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ADDITIVE SIMILA RITY TREES
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Similarity data can be represented by additive trees. In this model, objects are
represented by the external nodes of a tree, and the dissimilarity between objects is
the length of the path joining them. The additive tree is less restrictive than the
ultrametric tree, commonly known as the hierarchical clustering scheme. The two
representations are characterized and compared. A computer program, ADDTREE,
for the construction of additive trees is described and applied to several sets of data.
A comparison of these results to the results of multidimensional scaling illustrates
some empirical and theoretical advantages of tree representations over spatial repre-
sentations of proximity data.
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The two goals of research on the representation of proximity data are the
development of theories for explaining similarity relations and the construc-
tion of scaling procedures for describing and displaying similarities between
objects. Indeed, most representations of proximity data can be regarded either
as similarity theories or as scaling procedures. These representations can be
divided into two classes: spatial models and network models. The spatial
models--called multidimensional scaling--represent each object as a point in a
coordinate space so that the metric distances between the points reflect the
observed proximities between the objects. Network models represent each
object as a node in a connected graph, typically a tree, so that the relations
between the nodes in the graph reflect the observed proximity relations among
the objects.

This paper investigates tree representations of similarity data. We begin
with a critical discussion of the familiar hierarchical clustering scheme [John-
son, 1967], and present a more general representation, called the additive tree.
A computer program (ADDTREE) for the construction of additive trees from
proximity data is described and illustrated using several sets of data. Finally,
the additive tree is compared with multidimensional scaling from both empi-
rical and theoretical standpoints.
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TABLE 1

Dissimilarities between animals

Donkey Cow Pig

Camel 5.0 5.6 7.2

Donkey 4.6 5.7

Cow 4.9

Consider the proximity matrix presented in Table 1, taken from a study by
Henley [1969].
The entries of the table are average ratings of dissimilarity between the respec-
tive animals on a scale from 0 (maximal similarity) to 10 (maximal dis-
similarity). Such data have commonly been analyzed using the hierarchical
clustering scheme (HCS) that yields a hierarchy of nested clusters. The appli-
cation of this scaling procedure to Table 1 is displayed in Figure 1.

The construction of the tree proceeds as follows. The two objects which
are closest to each other (e.g., donkey and cow) are combined first, and are
now treated as a single element, or cluster. The distance between this new
element, z, and any other element, y, is defined as the minimum (or the
average) of the distances between y and the members of z. This operation is
repeated until a single cluster that includes all objects is obtained. In such a
representation the objects appear as the external nodes of the tree, and the
distance between objects is the height of their meeting point, or equivalently,
the length of the path joining them.

Donkey Cow Pig Camel
FIGURE l

The representation of Table 1 as an HCS.
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FIGURE 2
The representation of Table 1 as an additive tree, in rooted form.

This model imposes severe constraints on the data. It implies that given
two disjoint clusters, all intra-cluster distances are smaller than all inter-cluster
distances, and that all the inter-cluster distances are equal. This property is
called the ultrametric inequality, and the representation is denoted an ultra-
metric tree. The ultrametric inequality, however, is often violated by data, see,
e.g., Holman [Note 1]. To illustrate, note that according to Figure 1, camel
should be equally similar to donkey, cow and pig, contrary to the data of Table
1.

The limitations of the ultrametric tree have led several psychologists, e.g.,
Carroll and Chang [1973], Carroll [1976], Cunningham [Note 2, Note 3], to
explore a more general structure, called an additive tree. This structure appears
under different names including: weighted tree, free tree, path-length tree, and
unrooted tree, and its formal properties were studied extensively, see, e.g.,
Buneman [1971, pp. 387-395; 1974], Dobson [1974], Hakimi and Yau [1964],
Patrinos and Hakimi [1972], Turner and Kautz [1970, Sections III-4 and III-6].
The representation of Table 1 as an additive tree is given in Figure 2. As in the
ultrametric tree, the external nodes correspond to objects and the distance
between objects is the length of the path joining them. A formal definition of
an additive tree is presented in the next section.

It is instructive to compare the two representations of Table 1 displayed in
Figures 1 and 2. First, note that the clustering is different in the two figures. In
the ultrametric tree (Figure 1), cow and donkey form a single cluster that 
subsequently joined by pig and camel. In the additive tree (Figure 2), camel
with donkey form one cluster, and cow with pig form another cluster. Second,
in the additive tree, unlike the ultrametric tree, intra-cluster distances may
exceed inter-cluster distances. For example, in Figure 2 cow and donkey
belong to different clusters although they are the two closest animals. Third, in
an additive tree, an object outside a cluster is no longer equidistant from all
objects inside the cluster. For example, both cow and pig are closer to donkey
than to camel.
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The differences between the two models stem from the fact than in the
ultrametric tree (but not in an additive tree) the external nodes are all equally
distant from the root. The greater flexibility of the additive tree permits a more
faithful representation of data. Spearman’s rank correlation, for example,
between the dissimilarities of Table 1 and the tree distances is 1.00 for the
additive tree and 0.64 for the ultrametric tree.

Note that the distances in an additive tree do not depend on the choice of
root. For example, the tree of Figure 2 can be displayed in unrooted form, as
shown in Figure 3. Nevertheless, it is generally more convenient to display
similarity trees in a rooted form.

A nalysis of Trees

In this section we define ultrametric and additive trees, characterize the
conditions under which proximity data can be represented by these models,
and describe the structure of the clusters associated with them.

Representation of Dissimilarity

A tree is a (finite) connected graph without cycles. Hence, any two nodes
in a tree are connected by exactly one path. An additive tree is a tree with a
metric in which the distance between nodes is the length of the path (i.e., the
sum of the arc-lengths) that joins them. An additive tree with a distinguished
node (named the root) which is equidistant from all external nodes is called 
ultrametric tree. Such trees are normally represented with the root on top, (as

Donkey
Cow

Camel Pig

FIGURE 3
The representation of Table 1 as an additive tree, in unrooted form.



SHMUEL SATTATH AND AMOS TVERSKY 323

x y z
FIGURE 4

The relations among three objects in an ultrametric tree.

in Figure 1) so that the distance between external nodes is expressible as the
height of the lowest (internal) node that lies above them.

A dissimilarity measure d on a finite set of objects S = {x, y, z, ¯ ¯ ¯ } is a
non-negative function on S × S such that d(x, y) = d(y, x), and d(x, y) -- 0 iffx
= y. A tree (ultrametric or additive) represents a dissimilarity measure on S iff
the external nodes of the tree can be associated with the objects of S so that the
tree distances between external nodes coincide with the dissimilarities between
the respective objects.

If a dissimilarity measure d on S is represented by an ultrametric tree, then
the relation among any three objects in S has the form depicted in Figure 4.
It follows, therefore, that for all x, y, z in S

d(x, y) < max {d(x, z), d(y, z)}..

This property, called the ultrametric inequality, is both necessary and sufficient
for the representation of a dissimilarity measure by an ultrametric tree [John-
son, 1967; Jardine & Sibson, 1971]. As noted in the previous section, however,
the ultrametric inequality is very restrictive. It implies that for any three objects
in S, two of the dissimilarities are equal and the third does not exceed them.
Thus the dissimilarities among any three objects must form either an equila-
teral triangle or an isosceles triangle with a narrow base.

An analogous analysis can be applied to additive trees. If a dissimilarity
measure d on S is represented by an additive tree, then the relations among any
four objects in S has the form depicted in Figure 5, with non-negative a,/3, 3’, 6,
~. It follows, therefore, that in this case

d(x, y) + d(u, v) = a +13 + 3’ 
< o~ + 3 + "y + 6 + 2 ~
= d(x, u) + d(y, 
= d(x, v) + d(.v, 
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FIGURE 5
The relations among four objects in an additive tree.

Hence, any four objects can be labeled so as to satisfy the above inequality.
Consequently, in an additive tree,

d(x, y) + d(u, v) max{d(x, u) + d(y, v), d (x, v) + u)}

for all x, y, u, v in S (not necessarily distinct).
It is easy to verify that this condition, called the additive inequality (or the

four-points condition), follows from the ultrametric inequality and implies the
triangle inequality. It turns out that the additive inequality is both necessary
and sufficient for the representation of a dissimilarity measure by an additive
tree. For a proof of this assertion, see, e.g., Buneman [1971, pp. 387-395;
1974], Dobson [1974]. To illustrate the fact that the additive inequality is less
restrictive than the ultrametric inequality, note that the distances between any
four points on a line satisfy the former but not the latter.

The ultrametric and the additive trees differ in the number of parameters

employed in the representation. In an ultrametric tree all /~) inter-point
distances are determined by at most n - 1 parameters where n is the number of
elements in the object set S. In an additive tree, the distances are determined by
at most 2n - 3 parameters.

Trees and Clusters

A dissimilarity measure, d, can be used to define different notions of
clustering, see, e.g., Sokal and Sneath [1973]. Two types of clusters--tight and
loose--are now introduced and their relations to ultrametric and additive trees
are discussed.

A nonempty subset A of S is a tight cluster if

max d(x, y)< min d(x, z) 
x,ytA xtA

ztS-A
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That is, A is a tight cluster whenever the dissimilarity between any two objects
in A is smaller than the dissimilarity between any object in A and any object
outside A, i.e., in S - A. It follows readily that a subset A of an ultrametric tree
is a tight cluster iff there is an arc such that A is the set of all objects that lie
below that arc. In Figure 1, for example, {donkey, cow} and {donkey, cow, pig}.
are tight clusters whereas {cow, pig} and tcow, pig, camel} are not.

A subset A of S is a loose cluster if for any x, y in A and u, v in S - A

d(x, y) + d(u, v) < min {d(x, u) + d(y, v), d(x, v) + u)}.

In Figure 5, for example, the binary loose clusters are {x, y} and {u, v}. LetA, B
denote disjoint nonempty loose clusters; let D(A), D(B) denote the average
intra-cluster dissimilarities of A and B, respectively; and let D(A, B) denote the
average inter-cluster dissimilarity between A and B. It can be shown that
I/2(D(A) + D(B)) < D(A, Thatis, t he mean of th e average dissi milarity
within loose clusters is smaller than the average dissimilarity between loose
clusters.

The deletion of an arc divides a tree into two subtrees, thereby partition-
ing S into two nonempty subsets. It follows readily that, in an additive tree,
both subsets are loose clusters, and all loose clusters can be obtained in this
fashion. Thus, an additive tree induces a family of loose clusters whereas an
ultrametric tree defines a family of tight clusters. In Table 1, for example, the
cluster {Donkey, Cow} is tight but not loose, whereas the clusters {Donkey,
Camel} and {Cow, Pig} are loose but not tight, see Figures 1 and 2. Scaling
methods for the construction of similarity trees are generally based on cluster-
ing: HCS is based on tight clusters, whereas the following procedure for the
construction of additive trees is based on loose clusters.

Computational Procedure

This section describes a computer algorithm, ADDTREE, for the con-
struction of additive similarity trees. Its input is a symmetric matrix of sim-
ilarities or dissimilarities, and its output is an additive tree.

If the additive inequality is satisfied without error, then the unique addi-
tive tree that represents the data can be constructed without difficulty. In fact,
any proof of the sufficiency of the additive inequality provides an algorithm for
the errorless case. The problem, therefore, is the development of an efficient
algorithm that constructs an additive tree from fallible data.

This problem has two components: (i) construction, which consists 
finding the most appropriate tree-structure, (ii) estimation, which consists 
finding the best estimates of arc-lengths. In the present algorithm the construc-
tion of the tree proceeds in stages by clustering objects so as to maximize the
number of sets satisfying the additive inequality. The estimation of arc lengths
is based on the least square criterion. The two components of the program are
now described in turn.
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X U X U X V

(i) (ii) (iii)

FIGURE 6
The three possible configurations of four objects in an additive tree.

Construction

In an additive tree, any four distinct objects, x,y, u, v, appear in one of the
configurations of Figure 6. The patterns of distances which correspond to the
configurations of Figure 6 are:

(i) d(x, y) + d(u, v) < d(x, u) + d(y, v) = d(x, v) 
(ii) d(x, v) + d(y, u) < d(x, u) + d(y, v) = d(x, y) 

(iii) d(x, u) + d(y, v) < d(x, y) + d(u, v) = d(x, v) 

Our task is to select the most appropriate configuration on the basis of an
observed dissimilarity measure 6. It is easy to see that any four objects can
be relabeled so that

~(x, y) + 6(u, u) <_ ~(x, u) + ~(y, u) <_ (~(x, u) 

It is evident, in this case, that Configuration (i) represents these dissimilarities
better than (ii) or (iii). Hence, we obtain the following rule for choosing 
best configuration for any set of four elements: label the objects so as to satisfy
the above inequality, and select Configuration (i). The objects x and y (as well
as u and v) are then called neighbors. The construction of the tree proceeds by
grouping elements on the basis of the neighbors relation. The major steps of
the construction are sketched below.

For each pair x, y, ADDTREE examines all objects u, v and counts the
number of quadruples in which x and y are neighbors. The pair x, y with the
highest score is selected, and its members are combined to form a new element
z which replaces x and y in the subsequent analysis. The dissimilarity between z
and any other element u is set equal to (6(u, x) + 6(u, y))/2. The pair with the
next highest score is selected next. If its elements have not been previously
selected, they are combined as above, and the scanning of pairs is continued
until all elements have been selected. Ties are treated here in a natural manner.

This grouping process is first applied to the object set S yielding a
collection of elements which consists of the newly formed elements together
with the original elements that were not combined in this process. The group-
ing process is then applied repeatedly to the outcome of the previous phase
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until the number of remaining elements is three. Finally, these elements are
combined to form the last element, which is treated as the root of the tree.

It is possible to show that if only one pair of elements are combined in
each phase, then perfect subtrees in the data appear as subtrees in the represen-
tation. In particular, any additive tree is reproduced by the above procedure.

The construction procedure described above uses sums of dissimilarities
to define neighbors and to compute distances to the new (constructed) ele-
ments. Strictly speaking, this procedure is applicable to cardinal data, i.e., data
measured on interval or ratio scales. For ordinal data, a modified version of
the algorithm has been developed. In this version, the neighbors relation is
introduced as follows. Suppose 6 is an ordinal dissimilarity scale, and

6(x, y) < 6(x, 
~(u, v) < ~(y, 

6(x, y) < ~i(x, 
~(u, v) < ~(y, 

Then we conclude that x and y (as well as u and v) are neighbors. (If the
inequalities on the left [right] alone hold, then x and y [as well as u and v] are
called semi-neighbors, and are counted as half neighbors.)

Ifx and y are neighbors in the ordinal sense, they are also neighbors in the
cardinal sense, but the converse is not true. In the cardinal case, every four
objects can be partitioned into two pairs of neighbors; in the ordinal case, this
property does not always hold since the defining inequality may fail for all
permutations of the objects. To define the distances to the new elements in the
ordinal version of the algorithm, some ordinal index of average dissimilarity,
e.g., mean rank or median, can be used.

Estimation

Although the construction of the tree is independent of the estimation of
arc lengths, the two processes are performed in parallel. The parameters of the
tree are estimated, employing a least-square criterion. That is, the program
minimizes

~_, (d(x, y) - 6(x, y))~,
x,ytS

where d is the distance function of the tree. Since an additive tree with n objects
has m _< 2n - 3 parameters (arcs), one obtains the equation CX = 5 where 5 is
the vector of dissimilarities, X is the vector of (unknown) arc lengths, and C 

an
2

× m matrix where

1 if the i-th tree-distance includes thej-th arc
cij = 0otherwise

The least-square solution of CX = ~ is 1" = (C’rC)-ICr& provided CTC



328 PSYCHOMETRIKA

is positive definite. In general, this requires inverting an m × m matrix which
is costly for moderate m and prohibitive for large m. However, an exact
solution that requires no matrix inversion and greatly simplifies the estima-
tion process can be obtained by exploiting the following property of additive
trees. Consider an arc and remove its endpoints; this divides the tree into a
set of disjoint subtrees. The least-square estimate of the length of that arc
is a function of (i) the average distances between the subtrees and (ii) 
number of objects in each subtree. The proof of this proposition, and the
description of that function are long and tedious and are therefore omitted.
It can also be shown that all negative estimates (which reflect error) should
be set equal to zero.

The present program constructs a rooted additive tree. The graphical
representation of a rooted tree is unique up to permutations of its subtrees. To
select an informative graphical representation, the program permutes the
objects so as to maximize the correspondence of the similarity between objects
and the ordering of their positions in the display--subject to the constraint
imposed by the structure of the tree. Under the same constraint, the program
can also permute the objects so as to maximize the ordinal correlation (y) with
any prespecified ordering.

Comparison of Algorithms

Several related methods have recently been proposed. Carroll [1976]
discussed two extensions of HCS. One concerns an ultrametric tree in which
internal as well as external nodes represent objects [Carroll & Chang, 1973].
Another concerns the representation of a dissimilarity matrix as the sum of two
or more ultrametric trees [Carroll & Pruzansky, Note 4]. The first effective
procedure for constructing an additive tree for fallible similarity data was
presented by Cunningham [Note 2, Note 3]. His program, like A DDTREE,
first determines the tree structure, and then obtains least-square estimates of
arc-lengths. However, there are two problems with Cunningham’s program.
First, in the presence of noise, it tends to produce degenerate trees with few
internal nodes. This problem becomes particularly severe when the number of
objects is moderate or large. To illustrate, consider the additive tree presented
in Figure 8, and suppose that, for some reason or anc~ther (e.g., errors of
measurement), monkey was rated as extremely similar to squirrel. In Cunning-
ham’s program, this single datum produces a drastic change in the structure of
the tree: It eliminates the arcs labeled ’rodents’ and ’apes’, and combines all
rodents and apes into a single cluster. In ADDTREE, on the other hand, this
datum produces only a minor change. Second, Cunningham’s estimation pro-

cedure requires the inversion of a- -(,~)× (g) matrix, which restricts 

applicability of the program to relatively small data sets, say under 15 objects.
ADDTREE overcomes the first problem by using a "majority" rule rather
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than a "veto" rule to determine the tree structure, and it overcomes the second
problem by using a more efficient method of estimation. The core memory
required for ADDTREE is of the order of n~, hence it can be applied to sets of
100 objects, say, without any difficulty. Furthermore, ADDTREE is only
slightly more costly than HCS, and less costly than a multidimensional scaling
program in two dimensions.

Applications

This section presents applications of ADDTREE to several sets of sim-
ilarity data and compares them with the results of multidimensional scaling
and HCS.

Three sets of proximity data are analyzed. To each data set we apply the
cardinal version of ADDTREE, the average method of HCS [Johnson, 1967],
and smallest space analysis [Guttman, 1968; Lingoes, 1970] in 2 and 3 dimen-
sions-denoted SSA/2D and SSA/3D, respectively. (The use of the ordinal
version of ADDTREE, and the min method of HCS did not change the results
substantially.) For each representation we report two measures of correspon-
dence between the solution and the original data: the product-moment correla-
tion r, and Kruskal’s ordinal measure of stress defined as

~ ~,~ (d(x,y)- d(x, y))~]l/~

where d is the distance in the respective representation, and d is an appropriate
order-preserving transformation of the original dissimilarities [Kruskal, 1964].

Since ADDTREE and HCS yielded similar tree structures in all three data
sets, only the results of the former are presented along with the two-dimen-
sional (Euclidean) configurations obtained by SSA/2D. The two-dimensional
solution was chosen for comparison because (i) it is the most common and
most interpretable spatial representation, and (ii) the number of parameters 
a two-dimensional solution is the same as the number of parameters in an
additive tree.

Similarity of A nimals

Henley [1969] obtained average dissimilarity ratings between animals
from a homogeneous group of 18 subjects. Each subject rated the dissimilarity
between all pairs of 30 animals on a scale from 0 to 10.

The result of SSA/2D is presented in Figure 7. The horizontal dimension
is readily interpreted as size, with elephant and mouse at the two extremes, and
the vertical dimension may be thought of as ferocity [Henley, 1969], although
the correspondence is far from perfect.

The result of ADDTREE is presented in Figure 8 in parallel form. In this
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¯

¯
DONKEY ¯ SHEEP

¯
CAMEL COW

¯

FIGURE 7
Representation of animal similarity (Henley, 196% by SSA/2D.

form all branches are parallel, and the distance between two nodes is the sum
of the horizontal arcs on the path joining them. Clearly, every (rooted) tree can
be displayed in parallel form which we use because of its convenience.

In an additive tree the root is not determined by the distances, and any
point on the tree can serve as a root. Nevertheless, different roots induce
different hierarchies of partitions or clusters. ADDTREE provides a root that
tends to minimize the variance of the distances to the external nodes. Other
criteria for the selection of a root could readily be incorporated. The choice of
a root for an additive tree is analogous to the choice of a coordinate system in
(euclidean) multidimensional scaling. Both choices do not alter the distances,
yet they usually affect the interpretation of the configuration.

In Figure 8 the 30 animals are first partitioned into four major clusters:
herbivores, carnivores, apes, and rodents. The major clusters in the figure are
labeled to facilitate the interpretation. Each of these clusters is further parti-
tioned into finer clusters. For example, the carnivores are partitioned into three
clusters: felines (including cat, leopard, tiger, and lion), canines (including dog,
fox, and wolf), and bear.

Recall that in a rooted tree, each arc defines a cluster which consists of all
the objects that follow from it. Thus, each arc can be interpreted as the features
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Representation of animal similarity (Henley, 1969) by ADDTREE.
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shared by all objects in that cluster and by them alone. The length of the arc
can thus be viewed as the weight of the respective features, or as a measure of
the distinctiveness of the respective cluster. For example, the apes in Figure 8
form a highly distinctive cluster because the arc labeled ’apes’ is very long. The
interpretation of additive trees as feature trees is discussed in the last section.

The obtained (vertical) order of the animals in Figure 8 from top 
bottom roughly corresponds to the dimension of size, with elephant and mouse
at the two endpoints. The (horizontal) distance of an animal from the root
retlects its average distance from other animals. For example, cat is closer to
the root than tiger, and indeed cat is more similar, on the average, to other
animals than tiger. Note that this property of the data cannot be represented in
an ultrametric tree in which all objects are equidistant from the root.

The correspondence indices for animal similarity are given in Table 2.

Similarity of Letters

The second data set consists of similarity judgments between all lower-
case Swedish letters obtained by Kuennapas and Janson [1969]. They reported
average similarity ratings for 57 subjects using a 0-100 scale. The modified
letters d, b’, 6 are omitted from the present analysis. The result of SSA/2D is
displayed in Figure 9. The type-set in the figure is essentially identical to that
used in the experiment. The vertical dimension in Figure 9 might be interpreted
as round-vs.-straight. No interpretable second dimension, however, emerges
from the configuration.

The result of ADDTREE is presented in Figure 10 which reveals a
distinct set of interpretable clusters. The obtained clusters exhibit excellent
correspondence with the factors derived by Kuennapas and Janson [1969] via a
principle-component analysis. These investigators obtained six major factors
which essentially coincide with the clustering induced by the additive tree. The
factors together with their high-loading letters are as follows:

Factor I: roundness (o, c, e)
Factor II: roundness attached to veritical linearity (p, q, b, g, d)
Factor III: parallel vertical linearity (n, m, h, u)
Factor IV: zigzaggedness (s, z)

TABLE 2

Correspondence Indices (Animals)

ADDTREE HCS SSA/2D SSA/3D

Stress .07 .i0 .17 .ii

r .91 .84 .86 .93
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FIGURE 9
Representation of letter similarity (Kuennapas and Janson, 1969) by SSA/2D.

Factor V: angularity open upward (v, y, x)
Factor VI: vertical linearity (t, f, l, r, j, i)

The vertical ordering of the letters in Figure l0 is interpretable as round-
ness vs. angularity. It was obtained by the standard permutation procedure
with the additional constraint that o and x are the end-points.

The correspondence indices for letter similarity are presented in Table 3.

Similarity of Occupations

Kraus [Note 5] instructed 154 Israeli subjects to classify 90 occupations
into disjoint classes. The proximity between occupations was defined as the
number of subjects who placed them in the same class. A representative subset
of 35 occupations was selected for analysis.
The result of SSA/2D is displayed in Figure 11. The configuration could be
interpreted in terms of two dimensions: white collar vs. blue collar, and
autonomy vs. subordination. The result of ADDTREE is presented in Figure
12 which yields a coherent classification of occupations. Note that while some
of the obtained clusters (e.g., blue collar, academicians) also emerge from
Figure 11, others (e.g., security, business) do not. The vertical ordering 
occupations produced by the program corresponds to collar color, with aca-
demic white collar at one end and manual blue collar at the other.
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FIGURE 10
Representation of letter similarity (Kuennapas and Janson, 1969) by ADDTREE.
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TABLE 3

Correspondence Indices (Letters)

ADDTREE HCS SSA/2D SSA/3D

.08 .ii .24 .16

.87 .82 .76 .84

The correspondence indices for occupations are presented in Table 4.
In the remainder of this section we comment on the robustness of tree

structures and discuss the appropriateness of tree vs. spatial representations.

Robustness

The stability of the representations obtained by ADDTREE was exam-
ined using artificial data. Several additive trees (consisting of 16, 24, and 32
objects) were selected. Random error was added to the resulting distances
according to the following rule: to each distance d we added a random number
selected from a uniform distribution over I-d~3, +d/3]. Thus, the expected
error of measurement for each distance is 1/6 of its length. Several sets of such
data were analyzed by ADDTREE. The correlations between the solutions and
the data were around .80. Nevertheless, the original tree-structures were recov-
ered with very few errors indicating that tree structures are fairly robust. A
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Representation of similarity between occupations (Kraus, 1976) by SSA/2D.
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FIGURE 12

Representation of similarity between occupations (Kraus, 1976) by ADDTREE.
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TABLE 4

Correspondence Indices (Occupations)

ADDTREE HCS SSA/2D SSA/3D

Stress .06 .06 .15 .09

r .96 .94 .86 .91

noteworthy feature of ADDTREE is that as the noise level increases, the
internal arcs become shorter. Thus, when the signal-to-noise ratio is low, the
major clusters are likely to be less distinctive.

In all three data sets analyzed above, the ordinal and the cardinal versions
of ADDTREE produce practically the same tree-structures. This observation
suggests that the tree-structure is essentially determined by the ordinal proper-
ties of the data. To investigate this question, we have performed order-pre-
serving transformations on several sets of real and artificial data, and applied
ADDTREE to them. The selected transformations were the following: rank-
ing, and d ~ d°, 0 = 1/4, 1/3, 1/2, 1,2, 3, 4. The obtained tree-structures for the
different transformations were highly similar. There was a tendency, however,
for the high-power transformations to produce non-centered subtrees such as
Figure 1.

Tree vs. Spatial Representations

The applications of ADDTREE described above yielded interpretable tree
structures. Furthermore, the tree distances reproduced the observed measures
of similarity, or dissimilarity, to a reasonably high degree of approximation.
The application of HCS to the same data yielded similar tree structures, but
the reproduction of the observed proximities was, naturally, less satisfactory
in all three data sets.

The comparison of ADDTREE with SSA indicates that the former pro-
vided a better account of the data than the latter, as measured by the product-
moment correlation and by the stress coefficient. The fact that ADDTREE
achieved lower stress in all data sets is particularly significant because SSA/3D
has more free parameters, and it is designed to minimize stress while ADD-
TREE is not. Furthermore, while the clusters induced by the trees were readily
interpretable, the dimensions that emerged from the spatial representations
were not always readily interpretable. Moreover, the major dimension of the
spatial solutions (e.g., size of animals, and prestige of occupations) also
emerged as the vertical ordering in the corresponding trees.

These results indicate that some similarity data are better described by a
tree than by a spatial configuration. Naturally, there are other data for which
dimensional models are more suitable, see, e.g., Fillenbaum and Rapoport
[1971 ], and Shepard [1974]. The appropriateness of tree vs. spatial representa-
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tion depends on the nature of the task and the structure of the stimuli. Some
object sets have a natural product structure, e.g., emotions may be described in
terms of intensity and pleasantness; sound may be characterized in terms of
intensity and frequency. Such object sets are natural candidates for dimen-
sional representations. Other objects sets have a hierarchical structure that
may result, for instance, from an evolutionary process in which all objects have
an initial common structure and later develop additional distinctive features.
Alternatively, a hierarchal structure may result from people’s tendency to
classify objects into mutually exclusive categories. The prevalence of hier-
archical classifications can be attributed to the added complexity involved in
the introduction of cross classifications with overlapping clusters. Structures
generated by an evolutionary process or classification scheme are likely can-
didates for tree representations.

It is interesting to note that tree and spatial models are opposing in the
sense that very simple configurations of one model are incompatible with the
other model. For example, a square grid in the plane cannot be adequately
described by an additive tree. On the other hand, an additive tree with a single
internal node cannot be adequately represented by a non-trivial spatial model
[Holman, 1972]. These observations suggest that the two models may be
appropriate for different data and may capture different aspects of the same
data.

Discussion

Feature Trees

As was noted earlier, a rooted additive tree can be interpreted as a feature
tree. In this interpretation, each object is viewed as a set of features. Further-
more, each arc represents the set of features shared by all the objects that
follow from that arc, and the arc length corresponds to the measure of that set.
Hence, the features of an object are the features of all arcs which lead to that
object, and its measure is its distance from the root. The tree-distance d
between any two objects, therefore, corresponds to their set-distance, i.e., the
measure of the symmetric difference between the respective feature sets:

d(x, y) = f(X - Y) + f(Y 

where X, Y are the feature sets associated with the objects x, y, respectively,
and f is the measure of the feature space.

A more general model of similarity, based on feature matching, was
developed in Tversky [1977]. In this theory, the dissimil~trity between x and y
is monotonically related to

d(x, y) = af(X - Y) + 3f(Y - X) - Of(X ~ Y) a, 13, 

where X, Y, and f are defined as above. According to this form (called the
contrast model) the dissimilarity between objects is expressed as a linear
combination of the measures of their common and distinctive features. Thus,
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an additive tree is a special case of the contrast model in which symmetry and
the triangle inequality hold, and the feature space has a tree structure.

Decomposition of Trees

There are three types of additive trees that have a particularly simple
structure: ultrametric, singular, and linear. In an ultrametric tree all objects are
equidistant from the root. A singular tree is an additive tree with a single
internal node. A linear tree, or a line, is an additive tree in which all objects lie
on a_ line (see Figure 13). Recall that an additive tree is ultrametric iff it satisfies
the ultrametric inequality. An additive tree is singular iff for each object x in S
there exists a length £ such that d(x, y) = ~ ÷ ft. An additive tree is a line iffthe
triangle equality d(x, y) ÷ d(y, z) = d(x, holds forany three elements in S.
Note that all three typesof trees have no more than n parameters.

Throughout this section let T, T1, T2, etc. be additive trees defined on the
same set of objects. T1 is said to be simpler than T2 iff the graph of T~ (i.e., the
structure without the metric) is obtained from the graph of T~ by cancelling
one or more internal arcs and joining their endpoints. Hence, a singular tree is
simpler than any other tree defined on the same object set. If T~ and T~ are both
simpler than some T~, then T~ and T2 are said to be compatible. (Note that
compatibility is not transitive.) Let dl and d~ denote, respectively, the distance
functions of T~ and T2. It is not difficult to prove that the distance function d =
dl+ d~ can be represented by an additive tree iff T1 and T~ are compatible.
(Sufficiency follows from the fact that the sum of two trees with the same graph
is a tree with the same graph. The proof of necessity relies on the fact that for
any two incompatible trees there exists a quadruple on which they are in-
compatible.)

This result indicates that data which are not representable by a single
additive tree may nevertheless be represented as the sum of incompatible
additive trees. Such representations are discussed by Carroll and Pruzansky
[Note 3].

Another implication of the above result is that tree-structures are pre-
served by the addition of singular trees. In particular, the sum of an ultrametric
tree Tv and a singular tree Ts is an additive tree T with the same graph as Tv
(see Figure 13). This leads to the converse question: can an additive tree Tbe
expressed as T~ + Ts? An interesting observation (attributed to J. S. Farris) 
that the distance function d of an additive tree T can be expressed as d(x, y) 
dr(x, y) + £ + f~, where dv is the distance function of an ultrametric tree, and
~, ~9 are real numbers (not necessarily positive). If all these numbers are non-
negative then d is decomposable into an ultrametric and a singular tree, i.e., d
= d~ + ds. It is readily verified that T is expressible as Tv + Ts iff there is a
point on T whose distance to any internal node does not exceed its distance to
any external node. Another structure of interest is obtained by the addition of
a singular tree Ts and a line TL (see Figure 13). It can be shown that an additive
tree T is expressible as Ts + TL iff no more than two internal arcs meet at any
node.
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Z

FIGURE 13
An illustration of different types of additive trees.

Distribution of Distances

Figure 14 presents the distribution of dissimilarities between letters [from
Kuennapas & Janson, 1969] along with the corresponding distributions of
di:stances derived via ADDTREE, and via SSA/2D. The distributions of
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FIGURE 14
Distributions of dissimilarities and distances between letters.

derived distances were standardized so as to have the same mean and variance
as the distribution of the observed dissimilarities.

Note that the distribution of dissimilarities and the distribution of dis-
tances in the additive tree are skewed to the left, whereas the distribution of
distances from the two-dimensional representation is skewed to the right. This
pattern occurs in all three data sets, and reflects a general phenomenon.

In an additive tree, there are generally many large distances and few small
distances. This follows from the observation that in most rooted trees, there
are fewer pairs of objects that belong to the same cluster than pairs of objects
that belong to different clusters. In contrast, a convex Euclidean configuration
yields many small distances and fewer large distances. Indeed, under fairly
natural conditions, the two models can be sharply distinguished by the skew-
ness of their distance distribution.

The skewness of a distribution can be defined in terms of different criteria,
e.g., the relation between the mean and the median, or the third central
moment of the distribution. We employ here another notion of skewness that is
based on the relation between the mean and the midpoint. A distribution is
skewed to the left, according to the mean-midpoint criterion, iff the mean u
exceeds the midpoint ~, = 1/2 maxx,y d(x, y). The distribution is skewed to the
right, according to the mean-midpoint criterion, iff u < ~. From a practical
standpoint, the mean-midpoint criterion has two drawbacks. First, it requires
ratio scale data. Second, it is sensitive to error since it depends on the maximal
distance. As demonstrated below, however, this criterion is useful for the
investigation of distributions of distances.

A rooted additive tree (with n objects) is centered iff no subtree contains
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more than n/2 + n(mod 2) objects. (Note that this bound n/2whenn is even,
a:nd (n + 1)/2 when n is odd.) In an additive tree, one can always select a root
such that the resulting rooted tree is centered. For example, the tree in Figure 2
is centered around its root, whereas the tree in Figure 1 is not. We can now
state the following.

Skewness Theorem. I. Consider an additive tree T that is expressible as a
sum of an ultrametric tree Tu and a singular tree Ts such that (i) Tv is centered
around its natural root, and (ii) in Ts the longest arc is no longer than twice the
shortest arc. Then the distribution of distances satisfies u > )~.

I1. In a bounded convex subset of the Euclidean plane with the uniform
measure, the distribution of distances satisfies u < )~.

Part I of the theorem shows that in an additive tree the distribution of
distances is skewed to the left (according to the mean-midpoint criterion)
whenever the distances between l;he centered root and the external nodes do
not vary "too much". This property is satisfied, for example, by the trees in
Figures 8 and 10, and by Tu, Ts, and T, + Ts in Figure 13. Part II of the
theorem shows that in the Euclidean plane the distribution of distances is
skewed to the right, in the above sense, whenever the set of points "has no
holes". The proof of the Skewness Theorem is given in the Appendix.

The theorem provides a sharp separation of these two families of represen-
tations in terms of the skewness of their distance distribution. This result does
not hold for additive trees and Euclidean representations in general. In particu-
lar, it can be shown that the distribution of distances between all points on the
circumference of a circle (which is a Euclidean representation, albeit non-
convex) is skewed to the left. This fact may explain the presence of "holes" in
some configurations obtained through multidimensional scaling [see Cunning-
ham, Note 3, Figure 1.1]. It can also be shown that the distribution of distances
between all points on a line (which is a limiting case of an additive tree which
cannot be expressed as T~ + Ts) is skewed to the right. Nevertheless, the
available computational and theoretical evidence indicates that the distribu-
tion of distances in an additive tree is generally skewed to the left, whereas in a
Euclidean representation it is generally skewed to the right. This observation
suggests the intriguing possibility of evaluating the appropriateness of these
representations on the basis of distributional properties of observed dis-
similarities.

Appendix." Proof of the Skewness Theorem

Part 1

Consider an additive tree T = T~ + Ts with n external nodes. Hence,

~ d(x, y) ~ d~,(x, y) ~ d~(x, y)
= + = #u + tZs
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and

max d(x, y) < he + ls

where ~,e = 1/2 max do(x, y) is the distance between the root and the external
nodes in the ultrametric tree, and Is is the length of the longest arc in the
singular tree. To show that T satisfies tt > ?,, it suffices to establish the
inequalities: ue > he and ~ts > ls for its ultrametric and singular components.
The inequality/Ss > Is follows at once from the assumption that, in the singular
tree, the shortest arc is not less. than half the longest arc. To prove P-e >
suppose the ultrametric tree has k subtrees, with nl, n~, .." n~ objects, that
originate directly from the root. Since the tree is centered n~ <_ n/2 + n(mod 2)
where n = Y~ n~. Clearly #e = ~_,~,y do(x, y)/n(n 1) . Weshow tha
do(x, y) > n(n l) ~,e.

Let P be the set of all pairs of objects that are connected through the root.
Hence,

~. do(x, y) >
(x,y) (x,y)tP i=1

where the equality follows from the fact that dry(x, y) = 2~,t, for all (x, y) 
P. Therefore, it suffices to show that 2 ~’~ n~(n - n,) > n(n - 1), or equivalently
that n= + n > 2 Y~, n~=. It can be shown that, subject to the constraint nz < n/2
+ n(mod 2), the sum ~..~ 2 ismaximal when k =2.Inthi s case, it is easy t o
verify that n~ + n > 2(nl2 + n~~) since nl, n= = n/2 + n(mod 2).

Part II

Croften’s Second Theorem on convex sets [see Kendall & Moran, 1963,
pp. 64-66] is used to establish Part II of the Skewness Theorem.

Let S be a bounded convex set in the plane, hence

((xl - x~)= + (y, - y~)~)l/~ dx, dyl dx= 

We replace the coordinates (x~, Yl, x~, y~) by (p, 0, p~, p~) where p and 0 are 
polar coordinates of the line joining (xl, yl) and (x~, y~), and ol, o~ are 
distances from the respective points to the projection of the origin on that line.
Thus,

xl = 01 sin 0 + p cos 0,
x~ = p= sin0 +p cos0,

yl = -ill cos 0 + p sin 0,
y~ = -p~ cos 0 + p sin 0.

Since the Jacobian of this transformation is o~ - ~Ol,
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ffff lp, - p~l dp, dp= dp dO

To prove that ~t < 2, we show that for every p and 0

Given some p and 0, let L be the length of the cord in S whose polar
coordinates are p, 0. Hence,

L~ (p, - a)~+’ + (b -

= n+l
dp~

= 1
((ol - n+= - (b- pl) n+=)laO

(n+ l)(n+ 

(b - a)’~+= + (b - a)
(n+ 1)(n+ 

(n+ 1)(n+ 

where a and b are the distances from the endpoints of the chord to the
projection of the origin on that chord, whence L = b - a. Consequently,

L

since ~, is half the supremal chord-length. Moreover, L/2 < ;~ for a set of
chords with positive measure, hence # <
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