The Multi-Tree Approach to Reliability in Distributed Networks

Alon ltai
Computer Science Department
Technion, Haifa, Isragl

Michael Rodeh
IBM Isragl Scientific Center,
Technion City, Haifa, Isragl.

ABSTRACT

Consider a network of asynchronous processors communicating by sending messages over unreli-
able lines. There are many advantages to restricting all communications to a spanning tree. To over-
come the possible failure of k'<k edges, we describe a communication protocol which uses k rooted
spanning trees having the property that for every vertex v the paths from v to the root are edge-digoint.

An agorithm to find two such trees in a 2 edge-connected graph is described that runs in time
proportional to the number of edges in the graph. This algorithm has a distributed version which finds
the two trees even when a single edge fails during their construction. The two trees them may be used to
transform certain centralized algorithms to distributed, reliable and efficient ones.

1. INTRODUCTION

Consider a network G=(V,E) of n=[0V O asynchronous processors (or vertices) connected by
e=[E [edges. The network may be used to conduct a computation which cannot be done in a single
processor, since either the data is distributed over the network and it is too costly to move it al to a
single processor, or the resources of the network, such as memory, are distributed among the processors.

Every processor in the network is a computer with random access memory (RAM) and a program
of its own. We assume that each processor v with deg(v) neighbors has O(deg(v)) cells of local
memory each of O (log(n+MaxID)) hits. Thus, no processor can have the entire network stored locally.
The processors are distinguishable by distinct identification numbers (id). Each processor knows its own
id and that of its neighbors and may use this information to make decisions. Other than this the local
programs are independent of the network. Such programs are called distributed programs.

We assume that there is no shared memory so that processors may communicate only by transmit-
ting messages, each of length O(log(n + Max id)) bits (this bound is implied by the bound on the
degree). Two neighbors may pass messages on the edge between them, while two remote processors
have to transmit messages. Each message transmission may require several message passings. The time
a message passes through an edge is unpredictable; moreover, if the edge is faulty the message might
get lost. Until a message arrives, no processor is able to decide whether the edge is faulty or just slow.
Edges are assumed to have infinite buffers; messages may accumulate in these buffers without disturbing
the sending processor.

In the absence of any prior agreement concerning message routing, broadcasting may be used: To
broadcast a message to v, u adds the address of v to the message and passes it to all its neighbors
which upon receiving the message pass it further. Special provisions must be taken to ensure that the
same message is not passed many times through the same edge. However, these provisions require a
large amount of memory at each vertex. Even if each message is passed only once through each edge
there are 6(e) message passings in order for u to transmit a message to v.

No such provisions are required for tree networks - networks that do not contain cycles. There-
fore, to properly communicate in arbitrary networks, we could find a subnetwork which forms a span-
ning tree, and restrict all message passings to the edges of the tree.

The problem with tree networks is that they are unreliable - the failure of a single edge makes the
network disconnected. In our model of faults, the effect of failures is the loss of messages. After a

failure, edges may recover. We shall count the number of edges which failed rather than the number of
messages |ost.

2. THE 2-TREE PROTOCOL

To overcome the unreliability of tree networks more than one spanning tree may be used. We are
after a communication protocol which is 1-edge resilient — a protocol which resists the failure of any
single edge.

2-edge-connectivity of the network is a necessary condition for the existence of 1-edge resilient
protocols. However, a 2-edge connected graph (such as a cycle) need not contain two edge-digoint
spanning trees. Thus our protocols use trees which are not completely digjoint.

2.1. The 2-Tree Protocol for Edges
For a spanning tree T rooted at r let T[v] denotethe pathin T fromv tor.

Definition: Two spanning trees T, and T, with a common root r satisfy the 2-tree condition for
edges if for every vertex v, T4[v] and T,[v] are edge-digoint.

Lemmal: If agraph G has two spanning trees T, and T, fulfilling the 2-tree condition for edges then
G is 2-edge connected.

Proof: (Although the lemma follows from Theorem 2 below, we have chosen to give a direct proof
too, since it sheds light on the following discussion.) For the sake of contradiction, let (u,v) be a
separating edge. W.l.o.g. (u,v) separates v from r. Therefore, every path from v to r must pass
through (u,v). In particular, T4[v] and T,[v] both use (u,v) and cannot be edge digoint, thus violating
the 2-tree condition.

Before we prove the converse of Lemma 1, let us see how to use an arbitrary pair of trees which
fulfill the 2-edge condition to construct a 1-edge resilient protocol to transmit a message from any vertex
u to any other vertex v.

The 2-Tree Protocol for Edges:
(1) u sends a message upwards to the root on both trees.

(2) When the root gets a message from one of its neighbors, it sends the message downwards on both
trees.

Since every message is duplicated at the root, in the case of no failures, for every message sent
from u, v receives four messages from r, and possibly two more messages from u. However the mes-
sages sent by the two tree protocol for edges are easier to manage than those used in simple broadcast-
ing: Only the source and the target vertices of the message have to be aware of the duplication of the
message. The other vertices just transmit the message through the appropriate tree. Thus none of the ver-
tices need remember which messages have aready passed.

Example 1. Consider the graph G depicted in Figure 1 with the spanning trees

Tl = (r 1V11V21 e 1V9) = G\(ngr)
To=(rVvoVs, -V = G\(vy,r)

Let u=v3 and v =v7. U =vj3 sends a message on T to v,, v1 and r. r sends the message

downwards on T to v4,vy, - -+ Vg and on T, to Vg,vg, - * * V1.
U = v3 also sends the message on T, tO Vy4,Vs , ... , Vo,r . When r gets this message, it sends it
downwards on T, to Vo,vg, - * - ,Vq. In addition, r sends the message on T to v4,Vy, * - Vo. Thus, if

no edge fails v; intercepts the message five times: once from vz on T, twice from r on T, and twice
fromr on T;.

However, if the edge (v4,vs) fails, then only the message upwards on T, gets to r, r sends it
downwards on T4 and on T,, but only the propagation on T, reaches v = v;. Thus, only the combina
tion of the two trees ensures that the message arrives.

Theorem 2: Let T, and T, be two trees fulfilling the 2-tree condition for edges. Then the 2-Tree Pro-
tocol for Edges is 1-edge resilient. Moreover, only O(n) message passings are required.

Vg Vi

Vg Va2

V7 V3

Vg Vg
Vg
Figure 1

Proof: Let u be avertex which wants to transmit a message to another vertex v. According to the 2-
tree protocol for edges, u sends the message upwards to the root r on both trees. As Tq[u] and T,[u]
are edge-digoint, at least one copy of the message will arrive at v even if a single edge fails.

When the message arrives at r, r sends it on both trees to v. Again, as T4v] and T,[v] are
edge-digoint, at least one copy will arrive at v, even in the presence of a single edge-failure.

A message can pass through an edge of any of the two trees at most once in each direction; as the
message is duplicated at the root, the maximum number of message passings is 3-2:(n-1) = O(n).

The converse of Lemma 1, namely, that every 2-edge connected graph has two spanning trees
fulfilling the 2-tree condition for edges is also true. In the rest of this section we develop an algorithm to
construct two such trees.

2.2. st Numbering

To show that 2-edge connectivity implies the 2-tree condition for edges we follow a suggestion of
Professor A. Lempel [L] (thus replacing a previous lengthier direct proof).

Let G be a 2-vertex connected graph, and (s,t) anedgeof G,theng: V - {1,2,---,n} isan st
numbering if the following conditions are satisfied:

(1) g(s)=1landg(t) =n.
(2) Everyvertexv O V\{s,t} hastwo adjacent verticesu and w such that

gu) <g(v) <g(w).

Thus if every edge is oriented from its low numbered end to its high numbered end then every
vertex lies on a directed path from s to t. Lempel, Even and Cederbaum [LEC] have shown that every
2-vertex connected graph G has an st numbering and used it to test graph planarity. Even and Tarjan
[ET] gave a linear algorithm based on DFS to find such a numbering. We follow the agorithm and
proof as presented in [Ev].

To construct an st numbering we have to look more closely at the DFS algorithm.

Let D be a DFS tree rooted at t whose first edge is (t,s). Let N(v) be the number given to v by
the DFS. Thus N(t) =1 and N(S) =2. (vVq, - ,Vm) iS a tree path if v; is the tree parent of Vvj.q,
i=1---m-1).

The edges of G\D are caled fronds. (Vi, - Vm,Vm+1) IS the lowpoint path from v, if
(Vq, - - - Vi) IS a tree path, (Vi,Vm+1) IS a frond and N(vn+1) is the smallest number for which there
exists such a path from v;. Let L(v4) = min{N(vq),N(vn+1)} be the lowpoint of vq. (If G is bicon-
nected N (Vm+1) < N(v4) for every vertex v, other than the root.)

The following algorithm which is a dight modification of [ET, Ev] finds an st humbering, assum-
ing that D has already been found, and that lowpoint (v) has been computed for every vertex v. The
algorithm uses a stack to process vertices in the reverse order in which they were encountered. Initially,
only t and s are on the stack (s on top). Vertices which were never on the stack are considered new.

Set i:=1.
while the stack is not empty do begin
(1) Remove the top vertex v from the stack.

2 g(v)=i; Q=i+l

(3) For all tree edges (v,w) to a new vertex w, let (W=w1, * * - \Wmn,Wn+1) be the lowpoint path from
W; push Wy, Win-1, - * - ,w onto the stack (wy, first).

(4) For dl paths (ug,uq, - - * ,un,v) from some old vertex ug to v such that uy, - - - ,u, are new,

(u;i ,U; +1) are tree edges and (uy,v) isafrond, push uq, - - - ,uy, onto the stack (uq first).

end.

Example 2: Figure 2.a shows a graph with a DFS numbering — N(v) and Figure 2.b shows g(v) an
st numbering of that graph.

Even and Tarjan [ET] have shown that this algorithm finds an st humbering in O(e) time.

2.3. Constructing the Two Trees

To construct two trees S and T rooted at r which satisfy the 2-tree condition for edges first
assume that G is 2-vertex connected, and that g is an st numbering with s =r. To construct S choose
for every vertex v # s an edge (u,v) such that g(u)< g(v) (for t choose an edge other than (s,t)). T
consists of the edge (s,t) and an edge (v,w), g(v)< g(w) for every vertex vnmem {s,t}. The 2-tree
condition is easily verified since S[v] consists of vertices u with g(u)< g(v) but cannot contain the
edge (s,t), while T[v] consists of the edge (s,t) and vertices w with g(v)< g(w). Figures 2.c and 2.d

depict two trees constructed for the st numbering of Figure 2.b.

8 10 6 2 6 2 6 o 2

9 3 3 3
7 5 5 5
6 4 4 4
5 7 7 o 7

11 10 10 10
4 8 8 8
3 9 9 9
2 s=1 1 1
1 o t=11 o 11 1 11 o
DFS-numbering st numbering T S

@ (b) (© (d)

Figure 2

In the general case, G is 2-edge connected but not 2-vertex connected. Let G1 , ... , G, be the
blocks (2-vertex connected components) of G. Each G; (i>1) is connected to some G; (j <i) by an arti-
culation point 5. The 2-vertex connected components and articulation points can be found by a single
DFS starting from any vertex t; of G;. Let s; be the second vertex visited by the DFS. Without loss
of generality, s; 0 G;. For each block G;, let T, and § be two spanning trees of G; which are rooted

at s and were constructed by the above procedure when applied to G;. Then let

m m
sS=0§ and T=0T.
i=1 i=1

It is easy to verify that for every vertex v, T[v] and S[v] are edge-digoint. This algorithm

requires O (e) time. Note that any vertex may serve as the common root s;. We get:

Theorem 3. Let G be a 2-edge-connected graph and r a vertex of G. Then there exist two spanning
trees T and S such that for al vertices v S[v] and T[v] are edge-disjoint. Moreover, S and T can be

found in O(e) time.

3. DISTRIBUTED DFS

3.1 Distributed DFS in unreliable networks

DFS has a distributed nature (though sequential, see [R]): It has a single center of activity which
we designate by a token. The token moves from a vertex to one of its neighbors. When the token is at
Vv, V inspects its neighbors to find a vertex which does not yet belong to the tree. If such a vertex exists
the token is moved there. Otherwise, the token backtracks to the parent of v. If the token cannot back-

track since v has no parent (i.e. v is the root), the algorithm terminates.

In the distributed context, every transfer of the token, as well as the inspection of the neighboring
vertices, requires communication. Thus, 8(e) communications are involved. A naive implementation in
the unreliable setup is to replace each communication by a broadcast, which if traverses each edge at
most once, yields an O(e?) message passing agorithm. To make sure that each message indeed

traverses each edge only once, each vertex may hold a log of al the messages which it had sent. Need-

less to say, this mechanism requires 8(e) memory at each vertex (one entry for each DFS message).

The sequential nature of DFS allows for a mechanism which is more space efficient: Each mes-
sage is prepended by a message number — the ordinal number of that message. This number is known
to the vertex which issued the message since when a vertex issues a message it must hold the token and
the number of messages issued before receiving the token is equal to the message number prepended to

the message by which the token was received.

Since a message with number M is issued only after all previous messages have aready reached
their destination, after receiving the M'th message, a vertex need not forward any message whose mes-
sage number is less than or equal to M. Thus, at the cost of one memory cell per vertex, each message

is not passed through any edge more than once.

To improve the performance of DFS in unreliable networks we consider the following variant of
DFS: Whenever the token arrives at a vertex v for the first time, v notifies all its neighbors that it has
joined the DFS tree. The idea is that when a vertex joins the tree, it should already know which of its

neighbors belong to the tree. Thus the inspection of the neighbors is replaced by notifications.

A dlight problem is caused if a vertex gets the token before the natifications from all its neighbors
have arrived. (Some message might have traveled slowly.) To remedy this, each notification should be
a send/acknowledge type of communication. The token is transferred from v only after receiving ack-
nowledgement from all its neighbors. This variant also requires at most O (e) message passings in reli-

able networks.

This version of the algorithm might fail if an edge fals. As indicated before, each message is
replaced by a broadcast. There are two types of messages. Token passing and neighbor notification.
Since the token is passed a most O(n) times, this requires O(ne) message passings. The
send/acknowledge part of the distributed DFS uses O(e) messages. Replacing each by a broadcast

yields an O (e?) agorithm.

A closer look into the send/acknowledge pattern leads to the following modification [Shr]: When

a vertex v gets the token for the first time, it sends a send/acknowledge message concurrently to all its

neighbors which do not send the message further but send an acknowledgement back on the edge con-
necting them with the token. The vertex v holding the token now waits until deg(v)-1 acknowledge-
ments arrive. Then v notifies the last vertex by a broadcast and waits for an acknowledgement, which

should also be sent by broadcasting. This algorithm requires O (ne) message passings.

3.2. A Different Modél

We can dispense of the send/acknowledge transmissions and still have an O(ne) algorithm if we
restrict the types of failures and the order in which messages pass through the edges. Namely, in this
subsection we assume that malfunctioning edges never recover, and messages are passed through the

edges in a strict first-in first-out fashion.

The new agorithm is similar to the previous one, each broadcast message is prepended by the
message number and no vertex forwards messages whose number is lower that the maximum encoun-
tered message number. When a vertex joins the tree it sends a broadcast message notifying this fact to
the entire graph, also if there is a neighbor not on the tree the token is passed (by a broadcast) to such a

neighbor, otherwise the token is returned (by a broadcast) to the DFS-tree parent of the vertex.

If no messages are lost, every vertex eventualy discovers which of its neighbors belongs to the
tree. There remains, however, the problem of synchronization — a vertex w might have received the
token before the message "u joined the tree" from its neighbor v has arrived . Thus, w does not know
which of its neighbors already belong to the tree. Moreover, the message number mechanism and an
edge failure might have caused some messages not to be forwarded, thus we need to show that the status
of the neighbors is indeed known to the holder of the token. In the remainder of this subsection we

show that under this restricted type of failures, this algorithm is correct.

Consider Figure 3 where we trace the journey of the token in the graph. The dashed arrows indi-
cate logical transfers of the token according to the DFS order, while the solid lines trace the actua mes-
sage transfers required to pass the token. |.e, the token starts at the root u4, which passes it on to us,
until it finally arrives at un=u, (m<2m). However, the token does not pass from u; to uj,4 directly. In

fact, it may visit severa vertices along a path P; (see Figure 3) before arriving at Uj41. Uj4q receives

Figure 3
control of the token when it first receives the message |; = <j,u;,Uj+1,m;>. (j is the message number,

u; the source of the message, ;. its destination and all the remaining information is contained in m;.)

Lenma 20 Let v O P; and ik satisfy 1<i <k <j. Then v received the message

Mi = <i,u,U;+,m > before it received (or issued) the message [y = <K,Uy,Ug+1,M>.

Proof: By double induction. The outer induction is on the path number, and the inner one is on the

location of v on the path.

Basis: For j=1 thereisnot such i, so the lemmais vacuoudly true.

Induction step: Assume that the lemma holds for PPy ... ,Pj-1. Let

Pj = (Uj=wq, ..., Wg=V, ..., W=Uj+). We now conduct an induction on q.
Basis q=1. w; = u;=v, the claim holds for k < j since u; also belongsto P;_;. Asfork =j, y;
did not issue ; until p;-; was received, and that occurred after any ; (i < j) was received.
Induction Sep: By induction wg-; received |; before it received py, therefore it passed p; on
(Wgq-1,Wg=V) before it passed p, on the same edge. By definition of P;, y; managed to pass on
(Wq-1,Wg=V). Because of our restrictive model, this edge could not have failed before |; passed,
thus both p; and p, passed on (wq-1,Wg=V) successfully.

Since our model stipulates a strict first-in first-out discipline, ; arrived at wy=v before L.

Theorem 4. If failed edge do not recover and the messages passed through each edge obey the FIFO

discipline then the above algorithm finds a DFS tree in O (ne) messages.

4. REDUCING THE COST OF COMMUNICATION

4.1. Broadcasting in O(n) M essage Passings

In this section we consider broadcasting protocols, which like the algorithms of Section 3, avoid
sending any message through any edge more than once. However, even in this case each single message
might traverse the entire network, thus requiring Q(e) message passings. Here, we show how to reduce
the cost of such broadcasting to O(n) by restricting broadcasts to a 2 edge-connected spanning sub-
graph.

Let D=(V,Ep) be a DFS tree (see Section 3) and E; the set of lowpoint fronds of D (fronds lead-
ing from a vertex v to the vertex w such that N(w)=L(v)). Let G' = (V,EpE,). G' is 2-edge con-
nected if and only if G is. Thus if all broadcast messages are restricted to G' a single broadcast will
cost only OEp O+0OE;, O < 2n-2 = O(n). Thus, after finding G' broadcasting becomes cheap. (G’

was used previoudly in [IR, ILPR].)

It remains to find G' distributedly. Since each vertex knows which edge leads to its DFS parent
and which to its children, it knows the tree edges adjacent to it. The remaining edges are fronds. How-
ever, v must know its lowpoint, L (v), in order to figure out which of the fronds is its lowpoint frond.
The lowpoint satisfies:

L(v) =min({L(s) : s isaDFSchild of v} 0O {N(w) : (v,w) O E and w is not the parent of v})
Just before the DFS backtracks from v, v can figure out L (v) by asking for L (s) from al its children
and for N(w) from al its other neighbors. By employing a send/acknowledge protocol similar to the
one presented in Section 3.1 (wait for al but the last neighbor and then send the message to the last

neighbor by a broadcast) we get an O(ne) scheme. Thus, finding G' costs ho more than the DFS.

Henceforth, we assume that all broadcasts are done in G' and that each broadcast costs O (n).

- 10 -

4.2. Communication on Trees

We have used spanning trees for communication, and have circumvented the problem that not
every 2-edge-connected graph has 2-edge-digoint spanning trees by replicating messages at the root.
This has an adverse effect of increasing the traffic at the root. If, however, the graph has 2-edge-digjoint
spanning trees then we may send messages directly on the 2-trees. To reduce the number of message
passings, we may use the following heuristic which finds the shortest tree-path between two vertices
without increasing the memory requirements. Thus sometimes shortening the path a message travels

(though not improving the worst case).

Suppose each vertex w knew C(w,c), the set of vertices of the subtree rooted at the child ¢ of w.
When w gets a message destined to v it passesittoc if v O C(w,c), if no such ¢ exists the message

is transmitted to the root.

To store C(w,c) compactly, we conduct a depth-first search (DFS) on the spanning tree starting
from the root. Let N(x) be the number assigned to x by the DFS. We now observe that

N(C(w,c)) ={N(x) : x O C(w,c)} consists of consecutive numbers, i.e.

N(C(w,c)) ={i: min N(C(w,c)) <i <max N(C(w,c))}.

Thus, it suffices that w store only min N (C(w,c)) and max N (C(w,c)) for each child c. Now, N(v) is

used as the network address of v.

5. CONSTRUCTING THE TWO TREES DISTRIBUTEDLY

In this subsection we develop a distributed version of Even and Tarjan's centralized algorithm to
find an st numbering [ET], thus giving an example of transforming a centralized algorithm into a distri-

buted one.

5.1. Distributed Construction of an st Numbering.

The st numbering agorithm is very similar to DFS, and a distributed version can be easily

derived. The only problem is that of keeping a stack of length O(n) in a network, each vertex of which

-11 -

has limited memory. The stack, therefore, cannot be kept at any single vertex. Rather, each vertex on
the stack knows only its stack predecessor, and the top vertex knows that it is on top. (This works since

the st numbering algorithm of Section 2.2 pushes each vertex onto the stack at most once.)

Now the distributed version is very similar to the centralized one. The token starts at s. When a
path is constructed, the token moves with the frontier of the path. When the path ends, the token is
broadcasted to the top of the stack. Since the moves of the token correspond to adding or deleting a

vertex from the stack, there are O (n) broadcasts costing a total of O (n?) message passings.

5.2. Finding the Two Trees

Once each vertex u has its st number g(u), it broadcasts it on G'. The neighbors of u record
u’'s st number. Thus each vertex v knows the st number of al its neighbors. Then, v selects an
incoming edge (u,v), (g(u)<g(v)) for S and an outgoing edge (v,w) (g(v)<g(w)) for T. After select-
ing the edges, v should broadcast this information (on G'), so that u knows that (u,v) 0 S and w
knows that (v,w) O T. Thus, every vertex discovers which of its adjacent edges belong to S and which

to T. All these additional broadcasts (on G') cost O (n?) message passings.

6. COMPUTATIONS ON TREES

To understand the full power of the 2-tree protocol let us consider functions whose data is distri-
buted over the network and whose value is independent of the order of the data. The agorithms we
consider use trees as their communication subnetwork. A typical example is the X operation which com-

putes the sum of a multi-set of values which are distributed over the various processors of the network.

A straightforward implementation of the X operation uses an arbitrary spanning tree and traverses
it from the leaves to the root. This scheme does not work if edges might fail. However, replacing each

message passing by a broadcast yields an O (n?) algorithm. An O(nlogn) algorithm is described below.

One of the nice properties of the = operation is that it may be carried out on any computation tree.
This alows one to choose the tree dynamically. In genera, this tree will be different from both S and

T. To this end, we need an operation caled split, which is initiated by the root, takes an argument

-12 -

1<i < n and yields the following two subtrees:

S ={(u,v) OS Og(u)sg(v)<i}
Ti ={(uv) 0T Og(v)zg(u)>i}D{(s.t)}.
The split operation has an interesting distributed implementation:
(1) The number i is broadcasted on both S and T. Therefore, every processor will eventualy get the

message even if a single edge fails.

(2) By inspecting g(v) and comparing it to i every processor v can decide whether it belongsto § or

to Ti-

(3) By inspecting the st number of its neighbors, every processor v 0 § can decide which of its
neighbors also belongs to §. In particular, v can decide whether it is a leaf of §. (The same

appliesto T;.)

Note: This algorithm assumes that each vertex knows the st number of its neighbors. This may be

accomplished in O (n?) message passings (see section 5.2).

Let 2(R) denote the > operation applied to the tree R. Z(R) is implemented by traversing R from

the leaves to the root.

When the root initiates a split (i) operation, each vertex finds out to which tree it belongs, and the
leaf vertices (of both trees) initiate the Z operation. Since § and T; are edge-digoint, either 2(§) or
2(T;) or both terminate successfully. Moreover, the root knows which operation succeeded. If both
operations succeed then the root can compute X since X = Z(§)+2(T;). Since the root cannot know
whether both operations will succeed, it cannot wait for the second operation to terminate, and therefore

it should continue immediately after receiving the first result.

To compute Z of the entire network, the root proceeds in a binary search fashion: Initialy, the
root has the value of Z(T,)=0 and that of X(S,).
begin

i =1, j:=n;
Rs = %(Sy); Ry :=0;

-13 -

whilei < j do begin
m=m) ;J 0
split(m) and initiate 3(S,,) and (T,y);
wait until 2(S;) or 2(T,,) finishes;
if 2(Sy) finished first then begin
i :=m+l; Rg :=thevalue of 3(S,) end
else {Z(Ty,) finished first} begin
j ==m; Ry :=thevaue of ¥(T,) end
end;
return (Rs + Ry)
end

Theorem 5: The algorithm computes > in O (nlogn) message passings.

Proof: First note that for all m either 2(S,,) or Z(T,,) succeed. Thus the algorithm does not wait for-

ever.

Next, let jo be the last time X(T,,) has succeeded. From then on m< jo and 2(S,) succeeds.
Thus in each iteration m increases. The algorithm terminates when i =m+1=j .
Each iteration requires O (n) message passings. There are O(logn) iterations since each time j —i

decreases by a factor of 2.

The above scheme has further applications than the X operation. For more examples see [Shr].
7. EXTENSIONS

7.1. The k-Tree Protocol for Edges

Some of the previous results can be extended for more than two trees to obtain algorithms resilient
to the faillure of more edges. Obvioudly, the edge-connectivity of the network is an upper bound.
Namely, if the edge-connectivity of the network is exactly k then there exits no communication protocol
resilient to the failure of k edges. On the other hand, broadcasting is k—1-resilient, though inefficient in
terms of communication and memory. As before we restrict the communication to trees to obtain more

efficient algorithms.

-14 -

Definition: A graph G satisfies the k-Tree Condition for Edges if for all vertices r there exist span-
ning trees T4, - - -, Ty such that for every vertex v and 1< i < j < n, the two tree-paths T; [v] and T, [v]

fromv to r are edge-digoint.

We have not been able to generalize Theorem 3 to k>2 and we state it as a conjecture

The k-Tree Conjecture for Edges: If G is a k-edge-connected graph then G satisfies the k-Tree

Condition.
The converse, a counterpart of Lemma 1, is easy.

We now show some weaker results for k=3. The orientation theorem of Nash-Williams [NW] and
the branching theorem of Edmonds [Ed, T, Shi] show that every k-edge-connected graph has
[floork/2 rfloor edge-disjoint spanning trees. Thus k-edge connectivity implies the condition for

[floork/2 rfloor —1. The following theorem yields a stronger result ([floork/2 rfloor) for odd k.

Theorem 6: Every k-edge-connected graph has k spanning trees such that the remova of any

Ifloor%rfloor edges leaves at least one tree intact.

Proof: Let é be the directed graph obtained from G by replacing every undirected edge (u,v) by two
directed edges (u,v) and (v,u). é is k-edge-connected. Thus, by using the branching theorem of

Edmonds [Ed, T, Shi] we can find k edge-digoint spanning trees 'Fl, 1:2, ce 'Fk. Let Tq, Ty, - -+, Tg
be the corresponding trees in G. The theorem follows since every undirected edge belongs to at most

two of the trees.

There till is an advantage in using disjoint spanning trees since no edge will carry the traffic of
more than one tree, thus preventing possible congestion at that edge. The theorem implies that 3-edge-

connectivity is sufficient to obtain 1-resilence and 5-edge-connectivity is sufficient for 2-resilency.

If Tq, -+ T satisfy the k-tree condition then u can transmit a message to v using the following

k-Tree Protocol:

- 15 -

(1) u sends a message upwards to the root on all k trees.

(2) When the root gets a message from one of its children, it sends the message downwards on all k

trees.

Since every message is replicated k-fold at the root, in the case of no failures, v will receive a

message sent by u as many as k+k times (at most k times downwards and k times on each tree).

7.2. Vertices

Protocols resilient to the failure of a vertex cannot route al information through any single vertex
since when it fails the entire algorithm fails with it. However, efficient algorithms do exist for the spe-
cial case where there exists a vertex r (the root) which does not fail. The k-tree condition for vertices
and root r states that there are k spanning trees T4, ..., Ty, such that for al vertices v, the paths

Ti[v,r] (i=1,..,k) are vertex-digoint (T[u,v] denotes the path on the tree T from u to v).

The k-tree conjecture for vertices and a single root states that k-vertex connectivity implies that
for al r OV the k-tree condition for vertices and root r holds. For k=2 our proof for edges using the
st numbering proves the conjecture also for vertices. Zehavi [Z,ZI] has extended these techniques to
k=3. For k>3 the conjecture remains open. When the k-tree condition for vertices and root r holds we

may apply the k-tree protocol.

In the more general case when we cannot assume that any vertex is immune to failure we have not
been able to design an efficient protocol for k>2. For k=2 our construction for edges implies that for
any edge (s,t) there existstwo trees S and T rooted at s and t respectively, such that for every vertex
v, the paths S[v,s] and T[v,t] are vertex-digoint. For such S and T avertex u can transmit a message

to the vertex v using the following 2-Tree Protocol for Vertices:

(1) u sends a message upwards to the roots of both trees (the message on S is called the S message

and that on T the T-message).

(2) When s gets an S-message from one of its children, it sends the message downwards on S and

sends an additional copy, the S-message, on (s,t) to t.

- 16 -

(3) Whent gets a T-message from one of its children, it sends the message downwards on T and

sends an additional copy, the T-message, on (s,t) to s.
(49 When s getsa T-message it sends its downwards on S.
(5) Whent gets a S-message it sends its downwardson T.
As with edges, v will receive any message at least once and no more than five times.

As mentioned before we have not been able to construct algorithms resilient to the failure of ver-

tices since we were not able to overcome the following difficulties:

(1) In our model the processors cannot come to an agreement which depends on the course of the
algorithm [FLP].

(2) The agorithm might terminate prematurely because it started at a single vertex which failed before
sending any messages.

(3) When avertex fails, al the information stored there is lost.

(4) If avertex which is supposed to send a message fails, all the other vertices might wait forever for
that message.

Therefore, constructing reasonable models and devising algorithms for them remains an interesting open

problem.

-17 -

REFERENCES

[Ed]

[Ev]

[ET]

[FLP]

[IR]

[ILPR]

[L]

[LEC]

[NW]

[R]

[Shi]

[Shr]

[T]

[Z]

[Z1]

J. Edmonds, Edge disjoint branchings, in Combinatorial Algorithms, R. Rustin, ed., Algorithm-
ics Press, New York, (1972), pp. 91-96.

S. Even, Graph Algorithms, Computer Science Press, Potomac, Maryland (1979).

S. Even and R. E. Tarjan, Computing an st numbering, Th. Comp. Sci., 2 (1976), pp. 339-344.

M. J. Fischer, N. A. Lynch, M. S. Paterson, Impossibility of distributed consensus with one
faulty process, Proc. of the ACM Sym. on Principles of Database Systems, March 1983, pp.
1-7.

A. Itai and M. Rodeh, Covering a graph by circuits, Proceedings of the fifth colloquium on
Automata, Languages and Programming, Udine, Italy, (1978), pp. 289-299.

A. Itai, R. J. Lipton, C. H. Papadimitriou and M. Rodeh, Covering a graph by simple circuits,
SIAM J. on Computing, 10 (1981), pp. 746-750.

A. Lempdl, private communication.

A. Lempel, S. Even and |. Cederbaum, An algorithm for planarity testing of graphs, in Theory
of graphs, international symposium, Rome, July 1966, P. Rosentiehl, ed., Gordon and Breach,
N.Y., 1967, pp. 215-232.

C. &. J. A. Nash-Williams, On orientations, connectivity and odd vertex pairing in finite graphs,
Canad. J. Math., 12 (1960), pp. 555-567.

J. Reif, Depth first search is inherently sequential, Aiken Computation Lab., Division of Applied
Science, Harvard University, November 1983.

Y. Shiloach, Edge disjoint branching in directed multigraphs, Inform. Proc. Letters, 8 (1979), pp.
24-27.

L. Shrira, Ph.D. Dissertation, Computer Science Dept., Technion, Haifa, Israel, (1986).

R. E. Tarjan, A good algorithm for edge digoint branchings, Inform. Proc. Letters, 3 (1975), pp.
51-53.

A. Zehavi, Ph.D. Dissertation, Computer Science Dept., Technion, Haifa, Israel, 1986.

A. Zehavi and A. Itai, Three tree connectivity, TR #406 (1986) and TR #462 (1987), Computer

Science Dept., Technion, Haifa, Isragl.

- 18 -

