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COMPLEXITY OF VIEWS: TREE AND CYCLIC SCHEMAS*

ODED SHMUELI’ AND ALON ITAI"

Abstract. In relational databases a view definition is a query against the database, and a view materializ-
ation is the result of applying the view definition to the current database. A view materialization over a
database may change as relations in the database undergo modifications.

Several problems concerning views are considered, many of which are shown to be hard (NP-complete
or even -complete). Each problem was treated for general databases and for the much simpler tree

databases (also called acyclic databases).
View related problems over fixed schemas, in which only the data is allowed to vary, were examined.

Methods to handle this case were presented; their complexity is polynomial: for tree schemas the degree
of the polynomial is independent of the schema structure while for cyclic schemas the degree depends on
the schema structure. These methods may present a practical possibility for dynamic view maintenance.
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1. Introduction. A relational database [8], [27] is a collection of tables called
relations, each containing a set of data rows called tuples. We differentiate between
the structure of the database (the schema) and the time varying data (the state). A
database schema D= (R1,"" ", Rn) is simply a multiset of finite subsets of a set (of
attributes) U U i%1Ri; a schema can be viewed as the edge-set of a hypergraph over
U[2].

One may partition the class of database schemas into tree and cyclic schemas. A
schema is a tree schema if there is a tree whose nodes correspond to the schema’s sets,
and for each A in U, the subtree induced by nodes containing A is connected. Tree
schemas are also called acyclic schemas.

The partition above appears to be a good dividing line for database problem
analyses. Acyclicity has wide implications in query processing [3], [6], 15], [17], 19],
[27] and in dependency theory and schema design [4], [5], [11], [12], [20], [23].
Mathematical properties of acyclicity have also been studied [11], [16], [18], [19],
[22], [26].

It has been shown [3], [6], [15], [28] that a class of queries (called tree queries),
which imply acyclic databases, appears easier to process than queries which imply
cyclic databases (called cyclic queries); and that the crux of query processing is
constructing a tree (actually an "embedded tree") [17], [19]. The above results all
hinge on the simple structure of tree schemas. In this paper we examine the relationship
between schema structure and view related problems.

A view definition is a query against the database. A view materialization is the
result of applying the view definition to the current database state. A view materializ-
ation over a database may change as relations in the database undergo modifications.
When views are materialized, they remain valid as long as the underlying database
remains unchanged. Usually, views are not materialized until needed. In certain systems
views are never materialized; instead queries against the view are modified to reflect
the view definition (a process called query modification).

The main difference between an "ordinary" query and a view definition has to
do with the frequency of use. A view is either a query that is often posed or one which
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18 ODED SHMUELI AND ALON ITAI

delimits a relevant portion of the database for a group of users. Hence, maintaining
a correct view materialization over time may prove beneficial.

The view definitions we consider are all of a simple form: perform the natural
join of all the relations in the database and project the result on a set of attributes X.
This simple form actually encodes a much larger class of views [6]. We examine various
problems associated with these views and their materialization maintenance over time.
We note that view related problems were mainly treated in the past under the guise
of query processing [9], [28].

View maintenance includes a variety of problems concerning the tuples in the
view, equivalence of views, how changes in the underlying database affect the view
and which kind of information is useful in maintaining a view. For example, one of
the problems we treat is the following: Given a database D, a view definition X, a
tuple and a relation schema Ri would the view materialization change when is
added to Ri?

Terminology is presented in 2; our problem classification scheme is introduced,
and a summary of the results is tabulated. Section 3 is devoted to "join problems,"
i.e., we consider the case X-U (the view is the natural join of all the database
relations). "Genuine" views, where X is a proper subset of U, are treated in 4. In
5 we consider view complexity over a fixed schema. A preliminary version of the

material in this section appeared in [25].

2. Terminology.
2.1. Relational databases. A universe U is a finite set of attributes. A relation

schema Ri is a subset of U, and a database schema D (or simply schema) is a multi-set
of relation schemas. Clearly, a database schema may be viewed as the set of edges
of a hypergraph over U [2]. Associated with each A U is a possibly infinite domain,
dom (A). The domain of a relation schema Ri: {Ail,.’’ ,Aihi} is dom (Ri)de=f
(’__, dom (Aik).

A relation state Ri for relation schema I is a finite subset of dom (Ri); one can
think about the state as a table of data with columns A,..., A. A database state
for schema D is an assignment of relation states to D’s relation schemas. We use
D (R, , R,) to denote a database schema and D (R,. , R,) for a correspond-
ing state. Let U(D) t3 in=l Ii.

Elements in a relation state are called tuples. Tuple over schema R matches tuple
s over schema S if for all A e R S, the values of tuples and s for attribute A are
identical. The projection of relation state R over attribute set X_ R, denoted R[X], is
the maximal subset of dom (X) containing tuples that match some tuple in R. The
(natural) join of relation states R and S, denoted RS, is defined as the maximal subset
in dom (R 1,3 S) containing tuples that match a tuple in R and a tuple in S. A relation
R is total in database D if it contains all its possible tuples composed of values
appearing somewhere in the database, i.e. if R Xa(I2o R[A]).

For a database D over schema D define J(D) =ReDR; we use J instead of J(D)
when D is understood; define J(Ri + t) to be the natural join of all the relations in D
except that Ri is augmented with the tuple t. A view definition is simply a set X

_
[_J (D)

of attributes; a view materialization V is V=J[X]; also let V(R+ t)=J(Ri+ t)[X].
Our class of views appears to be quite limited; however as is shown in [6] this class
encodes a much larger classthose views defined by equijoin queries.

All structures in this paper are finite.
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2.2. Tree schemas. A qual graph for D is an undirected graph whose nodes are
in one-to-one correspondence with the relation schemas of D, such that for each
attribute A, the subgraph induced by the nodes whose corresponding relation schemas
contain A is connected [6]. D is a tree schema if some qual graph for it is a tree;
otherwise D is a cyclic schema. See Fig. 2.1.

Consider the schema
D ((A, B}, (C, L), (E, M), (C, E}, (B, F}, (B, D, F), {B, D), (B, C}).
D is a tree schema viz.

A, B-----B,C B, D---- B,D,F B,F

C,L C,E--- E,M
For example, the subgraph induced by attribute C is:

C,L C,E B,C
The following is a cyclic schema:
D=((A,B},{B,C},(C,A}).
The only qual graph for D is

A,B B,C

FIG. 2.1. Tree and cyclic schemas.

A database is a tree database (or an acyclic database) if the underlying database
schema is acyclic; otherwise it is a cyclic database. The following simple procedure,
discovered independently by [13] and [29], recognizes tree schemas. The procedure
applies the following two steps until neither is applicable.

Step 1. Delete any attribute which appears in exactly one relation schema.
Step 2. Find two relation schemas R and S in D such that R_ S; delete R from D.

It can be shown that the original schema is a tree schema if[ upon termination of the
above procedure the database schema consists of a single (empty) relation schema.
(A linear time algorithm for recognizing tree schemas appears in [26].)

2.3. Complexity classes. A problem, or a language, L is in (NP)P if given a string
x, determining x E L can be done by a (non)deterministic Turing machine within time
polynomial in the size of the input x. A problem is in Ep if it can be solved by a
nondeterministic Turing machine, which may use an oracle for a set in NP, in time
polynomial in the size of the input. (An oracle for a language L can be thought of as
a "subroutine" which when given some string x answers in one time unit "yes" if x E L
and "no" otherwise. The subtle point is that the Turing machine can make use of the
fact that a string does not belong to the oracle set.) For more details, the reader is
referred to [14].

We use traditional graph theory notation.
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A problem A is polynomial-time complete for the complexity class C, or C-complete
for short, if for any other problem B in C, there is a polynomial time bounded Turing
machine M which transforms a string x into a string M(x), such that x B itt M(x) A.
Intuitively, if A is a complete problem in a class, then a polynomial algorithm for
solving A will provide an efficient algorithm for all problems in the class.

Several known polynomial-time complete problems are:
(1) 3SAT. Given: a boolean formula in 3CNF, i.e. in conjunctive normal form having

three literals per clause [1].
Question" Is F satisfiable? That is, is there an assignment to the boolean variables
in F which makes it true?
3SAT is NP-complete.

(2) Let L be the language

L= {F(X, Y)IX VYF(X, Y) is true}.

L is XP-complete (see 14]).

2.4. Problem classification. In the following definition the size of a database is
the size of the schema plus the size of the state. We shall classify problems according
to the following criteria:

(1) The object in question:
J mA problem concerning the join of a given database D.
V mA problem concerning the view of a given database D on the given

attributes X.
(2) The type of data supplied (optional).

C mChange, given a tuple and an index i, consider the new join J(Ri + t)
(or new view V(R + t)).

GuGiven: the input consists of the input to C and the old join (or old view
materialization).

(3) The question:
E mEmptiness: is the join (or the view) not empty?
M--Membership" given a tuple does belong to the join (view)?

mlntotality: is the join (view) not total?
N--Not equal" is the new join (view) not equal to the old one? (This question

is meaningful only if C or G are present.)
For example" the problem JE is defined as follows:

Given a database D is J #?

And the problem VGN is:

Given a database D, a view definition X, the view materialization V, an index
and the tuple is V # V(Ri + t)?

Thus a total of 22 different problems are defined, results concerning these problems
are shown in Table 2.1. (NA appears when the problem is not defined.) If D is a tree
schema the above problems are sometimes easier as seen in Table 2.2.

3. Join problems.
3.1. Polynomial problems.
JM, JCM and JGM. Checking J amounts to checking that for all database

relations R, i= 1,..., n, t[R] R.
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TABLE 2.1

J
JC
JG

V
VC
VG

NP-C[14], [21]
NP-C
NP-C

NP-C[14], [21]
NP-C
NP-C

M

NP-C[14], [28]
NP-C
NP-C x-c

NA
NP-C
NP-C

NA
x-c
NP-C

TABLE 2.2

M

J p* P
JC P* P
JG P* P

V P P[28]
VC P P
VG P P

NP-C

N

NA
p*
p*

NA
NP-C
NP-C

NP-C
P

*The results of [3], [6] imply that these problems are
polynomial.

Remark. For tree databases all the problems are polynomial if the view definition
X is contained in any one of the relations

JI, JCI and JGI. If the join is total then each Ri must be total. Conversely, if for
all R is total then the join is total. Therefore, the join is total iff each R is total. The
latter condition can be checked by counting the number of tuples in each R.

3.2. NP-complete problems.
JE. This problem was first shown to be NP-complete by Chandra and Merlin [7].

The problem is in NP since a nondeterministic Turing machine can guess a tuple s
and check whether s e J in polynomial time. We show completeness by using the
following construction.

Standard database construction. Given a boolean formula F(X) in 3CNF, we
show how to construct a database D such that J # iff F is satisfiable. With each
clause of F we associate a relation schema, whose attributes are the variables appearing
in the clause. W.l.o.g. we may assume that each relation schema thus constructed
consists of three attributes. Each relation consists of the seven boolean assignments
which make the original clause evaluate to true. It can be easily seen that each tuple
in the natural join of all the relations in the database "spells out" an assignment to
F’s variables satisfying F. Hence, J # iff F is satisfiable. Observe that the size of
the database constructed above is linear in the size of the formula.

JCE. The problem is in NP since it suffices to guess a tuple s and check whether
it belongs to J(R + t). The completeness follows by a reduction from JE: Let D
(R,..., Rk) be an instance of JE. Let D’=(R,R,... ,R) where R consists of a
single attribute C, R= {(b)} and the attributes of R[ are those ofR and the additional
attribute C. Construct D’ with

R,={<a,,..., ah,, a>l<a,, ahi>- Ri}.
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By construction J(D’) . We augment R by the tuple =(a), clearly

J(R+ t) # f iff J(D) .
JGE. In the previous construction the old join was empty; thus we may assume

it was given.
JCN and JGN. The problem is in NP since a nondeterministic Turing machine

can guess a tuple s such that sJ and s J(Ri / t). (Recall that JM is polynomial.)
Completeness follows by a reduction from JE (as in the completeness proof ofJCE--we
add a new column C and a new relation Ro such that J(D’) : however after adding
a new tuple J(Ro+ t) if[ J(D) ).

4. View problems.
4.1. The VI problem over general databases. Let F(X) be a boolean formula, and

a global truth assignment, i.e., for each variable Yk, t(yk) true or t(yk) =false. Define
t(F) F(t(X)) to be the value of F under the assignment t, where t((Xl,’’’, x,))=
(t(Xl), t(X,)).

The structure of F defines a tree TF, the root of which is the main connective of
F and whOse children are the subtrees associated with the arguments of the connective.
Each leaf ofthe tree is associated with a variable xj X. Let TF have m nodes, numbered
1,..., m. A distinct variable zi is associated with each node. Let Z {zl.’’ ", z,}.
Let F be the subformula associated with the node i.

We define a formula Gi associated with each node: For a leaf xj, Gi z= x,
expressed, in CNF (conjunctive normal form)

G, (x + e,) ( + z,).

For a "not" node whose child is z, G z :, or in CNF

For an "and" node whose children are ZL and ZR, G z ZL" ZR, or in CNF

G, (z, + e+ e,) (, + z) (, + z,).

Finally, for an "or" node whose children are zL and ZR, G z zL / ZR, or in CNF

G, (e, + z+ z,) (z, + e) (z, +
Let GF(X, Z) A,TG.

LEMMA 4.1. Let be a truth assignment; then t(GF(X,Z)) is true iff for all
t(z)= t(F(X)).

Proof. By induction on the number of nodes of TF.
Basis. If TF has size 1, then F x. Therefore, Z {zi} and GF z x. Because

of the structure of G:

Since t(x)= t(F)"

GF( t(X, Z))= true if[ t(zi)= t(xj).

GF(t(X), Z)= true if[ t(z,)= t(F).

Induction step. Suppose, for instance, that F(X) FL + FR. Therefore, GF
(AFT GiAFT G) (ZF (Z+ ZR)). Since G AFLG and GR AiFRG, GF

(z=-z+ ,))
For t(G) to be true, t(G)=true, t(GR)=true and t(ZF=(Z+ZR))=true. By

induction, t(Zk)= t(Fk) for all variables Zk in either the left or the right subtree.
Obviously, t(z)= true if[ at least one of zL or ZR has the value true. W.l.o.g., z is true
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and by the induction hypothesis, t(FL)= true, which implies that t(F)= true. Hence,
t(ZF) t(F). The case t(ZF)=false is handled similarly.

Conversely, if t( GF is false then t( Gl) false or t( GR false or t( ZF Z+ ZR
false. If one of the first two cases holds, then by the induction hypothesis there exists
a zi such that t(zi) t(Fi). Otherwise, t(ZF) t(z 4- ZR) and since t(G) t(GR) true,
t(Zl.) t(Fl) true and t(ZR) t(FR) true. Consequently, false= t(ZF) t(F) true.

The other cases are similar, l-1
The above lemma can also be proved by using the techniques of Cook’s theorem

[1].
LEMMA 4.2. For every Boolean formula F(X) over the variables X {Xl," , Xn}

there exists a 3CNF formula HF(X, Z) (Z {Zl," ", Zm}) such that
(i) For all assignments to the variables X

F (X)) true iff HF (X, Z)) is satisfiable;

(ii) The size of HF is linearly bounded by the size of F.
Proof Construct GF as in Lemma 4.1. Using the above notation, let HF(X, Z)=

G(X, Z) z.
Let satisfy HF, i.e., HI:(t(X), t(Z))= true. Therefore, both t(zv)= true and

t(Gv(X, Z))= Gv(t(X), t(Z)) true. By Lemma 4.1, if Gv(t(X), t(Z)) true, t(zF)
F(t(X)). Since t(Zl:) true, F(t(X)) true.

Conversely, suppose F(t(X))= true. Let assign the value Fi(t(X)) to zi. By
Lemma 4.1 G:(t(X), t(Z)) true, and since by the assignment t(zv) F(t(X)) true,
He(t(X), t(Z))= true and hence HF(t(X), Z) is satisfiable.

THEOgEM 4.1. VI is Z-complete.
Proof. The fact that VI is in Z is straightforward: a nondeterministic Turing

machine M can guess v and then consult an oracle for v V, the oracle set is in NP
since determining whether v V is NP-complete.

Let L be the language

L= {F(X, Y)I::IXVYF(X, Y)is true}.

L is complete in (see [14]). Given a string of the form F(X, Y) we show how to
construct a database D and view definition X, such that ::IXIYF(X, Y) is true if[

(vv
_

V).
By Lemma 4.2, given a boolean formula F(X, Y) we construct, in linear time in

the size of F, a boolean formula H-F(X, Y, Z) in 3CNF such that for all boolean
vectors tx, ty,

[::lZH-F(tx, ty, Z)]--[F(tx, ty)] is true,

which implies that for any boolean vector tz,

[H-F(tx, ty, tz)]">-F(tx, ty) is true.

Build a standard database D over U X (_J Y (_J Z for HF as described in 3. Let X
be the view definition on D.

CLAIM. [:lvv: V] iff the forrnula [:IXIYF(X, Y)] is true.
Proof of claim. Assume [lvv

_
V]: Each tuple over U "spells out" an assignment

tx, tv, tz to the boolean variables in HF(X, Y, Z). Suppose v V, then for all tuples
such that tx v H-F(tx, ty, tz) =false (otherwise, if HF(tx, ty, tz) true then

would be in J and v in V). Let v spell out the assignment tx to the X variables in
H-,F(X, Y, Z). It follows that

V YVZ [H-F(tx, Y, Z) =false].
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In other words

This gives

v YVZ -H,(tx, Y, Z).

V Y 7[]ZH-F(tx, Y, Z)].

Consider any boolean vector ly. By the above we have

-3[=lZH-F( tx, ty, Z)].

But, by Lemma 4.1

[(::lZ)H-F( tx, ty, Z)]-[-3F( tx, ty)].

We conclude that for any boolean vector ty

--F(tx, ty) or equivalently F(ty, tx),

which means that indeed ::iX (namely tx) such that for all Y, F(X, Y).
We now assume [::IXYF(X, Y)]:
Let tx be a boolean vector such that YF(tx, Y). Choosing any ty, we have

F(tx, ty). By Lemma 4.2,

-3Z H-F( tx, ty, Z)

VZ "mH-F( tx, tg, Z).

Since tg was chosen arbitrarily it follows that

(4.1) IV YVZ-H-F(tx, Y, Z)] true.

We now show that (4.1) implies w E It suces to show that

[vv V] [VYVZH,F(tx, Z)],

or, equivalently, that [Vvv V][VYVZmH(tx, Z)]. In other words, we have
to show that

IVw V] YZH(tx, Z).

From Vvv V follows the existence of a boolean vector tx in E But if tx is a tuple
in the view, then there must exist a "parent" tuple (tx, ty, tz) suh that tx t[X].
The existence of implies the existence of tg and tz such that H(tx, ty, tz)= te.
But this simply states that

Y3Z HF( tx, Y, Z)

4.2. The VI problem over tree databases. The following problems are useful in
proving the NP-completeness result:
SET COVER:

Given n sets C1,’", Cn and an integer k, are there Ci,"’, Ci whose union
equals 13 =lCi ? (NP-complete [14])?

FAMILY COVER:
Given k > 1 families $1,..., Sk, where each Si contains n sets SI,"" ", Sin, are
there S,,. ", Ski such that U_- Sj [3 k__ U%1So ?
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NCP (Non-Cartesian Product)"
Given families F,...,Fh, where Fi=(Ci,’",Cik), (k>l), does the
NCP inequality condition

U/h=l(Cil X’’’ x Cik) Cil x. x Cik

hold?
CLAIM 1. FAMILY COVER is NP-complete.
Proof. Let C, , Cn and k > I be an instance of SET COVER. Form an instance

of FAMILY COVER with families S,..., Sk, where each Si contains a copy of
C,..., C.

CLAIM 2. NCP is NP-complete.
Proof. The problem is obviously in NP. Let S, , Sk be an instance of FAMILY

COVER, where $i {Sil,"" ", Si,}. W.l.o.g. each Si has a unique element associated
with it that is a member of each set in the Si family, and is not a member of any set
in any other family. Let A U

__
t.J’=Sij. We form an instance of NCP by associating

with each a A a family of sets Fa {Fa,. ., Fak} where Faj {(j, P)la : Sjp and
l<=p<=n}.

We claim that there is a FAMILY COVER itt the NCP inequality condition is
satisfied.

First, observe that (tJAF,) x... x (LJAFk)= xk={(i, 1), , (i, n)}, because
there is a unique element associated with each family Si which appears in no other
family S.

Suppose there is a family cover S,,..., Skk. We claim that

((1, i,),..., (k, ik)) UaeA(Fal X’’" X Fak ).

Otherwise, there must exist aA such that t(Fa’’’Fak)’, i.e. (1, i)
Fa, (k, ik) Fak, which means a S,, , a Skk, which in turn implies that
Sli,,""", Skik is not a FAMILY COVER. This is a contradiction.

Suppose that t=((1, i),...,(k, ik))- LJaA(Fx" ..Fag). We claim that
Si,, , Ski is a FAMILY COVER. Consider a A. Since (Fa " Fag), it
follows that for some 1 _-<j -< k, (j, ij) Faj, i.e. a Sij. This reasoning holds for all a A
and hence Si,,’", Ski is a FAMILY COVER.

THEOREM 4.2. For tree schemas, VI is NP-complete.
Proof. For tree schemas V is in P, hence the problem is in NP. Consider an

NCP instance F,..., Fh with F=(FI,’’’, Fig). We now show how to build a
database and view definition (forming a VI instance) such that the NCP inequality
holds for the NCP instance itt there is a tuple which is not in the materialized view
of the VI instance.

Construct k + 1 relations Ro, R, , Rk. C is the sole attribute of Ro. For I _-< =< k,
Ri has two attributes" C and Bi. These relations constitute a tree database, whose root
node corresponds to Ro. The database state is constructed as follows:

Ro {(i)li 1,..., k},

R,. {(i, e)le m=l,...,k, i=l,...,h.

Clearly,

V= (Rol’’" tRk)[B,’." Bk] UL,(F,x"" x Fk).
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So, if there is v V then the NCP inequality holds. Conversely, if the NCP
inequality holds, then there is a tuple v V.

4.3. The VCI and VGI problems. Given a database D, a view definition X and a
tuple t, the VCI problem is to determine whether there exists v

_
V(Ri + t). The problem

is easily seen in Ep for general databases and in NP for tree databases; we show that
it is complete in these respective cases.

The proof is done by reducing a VI instance to a VCI instance. The reduction is
by adding a new column, say N, to R1 and setting each tuple entry in this column to
a. Also, add a new relation Rv, whose sole column is N, containing no tuples. Clearly,
J on this new database is empty and so is V. However, adding (a) to Rv will yield
the original view. Thus, there exists v V in the original database iff there exists
V: V(RN+(a)).

The reduction shows that VCI is E2P-complete for general databases. Observe that
if the original database is a tree database, then so is the new database. Hence, VCI is
NP-complete for tree databases.

Since in the previous reductions the view materialization was empty before adding
(a), the same results hold for VGI.

4.4. The VCN problem. The VCN problem is to determine whether V(Ri + t) V.
This problem is clearly in E2p since a nondeterministic Turing machine can guess a
"new" join tuple, extract from it a "supposed" new view tuple, and consult an oracle
as to whether the new view tuple belongs to the original view. We show that VCN is
E-complete by reducing VI, which was previously shown E-complete, to VCN.

The VI completeness proof actually yields that VI over databases with at most
three attributes per relation schema, whose attributes all have the domain { true, false},
is E2P-complete. Given such a database D and some view definition X, we reduce VI
to VCN as follows. We construct a database D’ by adding to each relation schema in
D a new column, say N. We also add a new relation Rv with the sole attribute N.

The database D’ is populated thus: To each of the original tuples in D the N
column entry is set to a. We also put the tuple (a) in RN. To each relation in D’ we
add all the eight { true, false} combinations for the original columns, with the N column
entry set to b.

Note that, by construction, V over D is identical to V over D’; the a values
preserve the original view and the b values add nothing as b does not appear in Rv.
We claim that V# V(RI +(b)) in D’ iff :lv(v: V) in D. Since all {true, false} combina-
tions are present in D’ in conjunction with the N column value b, the addition of (b)
to Rn will make the view total. So, if the view with (b) added is different than the
view without (b), we conclude that the original view "missed" a tuple. Conversely, if
the view prior to (b)’s addition "missed" a tuple, certainly V V(Ru +(b)) following
(b)’s addition. Hence we have proved the following theorem.

THEORE 4.3. VCN is E-complete.
We now treat the VCN problem over tree databases.
THEOREM 4.4. For tree schemas, the VCN problem is NP-complete.
Proof For tree schemas V is in P; hence VCN is in NP. By Theorem 4.2, VI

is NP-complete over tree databases. In addition the reduction from VI to VCN presented
above preserves the tree property of the schema because attribute N is uniformly
added to each relation. Hence VCN is NP-complete over tree databases.

4.5. The VCE, VGE and VGN problems. In 3 it was proved that JGE, JCN and
JGN are NP-complete over general databases. The corresponding view problems: VGE,
VCN and VGN, are therefore also NP-complete (with X-= U). For tree databases VE
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is polynomial, this is because V is empty iff J is empty, and JE is polynomial for tree
databases. It follows that VCE and VGE are also polynomial.

THEOREM 4.5. For tree schemas VGN is in P.
Proof. Yannakakis has shown that the view materialization of a tree database can

be computed by an algorithm which is polynomial in the size of the database and the
size of the view materialization [28]" Let p be that polynomial.

Let D’ be the database resulting from the addition of to Ri and V’= V(Ri + t).
We now start producing V’ from D’ using Yannakakis’ algorithm and abort the
algorithm if it does not halt within p(ID]+ltl, vl) steps. Since V’_ V, the views are
different iff V’I>IVI. If V’= V then Yannakakis’ algorithm must finish within
p(ID’I, IV’I)=p(IDI/Itl, IVI) steps. Thus if the algorithm aborted, then the views are
different. On the other hand, if the algorithm terminated, then we have produced the
materialization V’ and can easily check whether VI Iv’l, The entire procedure requires
essentially p(lDl/lt[, vl) steps. D

5. Fixed schemas. In the problems previously analyzed, the database schema was
part of the problem instance. This section treats the case in which the database schema
is fixed over all problem instances, i.e., problem instances differ only in the tuples in
the relations.

5.1. Additions into a tree database with the view contained in one of the relations. Let
us consider a special case. Suppose for some r =< n, X Rr. Furthermore, assume that
relations R1, , Rk constitute a tree schema. Let T be a qual tree with Rr at its root.
(R is called the root relation and the relations at the leaves are called leaf relations.)

Let R be a node in T and Rj its child. Tuple R is supported by tuple s Rj
if matches s. A tuple Ri is good if every child Rj of Ri has a good tuple s Rj
which supports t. Also, all tuples in a leaf relation are considered good. Tuple Ri
is compatible below with a child relation R if there is a good tuple s R which supports
t. Hence, Ri is good iff is compatible below with all of R’s children.

Intuitively, a tuple R is good if it is unanimously supported by all its children,
its children’s children and so on, i.e. belongs to the projection onto R of all the
relations in the subtree rooted at R. Observe that Ri may contribute to J(D), and
therefore possibly to V, itt is good. In other words, all nongood tuples, which we
call bad, will definitely not contribute to J(D) and V.

Consider the database of Fig. 5.1, with X R1. The relations R2, R4 and R5 are
leaf relations and therefore all their tuples are good. Only the first two tuples of R
are good (e.g., (47, 8, SF) matches (47, 90) R4 and (47, White, SF) Rs; and
(99, 15, LA) matches (99, Brown, LA) R but no tuple of R4). Tuple (3, 8) is the only
good tuple of R1, it matches the good tuples (47, 8, SF) R and (3, L) R2. Tuple
(9, 17) R1 is bad because all the R3 tuples it matches are bad.

The partition of each original relation into a good part and a bad part is helpful
when processing updates. We start by discussing tuple addition into the tree database
of Fig. 5.1. There are three cases to considermthe relation is a root, a leaf or an internal
node.

(i) Root. Suppose tl (9, 8) is added to R to indicate that supplier number 9 now
supplies part 8. Tuple tl is good since it is supported by the good tuples (55, 8, LA) R
which indicates that project 55, located at LA, requires part number 5, and (9, L) R2
indicating that the service level of supplier number 9 is rated L. On the other hand,

Copyright 1984, Association for Computing Machinery, Inc., reprinted by permission.
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R1

3 B

9 I?
19" 18
20 18

PROJ# P LOC
47 8 SF
,.55 8’ LA"’
99 15 LA
99 15 SF
:5 15 NY
’90’.55 BY
82 17 DC

R2

S SLVL
H

R4 R5
PROJd MGR LOC

I000 53 Jones N Y
i0 47 White SF
90 55 Brown LA
60 90 Smith SF
40 99 Brown LA
50 70 Block DC

R: supplier S# supplies part P#;
R2: each supplier may provide product support (indicated by SLEVEL);
R3: project PROJ# may need part P# at location LOC;
R4: project PROJ# has an allocated BUDGET;
Rs: project PROJ # is managed by MGR at location LOC.
The view is on S # and P #.

FIG. 5.1. An example tree database.

adding the tuple t2=(7, 99) to R1 cannot possibly change the view since it is not
supported by any good tuple of R3. (The fact that it is supported by the good tuple
(7, M)E R2 is immaterial.) Thus t2 should be added to bad(R1).

(ii) Leaf. Suppose t3- (99, 30) is added to R4 indicating that project 99 has been
assigned a budget 30K. First, leaves only have good parts. Thus is added to good(R4).
Now, it is possible that the new addition may change the good part of R (which is
equivalent to changing an internal node and is discussed below). Namely, t4
(99, 15, LA)E R3, previously supported only by the good tuple (99, Brown, LA) R5 is
now also supported by t3; thus t4 should move to the good part of R3. This effect
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might propagate up the tree. On the other hand 99, 15, SF), which also matches t3,
remains in bad(R3) since even now it is not supported by any Rs-tuple. To summarize,
if the new tuple is good, we should check the matching tuples in the bad part of the
parent node because now some of them can become good.

(iii) Internal node. Suppose t5 (70, 18, DC) is added to R3. Tuple t5 is good since
it is supported both by (70, 50) R4 and by (70, Black, DC) R. As mentioned above,
changes to an internal node may propagate upwards. We now have to check if t5 is
compatible abovemi.e, matches with tuples in its parent relation. Indeed, t matches
t6=(19, 18) and t7 (20, 18) of R. Hence t6 becomes good since it is supported by
(19, M) R2, while 7 remains bad since it is not supported by any (good) RE-tuple.

Consider an empty database over our fixed schema. To this state apply a sequence
of n tuple additions (into various relations). Throughout this addition process maintain
the database as above--i.e, with good-bad partitions. Compatibility above is checked
only when a tuple becomes good. A tuple is thus compared to all tuples in its parent
node, and if we find a matching bad tuple s then s is checked for compatibility since
potentially s may have become good. Thus, each time a tuple becomes good it initiates
O(n) compatibility checks. Each compatibility check compares a tuple with all the
tuples in a parent (or child) node. Thus, in the worst case, each tuple is compared to
all other tuples, costing O(n2) time. Thus, the cost of n additions in this naive scheme
is O(n3).

The following good-bad marking scheme reduces the number of times is checked
for compatability below. Consider a tuple in bad(R3) (see Fig. 5.1). It may be there
because either

(i) t[PROJCA is not mentioned in R4, or
(ii) t[PROJCA, LOCI is not mentioned in Rs.

However, we have no information as to which of these cases hold. To remedy this
situation, with each tuple in bad(R3) we associate marks. For example, an R4-mark
would indicate that could find no match in R4; likewise, for an Rs-mark. As relations
change marks may need updating.

Data structures. We now describe the data structures employed and how the insert
and delete operations are performed. Consider relation (node) Ri with tree parent Rp
and children R1,’", Re. Define Zim Rif’lRm. The following balanced trees4 are
associated with R"

(a) For each child Rm, a tree C,, containing all tuples of Ri[Zim]. For each
Wm C,, we associate the list of tuples in R with w, t[Z,,] and a good-counter
indicating the number of good tuples (in R,) that support it.

(b) T-containing all the tuples (good and bad) of Ri; each tuple has a mark-
counter, which counts the number of bad marks it has, and a pointer (called the
up-pointer) to the tuple v t[Zpi]E Cpi. (t has an R,.-mark itt w,,’s good-counter is
equal to zero.)

We should note that in all the appearances of in these trees, it is the same t, i.e.,
has a record structure which allows it to concurrently be a part of several lists.

Operations. Consider a tuple in Ri with v t[Zpi] and wm t[Zim].
Insert t, Ri)
A. First, is inserted into the tree T and its mark-counter is set to zero.
B. For each child R,, treat C,, as follows:

4 On a set with n elements, the operations insert, delete and member can be performed in O(log n)
when the set is implemented as a balanced tree; examples for balanced tree schemes include AVL trees and
2:3 trees ].
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(a) If W does not appear in Cm then insert it into Ci,, and set its good-counter
to zero. Add to w,,’s list and if w,,’s good-counter=0 (i.e. w,, is bad) then add

to t’s mark-counter, thus counting the number of children of Ri that do not
support t.

(b) Once all Ci,,’s have been treated, if t’s mark-counter=0 then is bad
and we are done; otherwise is good and we set t’s up-pointer to v’s appearance
in Cpi. (Of course, if v does not appear in Cp then it is inserted.) Finally, v’s
good-counter in Cp is incremented by 1.

(c) If incrementing v’s counter transformed it from 0 to 1 then v’s list is
scanned and each tuple on this list has its mark-counter decremented. If now
some tuple s on v’s list has its mark-counter equal to zero (i.e. it became good)
then stage (b) above must be (recursively) applied to s.
Delete(t, Ri)
A. Delete from the tree T in R.
B. For 1 _-< m_-< c, if was the only tuple on w,,’s list and Wm’S good-counter is

zero, then delete w,, from Cm.
C. If was good then the good-counter associated with v in Rp is decreased (if

it becomes zero and v’s list is empty then v is removed from Cp). If v’s good-counter
becomes zero then v’s list is scanned and each tuple has its mark-counter incremented.
If some tuple’s mark-counter changes from 0 to then the tuple is now bad and stage
C of Delete has to be (recursively) applied to this tuple and Rp.

Addition analysis. Consider adding a tuple into relation R where the database
contains n tuples (we use the same notation as above). Entering into T costs O(log n).
Entering into Wm’S list (recall that w,, t[Zim] belongs to C,,) costs O(log n); as
there are c such trees, the overall cost is O(c log n). The analysis of t’s interaction (in
case is good) with Rp is a bit more intricate. First, the good-counter of v in Cpi has
to be incremented at a cost of O(log n). Now, if as a result of this the counter has
changed from 0 to 1, mark-counters for tuples on v’s list are updated. This updating
may cause some bad tuples in Rp to become good and the effect propagates up the tree.

The crucial point in the analysis is that the effect propagates on the unique path
from R to the root and that in each relation node R along the way each tuple can
lose at most one mark--the one corresponding to the unique child S of R which also
lies on the path from R to the root. Suppose R becomes good. Using t’s up-pointer,
the list in the appropriate C-tree in R’s parent can be accessed in O(1) time. This list
is then traversed and marks of tuples in the list are updated. Hence, since there are n
tuples in the database, the overall cost of the propagation effect is O(n). Summarizing,
the overall cost of inserting is O(c log n + n).

Deletion analysis. Finding and deleting it from T and the lists on the Cim trees
can be done in O(c + log n) time. However, if was the only tuple on a list in C,, and
the value w,, has a zero good-counter then w,, needs to be deleted (O(log n)time).
Thus the overall cost of updating T and the c trees is O(c log n). If was bad we are
done. Otherwise, v’s good-counter in Cp is decremented; if it becomes zero then,
effectively, an R-mark is added to the tuples on v’s list. If this transforms some tuples
in Rp from good to bad, the effect might propagate up the tree. Again, the number of
marks that can be added to all tuples in the database in the course of a single deletion
is bounded by n. Hence, the overall cost of a single deletion is O(c log n + n).

THEOREM 5.1. Let R be a relation in a tree database with n tuples, and let R have
c children. Then a single tuple can be added or deleted from R in O(n + c log n) time.

By the above theorem, any sequence of rn operations during which the database
never contained more than n tuples costs O(mn). Another complexity measure is
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amortized cost, the cost of adding n tuples into an initially empty database. The main
observation here is that in the course of n additions at most n tuples can become good
and each tuple can lose at most all its marks. Thus the amortized cost for n additions
(and no deletions) into a node with c children is O(cn log n). We summarize this by

THEOREM 5.2. Consider a sequence of n additions to an initially empty database or
n deletions and no additions applied to a database with n tuples. This sequence can be
performed in O(Kn log n) time, where is the maximum number of children of a node
in the qual tree.

5.2. Additions into a general database. If the view attributes are not contained in
any relation schema, or if the database is not a tree database, we transform the database
and view to the previous case by adding new relations called templates. The problem
of finding suitable templates will not be addressed here; see [18], [19]. One can think
of templates as including in principle "all possible tuples". One way to achieve this
is to let a template be total w.r.t, the database. This is fairly wasteful and we shall see
other ways of maintaining templates in which only relevant tuples are maintained. In
general, templates contain tuples which are computed in various ways from database
relations; i.e., template tuples are generated from original database tuples.

PROPOSITION 1. Let D- (R1,"" ", Rk) be a database and let S be a relation such
that S

_
J(D)[S]. Then for all views X,

(i.e. a view cannot be affected by adding S).
Proof. Apply elementary properties of the join operator. [3

PROPOSITION 2. Thefollowing example illustrates that populating a template S with
less than (/k__IRi)[S might produce incorrect views"

Let D (R1, R:), X S {B}.

R:
2

3 4

R2" B C S"

Clearly, (RIR2)[B]\S {(4)}; also, (RIR2)[X] {(2), (4)}; and ((RIR2)S)[X]
{(2)}; therefore, ((RIRE)S)[X] is strictly contained in (RltR2)[X]. [q

Consider first the case of a cyclic database in which the view attributes are
contained in some relation; the other cases are similar. Assume the database was
transformed into a tree database by adding some templates. For the good-bad mechan-
ism to function, by Proposition 1 it is sufficient for each template S to contain
(tk=lRi)[S] and by Proposition 2 it might not be sufficient for a template to contain
less than that.

Next, we discuss various schemes for extending the good-bad mechanism to

templates. Unlike relations where the "base set" of tuples is fixed, templates may
undergo changes when base relation tuples are changed: the template base set may
grow as a result of adding a tuple to the good set of a base relation, or shrink when
such a tuple is deleted. The problem is parametrized according to the transformed
schema structure, according to the following parameters:

r: the number of templates;
3" the maximum number of generators (defined below) per template;

" the maximum number of children of a node in the resulting qual tree.
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Let D be a database schema transformed into a tree schema by adding z templates.
Consider the process of adding n tuples to an initially empty database state D. We
separate the cost into two parts" that of finding the tuples to be entered into the
templates, and that of entering all the tuples into the database; the latter consists of
the cost of the addition of the n original tuples and the cost of adding template tuples,
both using the good-bad mechanism. We have the following theorem.

THEOREM 5.3. Adding n tuples into an initially empty transformed database with -templates requires adding at most 0(. 2n) tuples into templates.
Proof. An addition of a tuple into a relation R may introduce a "new value"

t[S] for template S. Let s t[R f’)S]. To enlarge the template,5 we simply duplicate S
and in one of the copies replace the R f’l S columns with s. Thus, the addition of a
tuple may double the number of tuples in each template’.6 The result follows since
there are n original tuples and z templates. [3

COROLLARY. Adding n tuples to an initially empty database requires at most
O(Kzn2n) time.

Proof. By Theorem 5.3 N -2 tuples are added, and by Theorem 5.2 this costs
O(KN log N) time. [3

The above result is discouraging since the cost is extremely high even for a small
number of tuples. As we shall see, we can substantially improve this result.7

The manner in which templates are enlarged determines the cost of extending the
good-bad mechanism. Let S be a template over attributes S. One way to generate
relevant S tuples is to join enough database relations to obtain all of S’s attributes.
Formally, the relations R1, , Rg are a generator set for S provided S

_
g=lRi; they

generate S’= (g=lRi)[S]. S’ can then be partitioned to good(S’) and bad(S’) by the
usual procedure. In other words, we have described a method for instantiating a
candidate for containing both the good and the relevant bad tuples in a template. (See
Fig. 5.2(a).)

The cost of tuple additions is dominated by the correct maintenance of templates,
i.e. when a tuple is added to the good part of a generator relation, the templates for
which it is a generator might have to be enlarged. This means joining the new tuple
with all the other generators, a potentially costly procedure (O(znV)). Since there are
at most n such additions, the overall cost is O(zn+l). (A closer analysis reveals that
the cost is O(z/(y-l-l)n).)

The following refinement reduces this cost. For each template we build a generator
tree that is a full binary tree; the template is at its root and the generators at its leaves.
An internal node consists of the join of its two child relations. (Note that the generator
tree is a separate structure which comes in addition to the usual qual tree and the
various balanced trees. See Fig. 5.2(b).)

In order to compute the cost of n additions into the generator relations of a
template-S, we make the following observations:

(1) When a tuple enters a generator relation, it has to be compared to its sibling
in the generator tree in order to populate their parent.

(2) Each leaf v contains at most fl(v)= n tuples.
(3) The parent v of nodes D and v2 has at most (/))-(/)1)" (/)2) tuples.

Consequently, a node at distance h from the leaves has at most n2 tuples.

Initially the template relation contains an arbitrary tuple.
If duplicate tuples are eliminated from the template then its size cannot exceed n lsl and the term 2

may be replaced by n lsl.
For N -. ns, O(K. 1S1 log n. ns) time is required and we will improve on that as well.



COMPLEXITY OF VIEWS: TREE AND CYCLIC SCHEMAS 33

(4) The cost of adding/3(vl) tuples to a child and/3(v2) tuples to its sibling is
exactly/3 (vl) /3 (v2), the maximum size of their parent.

(5) The cost of all the additions into a set of generators is equal to the sum of
the sizes of all the internal nodes of the generator tree.

THEOREM 5.4. Suppose n tuples are added to an initially empty database. The time

required to add all template tuples is O(-(n/’},)).
Proof. First, consider two sibling nodes in the generator tree with a total of m

tuples. The number of tuples in their parent node is maximum when each of the siblings
has m/2 tuples. Therefore, the number of tuples in a generator tree is maximum when
all its leaves have the same number of tuples. The worst case occurs when there are
y leaves and exactly n! y tuples per leaf, in which case the total number of tuples is

Since there are z templates, the total cost is O(-(n/y)v). [3

COROLLARY. Adding or deleting a single tuple to a database containing n original
tuples requires at most O(’(n/ y)r + Ky log n) time.

COROLLARY. Adding n tuples to an initially empty treefied database requires at most
O(r’/(),v-1)n log n) time.

This is more.encouraging than the corollary to Theorem 5.3 since in many practical
applications y is small.

Finally, we note that the cost of a single deletion can be quite high, since it may
cause many tuples in templates to become bad, costing the same as n additions.
Practically, it seems better to do the following: each time we delete a tuple we also
delete all tuples it helped generating (in templates). Thus, at all time, when n original
tuples are in the database, there remain at most O(’(n/y)) tuples in the database.

6. Conclusions. Several problems involving views were considered. It turns out
that many view related problems are hard (E2P-complete) for arbitrary databases. Even
when the database structure is relatively simple (tree databases), many problems remain
NP-complete.

Each problem was treated for general databases and for the much simpler tree
databases. We noticed the following "complexity reduction phenomenon"--NP-
complete (E-complete) problems over general schemas become polynomial (NP-
complete) over tree schemas. It is also interesting to note that while query processing
over tree databases is polynomial, in the sense that intermediate results can be bounded
by a polynomial in the input and the final result, such is not the case for view related
problems. There seems to be an inherent "information loss" which makes view problems
hard even on tree databases.

We have also examined view related problems over fixed schemas, in which only
the data is allowed to vary. We have presented methods to handle this case. Their
complexity is polynomial: for tree schemas the degree of the polynomial is independent
of the schema structure, while for cyclic schemas the degree depends on the schema
structure. Our results concerning fixed schemas are summarized in Table 6.1.

The log n factor arises from using balanced trees. We can eliminate it by using
hashing, but then the results bound the average behavior, not the worst case. We do
not know whether the bounds we found are tight and we leave it as an open problem.
This paper also suggests additional problems such as maintaining multiple views, and
that of extending the mechanism to an off-line sequence of updates to base relations.
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TABLE 6.1

Tree databases

Cyclic databases

A single addition
or deletion

O(Kn log n)

0 n’ log n

A sequence of n
additions

O(n log n)

0 n log n

The complexity measure used in the analysis was the number of tuple operations.
Thus the analysis is directly applicable to small scale databases whose data, or very
large portions thereof, fits into memory. The tuple operations measure is inadequate
for large databases in which only a small portion of the data can reside in main
memory. Consider a large scale database environment. First, the balanced trees may
be implemented as B-trees or replaced by a suitable hashing scheme. Second, recursive
add and delete operations should be made to recurse on sets of tuples rather than on
single tuples. This reduces the number of relations that are accessed at any one time,
a better use of buffers is achieved and therefore secondary storage access performance
is improved.
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