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ABSTRACT

We study the problem of distributed leader election in an asynchronous complete net-
work, in presence of faults that occurred prior to the execution of the election algorithm.
Failures of this type are encountered, for example, during a recovery from a crash in the net-
work. For a network with n processors, k of which start the algorithm and at most ¢ processors
may be faulty, we present an algorithm that uses at most O(n log k +k t) messages. We prove
that this algorithm is optimal. We also present an optimal algorithm for the case where the
identities of the neighbors are known. It is interesting to note that the order of the message
complexity of a t-resilient algorithm is not always higher than that of a non-resilient one. The
t-resilient algorithm is a systematic modification of an existing algorithm for a fault-free net-
work.

Index Terms: complete networks, distributed algorithms, election, fault-tolerance, message
complexity.

'A preliminary version of this paper appeared as IBM research Report RC 12177, September 1986.

2 Part of the work of this author was done while visiting IBM Thomas J. Watson Research Center.



1. INTRODUCTION

The problem of leader election in asynchronous distributed systems has been widely stu-
died (e.g. [G, L77]). In this problem it is required that the nodes cooperate to elect one of them
as the leader. The election problem, and the related spanning tree construction problem, are
fundamental in many distributed algorithms, and have been studied for various models and cost
measurements in reliable networks. Real systems, however, are subject to faults of different
types, and this paper focuses on unreliable networks. A t-resilient algorithm is an algorithm
that finds a leader when at most 7 nodes are faulty. In this paper, we develop t-resilient election
algorithms. We believe, however, that our main contribution is to the understanding of the

methods for making algorithms #-resilient.

The fault-free model consists of a distributed complete network of n identical processors,
k of which start the algorithm spontaneously. Each processor has a unique identity, but no pro-
cessor knows the identity of any other processor. Every pair of processors are connected by a
bidirectional communication line. The network is asynchronous (the time to transmit a mes-
sage is unpredictable). The processors all perform the same algorithm, that includes operations
of (1) sending a message over a link, (2) receiving a message from a pool of unserviced mes-
sages which arrived over links, and (3) processing information locally. A node which does not
start the algorithm spontaneously, joins the algorithm when it receives a message for the first
time. We view the communication network as a complete undirected graph, where nodes
represent processors and edges represent communication lines. To evaluate the efficiency of an
algorithm, we use the usual measure of the maximal possible number of messages transmitted

during any execution (see e.g. [GHS83]). Each message may contain at most O (log Max_id)



bits, where Max_id is the highest identity of a node in the network.

Note that the above assumptions are quite reasonable. Although in real-life networks not
every two nodes are connected by a direct dedicated link, they are still connected somehow via
the network. Moreover, in some networks the cost of routing a message between two nodes is
about the same as that of a one-hop message, as long as the route between these nodes is
known in advance. This route need not consist of identities of nodes. Instead, it may consist of
numbers of links. Thus, it is also reasonable to assume that a node does not know the identities
of its neighbors. We assume that each communication line satisfies the FIFO discipline. Note
that this discipline can be achieved by using acknowledgements; i.e., a node sends a message

on a line only after receiving an acknowledgement for the previous message sent on this line.

Consider the possibility that some nodes in the network may be faulty. A faulty node is a
node which never transmits a message, and every message transmitted to it is lost. For the gen-
eral case where nodes can fail during the execution of an algorithm, no deterministic election
protocol exists [FLP85, MW87]. Other types of failures are also hard or impossible to cope
with [F83, FLMS85]. (Fortunately, reliable hardware equipment makes failures of the most gen-
eral type quite rare [G82].) Thus, additional assumptions are needed. These include, for exam-
ple, knowledge about synchrony in the network [G82], its topology [KW84, SG86], or its size
[SG86]. In our model, all faults are assumed to have occurred prior to the execution of the

election algorithm (see also [BKWZ)).

An [n/2] —1-resilient consensus algorithm for a complete network is presented in

[FLP85]. O(n?) messages are sent in any execution of this algorithm; however, since most



messages contain O (n log Max_id) bits, the bit complexity is O (n> log Max_id) and the mes-
sage complexity, in terms of our model, is 0(n3) (our result implies an O (nz) for this case).
An O (nlogn) upper bound for 1-resilient election in a ring (where neighbor identities are
known and only an edge may fail) is found in [SG86]. The problem of designing resilient algo-
rithms for graphs other than rings (using less than O (n m) messages), and for more limited

types of faults, is given there as an open problem.
We modify the election algorithm of [AG84], obtaining a t-resilient election algorithm

(for any t< %). The resulting algorithm uses at most O (n logk +k t) messages during any

possible execution, where k is the number of nodes that started the algorithm. This bound is
proved to be the best possible. Our algorithm improves on existing resilient algorithms (for the

same fault model) in terms of message, bit, space and computational complexity measures (see
last section of [FLP85], and [KW84]). Note that when ¢ is O (%) the message complexity
is O (n logk), as in election algorithms for reliable networks [KMZ83]. On the other hand, for

> 9(%) the message complexity of every z-resilient algorithm is higher than the mes-

sage complexity of election in reliable networks. We also present an optimal algorithm for the

case where the identities of the neighbors are known.
2. DESCRIPTION OF THE ALGORITHM

Leader election algorithms usually are viewed as each processor starting the algorithm by
being its own king, and the algorithm advances by processors surrender to one another, and

agreeing on a unique leader. Each processor knows, at any given time, the edge leading to its



current king; in other words, it might belong to certain ’kingdoms’ during the execution of the
algorithm. Each king contains certain information about its kingdom; this information contains

at least the size of the kingdom.

These election algorithms can be thought of as foken algorithms. Taking this point of
view, every processor that starts the algorithm sends a token (carrying its name), that traverses
the network, in an attempt to ’kill” all other tokens in the network. In the presence of faults, we
extend this idea and use more than one token per processor; More precisely, in the presence of
at most ¢ faulty processors each processor sends 7+1 tokens, in order to insure that at least one
of them will be processed. Most decisions are done locally (without consulting the temporary
leader), and contradicting actions are prevented by the following method: A token of processor
A acts according to the global information it has about the state of A; Thus A must be consulted
only when this information does not suffice to make the decision. This information is the iden-

tity of A and a bound on the size of the kingdom of A.
We now present the algorithm that elects a leader in a complete network with n nodes, at
most ¢ of which may have failed (¢ < %). The algorithm is a modification of the simple algo-

rithm of [AG84], which elects a leader in a reliable complete network. We first describe the
algorithm of [AG84]. In this algorithm some nodes are candidates for leadership, called kings.
Each king tries to annex other nodes to its domain (initially containing only itself). An
annexed king ceases to be a king, and stops trying to annex other nodes, but those already
annexed by it remain in its own domain. The size of a node is the size of its domain, which is

initially 1 if the node awakes spontaneously, and O otherwise. The value of size may only



increase. The size and identity of node A are denoted by size_A and id_A, respectively. A node
may belong to several domains, but it remembers the edge leading to its master, that is the last
node by which it was annexed (a node that has not been annexed by another node is considered
its own master). Each node also remembers (highest.size, highest.id), the highest pair
(size, id) known to it (as long as it is a king, this is the value of its own pair), and the communi-
cation line from which it was received. As explained above, the algorithm is described as if
each king owns one foken, which is a process representing it, and carrying its size and identity.
In order to help the explanation it carries also an additional message, which is one of the fol-

lowing:

a. A join message, originated by the node that owns the token.

b.  An accept message, originated by a node that was annexed by the token.

The t-resilient algorithm will also use the following message:

c.  Areject message, originated by a node that refused to be annexed by the token.

In order to annex a neighbor B, the token of a king A is sent from A to B with a join mes-

sage. The token proceeds from node B to B’s master C, which may be B itself.

The following actions taken by the token depend upon (size_A, id_A) and the information

found at C and at B.




does not join A’s domain.) The token returns to node B. If by now a token of another
node D has passed B and therefore (highest.size_B, highest.id_B) > (size_A, id_A), then
the token (of A) is killed. Otherwise, B joins A’s domain, and the token returns to A with
an accept message, and size_A is incremented (by 1).

Case 2.  ((size_A, id_A) < (highest.size_C, highest.id_C):

The token is killed.

A token that returns safely repeats the process of attempting to annex a new neighbor.

The algorithm terminates when the token of a node A notices that size_A = n.

We now present our algorithm. Each processor may be either a king, in states
king_search, king_battle or king_defeated, or a subject, in states subject relay or

subject_waiting. The possible changes of states is depicted in Figure 1.
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Figure 1: The states of a processor

The messages are of four types: join, accept, reject or leader. Each king owns 7+1
tokens that are initially sent to different neighbors. The algorithms is message- driven, in the
sense that each processor, after sending its first messages, waits until any message arrives at the

pool, fetches any of these messages, and its reaction to this message may be doing some local



computation and sending other messages, and so on. To simplify matters we assume that a
message that is sent to a processor eventually arrives at the pool, and the scheduler is fair, in
the sense that each message in the pool is eventually read (for example, a round-robin
scheduler); this assumption is made because, in certain cases, when a message is read, the pro-
cessor decides to return it to the pool of messages, thus without this assumption this message
could possible be read infinitely. Though this situation can be easily avoided by the processor
(actually, simulating some kind of a scheduler via its local data structures), we believe these

details can be left to the reader.

We now present the algorithm to be performed in processor A.

States:
king_search, king_battle, king_defeated, subject_relay, subject_waiting.

Messages:
(join, id, size, hop_length)
(accept, id)
(reject, id, size_B, id_B).

Data structures:
Each processor A has a pool of unprocessed messages,
variables: id, size, state, master, waiting_edge.

procedure surrender(id_B, e);
begin
state := subject_waiting;
master := e,
send (accept, id.B) on e
end.

procedure response(id.B,size_B,hop_length, e);
begin
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if (size, id) > (size_B, id_B) then send (reject, id_B, size, id) on e
else if hop_length = 1 then surrender(id_B, e)
else begin
send (accept, id_B) on e;
if state= king_... then state:= King_defeated,;
end;

end.

Program for processor A

begin
Initialization:
size := 1;

on k+1 edges send the message (join, id, size, 1);
state := King_search;
master = nil;

while the pool contains a message m from edge e
do begin
case state of
King_...:
m = (accept,id) and (state = King_search or (state = king_battle and e = waiting_edge)):
size := size + 1;
if size > n/2 then send a leader message to all processors {you are the leader}
else send (join, id, size, 1) on a new edge.

m = (join, id_B, size_B, hop_length):
{Invariant:id # id_B}
response(id_B,size_B,hop_length,e);

m = (reject, id, size_B, id_B):
if (size, id) < (size_B, id_B) then state := king_defeated
else if szate = king_search
then begin
send (join, id, size, 1) on e;
waiting_edge := e;
state := King_battle
end
else if state = king_battle
then begin
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return the message to the pool of
messages;
end;

subject_relay:
m = (join, id_B, size_B, I):
send (join, id_B, size_B, 2) to master;
state := subject_waiting;
waiting_edge := e;

m = (join, id_B, size_B, 2):
response(id_B,size_B,hop_length,e);

subject_waiting.
m = (accept, id_B) or (reject,id_B, size_C, id_C):
send m on waiting_edge;
state := subject_relay;
if message_type = accept then master := waiting_edge;

m = (join, id_B, size_B, 2):
response(id_B,size_B, *,e);
end.

3. PROOF OF CORRECTNESS
In proving the correctness of the protocol, we consider a given execution of the algorithm.

The following facts follow immediately from the protocol and our assumptions about the
model:

(0) If anode B has a master then both B and its master are non-faulty.

(1)  When a king becomes a leader, it sends a leader message to all processors, who subse-
quently terminate the algorithm.

(2 The algorithm is message-driven, thus, after the sending of the first messages, the opera-
tions taken by A between fetching one message and fetching the next one can be regarded
as one atomic operation. Moreover, as explained above, each message is eventually read
by the processor.

(3) The result of such an atomic operation might be suspending of this message, which results
in returning the message to the pool. (Note: in some of the cases where we suspend mes-
sages we could actually destroy them, but we decided to leave it this way in order to sim-
plify matters.)
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(4) A subject A in state subject waiting suspends the message (join,id_B,size_B,1). The
reason for this is that A has already forwarded a message to its master, so it waits for a
response (which might be the change of its master’s status, or even the change of its mas-
ter) before it transmits more messages.

(5) A king in state king_battle suspends an accept message (unless it belongs to its current
war), and a reject message from a processor with higher status (which might cause a new
war later).

(6) A king in state king_defeated suspends all its own messages (accept or reject; actually,
they could be destroyed).

(7) A subject in state subject_relay and a king in state king_search do not suspend any
message.

Lemma 2: Let A be a king which started a war with some node C as one of its tokens returned
with a reject message from some node B.

(1) The war eventually terminates, with no additional messages sent from A to B.

(2)  When the war terminates such that A does not receive a leader announcement, either A’s
status becomes subject_waiting, or this token returns from B with an accept message,
causing size_A to be incremented.

Proof:
(]

Lemma 3: Let A be a king at any time T during the execution. Eventually either A receives a
leader announcement message, or one of the tokens sent has returned.

Proof: Following fact (1) we assume that no leader message is sent during the execution. at
time T, consider for each king the last token that has been sent (and not yet returned) in state
king_search to a non-faulty processor, and consider the set T of all such tokens. Each token
in T carries the values size nad id of its sender, and these values are clearly totally ordered. Let

size_A,id_A)=r‘£1a¥(size_V, id_V). If this token of A arrives at a node B, it will eventually be
€

treated by B (see fact (2)). When this is done, B might be either in a king state or in a subject
state.

Case 1: Bis in a king state.

The token is returned to A (by facts (5),(6) and (7)).
Case 2: B is in a subject state.

Both B and its master are non-faulty (fact (0)).

Case 2.1: B is in state subject-waiting. Then B does not suspend the message (fact (7)) and,
according to the protocol, it forwards the token to its master C. When the master treats the mes-
sage, it might be either a king or a subject.

Case 2.1.1: C is in a subject state.

In either state subject_relay or subject_waiting, it returns the token to B, and the token is
then forwarded by B (in state subject_waiting) to A.
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Case 2.1.2: Cis in a king state.
Either a reject or an accept message will be returned to B, and then to A.

Case 2.2: B is in state subject-waiting. B returns the token to the pool.
(]

Lemma 4: Every king eventually has size > % or it ceases to be a king.

Proof: Assume, to the contrary, that node A remains a king forever with size_A) < 5 Consider

the time A reaches its final size s, by receiving a returning token with an accept message. If
one of A’s suspended tokens now starts a war, then, by Lemma 2, this war will eventually end,
and either A will cease to be a king or its size will increase, a contradiction. Therefore A is not
involved in a war and all the edges over which it has received answers lead to nodes in its

domain. Since A is always in its own domain, and since szze_ASE, it follows that the number

. n n .
of these edges is at most 5 1. There are at most ¢ < > other edges over which A has sent

tokens that have not yet returned. Thus the total number of edges over which A has sent its
tokens is less than n — 1. Hence it has at least one edge over which it has not yet sent one of its
tokens, and the returning token is sent over such an edge. By Lemma 3 king A must either
receive a leader announcement message or one of its 7 + 1 tokens must return. If either a leader
announcement message or a relevant reject message is received, then A ceases to be a king, a
contradiction. If an accept message is received then size_A is incremented, a contradiction. If
a reject message is received then a war starts, and by Lemma 2 this war must end and then
either A will cease to be a king or its size will increase, a contradiction. This completes the
proof.

[

Lemma 5: Assume king A ceases to be a king as a result of a message originated by king C.
Then (size_C,id_C) > (size_A,id_A) at any time after the time this message is processed by A.

Proof: After the time this message is received by A, no more nodes are annexed to A’s domain.
Some of its tokens may still mark in its neighbors that they belong to A’s domain, but when

they return they are killed before doing anything (and thus we do not consider this an annex-
ing). Thus, size_A remains unchanged while size_C may only increase, and the lemma follows.

[l

Corollary 6: At least one node always remains a king.

Proof: Assume, to the contrary, that all nodes cease to be kings, and consider the final sizes.
Let A be the node that ((size_A, id_A) > (size_B, id_B) for any other node B. Let C be the node
that originated the message that caused A to cease to be a king. By Lemma 5 (size_C,id_C) >
(size_A,id_A), contradicting the definition of A.
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(1

Corollary 7: At least one king has eventually its size > %

Proof: Follows from Corollary 6 and Lemma 4.

[

Lemma 8 [H84,AG85] : For every [ 22, if there are /-1 kings whose final size is not smaller

than that of king A, then size(A) < %

Sketch of Proof: If a node B of the domain of C joins the domain of A, then C ceased to be a
king and from that time (size_C, id_C) < (size_A, id_A) (see Lemma 5). Thus domains of equal
sizes (even viewed at different times) are disjoint. The lemma follows.

[

Theorem 9: Every execution of the f-resilient algorithm in a complete network with no more
than 7 faulty nodes terminates, and exactly one node declares itself a leader.

Proof: By Corollary 7 some king must eventually have its size larger than % By Lemma 8 no

other king will reach such size. This unique king then sends a leader announcement message
over all its edges, and the execution terminates.

[
4. COMPLEXITY ANALYSIS

Lemma 10: Let A be a king and s its final size. The total number of times a token of A was
sent by A (with an join message) is bounded by 2-s-+.

Proof: When A initiates the algorithm it sends 7 +1 messages. Every other join message it
sends follows the reception of either an accept or a reject message. The number of accept
messages it receives as a king is s—1. The number of reject messages it receives as a king is
bounded by s by Lemma 2. The lemma follows.

Now we can employ a technique similar to [G, H84, AG85], using Lemma 8, and get:
Theorem 11: The number of messages used by the z-resilient algorithm is O (n logk +k t).

Proof: The number of messages used for the leader announcement is n—1. The total number of
the other messages sent during an execution is bounded by four times the number of join mes-
sages sent by a king. (At most two messages are used to arrive at the neighbor’s master and at
most two to return from it.) Let s be a final size of a king that initiated the algorithm. By
Lemma 10 the number of times this king has sent a token with an join message does not
exceed 2-s+¢. Nodes that did not wake spontaneously, have never been kings. Thus by
Lemma 8 the total number of messages is bounded by
n—=1+42n (1+1/2+1/3+..4+1/k)+k t)=0 (n logk +k t).

[
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The following theorem implies that the #-resilient algorithm is optimal:

Theorem 12: The message complexity of election in complete networks containing at most ¢
faulty processors is Q(n logk +k t).

Proof: The term Q(n log k) follows from the lower bound of Q(n log k) messages for the prob-
lem of election in complete reliable networks [KMZ83], and from the fact that the number of

the nonfaulty processors n—t is larger than % For the lower bound of Q(k ) consider a node

which initiated the algorithm. It must send at least 41 messages as it may be the only node to
wake up, and the first  messages may have been sent to faulty nodes. Assume now that there is
actually no faulty node, and that k nodes initiate the algorithm. Since an adversary can delay
all the messages, each of these k nodes must act as if it alone initiates the algorithm.

5 A RESULT FOR ANOTHER MODEL

The result presented in Sections 3-5 can be extended for the case where every node knows
its neighbors’ identities. In fact, it is easily verified that

Theorem 13: The message complexity of election in complete networks containing at most ¢
faulty processors where all identities are known to all nodes is O(k ¢).

In the algorithm achieving the upper bound of O (k t), the kings compete by capturing
only 7+ 1 nodes out of the 27+1 nodes with the highest identities, instead of capturing half of
the nodes.

Remark

After the preliminary version of this paper has appeared [KWZ86], Abu-Amara has
independently developed an algorithm similar to ours [A87].
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