Is Extension Complexity a Fundamental Software
Metric?

E. Kantorowitz

Computer Science Dept. Technion-israel Institut€eathnology
32000 Haifa, Israel
kantor@cs.technion.ac.il

The concepts of implementation and extension caxitfge were developed in
connection with an object oriented reengineering tegfgacy CAD system [KA97].
These concepts consider a software system as denmaptation of a number of
different algorithms. Ideally, an algorithm in abject oriented (O-O) system is
implemented by a single method that only procedatsin its own object. Such an
algorithm is desirable because it cannot causelicauipetween different objects. It is
possible to design and test the method that impiésr®ich an algorithm without
knowing anything about the other object types éxak The costs of implementing
and testing such an algorithm are therefore usuadiglest. Higher implementation
and testing costs may be expected in algorithmgtiogess data in a number of
objects belonging to different object types. Thasmn is that the implementers must
have the data structures of these different olbypets in their mind while
implementing the algorithm. Furthermore, an algortinvolving different object
types will typically employ a number of differentethods in these different object
types. The implementers must therefore also consitlef these different methods
during the implementation. It may therefore be as=dithat the cognitive load on the
mind of the implementers is generally higher wildpathms involving a number of
different object types. The costs of implementing &sting an algorithm are
therefore assumed to be related to the numberffefeht object types involved. In
order to express this the following definitions ev@mntroduced:

Thedomain of an algorithm s the set of all the object types employed by the
algorithm.

Thesize of the domain of an algorithm n is the number of different object types in
the domain of the algorithm.

It is recalled that one of the basic principle®O@P is to model the problem
domain as precisely as possible. The construcfisnch a model is typically based
on an analysis of all the envisioned use casesJA%e set of object types
identified in this analysis represents thereforneaalel of the domain that is expected
not to be biased toward any one of single use ddmedefinition of the size of the
domain of an algorithm, that is based on a coustioh object types, is therefore
expected not be biased toward any one of the cadmgorithms. We define:



Theimplementation complexity of an algorithm is an indicator of the number of
code segments required to implement the algorithifaraction of the size of the
domain of the algorithm. A code segment may bessgla function, or any other unit
of code. We do not look for an accurate estimath@®fequired amount of code, as
may be achieved by an elaborate time consuming/amdtmetrics analysis [FE91].
Similar to space and time complexities of algoristifime implementation complexity
may be considered as a kind of a classificationniglementation costs.

The extension complexity of an algorithmis a measure for the number of code
segments required in order to extend the domaam @flgorithm with a single new
object type.

The extension complexity of a software system is the highest algorithm extension
complexity found among the algorithms that theeysimplements.

The chang propagation algorithm of the legacy sysiE[EK97] had an extension
complexity of O(N), and it was therefore not preatipossible to extend it beyond
N=9. Extending it to N=10 required 9 new code segfsiand so on. The new
algorithm in the new system had extension algori@(1), i.e. the effort required to
extend the domain of the algorithm with one obfgpe is roughly constant and
independent of N. The system could therefore lie @asily extended to the required
N=75. The above example illustrates that an extensbmplexity of O(1) is
desirable, while an extension complexity of O(Nyssially undesirable as it means
that it becomes increasingly more difficult to exdehe algorithm as N grows. We
employ therefore the notion:

Asimple algorithm as an algorithm whose extension complexity is O(1)

It has been proved that an algorithm having annside complexity O(1) (a
simple algorithm) has an implementation complesit{(n). It can on the other hand
be shown that an implementation complexity of OdNgs not imply that the
extension complexity is O(1). The extension comiplas in this sense more
fundamental concept than the implementation conitgleX his theoretical result
supports the feeling that the ability to be easittended (to be simple in the above
sense) is possibly the most important single chariatic of software quality.

References:

[FE91] N.E. Fenton, ‘Software Metrics a Rigaddpproach’,
Chapman Hall, New York, 1991

[JA92] I. Jacobson, M.Christerson, P. Jonsson,Gn@vergaard,
‘Object Oriented Software Engineering’, Addison &i¢sy,
Reading. Massachusetts, 1992

[KA97] E. Kantorowitz, ‘Algorithm SimplificatioriThrough Object Orientation’,
Software Practice and Experience, 27(2), (Feb. 1998



