1352

COMPUTING PRACTICES

Edgar H. Sibley
Panei Editor

A single adaptable user interface (AUl) which allows the user to switch
between any number of different dialogue modes at any time—even in the

middle of a command—can be useful to a variety of users who are neither
beginners nor experts. It can also be used in applications where different
dialogue modes are appropriate for the various parameters of a single
command. An implemented user interface management system (UIMS)
suggests the practicality of AlUls and their automatic generation.

The Adaptable User Interface

Eliezer Kantorowitz and Oded Sudarsky

THE AUI CONCEPT
Software systems interact with users in a large variety
of ways (dialogue modes). These methods may be classi-

fied as the menu-type and the command-language-type.

In a menu-type-dialogue mode (MM), the user controls
the system solely through the selection of options from
a number of choices presented. It is assumed that only
choices that make sense are presented to the user, and
that it is, therefore, not possible to select options that
are not permitted. In a command-language-type dialogue
mode (CLM), the user controls the system by instruc-
tions given in a certain command language. The user
must know this language in order to use the system. In
contrast with an MM, where the user is guided by
menus and can only enter legal choices, the user of a
CLM may enter erroneous instructions. A CLM should,
therefore, be designed to detect improperly formulated
instructions and to correctly recover from their effects.

The advantages of an MM over a CLM are well
known. Since the users do not have to learn any com-
mand language, they may become productive with a
new system after a very short time. A new user may
explore the operations provided by a system simply by
browsing through the menus. If such a system also pro-
vides adequate help for every menu option, the user
may operate the system without ever needing a man-
ual.

Menu systems may, however, be less satisfactory for
frequent users who have to work through a large num-
ber of menus to get their work done. Waiting for a
menu to appear on the screen, finding the right menu
entry, and making the selection can take time. Profi-
cient users who do not need guidance tend to prefer
a concise CLM where a few keystrokes, entered at
full typing speed, achieve the same effect as a num-

This research was supported by the Gutwirth Fellowship Fund and by the
Nicholas M. and Gisela Deutch Fellowship in memory of their martyred par-
ents and families.

© 1989 ACM 0001-0782/89/1100-1352 $1.50

Communications of the ACM

ber of relatively slow menu selections. Isaki and
Schneidermann observed in [7] that “Knowledgeable
users often remark that they would prefer to type com-
mands and believe that they can work more rapidly by
just typing commands.”

Realizing the different needs of beginners and ex-
perts, many systems provide two distinct user inter-
faces: a menu interface and a command-language inter-
face. In these systems, the user has to select in advance
(in the beginning of the session or before each com-
mand) one of these two interfaces that is best suited to
the task. If a user wants to change the dialogue mode,
the current command must be completed first, and
then the user must request that the system switch to
the desired user interface. There are cases, however,
when it is useful to change the dialogue mode in the
middle of a command. To demonstrate this, we will
employ an example command for drawing a black box
with the lower left corner at (0,0) and the upper right
corner at (1,1):

BOX BLACK (0,0) (1,1)

The first case to be discussed is that of a user who is
neither a beginner nor an expert but is somewhere
between these two extremes. Such a user may realize
that he or she has forgotten some command language
element while in the middie of composing a command
and may need the assistance of menus [3, 5]. Assume
that the user has typed the word BOX of the example
command and is uncertain about what colors are avail-
able. Shifting to an MM will facilitate color selection
from a menu. A similar situation occurs when the user
has made a mistake, e.g., entered a color that does not
exist. After reading the error message, the user can
switch to a menu of colors in order to select an avail-
able color.

The need to assist users who cannot complete a com-
mand is realized in current systems, which enable com-
mands to be programmed such that users are prompted
for missing parameters. These systems, however, do not

November 1989 Volume 32 Number 11



give the users the freedom to employ at any time the
dialogue mode that is most productive for their level of
experience. The users’ freedom in changing dialogue
modes solves another class of problems which we will
discuss next.

One of the criteria for deciding whether to use a CLM
or an MM is the nature of the input data and the physi-
cal properties of the I/O devices. In our example, the
coordinates of the corners are known by their exact
numerical values ((0,0) and (1,1)), and it is, therefore,
appropriate to enter them by typing them at the key-
board (a CLM). If a corner is only known by its position
on the screen, however, it must be entered by moving
the cursor with a mouse or another locating device. By
our definition, this method for entering coordinates is
an MM, where the points of the screen are the choices
and the selection is made with the mouse. We observe
that depending on the nature of the actual input data,
the same command is sometimes entered in a CLM and,
in other cases, in an MM. Sometimes it is required to
employ two different dialogue modes within the same
command. For instance, one of the corners of the box is
known by its position on the screen (and must, there-
fore, be entered by pointing at it} while the other cor-
ner is known by the numerical values of its coordinates
(and should be entered through the keyboard).

It is sometimes useful to have more than one MM or
more than one CLM. As an example, let us consider a
system with two different CLMs for the same command
language: a voice-input mode and a keyboard-input
mode. Voice input is preferred when the user has to
operate away from the terminal or is otherwise occu-
pied. On the other hand, keyboard input may be
quicker or less error prone in noisy environments.

We propose an adaptable user interface (AUI), which
will allow the user to switch dialogue modes in the
middle of a command. An adaptable user interface is de-
fined as an interface that:

e supports a number of different dialogue modes. More
than two modes may be provided,;

¢ allows the user to switch between dialogue modes at
any time, i.e., even in the middle of a command;

e makes the switch between dialogue modes smoothly
and naturally;

e makes it easy for the user to learn how to use the
different dialogue modes, especially the CLMs, which
usually require a longer training period.

In order to enable simple and natural switching be-
tween dialogue modes, a number of assumptions and
requirements are proposed. The central assumption is
that all the dialogue modes of an AUI are different
representations of a single underlying dialogue language.
This common language is assumed to be constructed of
a number of elementary syntactic components, to be
called tokens. Every token is required to have a distinct
representation in each of the dialogue modes. In an
MM, a token is represented by a single menu selection,
while the corresponding representation in a CLM is an

November 1989 Volume 32 Number 11

Computing Practices

atom of the command language. For example, in the
GUIDE system, to be described later, CLM tokens are
represented by character strings. Each token may be
entered in any one of the available dialogue modes,
independent of the modes employed for the other to-
kens. Two subsequent tokens may thus be entered in
two different modes. ‘

Beginners and casual users will employ the AUI in an
MM. As they become more familiar with the system,
they will gradually learn the CLM instructions that
they need. A user can exploit the CLM commands al-
ready learned and employ an MM for all the other
commands. Users will not have to learn CLM com-
mands that are rarely used since they may be entered
in an MM.

Additionally, each token can be entered in the most
suitable way. For example, in the BOX command, each
of the two corners is given by a single token. One cor-
ner of the box may be entered using a mouse while the
opposite corner can be entered by typing its coordi-
nates. The implementation of a user interface is usually
a major effort. This is especially true for an AUI in
which several input devices must be monitored simul-
taneously. It is, therefore, desirable to have a user in-
terface management system (UIMS) [10, 11, 15, 16] that
automatically generates AUIs. Nonetheless, none of the
existing UIMSs seem to allow the easy production of
AUIs. Most systems can only generate single-dialogue-
mode user interfaces. In systems that offer several
modes, the end user is usually required to select a sin-
gle dialogue mode at the beginning of the session. The
Workspaces system [1] allows only partial adaptability
(keyboard parameters must be entered first, followed by
the parameters given by other input devices). The IOT
[16], Switchboard [14], and Sassafras [6] systems may
possibly be extended by the user interface designer
with code that supports several dialogue modes; how-
ever, writing such code is a difficult task that requires
insight in parallel programming of I/O devices.

THE GUIDE SYSTEM

In order to test the practicality of AUIs and of their
automatic generation by a UIMS, the GUIDE (Graphic
User Interface Design Environment) system was imple-
mented [13]. Further design goals of GUIDE were:

e specification and modification of a user interface
should be simple and require no programming skills.
This will enable the system to be used by human
factor experts who are not necessarily programmers.
The ability to easily modify the user interface is im-
portant since human behavior may not be precisely
predicted, and some debugging may be required;

o extending the user interface with new I/O devices
and associated dialogue modes should be easy and
require only minimal modification of the system.

An application program developed with GUIDE has

three main modules called the lexical, syntactic, and se-
mantic components. The lexical component identifies

Communications of the ACM

1353



Computing Practices

the tokens in the stream of input events. The syntactic
component analyzes the stream of tokens it receives
from the lexical component and invokes the semantic
component when required. The semantic component is
the collection of application routines written by the
application programmers in some ordinary program-
ming languages.

The syntactic and lexical components constitute the
user interface of the application program. GUIDE gener-
ates this user interface from specifications given
through interactive graphic design tools. The user inter-
face specifications do not cause the generation of any
code; rather, they are stored in a relational database
and are later interpreted by a run-time environment. The
code of this run-time environment is identical for all
GUIDE-developed applications; only the database and
the semantic component are different. A change in the
user-interface specifications only requires a modifica-
tion of the database. The effect of such a change can be
seen immediately, since no compilation and linkage are
required. This facilitates rapid prototyping of user in-
terfaces since the designer can try several alternative
solutions within a short time.

The Syntactic Component

The syntactic component of the user interface employs
a recursive transition network (RTN) as the definition of
the dialogue language. An RTN interpreter executes
this definition when it analyzes the stream of input
tokens. RTNs were chosen for the syntax representa-
tion because they are as powerful as deterministic,
context-free grammars yet easier to use than BNF rep-
resentation, especially for nonprogrammers [2, 4, 8].
An overview and comparison of current methods for
specification of the syntax of dialogue languages is
found in [16].

An RTN is constructed from a number of subnets.
Each subnet is represented by a directed graph. The
following kinds of states (nodes) and transitions (edges)
may appear in a subnet {see Figure 1):

o initial state—the state in which the execution of sub-
net begins;

e return state—causes control to return to the calling
subnet;

® subnet call state—causes control to pass to another
subnet (or, recursively, to the same subnet);

e application call state—causes an application routine to
be executed;

e input state—causes control to wait for the reception of
a token from the lexical component. A menu may be
associated with this state; if required, this rmenu will
be displayed automatically when this state is
reached;

e output state—causes the display of a message to the
end user;

e plain transition

o return transition—appears after an application call
state and is traversed if the routine has returned the
return code associated with this transition;

® option transition—appears after an input state and is
traversed if the user has selected the menu option
associated with this transition;

e parameter transition—appears after an input state and
is traversed if the user has picked an object of the
type associated with this transition.

It is noted that a subnet may recursively call another
subnet or itself. This enables the grammar of the dia-
logue language to be defined in a modular way in much
the same way as a program is constructed from subrou-
tines.

u

Subnet call state g Apélicatﬁncall state

1" ‘name. ]|

Routine

‘Subnet || |

s

Plain transition Return transition - Option transition. -~ Parameter transition
\» N ;s ' (Parameter name]:
N X\ parameter type

FIGURE 1. The Graphic Representation of RTN States and Transmissions

1354 Communications of the ACM

November 1989 Volume 32 Number 11




Figure 2 shows an example of an RTN subnet called
PickNode. The execution of this subnet by the RTN
interpreter starts at the initial state S1 and then imme-
diately passes to the input state S2. A menu called
NodeMenu is associated with this state. The user has
now to select one of the two options in this menu. If, for
instance, the option named Del is selected, the option
transition T2 will be traversed, and the application call
state S3 will be reached. The semantic procedure
DNode assaciated with this state will be called by the
RTN interpreter. Finally, the return state S5 will be
encountered, and the execution of the subnet will ter-
minate.

GUIDE provides an interactive graphic editor called
SYNEDIT. This editor allows the user interface designer
to construct the RTN which defines the syntax of the
dialogue language. A SYNEDIT screen is shown in Fig-
ure 2. SYNEDIT checks the consistency and complete-
ness of the RTN to make sure that it can be executed.
The user interface for SYNEDIT itself was generated by
GUIDE.

The Lexical Component

The lexical component of a GUIDE-generated user in-
terface manages all the input and output of the pro-
gram. The output consists of text messages, menus,
icons, and links. A link is a line that connects two icons.
Icons and links may be used to represent the different
objects on which the application operates. They can, for
instance, be employed to show the nodes and edges of
the graphs that appear in some applications.

GUIDE’s lexical component is called by the RTN in-
terpreter (the syntactic component) when it encounters
an input or output state. The lexical component cur-
rently supports two dialogue modes. Every menu, icon,
or link can, therefore, be selected in one of two ways:
by pointing with a mouse (an MM) or by typing the
option’s or object’s name (a CLM). Text typed at the
keyboard appears in a special CLM text area at the
bottom of the screen (see Figure 3 and the examples in
Figures 2 and 7). If the user employs the mouse, the
name of the selected menu option or object will be
copied by GUIDE into the CLM area as if the user has
typed them in. The CLM area will, therefore, in all

Computing Practices

leTTIT] Scroll bar IR

Graphic window area

Text area

e Y1 1] _SUBNET PICKNODE [t T AT T

AddTrans S2 S4 Option
AddState Exit
AddTrans S3 S5 Piain
éddTrans $4 S5 Plain

FIGURE 2. An RTN Subnet being Edited by SNYEDIT

November 1989 Volume 32 Number 11

FIGURE 3. Screen Layout for a Guide-Developed Application

cases show the command language representation of
the command being entered. This helps the user to
learn the command language. Note again that each of
the tokens in the command may be entered in a differ-
ent dialogue mode. Furthermore, note that the user
does not have to tell the system to switch between
dialogue modes—but simply uses whichever device
(mouse or keyboard) wanted.

The different dialogue modes are managed solely by
the lexical component. When the RTN interpreter re-
ceives a token from the lexical component, it has no
knowledge of the mode in which this token was en-
tered. This makes the system relatively easy to adapt to
future dialogue modes and input devices (e.g., a speech
recognizer) since only the lexical component will have
to be changed, while the syntactic and semantic com-
ponents will remain unchanged.

GUIDE includes a program called LEXEDIT that al-
lows the user interface designer to define icons, links,
menus, and messages. In the icon editor screen (see
Figure 4) the icon is drawn using graphic primitives
and text fields. The icon is shown twice: life-sized in
the corner of the screen and enlarged in the main win-
dow. In the link editor screen (see Figure 5), the de-
signer can specify the attributes of the link: line style,
arrowheads, and link shape. Text fields can be placed
along the link. In the menu editor screen (see Figure 6),
the menu’s graphic appearance is drawn. The name
and the rectangular region occupied by each option in
the menu can be defined. The designer has a choice of
three menu styles: static, pop-up, and pull-down. This
choice of facilities allows the implementation of many
of the currently popular user interface styles.

EXAMPLES OF GUIDE-DEVELOPED APPLICATIONS
In order to test the applicability of GUIDE in various
areas, user interfaces for three different applications
were constructed. The applications are:

¢ a directed graph editor,

¢ a specification program for management information
systems (MISs), and

e the RTN editor of the GUIDE system.

The directed graph editor is a small program. It was

Communications of the ACM

1385



Computing Practices

1356

ICON EDITOR Obj

oHi! s

oField1
DF:ele%g

Refresh

T ] atex | mowe | oot
g || ey | change Exit

FIGURE 4. LEXEDIT’s lcon Editor Screen
LINK EDITOR 0@%}@6: Demo
O e
~ : @
-~ | FELDST .
J{Name Nema
N~
~

~®

ST Y P orext | Move | Detete {Retresny

DT IS \\\ iFiext |Change Exit
FIGURE 5. LEXEDIT’s Link Editor Screen
MENU EDITOR; OPTIONG Wenu: MyMenu

e .
| oA :
* |7 Samp
PPN - e
-1 gAdd i
1 H
) gDemo 1
- _.-‘_.-._,_ﬁ
3 éDExit
.................... &

M"g::l" . Move | Delete | Refrest

LE"“ - Change phics{ Zoom

FIGURE 6. LEXEDIT’s Menu Editor Screen
(in Option Specification Mode)

implemented as a simple example for the GUIDE user’s
manual. The program lets the end user edit a directed
graph interactively.

The entire user interface for this application was de-
veloped in less than two hours. The user interface de-
signer used LEXEDIT to define the shape of the icons
which represents the nodes of the graph, the link
which represents the edges, and the menus. The de-
signer used SYNEDIT to construct an RTN with com-
mands to add, move, and delete nodes and edges. Fig-
ure 2 shows one of the subnets of this RTN being
edited. The resulting user interface, as it appears to the
end user, is shown in Figure 7.

Communications of the ACM

The use of AUIs can be illustrated with this directed
graph editor. Suppose the end user wants to add an
edge from node v to node w. One way to do it is to type
at the keyboard the command:

AddEdge v w

If the user has forgotten the command name AddEdge,
however, selection can be made from the pop-up menu
as shown near the upper left-hand corner of Figure 7
and then point at the nodes v and w with the mouse.
Entering a node name at the keyboard may, however,
be preferred when the node is not currently visible
because scrolling has moved it off the screen. In fact,
there are 2® = 8 possible ways to enter the three tokens
of this command.

A second application developed with GUIDE is a pro-
gram to assist system analysts in the development of
design specifications for MISs. It was developed by D.
Reider at the computer science department at Technion
[12]. The program supports a top-down design method-
ology combining data modeling and structured analysis.
The system analyst employs three kinds of tools: an
organizational structure diagram, an entity-relationship
diagram (ERD) (see Figure 8), and data-flow diagrams
(DFDs). Each of these diagrams is composed of different
kinds of icons and links. The design methodology re-
quires that certain complex relationships be main-
tained between the different diagrams.

The application lets the user construct these dia-
grams with an interactive graphics editor. The consis-
tency and completeness of each diagram and the rela-
tionships between the diagrams are checked
automatically. The diagrams are stepwise-refined and
are, therefore, changed frequently. The resulting dia-
grams can be quite complex and would be difficult to
manage manually. The user interface for this applica-
tion was developed in about forty hours.

A third application is the RTN editor SYNEDIT,
which is employed in GUIDE to specify the syntax of
dialogue languages (see the section “The Syntactic
Component” and Figure 2). The RTN states (shown in
Figure 1) are represented as icons, while the transitions
are displayed as links. The editor is employed to con-

Ele I TI1 11 PIRECTED GRAPH EDITOR I )

¥,

Add
Node
Add

Edge

Exit \®

"AddNGde {130,30) &
AddNode (200,95} v

AddEdge u v
iddNode(lQO,hO)w

FIGURE 7. The Directed Graph Editor Screen
(Shown with a Pop-Up Menu)

November 1989 Volume 32 Number 11



Computing Practices

- |« T ] 1| ENTITY RELATIONSHIP DIAGRAM RN
item ordr
budget item is included in order
N
e
supp 1 ordr
supplier is ordered from

FIGURE 8. An ERD being Edited in the MIS Specification Program

struct the subnets which constitute the RTN and to
check the correctness of the RTN. Since SYNEDIT
could not be used to enter the specifications of its own
RTN, these data had to be entered manually into the
specification database. The rest of the specifications for
SYNEDIT were input with LEXEDIT.

IMPLEMENTATION

GUIDE was implemented on an IBM PC AT-compatible
computer. Most of the software was written in the
dBASE III PLUS database programming language and
compiled with the Clipper compiler. The use of a rela-
tional database to stare user interface specifications al-
lowed rapid and simple development of GUIDE. Since
the dBASE language cannot be fully compiled, how-
ever, the system is somewhat slow. A reimplementation
of GUIDE in a compilable programming language is ex-
pected to result in satisfactory performance.

CONCLUSIONS

It has been argued that it is sometimes useful to employ
a number of different dialogue modes (such as typing
text at the keyboard and pointing with a mouse) within
the same command. This cannot be achieved in the
current systems that provide different dialogue modes
by applying an essentially separate user interface for
each dialogue mode. In order to meet these needs, this
article introduces the adaptable user interface (AUI) con-
cept which integrates @ number of dialogue modes into
a single user interface.

The freedom of the AUI user to adapt dialogue modes
to actual needs is useful at all levels of experience. A
novice user starts by using menu modes (MMs) where
guided by choices presented by the system and gradu-
ally learns how to utilize the command language. An
experienced user employs the faster command lan-
guage modes (CLMs) but can switch to menus in the

November 1989 Volume 32 Number 11

middle of a command if uncertain about how to finish
it. An AUI also enables the user to choose the dialogue
mode that is most suitable for the nature of input data
and the working environment.

The implementation of the GUIDE system suggests
that both AUIs and a UIMS which generates AUIs are
practical on personal computers. It also shows that all
dependencies on I/0 devices and dialogue modes can
be isolated in the lexical component of the user inter-
face. This facilitates future additions of any number of
new dialogue modes to the user interface of an already
existing application.

User interfaces for three different applications were
implemented relatively quickly and conveniently using
GUIDE. In these applications, switching between differ-
ent dialogue modes appears natural and gives the user a
new degree of freedom in exploiting the system.

Acknowledgments. We thank David Reider for his
kind help in system analysis and in the development of
one of the examples.

REFERENCES

1. Enderle, G. The flexible configuration of interaction environments
using GKS and Workspaces. In Proceedings of the Seeheim Workshop
on UIMS. Springer-Verlag, New York, 1985.

2. Green, M. Report on dialogue specification tools. In Proceedings of the
Seeheim Workshop on UIMS. Springer-Verlag, New York. 1985.

3. Grimes, |. D. A knowledge oriented view of user interfaces. In Pro-
ceedings of the 12th Hawaii International Conference on System Sciences,
Vol. I {Honolulu, Hawaii, Jan. 4-5.) ACM, New York, 1979, pp.
158-163.

4. Guest, S. P. The use of software tools for dialogue design. Int. J.
Man-Machine Studies 16, (Apr. 1982), 263-285.

5. Heffler, M. J. A human-computer interface that provides access to a
diverse user community. In Proceedings of the 14th Hawaii Interna-
tional Conference on System Sciences (Honolulu, Hawaii, Jan. 8-9).
ACMY/IEEE, New York, 1981, pp. 601-610.

6. Hill, R. D. Supporting concurrency, communication, and synchroni-
zation in human-computer interaction—The Sassafras UIMS. ACM
Trans. Graph. 5, 3 (July 1986}, 179-210.

Communications of the ACM

1357



Computing Practices

7. Iseki, O., and Shneiderman. B. Applying direct manipulation con-
cepts: Direct Manipulation Disk Operating System (DMDOS). Softw.
Eng. Notes 11, 2 (Apr. 1986), 2-26.

8. Jacob, R. J. K. Using formal specifications in the design of a human-
computer interface. Commun. ACM 26, 4 {Apr. 1983), 259-264.

9. Myers, B. A. User-interface tools: Introduction and survey. IEEE
Softw. (Jan. 1989), 15-23.

10. Olsen, D. R., Jr., et al. ACM SIGGRAPH workshop on software tools
for user interface management. Comput. Graphics 21, 2 (Apr. 1987),
71-174.

11. Pfaff, G. E., Ed. User inferface management. In Proceedings of the
Seeheim Workshop on UIMS. Springer-Verlag, New York, 1985.

12, Reider, D., Kantorowitz, E., and Raz, Y. Specification of management
information systems combining data modeling and structured analy-
sis. In Proceedings of the 4th Israel Conference on Computer Systems and
Software Engineering (Tel Aviv, Israel, June 5-6.) IEEE-CS, New York,
1939, pp. 34-44.

13. Sudarsky, O. A user interface management system adaptable to var-
ious user experience levels. Thesis, Dept. of Computer Science,
Technion-Israel Institute of Technology, Haifa, Israel, 1988.

14. Tanner, P. P, et al. A multitasking switchboard approach to user
interface management. In Proceedings of SSIGGRAPH ‘86: 13th Annual
Conference on Computer Graphics and Interactive Techniques (Dallas,
Tex., Aug. 18-22.) ACM/SIGGRAPH, New York, 1986, pp. 241-248.

15. Thomas, J. ., and Hamlin, G. Graphical Input Interaction Technique
(GUT) workshop surnmary. Comput. Graphics 17, 1 (Jan. 1983), 5-30.

16. van den Bos, J., Plasmeijer, M. ]., and Hartel, P. H. Input-Output
tools: A language facility for interactive and real-time systems. IEEE
Trans, Softw. Eng. SE-9, 3 (May 1983), 247-259.

CR Categories and Subject Descriptors: D.2.2 [Software Engineer-
ing]: Tools and Techniques—user interfaces; D.2.6 [Software Engineer-
ing]: Programming Environments—interactive; D.2.m [Software Engi-
neering): Miscellaneous—rapid prototyping; D.3.4 [Programming
Languages}: Processors—interpreters, run-time environments; H.1.2

[Information Systems): User/Machine Systems—nhuman factors;
L.3.6 [Computer Graphics]: Methodology and Techniques—interaction
techniques, languages

General Terms: Human Factors, Languages

Additional Key Words and Phrases: Dialogue languages, recursive
transition networks, user interface management systems, user interfaces

ABOUT THE AUTHORS:

E. KANTOROWITZ is currently a professor at the Computer
Science Department at Technion-Israel Institute of Technology
and an ACM member. His research interests are in adaptable
user interfaces, fault tolerant distributed database systems, and
he is involved in the design of an industrial database-oriented
ship design system. Author’s Present Address: Computer Sci-
ence Department, Technion-Israel Institute of Technology,
Haifa 32000, Israel. KANTOR@TECHSEL.BITNET

0. SUDARSKY recently completed his Master of Science stud-
ies and is an ACM member. His research interests are adapt-
able user interface management systems. Author’s Present
Address: 11 Mishmar HaYarden St., 18412 Afula, Israel.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for cirect commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1358

Provides in-depth examination of the topics covered...

cm Computing
Surveys

Editor-in-Chief Salvatore T. March
University of Minnesota, Minneapolis, MN

uthoritative surveys and tutorials make

ACM Computing Surveys a required re-

source in computer science. Refer to

Computing Surveys for updates, new
perspectives on hardware and software, computer
systems organization, computer science theory,
artificial intelligence, applications, and a spectrum of
peripheral topics.

In the past, Computing Surveys has treated encryp-
tion and data security, the legal issues involved in
privacy, fault-tolerant software, data management
and organization, information systems, and man~
machine interface software packages.

What's best is that the prose is lively and accessible
while providing an in-depth examination of the topics
covered. Published quarterly. ISSN: 0360-0300

Included in STN's Compuscience, AMS’s Mathsci, Applied
Science & Technology Index, Mathematical Reviews, Science
Abstracts, Science Abstracts Index, British Maritime Technology
Ltd.,Computer Literature Index (formerly Qtr. Bibli. Comp. & Data
Proc.), Computing Reviews, Compumath Citation Index (CMCD),
Ergonomics Abstracts, Information Services for the Physics &
Engineering Communities, Index to Scientific Reviews.

Order No. 105000 — Vol. 22 (1990)
Subscriptions: $85.00/year — Mbrs. $13.00
Student Members: $8.00

Single Issues: $20.00 — Mbrs. $10.00

Back Volumes: $80.00 — Mbrs. $40.00
Student Mbrs. $25/year

Please send all orders and inquiries to:

P.O. Box 12115
Church Street Station
New York, N.Y. 10249

- 0=

Circle #103 on Reader Service Card

Communications of the ACM

November 1989 Volume 32 Number 11




