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The Specker-Blatter Theorem
In memory of Ernst P. Specker at the occasion of his centenary

J.A. Makowsky

Based on a survey paper by E. Fischer, T. Kotek and J.A. Makowsky
”Application of logic to combinatorial sequences and their recurrence relations.”

Model Theoretic Methods in Finite Combinatorics 558 (2011): 1-42.

Abstract:

The Specker-Blatter Theorem states that number of labeled graphs over
n vertices satisfying an MSOL-definable property satisfies a linear modular
recurrence relation for every modulus m.

We give a gentle survey of the statement, the proof and applications.
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scholar.google.com

• Ernst Speckers most cited paper,
according to google scholar is:

Kochen, Simon and Specker, Ernst P.,
The problem of hidden variables in quantum mechanics,
reprinted in:
The logico-algebraic approach to quantum mechanics,
293–328, 1975 Springer

with 3163 citations

The talks after mine are about E. Specker’s work in Quantum Mechanics

• I am going to talk about the least cited paper.

Before I started working on it,
all its version had together had less than 10 citations.
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2020 2009

Even these books do not mention this work
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Congruences for combinatorial functions 1980

Ira Gessel Philippe Flajolet

• Gessel, Ira.
Congruences for Bell and tangent numbers.
IBM Thomas J. Watson Research Division, 1978.

• Flajolet, Philippe. ”On congruences and continued fractions for some
classical combinatorial quantities.”
Discrete Mathematics 41.2 (1982): 145-153.
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Congruences for combinatorial functions, one by one

In Mező’s book we find only special cases.......

• Bell and Tangent numbers

• Stirling numbers and harmonic numbers

• Fubini numbers

....... and no general theory.
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Congruences for infinitely many

combinatorial functions

• Let P be a graph property, and let

dP(n) = |{E ⊆ [n]2 : ([n], E) ∈ P}|
be the number of ways one can find an edge relation E on the set
{1, . . . , n} to obtain a graph G = ([n], E) ∈ P .

• dP(n) is called the density function of P .

• If P is monotone (hereditary) it is called the speed of P .

C. Blatter and E. Specker study
algebraic properties of density functions already in 1980.

Only in 1994, E. Scheinerman and J. Zito initiate the
study growth rates of density functions for hereditary properties,
and relate thenm to structural properties of graphs G ∈ P .
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How it all started?

Counting finite topologies

E. Specker teaches Introduction to Topology and gives homework. Let Tn be
the number of topologies on the set {1, . . . , n}.

T1 = 1, as the underlying set is always open.

T2 = 4, for each singleton, we can decide whether it is open or not.

Tn is bounded by 22n

, hence T5 ≤ 232.
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Two papers, and a disturbing fact

T5 = 7181

A. Shaafat, On the number of topologies definable for a finite,

J. Australian Mat. Soc., vol 8 (1968), 194-198.

T5 = 6942

J. Evans, F. Harary and M.S. Lynn, On the computer enumeration of finite toplogies,

Communications of the ACM, 10 (1967), 295-297.

The analysis by C. Blatter and E. Specker shows:

7181 6= 2 mod 5

6942 = 2 mod 5

This allows us them conclude that

T5 = 7181 is not possible.
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Logic and Combinatorics

• The class of finite topologies is not definable in
First Order or even Second Order Logic.

• But the number of topologies on n points is the same as
the number of reflexive transitive relations on n points.

• The class of reflexive transitive relations on n points
is definable in First Order Logic.

E. Specker thought that
counting First Order definable relations
should be amenable using techniques from logic.
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The original theorem

(C. Blatter and E. Specker 1980)

Let P be a property of structures (A,Ri), i ∈ [k], where

(i) each Ri is a unary or binary relation,

(ii) P is definable using Monadic Second Order Logic MSOL,

Let dP the density function for P and dmP be the sequence

dmP (i) = dP(i) mod m.

Then dmP (i) : i ∈ N is ultimately periodic.

It was left open, whether

(i) the restriction in (i) to at most binary relations was necessary, and

(ii) the restriction in (ii) to MSOL among fragments of Second Order Logic
SOL was necessary.
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The density function for regular graphs

J.H. Redfield’s Theorem, 1927

The class REGr of simple regular graphs where every vertex has degree r is
FOL-definable (for fixed r).

Counting the number of labeled regular graphs is treated completely in Chap-
ter 7 of the book:
Harary, Frank, and Edgar M. Palmer. Graphical enumeration,
1973, reprinted by Elsevier, 2014.
where an explicit formula is given, essentially due to J.H. Redfield (1927) and
rediscovered by R.C. Read (1959).

However, the formula is very complicated.

For cubic graphs, the function is explicitly given: fR3
(2n+ 1) = 0 and

fR3
(2n) =

(2n)!

6n

∑
j,k

(−1)j(6k − 2j)!6j

(3k − j)!(2k − j)!(n− k)!
48k

∑
i

(−1)ij!

(j − 2i)!i!

Can you see that this is ultimately periodic mod 17?
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Regular graphs of even degree

• Eulerian graphs are connected regular graphs of even degree.

• Regular graphs of even degree are not MSOL-definable, neither are Eu-
lerian graphs.

Let CMSOL be the logic obtained from MSOL by adding modular counting
quantifiers:

Cm,a(x)φ(x)

which say that the set elements satsifying φ(x) in a finite structure A has size
a modulo m.

Regular graphs of even degree, and Eulerian graphs are CMSOL-definable.

What can we say about dEULER(n)?
dEULER(n) is not a special case of the Blatter-Specker Theorem!
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Two equal-sized cliques

Let EQ2 the class of finite graphs which consist of the disjoint unions of two
equal-sized cliques.

EQ2 is not CMSOL-definable, but it is SOL-definable.

We look at its density function dEQ2
(n). We have

dEQ2
(n) =

{
1
2

(2m
m

)
for n = 2m

0 else

The factor 1
2

is there because we cannot distinguish the choice of the first
clique from the choice of its complement.

Proposition: (Lucas, 1878)
For every n which is not a power of 2, we have dEQ2

(n) ≡ 0 (mod 2), and for
every n which is a power of 2 we have dEQ2

(n) ≡ 1 (mod 2).

In particular, dEQ2
(n) is not ultimately periodic modulo 2.

A proof may be found as Exercise 5.61 in:
R. Graham, D. Knuth and O. Patashnik,
Concrete Mathematics, 2nd ed., Addison-Wesley 1994
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A late birthday gift for E. Specker’s 80th birthday

• I planned to write a paper attacking the then open problems related to
the Blatter-Specker Theorem for E. Specker’s 80th birtday.

• I spoke with him about it, and he was very skeptical ;=) .

• Indeed, I was late!

• From 2000 I started to lecture about this theorem.

• In 2002 Eldar Fischer, attending my lecture, found a counter example:

Theorem: There is a property of finite structures with one
quaternary relation, which is evem FOL-definable but vio-
lates the Blatter Specker Theorem.

Fischer, Eldar. ”The SpeckerBlatter theorem does not hold for quaternary relations.”

Journal of Combinatorial Theory, Series A 103.1 (2003): 121-136.
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More recent work

E. Specker was intrigued and excited by Fischer’s example.

• Specker, E.
”Modular Counting and Substitution of Structures.”
Combinatorics, Probability & Computing 14.1-2 (2005): 203.

E. Fischer, and later my PhD student T. Kotek and I
analyzed the proof of the Blatter-Specker Theorem:

• Fischer, Eldar, and Johann A. Makowsky. ”The Specker-Blatter theo-
rem revisited.” International Computing and Combinatorics Conference.
Springer, Berlin, Heidelberg, 2003.

• Kotek, Tomer, and Johann A. Makowsky. ”Definability of combinato-
rial functions and their linear recurrence relations.” Fields of logic and
computation. Springer, Berlin, Heidelberg, 2010. 444-462.
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My collaborators

Eldar Fischer Tomer Kotek

• Fischer, Eldar, Tomer Kotek, and Johann A. Makowsky.
”Application of logic to combinatorial sequences and their recurrence
relations.”,
in: Model Theoretic Methods in Finite Combinatorics,
volume 558 of Contemporary Mathematics, (2011): 1-42.

File:sp-intro 17



Specker-Blatter Theorem Zurich, February 2020

Separating Logic from Combinatorics

C. Blatter and E. Specker associate with a property P of relational structures
a rank, the substitution rank, with values in N ∪ {∞}.

The logic part of their theorem is the following:

Proposition: If P is MSOL-definable this rank is finite.

We (EF and JAM) prove:

Proposition: If P is CMSOL-definable this rank is finite.

The rest of their (CB and ES) proof is algebra-combinatorial.

Proposition: If P is a property of structures with all relations at most binay,
and P has finite rank, then dmP (n) is ultimately periodic for every m ∈ N.

This now covers also the case of Eulerian graphs

and regular graphs of even degree.
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Refining the analysis of the CB-ES proof

• We also take into account the

maximal degree of the structures in P .

• We generalize the Substitution rank of a property P using

Hankel matrices.
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Relations of bounded degree

Let A = 〈A, R̄〉 be a τ-structure.
We define a symmetric relation EA on A, and call 〈A,EA〉 the Gaifman-graph
of A.

• Let a, b ∈ A. (a, b) ∈ EA iff there exists a relation R ∈ R̄ and some ā ∈ R
such that both a and b appear in ā
(possibly with other members of A as well).

• For any element a ∈ A, the degree of a is the number of elements b 6= a
for which (a, b) ∈ EA.

• We say that A is of bounded degree d
if every a ∈ A has degree at most d.

• We say that A is connected
if its Gaifman-graph is connected.

• For a class of structures P we say it is of bounded degree d (resp. con-
nected) iff all its structures are of bounded degree d (resp. connected).
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The Specker-Blatter Theorem revisited, I

Theorem(E. Fischer and JAM, 2002)

Let P be a property of τ-structures, which is CMSOL-definable.
Let dP(n) be its density function.

• If P is of bounded degree d,
the function dP(n) satisfies a modular recurrence relation for every m.

• Furthermore, if additionally all the models in P are connected,
the function fP satisfies the trivial recurrence relations for every m.

We have no restrictions on τ

besides not allowing function symbols,
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Hankel matrices for graph properties, I

• A k-graph of order n is a graph G = (V (G), E(G), a1, . . . , ak) with
V (G) = [n] together with k distinct vertices a1, . . . , ak.

• Let 2 be a binary operation on k-graphs.

2 could be

(i) t, the disjoint union of graphs (without labels),

(ii) tk, the k union of k-graphs formed by taking the disjoint union and then identifying
corresponding distinct vertices.

(iii) or the substition S(G,H) of a 1-graph G for the distinct label a of the 1-graph H.
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Hankel matrices for graph properties, II

• Let Gi, i ∈ N be an enumeration of all finite k-graphs.

• Let P be a graph property.

• We define the infinite (0,1)-matrix H(P,2) with

H(P,2)i,j =

{
1 Gi2Gj ∈ P
0 Gi2Gj 6∈ P

• We denote by rk(P,2) the rank of H(P,2) over the field Z2.

The matrix H(P,2) is called the Hankel matrix of P and 2 for k-graphs.

Unknowingly, C. Blatter and E. Specker use

a special case of Hankel matrices.
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Hankel matrices (over a field F)

Let f : F → F be a function over a field F.

A finite or infinite matrix H(f) = hi,j is a Hankel matrix for f if hi,j = f(i+ j).

Hankel matrices have many applications in:
numeric analysis, probability theory and combinatorics.

• Padé approximations

• Orthogonal polynomials

• Probability theory (theory of moments)

• Coding theory (BCH codes, Berlekamp-Massey algorithm)

• Combinatorial enumerations
(Lattice paths, Young tableaux, matching theory)
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Hankel matrices over words

Let Σ be a finite alphabet and F be a field and let f : Σ? → F be a function
on words.

A finite or infinite matrix H(f) = hu,v indexed over the words u, v ∈ Σ? is a
Hankel matrix for f if hu,v = f(u ◦ v). Here ◦ denotes concatenation.

Hankel matrices over words have applications in

• Formal language theory and stochastic automata,
J. Carlyle and A. Paz 1971

• Learning theory (exact learning of queries).
A.Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, S. Varricchio 1998
J. Oncina 2008

• Definability of picture languages.
O. Matz 1998, and D. Giammarresi and A. Restivo 2008
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Multiplicity Automata

A Multiplicity Automaton (MA) A of size r is given by:

• A set {µσ : σ ∈ Σ} of r × r matrices over F;

• Two vectors λ, γ ∈ Fr.

• A defines a function fA : Σ? → F

fA(w) = fA(σ1 ◦ σ2 ◦ . . . ◦ σn) = λµσ1µσ2 · . . . · µσnγt

THEOREM: (J. Carlyle and A. Paz 1971)

A function f : Σ? → F is representable as fA for some MA A iff the Hankel
matrix H(f) has finite rank.
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Hankel matrices for graphs

If we want to define Hankel matrices for (labeled) graphs,

what plays the role of concatenation?

• Disjoint union
Used by Freedman, Lovász and Schrijver, 2007, for
characterizing multiplicative graph parameters over the real numbers

• k-unions (connections, connection matrices)
Used by Freedman, Lovász, Schrijver and Szegedy, 2007ff, for
characterizing various forms and partition functions.

• Joins, cartesian products, generalized sum-like operations
used by Godlin, Kotek and JAM (2008) to prove non-definability.
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The 2-rank of a property P

Given

• a binary operation 2 between structures A(A, R̄, F̄ , c̄) with relations R̄,
functions F̄ and constants c̄), and no restrictions on their number of
arguments, and

• a property P of such structures

we say that P has 2-rank r(P,2) ∈ N ∪ {∞} if r(P,2) = rk(P,2) is the rank
of the Hankel matrix H(P,2) over the field Z2.
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L-smooth operations.

Let L be a logic with a well defined quantifier rank.

Here L is one of FOL,MSOL,CMSOL.

We say that two graphs G,H are (L, q)-equivalent,
and write G ∼qL H, if G and H satisfy the same L-sentences of quantifier rank
q.

We say that 2 is L-smooth, if whenever we have

Gi ∼qL Hi, i = 0,1

then

G02G1 ∼qL H02H1

This definition can be adapted to k-graphs and also to structures with k-ary
operations for k ≥ 1.
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Proving that an operation 2 is L-smooth

Proving that an operation 2 is L-smooth may be difficult.

For FOL, MSOL and CMSOL this can be achieved using

Ehrenfeucht-Fräıssé games also know as pebble games.

The case for MSOL was first proved by Hans Läuchli in 1966.

Anther way of establishing smoothness is via generalizations
of the Feferman-Vaught theorem.

Makowsky, Johann A. ”Algorithmic uses of the FefermanVaught theorem.”
Annals of Pure and Applied Logic 126.1-3 (2004): 159-213.

In this talk we need two cases:
2 = t, the disjoint union, and 2 = Subst, the substution of
pointed graphs.

Theorem:(EF and JAM) Both t and Subst are CMSOL-smooth.
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The Finite Rank Theorem

Theorem (Godlin, Kotek, Makowsky 2008):

Let f be a numeric graph parameter or graph polynomial for τ-structures
definable in L and taking values in an integral domain R.

Let 2 be an L-smooth operation.

Then the connection matrix M(f,2) has finite rank over R.

**********************

The Proof uses a Feferman-Vaught-type theorem for graph polynomials, due
to B. Courcelle, J.A.M. and U. Rotics, 2000.

C. Blatter and E. Specker prove it for Subst and MSOL.

L. Lovasz proves it for patition functions.

It has many applications in graph theory.
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Bounded t-rank and bounded degree

Theorem(EF and JAM, 2002)

Let P be a property of structures over some fixed vocabulary.
If P has finite t-rank and
all its members of are bounded degree d. Then

• dmP (n) is ultimately periodic for every m.

• Furthermore, if additionally all the models in P are connected,
dmP (n) = 0 for all m and n.

Example dEQ2
(n) shows that bounded degree cannot be dropped, even for

t-rank 2 (and connected structures).

For structures of unbounded degree one needs a stronger assumption, the
finiteness of the Subst-rank.
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t-rank of P and Gessel-classes

• A class of structures P is a Gessel class if for every A and B, A tB ∈ P
iff both A ∈ P and B ∈ P.

• The class of forests is a Gessel class.

• If P is hereditary and closed under disjoint unions, it is a Gessel class.

• Every Gessel class has t-rank at most 2.

• If P is a class of connected graphs, P has t-rank at most 2, but is not
a Gessel class.

• If P1 and P2 have finite t-rank, so do P1∪P2, P1∩P2, and the complement
P̄1.
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Gessel’s Theorem (1984)

Theorem:(I. Gessel 1984)

If C is a Gessel class of directed graphs of degree at most d, then

dC(m+ n) ≡ dC(m) · dC(n) (mod
m

`
)

where ` is the least common multiple of all divisors of m not greater than d.

In particular, dC(n) satisfies for every m ∈ N the linear recurrence relation

dC(n) ≡ a(m)dC(n− d!m) (mod m)

where a(m) = dC(d!m).
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Many classes of finite t-rank and Subst-rank.

There are only countably many classes of structures
definable by CMSOL-formulas.

How many classes are there of finite t-rank?

Proposition:(After an idea of Specker, 2002)

(i) There are continuum many Gessel classes.

(ii) There are continuum many properties of structures with t-rank 2.

(iii) There are continuum many properties of structures with finite Subst-
rank.
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Relation between t-rank and Subst-rank

We denote by G ./ H the join of G and H.

Proposition: Let P be a graph property. We have

(i) rk(P,t) ≤ rk(P, Subst) and rk(P, ./) ≤ rk(P, Subst).

(ii) The class HAM of Hamiltonian graphs is connected,
hence has t-rank 2,
However, HAM has infinite ./-rank, hence also infinite Subst-rank.

Problem: What can we say about dmHAM(n)?
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Complexity

Let H be a possible infinite set of finite graphs.

Let Fsub(H), (Find(H), Fmin(H)) be the class of finite graphs with forbidden
subgraphs (induced subgraphs, minors) in H.

If H is finite they all have finite Subst-rank, because they are MSOL, resp.
FOL definable.

Problem:

• If H is finite, what is the computational complexity of computing the
Subst-rank of Fsub(H), (Find(H), Fmin(H)) measured in the size of H?

• In particular, what is the complexity if H? is a singleton?

• If H is infinite, do Fsub(H) and Find(H) still have finite Subst-rank?

For Fmin(H), the answer is yes, due to the Robertson-Seymour Theorem, which states
that every minor closed class of graphs is of the form Fmin(H) for some finite H.
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Graph polynomials

Let F (G;x) be a univariate graph polynomial.

Examples: The chromatic polynomial, the independence polynomial, the
matching polynomial, the characteristic polynomial, etc.

Let Gn, n ∈ N be a family of finite graphs and a ∈ Z.

Let fmF,a(n) = F (Gn; a) mod m.

The density function dmP (n) for a graph property P
is a special case where Gn = En is the edge-free graph of order n, a = 1 and

FP(G;n) =
∑

E⊆[n]2:([n],E)∈P

x|E|

Problem: When is the sequence fmF (n) ultimately periodic?
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The widely overlooked paper: its merits

• It initiates a systematic study of
congruence relations for combinatorial counting functions.
Before, and still now, mostly special cases are studied.

• It anticipates the use of
the rank of Hankel matrices in combinatorics
In the recent work of L. Lovász and his many collaborators on

graph limits and partition functions

this plays a central role.

• It formulates for the first time a
meta-theorem connecting definability in MSOL with combinatorics.
The Büchi-Elgot-Trakhtenbrot Theorem characterizes
regular languages using MSOL.
Bruno Courcelle and his collaborators use MSOL-definability to show
that NP-hard problems are in P for graphs properties
of bounded tree- and clique-width.
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The widely overlooked paper: Our improvements

• Eldar Fischer gave a counter example using a quaternary relation.

• Analyzing the counter example we noticed the role of
bounded degree structures
and the role of the t-rank.

• Proving an earlier version of the Finite Rank Theorem for CMSOL
we extended the Specker-Blatter Theorem to include
Eulerian graphs
(and many other cases).
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Thank you for your attention

Prof. emeritus J.A. Makowsky

Faculty of Computer Science

Technion - Israel Institute of Technology

Haifa, Israel

www.cs.technion.ac.il/∼janos

janos@cs.technion.ac.il
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