the five motifs manifest the tendency of
eukaryotic cells toward coregulation and complex formation.
This study presents a framework for detecting the building blocks
of cellular networks with multiple types of interactions, which
can be utilized to analyze any network with more than one type
of connection.

Methods
Network Data. Experimentally identified interactions between
transcription factors and their target genes in S. cerevisiae were
extracted from the SCPD Promoter Database of Saccharomyces
cerevisiae (http:��cgsigma.cshl.org�jian) (17), the Yeast Pro-
teome Database (www.incyte.com�control�researchproducts�
insilico�proteome) (18), and genome-wide experiments that
locate binding sites of given transcription factors (7–10). For the
latter, we used the experimental thresholds used in the original
articles.

Experimentally identified PPIs were extracted from the Da-
tabase of Interacting Proteins (http:��dip.doe-mbi.ucla.edu)
(19), Biomolecular Interaction Network Database (http:��
binddb.org) (20), and Munich Information Center for Protein
Sequences database (http:��mips.gsf.de�proj�yeast�tables�
interaction) (21), all providing manually reviewed lists of inter-
acting proteins, and from high-throughput yeast two-hybrid
studies (5, 6). We excluded from the analysis interactions in
which one of the pair mates interacts with �50 different proteins
to avoid false interactions caused by ‘‘sticky’’ proteins (22).
Self-interactions representing autoregulation or protein ho-
modimerization were not included in the analysis.
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Data Representation. We based our analysis on network repre-
sentation of the two types of data (23). A node represents both
a protein and the gene encoding it. A PPI is represented by a
bidirected edge connecting the interacting proteins. A TRI is an
interaction between a transcription factor and its target gene and
is represented by a directed edge pointing from the transcription
factor to its target gene.

Detecting k-Protein Network Motifs. All connected subnetworks
containing k nodes in the interaction network were collated into
isomorphic patterns, and the number of times each pattern
occurred was counted. If the number of occurrences was at least
five and statistically significantly higher than in randomized
networks, the pattern was considered as a network motif. The
statistical-significance test was performed by generating 1,000
randomized networks (4, 24, 25) and computing the fraction of
randomized networks in which the pattern appeared at least as
often as in the interaction network. A pattern with P � 0.05 was
considered statistically significant.

To generate randomized networks containing two types of
edges, we extended the approach of Shen-Orr et al. (11), who
considered networks involving one type of connection. There
they generated randomized networks with the same network
characteristics by preserving the node degrees. For dealing with
networks with multiple types of connections we defined two
terms:

1. Extended degree of a node: the number of edges per type that
point to�from a node (demonstrated in Fig. 1a). Two nodes
have the same extended degree if they have the same number
of ingoing and outgoing edges for each edge type.

2. Edge profile of two nodes: the set of edges connecting the
two nodes with the type and direction of each edge detailed
(exemplified in Fig. 1a).

The extended degree reflects the local connectivity of a node,
and the edge profile provides a local measure of the relation
between two nodes. The randomized networks are generated
such that both the extended degree of each node and the profile
of each edge in the network are retained. We developed an
algorithm that generates such randomized networks by an iter-
ative switching of edges. The four-point-switchability condition
described in Fig. 1b provides sufficient conditions for the
retention of all edge profiles and the extended degrees of all
nodes.

For k � 2 a slight change is required, because the preser-
vation of edge profiles implies that all two-node patterns (Fig.
2) remain fixed. For the assessment of two-node patterns, we

created 1,000 randomized networks by (i) decoupling the two
types of connections to form two separate networks, each
representing a single type of connection; (ii) separately ran-
domizing each of the decoupled networks; and (iii) integrating
them into a single random network. Also, the statistical
significance of the pattern in Fig. 2C was computed analytically
by assuming a uniform distribution of TRIs over transcription
factor pairs.

Results
The approach underlying the present analysis extends the
methodology for motif discovery of Shen-Orr et al. (11), who
studied networks comprising a single type of connection. It
starts with representing the integrated cellular network as a
network in which there is a distinction between TRIs and PPIs.
A node in the network represents both a gene and its protein
product; a TRI is represented by a directed edge pointing from
the transcription factor to its target gene; and a PPI is
represented by a bidirected edge connecting the interacting
proteins (23). The network can be represented graphically by
using edges of two ‘‘colors’’: directed, red edges representing
transcription regulation and bidirected, black edges represent-
ing protein interactions. The resulting network is analyzed to
find network motifs: patterns of connections involving TRI,
PPI, or both that recur in the network significantly more often
than in randomized networks (P � 0.05). The randomized
networks are generated under the requirement that the ex-
tended node degrees and edge profiles (Fig. 1a) are the same
as in the original network for all nodes and edges. To generate
these randomized networks, we developed a randomization
algorithm in which edges of a network are switched if a
four-point-switchability condition holds (Fig. 1b). This condi-
tion guarantees the retention of extended node degrees and
edge profiles as required. For the analysis of patterns consist-
ing of three and four nodes, we generated 1,000 randomized
networks by iterative applications of the switchability condi-
tion. The analysis of two-node patterns is slightly different, as
detailed in Methods.

We applied our approach to network data of the yeast S.
cerevisiae. To overcome the noisiness of experimental interaction
data collected via high-throughput methods, we generated a
stringent data set containing 3,183 interactions between 1,863
proteins: PPIs were included if detected by at least two different
experimental studies (different yeast two-hybrid methods were
considered as different studies, as in ref. 22). TRIs were included
if detected by methods other than genome-wide experiments.
The resulting network was denoted as the stringent network. The
robustness of the results was confirmed by performing the same
analysis on a network containing all 12,413 experimentally
identified interactions between 4,651 proteins, denoted the
nonstringent network (see Methods for a detailed description of
the data). Table 1 lists the number of interactions in the stringent
and nonstringent networks.

Next we present the motifs that emerged from the analysis.

Two-Protein Network Motifs. There are five possible two-protein
connected patterns (Fig. 2). We assessed the statistical signifi-
cance of the five patterns by comparing the number of their
occurrences in the interaction network to that expected at

Fig. 1. The randomization procedure. (a) Extended node degree and edge
profile. Nodes represent proteins; black, bidirected edges represent PPIs; and
red, directed edges represent TRIs. Extended node degrees: a, one PPI, one
outgoing TRI, and two ingoing TRIs; b, two PPIs and one outgoing TRI; c, one
PPI and one outgoing TRI; d, two PPIs, one outgoing TRI, and two ingoing TRIs.
Examples for edge profiles: (a,b), one PPI and one ingoing TRI; (b,a), one PPI
and one outgoing TRI; (a,d), one outgoing TRI and one ingoing TRI; (b,d), one
PPI. The edge profile of (d,c) is equivalent to that of (a,b). (b) The four-point-
switchability condition. If edge profile (s1,t1) � edge profile (s2,t2) and edge
profile (s1,t2) � edge profile (s2,t1), then edges can be switched as exemplified.
For clarity, each edge color represents a type of edge profile. Note that if (s1,t1;
s2,t2) are switchable, then so are (s1,t2;s2,t1), (t1,s1;t2,s2), and (t2,s1;t1,s2). Switch-
ability is considered only for cases in which all four nodes are distinct and at
least one edge profile is not empty.

Fig. 2. All possible interaction patterns between two connected proteins. A
node represents a gene and its protein product; a red, directed edge repre-
sents a TRI; and a black bidirected edge represents a PPI.
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random (see Methods). We found that only one of the patterns,
the mixed-feedback loop comprising one PPI edge and one TRI
edge (Fig. 2D), was a motif (P � 0.001 both in the stringent and
nonstringent interaction networks). In this motif, protein P
regulates gene g at the transcription level, and the product of
gene g, protein G, interacts with P at the protein level. The eight
two-protein mixed-feedback loops identified in the stringent
network included five characterized feedback loops, of which
three were positive and two were negative. The pair Gal4–Gal80
presents an example for a negative-feedback loop: Gal4 is a
transcription factor that activates genes participating in galactose
catabolism, including GAL80. Gal80 binds to Gal4 and, in the
absence of galactose, represses its activity (26). A detailed list of
mixed-feedback loops as well as detection and analysis of more
complex cases of mixed-feedback loops in S. cerevisiae can be
found in ref. 23.

Three-Protein Network Motifs. There are 13 possible three-
protein connected patterns with a single type of directed
interaction (12). When there are two types of interactions, such

as TRI and PPI, the number of possible patterns rises to 100.
Of the 100 possible three-protein connected patterns, 29
different patterns occurred in the stringent network. Only five
of these occurred significantly more often than in random
networks (P � 0.001) and thus are network motifs (Table 2).
These five motifs were also found to be network motifs in the
nonstringent network. We now describe the motifs in descend-
ing order of abundance:

1. A protein clique (Table 2, motif A): This is the most abundant
motif and is composed entirely of PPIs. Of the occurrences of
this motif, 92% correspond to known protein complexes
[based on information from the Munich Information Cen-
ter for Protein Sequences (21) and the Yeast Proteome
Database (18)].

2. Interacting transcription factors that coregulate a third gene
(Table 2, motif B): There were 243 occurrences of this motif
corresponding to 21 distinct transcription factor pairs, each of
which regulate a group of genes. For example, the pair of
transcription factors Mbp1–Swi6, known as the MBF com-
plex, regulate 34 different genes. In most pairs of interacting
transcription factors that coregulate genes, the two pair mates
are known to have the same function, either coactivating or
corepressing genes. Two such examples include Pho2 and
Pho4, which coactivate five genes, and Ssn6 and Tup1, which
corepress nine genes. In the former, the interaction of Pho2
with Pho4 increases the accessibility of the activation domain
of Pho4. In the latter, both proteins are part of a repressor
complex that becomes an activator in a Hog1-dependent
manner.

3. A feed-forward loop comprising solely TRIs (Table 2, motif
C): This motif contains two transcription factors, one of which
regulates the other, both jointly regulating a target gene. This
motif has been detected within the transcription–regulation
networks of E. coli (11) and S. cerevisiae (10, 12). There were

Table 1. Number of interactions in the stringent and
nonstringent networks

Network type No. of PPIs* No. of TRIs

Stringent
network

1,832 interactions
between
1,385 proteins

1,351 interactions between
128 transcription factors
and 591 target genes

Nonstringent
network

6,159 interactions
between
3,617 proteins

6,254 interactions between
160 transcription factors
and 2,698 target genes

*This number does not include the 177 and 235 self-interactions that are
present in the stringent and the nonstringent data sets, correspondingly.

Table 2. Three-protein network motifs in the stringent network

Motif* Illustration†

No. of occurrences
Comments regarding

occurrences in the
stringent network

Stringent network Nonstringent network

N real N rand � SD z score N real N rand � SD Z score

A. Protein clique 1,293 14 � 3.8 332.7 2,016 87 � 10.8 177.9 1,198 occurrences in
experimentally identified
complexes

B. Interacting transcription
factors that coregulate a
third gene

243 2.4 � 2.1 115.9 476 9.6 � 7.8 59.7 21 pairs of coregulating
proteins, most of which act
in concert

C. Feed-forward loop 83 26 � 6 9.5 994 473 � 36.7 14.2 Analyzed in refs. 11, 40, and 41

D. Coregulated interacting
proteins

66 2 � 1.4 46.5 285 107 � 10.1 17.7 25 sets of coregulated
interacting proteins, most of
which act in concert or
participate in a common
complex

E. Mixed-feedback loop
between transcription
factors that coregulate a
gene

46 2.7 � 1.6 26.3 118 8.2 � 5.4 20.3 Four distinct pairs of
transcription factors that are
also involved in a
mixed-feedback loop

*These motifs were highly statistically significant in both the stringent and nonstringent networks; in all 1,000 randomized networks the number of their
occurrences was lower than in the actual network.

†A node represents a gene and its protein product; a red, directed edge represents a TRI; a black, bidirected edge represents a PPI.
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83 occurrences of this motif in the S. cerevisiae interaction
network corresponding to 20 distinct pairs of transcription
factors.

4. Coregulated interacting proteins (Table 2, motif D): This
motif consists of a pair of genes that are regulated by a
common transcription factor, and the protein products of
which interact with each other. The 66 occurrences of this
motif correspond to 25 sets of coregulated genes, where a set
may consist of several proteins that are all coregulated by the
same transcription factor and interact with each other. The
proteins in most sets are known to work in concert or
participate in a common complex. In many cases, the set of
coregulated genes is regulated by more than one common
transcription factor. This motif is found in a variety of cellular
pathways. For example, the histones Hta1–Htb1, which are
coregulated by four different transcription factors, play a role
in chromatin structure; Fas1–Fas2, which are coregulated by
three transcription factors, function in fatty acid biosynthesis;
and Cdc10–Cdc11, which are coregulated by the transcription
factor Swi4, function in cytokinesis. Although this motif is
highly significant, it spans �1% of the pairs of coregulated
genes in the current data set.

5. A mixed-feedback loop between transcription factors that
coregulate a third gene (Table 2, motif E): This motif can be
viewed as a combination of any pair of the following motifs:
a mixed-feedback loop (Fig. 2D), two transcription factors
that coregulate a third gene (Table 2, motif B), and the
feed-forward loop (Table 2, motif C). The topology of this
motif enables composite regulation schemes. A well known
example for this mechanism is provided by Swi6–Swi4: Swi6
activates SWI4 transcription, and once Swi4 is synthesized, it
interacts with Swi6 to form the SBF complex. This complex
then regulates genes during the transition to S phase in the cell
cycle.

Four-Protein Network Motifs. There are �3,000 possible four-
protein patterns. The analysis of the stringent network revealed
201 distinct patterns, of which 63 were network motifs (statis-
tically significant with P � 0.05). Note that each motif appears
at least five times in the network. A randomized network as a
control shows virtually no motif with this significance and
number of occurrences. Intriguingly, almost all of the four-
protein network motifs contained one or more of the three-
protein network motifs presented above: 36 motifs could be
presented as a three-protein motif with a dangling fourth node,
and 21 motifs could be presented as a combination of two or
more three-protein motifs (Fig. 3a). Moreover, almost every pair
of three-protein motifs could be combined, in at least one way,
to produce a four-protein network motif (Fig. 3a). The exception
is the combination of a feed-forward loop with a motif contain-
ing a pair of coregulated interacting proteins [Fig. 3a, entry
(C,D)], which is present in the stringent network but is not
statistically significant.

Six of the four-protein network motifs could not be con-
structed from a three-protein motif in combination with either
another three-protein motif or a dangling node (Fig. 3b). Four
of these motifs may be viewed as extensions of smaller network
motifs, in which one of the PPIs in each smaller motif was
extended to a series of PPIs (Fig. 3b, iii–vi). Of the two remaining
motifs, one was built of two transcription factors that coregulate
genes (Fig. 3b, i). This motif was termed ‘‘bi-fan’’ (12) and may
lead to higher-order patterns of overlapping regulation similarly
to the ‘‘dense-overlapping regulon’’ motif detected in E. coli (11).
The other motif contained a transcriptional feed-forward loop
(Fig. 3b, ii).

Most of the four-protein motifs contained protein triplets
acting as higher-order hubs. Explicitly, each motif was associated
with a limited set of recurring protein triplets, occurring in

combination with various other proteins. At most there were 10
such protein triplets per motif, although the total number of
motif occurrences was 10- to 100-fold greater.

Applying our analysis to the nonstringent network revealed
496 distinct patterns, of which 168 were statistically significant.
Although some of the network motifs that were detected in the
stringent network became insignificant in the nonstringent
network, the description of four-protein network motifs as
combinations of three-protein network motifs holds in both
networks.

Discussion
We analyzed the local structure of an integrated cellular
interaction network. This network has two types (colors) of
edges, representing PPIs and TRIs. To analyze this network,
we developed algorithms for detecting network motifs in
networks with multiple types of edges. Our analysis revealed
several highly significant network motifs of two, three, and
four nodes. It would be intriguing to interpret the functionality
of these motifs.

The Mixed-Feedback Loop, but Not Pure Transcriptional Feedback, Is
a Motif. At the level of two-protein patterns, we found the
mixed-feedback loop with one PPI edge and one TRI edge (Fig.
2D) to be a highly significant motif. In contrast, the feedback
loop with two TRI edges (Fig. 2C) was not significantly more
common than in randomized networks.

Fig. 3. Four-protein network motifs discovered in the stringent network. (a)
Motifs that can be represented as combinations of three-protein network
motifs. When there is more than one possible way to generate a four-protein
motif, the combination involving the more abundant three-protein motifs is
presented. The three-protein motif of a mixed-feedback loop between co-
regulating proteins (Table 2, motif E) was not included here, because by itself
it is a combination of two other three-protein motifs. Dangling motifs, where
a fourth node is connected to only one of the nodes of the three-protein motif,
are not presented. A three-protein motif may appear more than once in a
combination that yields a four-protein motif [e.g., entry (A,D)]. (b) Motifs that
cannot be constructed from three-protein motifs. i, the bi-fan motif; ii, a motif
containing a feed-forward loop; iii–vi, motifs that appear as extensions of
smaller network motifs, for which one of the PPIs in each smaller motif (Left)
is extended to a series of PPIs by means of an intermediate protein (Right). A
node represents a gene and its protein product; a red, directed edge repre-
sents a TRI; and a black, bidirected edge represents a PPI.
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What could underlie the apparent preference for mixed
feedback and the selection against pure TRI feedback? One
possibility regards response time. Transcriptional regulation is
generally slow: each transcription–regulation edge causes a delay
of approximately one lifetime of the protein product, as was
recently demonstrated theoretically and experimentally (27, 28).
For negative-feedback loops, long delays can lead to instability
and noisy oscillations (29–31), which may be undesirable in
homeostatic systems. Thus, mixed feedback has an advantage
over pure transcriptional feedback in that the slow transcrip-
tional edge is closed by a fast PPI.

Selection in favor of mixed feedback over pure transcrip-
tional feedback may be a design principle in other cell types
as well. In mammalian cells, there are many examples of mixed
feedback, such as p53 transcriptionally activating Mdm2,
which in turn targets p53 for degradation by PPI (32), or in the
control of nuclear factor �B expression (33). Heat-shock
response in both eukaryotes (34) and bacteria (35) is con-
trolled by mixed feedback. For example, in E. coli, �32
activates the transcription of dnaKJ, which in turn targets �32
for degradation (35).

Three-Protein Motifs: Cliques, Coregulation, and Regulatory Com-
plexes. Five three-protein motifs were found (Table 2, motifs
A–E). These motifs represent basic patterns of regulation and
of organization of proteins into modules. Motif A, a protein
clique, is a motif with three PPIs. It represents complexes of
interacting proteins that work together as a multicomponent
machine. Motifs B and D represent two proteins that interact
at the protein level and that either regulate a common gene
(motif B) or are regulated transcriptionally by the same
transcription factor (motif D). Motif B represents a transcrip-
tion regulator that is made of a complex of two proteins, a
common scenario in eukaryotic cells. A well known example
for motif B in higher eukaryotes is the complex formed by Jun
and Fos transcriptional regulator proteins, which binds to
promoters that bear the AP-1 site. Motif D, on the other hand,
is found when interacting proteins are coregulated. It is widely
accepted that coexpressed genes are coregulated (e.g., see ref.
36). In turn, several studies showed that genes with similar
expression profiles are more likely to encode interacting
proteins (37–39). Taken together, this suggests that some
proteins that act in concert should be coregulated at the
transcriptional level, as motif D demonstrates. Motif C is the
feed-forward loop comprising purely transcription interac-
tions. This motif was described previously in studies on
transcription-regulatory networks. The function of the feed-
forward loop depends on the signs of the regulations (acti-
vating�repressing). The most common configuration, with
positive regulations, acts as a persistence detector (11, 40, 41).
A second common feed-forward configuration (with two
positive and one negative regulation) acts as a response
accelerator or pulser (40). Motif E represents a more complex
circuit, with a mixed-feedback loop between two regulators
that jointly control a target gene. The mixed feedback can act
as a control mechanism on the levels of the two proteins that
interact to form a transcription-factor complex. Note that
when considering only TRIs, this motif would be detected as
a feed-forward loop. Only after taking PPIs into consideration
does the specific structure of this motif reveal itself, highlight-
ing the importance of the integration of the two types of
interactions.

Four-Protein Motifs Are Largely Composed of Combinations of Three-
Protein Motifs. At the level of four-protein patterns, we detected
only 63 motifs out of the numerous possible patterns. Most of
these motifs can be understood as combinations of three-node

motifs. We represent this as a ‘‘multiplication table’’ in Fig. 3a.
The operation of combining two motifs can be repeated, in
principle, to produce even larger patterns; this may help in
understanding the biological meaning of large motifs. For ex-
ample, two cliques of three proteins can be combined to make
a full four-protein clique, which can be a component of a large
protein complex [Fig. 3a, entry (A,A)]. Another example is
provided by the three-protein motifs A and D, which combine to
make a three-protein clique, the members of which are regulated
by the same transcription factor [Fig. 3a, entry (A,D)], repre-
senting a coordinately regulated interacting module.

In general, using small motifs as basic building blocks and
combination operations to put them together can be viewed as
an algebra that may allow the descriptions of composite motifs.
Such motifs can be used, in turn, to explain more complicated
patterns in terms of the basic ones. In forming such composite
motifs, one can distinguish between repeated usages of the same
hinge to combine patterns, as opposed to combinations that use
different hinges in each step. Combinations of identical three-
protein motifs (along the diagonal in Fig. 3a) are of special
interest: Their repeated (composed) application forms a regular
structure; for example, when applied to motif B, an interacting
pair of regulators that coregulate many (rather than just two)
different genes [Fig. 3a, entry (B,B)].

Of the 63 four-protein motifs, only five motifs do not contain
any three-protein motif in their structures. Four of these motifs
are extensions of smaller motifs, as illustrated in Fig. 3b, iii–vi,
which suggests that each motif can be generalized, in principle,
to a family of structures that share a common structural theme
and potentially a common functionality, as exemplified for
mixed-feedback loops (23). The remaining four-protein motif
is the bi-fan made purely of TRIs, previously detected in the
analysis of transcription networks (11). The bi-fan generalizes
to higher-order arrays of transcription factors that combina-
torially regulate arrays of genes known as dense-overlapping
regulons (10, 11). Each gene receives multiple inputs, which
are integrated in cis-regulatory input functions resembling
logic AND- or OR-like gates (42–44). The bi-fan thus can be
thought of as a hard-wired decision-making device. As such, it
can be considered as another basic building block.

Interestingly, we found high-order analogues of network hubs
within the three- and four-protein network motifs in the form of
protein pairs and triplets that recur in motifs. It is conceivable
that these higher-order hubs play a central role in the cellular
network, similarly to their single-node counterparts (e.g., see
ref. 45).

The present approach can be used to analyze any network with
multiple types of interactions, both directed and undirected. A
limitation of the current study is that the PPIs in the data set are
undirected, which is natural for some PPIs such as those involved
in dimers or higher-order complexes; however, it may mask the
interpretation of naturally directed interactions such as phos-
phorylation or targeted degradation. As the amount of network
data increases, future studies could aim at detecting network
motifs in networks in which edge colors distinguish between
different types of PPIs. Nevertheless, the present motifs provide
insight into the structure of the cellular circuitry. It would be
interesting to experimentally study the dynamic behavior of
molecular systems bearing the present motifs (27, 41, 46) to
determine whether they carry out defined functions in the
network.
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