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Abstract

Valiant’s protocol for learning is extended to the case where the distribution of the exam-
ples is known to the learner. Namely, the notion of a concept class C being learnable with respect
to distribution D is defined and the learnable pairs (C, D) of concept classes C and distributions

D are characterized.

Another notion is the existence of a finite cover for C with respect to D. The main result is
that C is learnable with respect to D if and only if C is finitely coverable with respect to D. The

size of the cover is then related to the Vapnik-Chervonenkis dimension.

An additional property of the learning method is robustness, i.e., learning succeeds even if
part of the input is erroneous. It is also shown that if D is discrete then every concept class is
learnable with respect to D. The main concern of the paper is the number of examples sufficient
to probabilistically identify (or approximate) a concept — not the time needed to compute it.
Indeed, in some cases the function which associates a sample with a hypothesis is undecidable,

and even if it is computable the computation may be infeasible. The computational complexity
of the algorithms used for learning are considered only for discrete distributions.

1. Introduction:

In his seminal paper, Valiant [V1] provided a complexity-theoretic basis for learning
boolean formulae. He defined learnability by examples produced by an arbitrary distribution.
In this paper we consider a theory for learnability for particular distributions: We characterize

those distributions and concept classes which are learnable. In the above paper, Valiant gives two
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reasons for requiring that learning be possible for all distributions:
(1) To prevent coding the answer by a clever choice of examples.
(2) The distribution of the examples is unknown.

However, in many cases the distribution of examples is known and that distribution is
sufficient to prevent coding. Moreover, his definition excludes many natural concept classes,
which intuitively should be learnable. For that reason, Kearns et al. [KLPV] and Natarajan [N1]
also considered learning for particular distributions. However, each of these papers deals with
one particular distribution. We feel that in order to get a clearer understanding of learnability a

comprehensive theory for learnability for particular distributions is required.

Our results are more in the line of Blumer et al. [BEHW1]. Whereas, Valiant and others
([V1L,[PV],[V2],[V3],[KLPV]) concentrated on learning boolean formulae, Blumer et al.
([BEHW1],[BEHW?2]) considered arbitrary concepts. Using the Vapnik-Chervonenkis dimension
[VC] they give necessary and sufficient conditions for learnability. This dimension depends only
on the structure of the concept class (i.e., it is independent of the distribution). They show that a

concept class is learnable if and only if its dimension is finite.

Following the steps of Blumer et al., we consider learnability of arbitrary concepts; but
whereas in their context the distribution is unknown to the learner, we consider learnability in the
case where the distribution is known. We define the notion of "finitely coverable". This notion
plays a role analogous to the Vapnik-Chervonenkis dimension, i.e., a concept class C is learnable
with respect to a given distribution D if and only if it is finitely coverable with respect to D. (The
definitions of "learnability" and "coverable" appear in Sections 2 and 4.) In Section 3 we prove
that for any discrete distribution D all concept classes are learnable with respect to D. We give
necessary and sufficient conditions for polynomial learnability in this case. In Section 5 the
number of examples needed is related to the size of the cover, thus relating the size of the cover
to the Vapnik-Chervonenkis dimension. Moreover, in Section 6, we show that the learning is
robust (i.e., it succeeds even if part of the input is erroneous). Finally, in Section 7, we discuss an

open problem regarding learnability for a set of distributions.

As in Blumer et al. we are mostly concerned with the number of examples sufficient to pro-
babilistically identify a concept — not in the time needed to compute it (or an approximation).
Indeed, in some cases the function which associates a sample with a hypothesis is undecidable,

and even if it is computable the computation may be infeasible [PV].



2. Learnability for distribution D.

Following [BEHW1], let X be a set and D a distribution over X. A concept class over X is a
nonempty set Cc2X of concepts. For x=(x{, ..., x)eX' and ce C, the labeled | —sample of c is
given by sam.(X) = (<xy, I.(x1)>, - = ,<x;, I.(x})>), where I.(x;) equals 1 if x;ec and O other-
wise. The sample space of C, denoted S, is the set of all labeled /-samples of ¢ over all ce C and

all xe X! for all />1.

Let C be a concept class over X and H an algebra of Borel sets over X. Then Fy is the set

of all functions f :Sc—H. In the sequel we omit C and H when understood from the context.

Our model follows the functional model of learning as defined by Haussler et al [HKLW]).
Consider two agents, T (teacher) and L (learner): T (who wants to teach L a target concept c)
repeatedly picks, at random according to some distribution D, an element x from a set X and
sends L the pair <x, I.(x)>. L, after receiving sufficiently many examples, applies a function
f€Fcy to return the set f((<xy,I.(x1)>, - ,<x;, I.(x;)>)). (This function is not necessarily

computable.)

As in [BEHW1], throughout the paper we assume that X is a fixed set, which is either finite

or countable or E” (Euclidean r-dimensional space) for some r>1. In the latter case, we assume

that each ce C and he H is a Borel set.

Let Y;,Y,cX we say that Y| and Y, are e€-close with respect to the distribution D if
Prp(Y@Y,)<e (® denotes the symmetric difference). Otherwise, Y| and Y, are e-far with
respect to the distribution D. Notice that Prp(Y@Y,) is a pseudo-metric on the measurable sets
of X. Thus, in particular, it obeys the triangle inequality, Prp(Y®@Y3) < Prp(Y®@Y,) +
Prp(Y,@Y3).

Learnability for every distribution: [BEHW1] C is learnable in terms of H if there exists a
function fe Fy such that for every €,86>0 there is an / >0 such that for every D and every target
ce C if xe X! is selected at random by D then, with probability at least 1-3, f(sam.(X)) is a set -

close to c.

We now wish to extend the notion of learnability to sets which are learnable with respect to

a particular distribution D, thus in particular D is known to the learner.

Learnability for a given distribution D: C is learnable with respect to D in terms of H if there

exists a function fe Fy such that for all €,8>0 there is an [ >0 such that for every target ce C and

for xe X' selected at random by D, then with probability at least 1-3, f (sam.(X)) is a set e-close

to ¢. In this case, we say that f learns C with respect to D with accuracy € and confidence 8.
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3. Discrete Distributions.

A distribution D over X is discrete if X contains a countable subset Y such that
Y Prp({x})=1. (We shall abuse the notation and write Prp(x) instead of Prp({x}).) The fol-

xeY

lowing generalization of the Coupon Collector problem [F] will help us prove that learning with

respect to such distributions is easy.

Lemma 1: Let A, ...,A, be events each with probability greater than or equal to 1. Then in a
Iy

d

sequence of [ :%ln independent trials, the probability that every event occurred at least once

is greater than 1-9.
We now state

Theorem 1: Let X be a set, C some concept class over X and D a discrete distribution over X.

Then C is learnable with respect to D.

Proof: Since D is discrete, there are x;€ X for i=1,2,3,... such that )" Prp(x;)=1. Without loss of

i=1

generality, let the x;’s be ordered such that Prp(x;)2Prp(x;,1). For €>0 there is a k such that
Y Prp(x;)<e.

i=k+1

In(k/9)

Given 6>0 and [ >
rp(xg)

examples, then by Lemma 1, with probability greater than 1-0,

each element of {x;, - --,x;} must appear in the examples at least once. Thus any subset of

{x;:i=1,2,...}, consistent with the examples, is €-close to the target concept. M

Example 1: Let X=(0,1) and C be all open sets in X. Blumer et al. [BEHW1] showed that C is

not learnable for all distributions. However, for the distribution

1 1

— x=— for n21,
Pr(x) =< on 2n

0  otherwise
C is learnable. Moreover, we may use the following algorithm:

Given €,6>0, let N =| logl/e] + 1 and =] 2Nln%1 . For a sample of size /, choose any set

he H consistent with the sample.

" Throughout the paper In denotes the natural logarithm and log the logarithm to the base 2.



Note that Y Pr(i_)<8 and by Lemma 1, with probability at least 1-9 all data points 2L
i=N+1 ! !

for i=1, - - -, N are included in the examples. Thus with probability 1-9, & is e€-close to the tar-
get concept.

The following theorems show conditions for learning with a polynomial sample.

Theorem 2: Let X = {x;};=; be an infinite countable set, D a distribution over X, p>0 and
p; = Prp(x;) a monotonically nonincreasing sequence. If p; = O (i ~B+Dy then any concept class

C over X is learnable with respect to D by a sample whose size is polynomial in 8! and €' (the

confidence and accuracy parameters).

Proof: Define R, = Y p;, for any k, and b satisfy p;<b/ i ®*D_ Then
i=k+1

oo

> T —b 1
RkaZi_(B+1)SbJ£=__ :L<£’
i=k+1 & x P! B kP . BB 2
1/B
forkzlr b —I - o/ 177,
Be/2 €
Claim: There exists m<k such that R, <¢ and p;>€&/(2k) fori=1,...,m.

Proof: If py=>¢/(2k) we are done. Otherwise, let m be the (unique) index satisfying R,,< €<R,,_;.
Since R, <¢e/2,

k €
Xpi=Ry-1 —Re >

i=m

Since the p;’s are nonincreasing, p1 2 p, = -+ 2p, =max{p,,,...,pr} > m > %
To finish the proof of the theorem, for a sample of size [ = [ 2ke'In(md™")] =

o (7Y B)loge_1 logd™"), the learning function returns any hypothesis consistent with a sample.

Let A; (i=1,...,m) be the event that x; is chosen (in a sample of size 1). By the claim,
Prp(A;) 2 €/2k. By Lemma 1, with probability greater than or equal to 1-9, all the elements of
{x1,...,x,} appeared in the sample, thus the hypothesis agrees with the target on a set of proba-

bility greater than 1—¢. ]

Note that the only computation involved is that of finding the hypothesis from the sample.

If this can be done in polynomial time then the entire learning process can be conducted in



polynomial time.

Theorem 3: Let D be a distribution over an infinite countable domain X, and ,56>0. If for all
i22, Prp(x;) 2 b/(i 1InP*1}), then there exists a concept class C over X such that any learning func-

tion that learns C with accuracy €<(b/B)’ and confidence & = ' requires at least | exp(e™!/ (ZB))J

many examples.

Proof: Let C consist of all finite subsets of X. A learning function can learn C with confidence

d = ' only if the probability of the points of the sample is > 1 —€.

After seeing [ >1 points the probability of the points not seen is greater than or equal to

oo

o > b T b T b b b
Ri=Y Prp)> ¥ > dx = dy = R
i=l+1 i=i+1 0P 3 xInPlx in(+1) yP*! ByP masn  BINP+D)
If 1< exp(e/®®)| then I < | exp(e”/®®)| -1 < exp(e™/®®)-1 and InP(I+1) < €. Thus
Rp%\/EZS. 0O

Note that even larger lower bounds are implied when the probabilities converge more
slowly (e.g., p; = G(I/ilni(lnlni)ﬁ“) implies a double exponential lower bound). Theorem 3
shows that when the probabilities converge slowly, we cannot always learn with a polynomial
number of examples. The fast convergence is a sufficient, not necessary condition. In some cases
(such as when the concept class consists of two disjoint concepts) a concept class can be learned
with a polynomial number of examples even if the probabilities converge very slowly. (See sec-

tion 5 for a characterization.)
4. Finite covers.
The following definition is analogous to the Vapnik-Chervonenkis dimension [VC,

BEHW1] in the sense that it characterizes learnability.

Finite cover: Let >0, a set H, <2X is an e—cover of C with respect to D if for every ce C there
is an he H, e-close to c. C is finitely coverable with respect to D if for every €>0 there is a finite
e-cover of C (the size of the cover may depend on €). In the sequel we omit D when understood

from the context.

The cardinality of a smallest e-cover of C with respect to D is denoted by n=np(C,¢).

Example 2: Let X be the closed segment [0,1] and D be the uniform distribution over X. For

every i>1 let O; consist of all open segments of length 2. The concept class C, consists of

6



n
concepts of the form c=|_jo; where 0;€ O; and 01, . . ., 0, are pairwise disjoint. Finally, the con-

i=1

cept class C=(C,.

n=1

Claim: C is finitely coverable with respect to D.
(i-1e i€

2[loge™'] 2[loge™']

Proof: Let s;(e)=[ ], and H consist of all possible unions of the s;(€)’s.

n .
Every concept ce C,, has length Y'27'=1-2"" and this is also its probability. If n> loge™!,
i=1

then Pr(c)>1-¢, thus c is e-close to (and thus €-covered by) the segment [0, 1], which belongs to

H ¢ since it is the union of all the s;(€)’s.

1

n
_ . . €
For n<loge ", then there exist 04, .. .,0, such that 0;€ O; and c=_ jo; and each o; is —-
n

i=l
close to a union of s;(€)’s. []
The following lemma shows that we may assume that C is covered by concepts.

Lemma 2: C is finitely coverable with respect to D if and only if for every €>0 there is a finite

subset C, of C which is an €-cover of C with respect to D.
Proof: If C is finitely coverable, let €>0 and let 4y, - - - ,h, be a minimum %—cover of C. Then
for every h; there is a concept c; € C such that c;, is %—close to hj. It is easy to show that

¢j,» " ,c; isan g-cover of C. The other direction is trivial. []

Lemma 3: Let C be a concept class, D a distribution and €>0. If there exist pairwise &-far con-

€
cepts, cq, - -+ ,c,€ C, then every 5—cover of C has at least n elements.
€ . €
Proof: Let H/, be an 5—cover and fori=1,...,nlet e Hy/p be E—close to ¢;. Because of the
triangle inequality, no 4; can be close to more than one c;. Therefore, iy, . . ., h, are distinct, and
the cardinality of H/, is greater than or equal to . ]

Lemma 4: Let C be a concept class, D a distribution and €>0. If every €-cover of C has at least

n elements then there exist pairwise e-far concepts cq, * - ,c,€C.
Proof: We show by induction that for every i<n there exists a set S; of i &-far concepts.
Basis: i=0 — trivial.

Induction Step: Let S;_; ={cy,...,c;_1} consist of pairwise e-far concepts. Since i —1<n, S;_; is



not an &-cover, and there exists a concept ¢;, &-far from every c;e §;_;. Define S; = §;_j\U{c;}. [

Lemma 5: C is not finitely coverable if and only if for some €>0, C contains an infinite sequence

of pairwise €-far concepts.

Proof: Assume C is not finitely coverable, we construct an infinite sequence {cq,c,, - -} of
pairwise e-far concepts where c; is constructed from {c,c,,...,c;_;} as in the previous lemma.
The other direction follows from Lemma 3. ]

Let C be a concept class which is finitely coverable with respect to distribution D. Then the

following is a learning function for C with respect to D.
The best-agreement-learning-function:
Input: [ examples, (<xq, I.(x1)>, -, <x;, L.(x;)>).

(1) Let E; be the maximum integer such that 54E;In(E;np(C, ﬁ)) <L
1

(2) LetB={b, - ,by} be aminimum ZLEZ_COVCr of C,soN = nD(C,ZLEZ).

Output:  Any b; such that the cardinality of {x; : 1<j<l, I.(x;)#l,,(x;)} is minimum (among the

N elements of the cover B).

To show that this learning function indeed learns, we need the following technical lemma,

Lemma 6: Let A be an event of probability at most p and B an event of probability at least g, for
some 0<p<g<1. Consider a sequence of / independent Bernoulli trials.

(i)  The probability that A occurred [ [(2p+¢)/3] times or more is at most exp(=L(g—p)>/27p).
(ii) The probability that B occurred | I(p+¢)/2] times or less is at most exp(— (g —p)z/ 89).

Proof: Follows from the Chernoff inequalities (e.g., proposition 2.4 from [AV]): For all n,p, 3
with 0 <p<1, 0<P<]
n
Y (O =p)y T <exp(-Bnp/3).
k=[ (1+B)np]
L A-Bynp)
(P (1=p)"™* < exp(-B*np /2),

k=0

0

Theorem 4: Given a set X, a finitely coverable concept class Cc 2X and a distribution D over X,



the best-agreement-learning-function learns C with respect to D.
Proof: Since E; is a monotonically non-decreasing unbounded sequence it suffices to show that

on [ examples, with probability I—EL, the output of the best-agreement-learning-function is
I

1
—-close to c.
1

Let B={by, - - - ,by} be the %—cover of C found while evaluating the best-agreement-
1

learning-function. Without loss of generality, let bye B be %—close to the target concept c,
1

and b, - - -,b,, the EL—far elements of B. Clearly, m<N-1.
I

. | . . . .
Since by is E—close to ¢ the expected number of examples inconsistent with by (i.e.,
1

belonging to ¢®by) is less than or equal to [/2E;, while for 1<i<m the expected number of exam-

ples belonging to c¢®b; is greater than or equal to I[/E;. We will show that the returned value is

indeed as indicated by the expectations, namely, with probability at least I_EL’ c®by contains
!

less examples than any c¢®b; (i=1, - - - ,m). Thus with probability at least I_EL the algorithm
1
does not choose any of these b;’s.

Let o be the event that at least | %ELW examples belong to by®c and for i=1, - - - ,m, let
I

B; be the event that at most | %ELJ examples belong to b;®@c. If any b; (i<m) was chosen then
!

either o or some 3; must have occurred.

Let A be the event that an example xe c®by, B; the event that xe c®b; then define

2
D= PrD(A)Sﬁ and g; = PrD(B,.)in. By Lemma 6(i), Pr(o)) < exp{_Lp)l} <
! !

27p
(1/2E))*1 1 1
exp| - — " | =exp| ———| <exp|———=54E/]In(NE))| £ —.
(27/2E)) 54 E 54E, !
2
i —)21 -
Since 27> L by Lemma 6 for i<m, Pr() < expl- 1200 < exp(- 1L <
g 2 8¢, 16
exp(= ) < L Thus, the probability that for some i <m, b; is chosen is less than m+1 <
32E, NE, NE,



1

E

Notes:

(1) If m<N-1 then there are some elements b, ., " -,by_; in B such that

iSPr (c (-Bb,-)<EL. The function may prefer one of them over by .

l 1

(2) The naive algorithm, that returns some concept consistent with the examples, does not
necessarily learn. For example, let X = [0,1], D be the uniform distribution and C consist
of the set [0,1] and all finite sets. If the target concept is [0,1], then for any sample
sam 11(X) = (<x1,1>,...,<x;,1>), the finite set {x;,...,x;} is consistent with the sam-
ple but not e-close to [0,1] (for any €<1). Note, however, that {&, [0,1]} is an e-cover (for

all €>0), and thus C is learnable with respect to D.
Let C be a concept class, D a distribution, €,6>0 and fe F. Then the sample size required by f to
learn C to accuracy € and confidence 8 , denoted by lé(s, 9), is the minimal number / such that

for every ce C, if xe X' is selected at random by D then, with probability 1-8, f (sam,(x)) is a set

e-close to c.

Lemma 7: Given a set X, a distribution D over X, a concept class Cc2¥ and 8,e>0. If there

exists a set C,. X of n pairwise 2e-far concepts, then for every fe F, lé(e,S)Zlog((l—S)n).
Proof: Let fe F learn C with respect to D with accuracy € and confidence 8 using sample size /.

For x=(xq, ---,x;) and L=(Lq, ---,L))e {0,1}1 define I(x,L)=(<x{,L{>, - -,<x;,L;>). For

ceCande>0 let

g/c,x,L,g) = 1 if Prp(f (I(x,L))®c)<e
0 otherwise.

Let I gr(c,x,1.(x),€)dPp be the expectation over x of the random variable gy with respect to

X

the [-fold distribution of D. Consider the sum

S=Y [gfc.xI.(x).8)dPp

ce Coex

Since flearns C to accuracy € and confidence d using sample size /, I gr(c, x,1.(x),8)dPp>1-3 for
X

each ce C, and we get

10



S>(1-0)n. (1
Rearranging the sum yields:

S=Y [glexl®.0)dPp< Y [ Y glexLedPp=[ ¥ ¥ gflc.x.LedPp .
ceCoe X ceCae X Le {0,1}' X Le{0,1} ceCoe

Since the ce C,, are 2e-far, for every x and L there exists at most one ce C,¢ such that

gs(c,x,L,&)=1. Thus,

— l _nl
S<[( Y DapPp=[2'arp=2'. @)
X Le{0,1}' X
Combining (1) and (2) yields [>log((1-d)n) . ]

Theorem 4, Lemma 5 and Lemma 7 yield our main result,

Theorem 5: C is finitely coverable with respect to D if and only if C is learnable with respect to
D.

Note that the definition of learnability does not imply computability. However, if there is
an effective procedure Q that given D and € outputs a finite €-cover for C and C is recursive, in
the sense that there is a recursive function ¢ that given ce C and xe X determines whether xe ¢ (it
suffices that ¢ be defined only on members of the cover), then there exists a computable learning
function. Furthermore, if Q requires polynomial time, then the size of the €-cover is polynomial
-1

in € . If, in addition, ¢ is also polynomial time computable, then the time complexity of the

learning algorithm is polynomial (in 8, €', and the cumulative size of the examples).

By Lemma 2 if C is learnable (with respect to D) then there is a function that learns C and

whose values are concepts (members of C).
5. Finite dimension and the size of the cover.

We now present an interesting connection between the size of the cover and the Vapnik-
Chervonenkis dimension of the concept class. First we quote a result presented in [BEHW1] and

then relate it to the present work.

Let T={(xy, ..., x,)} be a subset of X. A concept class C2* shatters T if for every subset
T’ of T there is a concept ce C such that Tne=T". Also, dim(C)=d if there is set of d elements of
X shattered by C and there is no set of d+1 elements shattered by C. If no such d exists, C has
infinite dimension. The main result of [BEHW1] is that C is learnable for every distribution if

and only if dim(C) is finite, namely

11



Theorem 6: If d=dim(C)>2, 0<e</>, 0 <d<I1 then there is a function that learns C for every

well behaved distribution” using 0(%ln% + %ln%) examples.

Recall that np(€) is the size of a minimum €-cover of C with respect to D. Using Theorem

6 we are able to relate the size of an €-cover to the dimension.

Theorem 7: Let C be a concept class of finite dimension d=>2. Then the following relations hold:
(1) There is a distribution D such that nj (%) >| logd | .

(2) Ife<1/(2d) then there is a distribution D such that np(g) > 2¢.

(3) There exists a constant k such that for every 0<e<’ and every well behaved distribution D,

np(e)<e I¥E,
Proof: Let T={x,,..., x;}cX be shattered by C and let D be the uniform distribution over
{)C], ey Xd}. Le.,

L xe{x Xq}
Pr(x)=< d e id

0 otherwise

Fori=l,...,[logd| let T; = {x;: the i-th bit of jis 1}. Since T;cT and T is shattered by C, there
exist concepts c;€ C such that Trc; =T;. It is easy to see that the ¢;’s are /2-far from one

another, thus proving, by Lemma 3, the first inequality.

. 1 .
On the other hand, every two distinct subsets of 7" are at least g-far with respect to D.

Since T is shattered by C there are at least 2¢ concepts %-far from one another, which by Lemma

3 proves the second inequality.

For (3), by Theorem 6, for every distribution D and €>0, C is learnable with accuracy €/2

’

and confidence Y2 using /(e/2,'2) < Kd

log% examples. By Lemma 4 there is a set C of np(€)

pairwise e-far concepts. By Lemma 7, log((1-"2)np(€)) < 1(e/2, Y2). Therefore, np(€) < gIn/e,

where k=K'+1 . I

f The notion of well behaved distributions is discussed in [BB] and [BEHW].
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6. Learning with errors.

The output of the best-agreement-learning-function, presented in the previous section, is not
necessarily consistent with the labeled sample presented as input. This fact suggests that the

algorithm is robust, i.e., learning is possible even when some of the input contains some errors.

More precisely, let 0<{<%> be the probability that the label of a certain example is wrong.
We assume that the errors are independent. In particular, the same data point, if repeated, may
have different labelings. Let ce C be the target concept and x& ¢ be some data point that, during
the learning process, was randomly chosen several times. In an error free labeled sample the
label of x must always be .(x) (in this case 1). When independent errors are present the label of
x can be 1 for some occurrences and O for others, thus the sample may become inconsistent. This
can happen, for example, if the communication channel between the teacher and learner induces
some random errors or if the "teacher" is a human expert making human errors or random meas-

urement errors Occur.

Even in this case the best-agreement-learning-function can learn C if it is provided with more

examples.

Theorem 8: Let C be a finitely coverable concept class, D a distribution and 0<{<”> be the pro-
bability of error in the examples. Then the best-agreement-learning-function learns C with
1= 7541[1(1\//6)1 examples.

e?(1-20)?
Proof: The proof is similar to that of Theorem 4. Let by,...,b,,,...,by be as defined there and p
the probability that a single example x of ¢ is inconsistent with by. There are two possibilities for

this to happen:
(i)  When the label of the example is correct and I.(x) # I}, (x).

(i1)  I.(x) =1 (x) but the label is incorrect.
Since by is €/2-close to c,
€ €
< —(1-0)+{(1- =
p <=0 +E0-2),

where the two terms correspond to cases (i) and (ii) respectively.

Similarly let g be the probability that a single example x of c¢ is inconsistent with some b;

for 1 <i < m. Since b, is e-far from c, the above considerations yield

g =e(1-0) + (1-e)C.
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Note that p < %(1—2@) +Cand g >e(1-20) + ¢ .

Let o be the event that at least f(%e(l—ZC) +{)I] examples belong to by @ ¢ and for

i =1,...,m let B; be the event that at most \_(%8(1—2@) + ()l examples belong to b;® c.

As in Theorem 4, we get by Lemma 6 (and the observation %(1—2§)+C<%) that

Pr(a) <0/N and Pr(B;) < 8/N. Therefore, the probability that some b; is chosen is less than
(m+1)8/N < §. i

Using similar techniques Angluin and Laird [AL] have independently constructed an algo-

rithm that learns, (for every distribution) finite concept classes from examples containing errors.

7. Conclusions

In this paper we have extended the notion of learnability and have shown how concept
classes which were not learnable by previous definitions became (robustly) learnable. We found
a general theorem that enables us to decide whether a concept class is learnable. We show that in
the limit, learnability for all distributions, our condition is equivalent to the finite dimension con-
dition presented in [BEHW1].

Open problem: Can learnability be generalized (possibly robustly) for a set D of distributions?
We discussed two extreme cases: 2 is a singleton and D consists of all distributions. Two other
cases are quite obvious: if D is finite this is analogous to the case where D is a singleton; if D is
the set of all discrete distributions, this is analogous to the case where 9 consists of all distribu-
tions. We conjecture that a concept class C is learnable with respect to a set of distributions D if
and only if there is a function n4(-) such that for every €>0 and every distribution De D, C is
finitely coverable by at most n ,(€) sets. The difficulty arises from the fact that for different dis-
tributions there may be different covers and not all concepts consistent with the examples are
close to one another. Natarajan [N2] gave two conditions, one of which is sufficient and the other

necessary.

The notion of learnability can be also extended by considering non-uniform learnability,
i.e., learning when the number of examples needed depends on the target concept. Further results

in this direction appear in [BI].
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