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1 Introduction

Data bases comprise of huge amounts of data whose size is far too large for volatile internal
memory but must be kept on disks. An access method is a data structure used to to store
and retrieve data from disks. The choice of the access method is greatly influenced by the
characteristics of disks: disk storage is partitioned into contiguous fixed sized blocks, each
disk access stores or retrieves an entire block. Since disk access is slow in comparison with
CPU, the time of an algorithm depends on the number of disk accesses. The task of the
implementor is to devise access methods that minimize the number of disk accesses.
Currently, two access methods are wildly used [9]:

e Direct access, i.e., hash tables,
e Multi-way trees, i.e., BT-trees.

Ideally, hashing enables one to retrieve a data item within a single disk access. However,
in practice because of overflow of buckets, and the need to extend the hash table [2] the
number of disk accesses is larger. Moreover, hashing does not provide an efficient method
to sequentially processing the file by increasing key. Since sequential processing is essential
for answering many types of queries, (sub-range queries, joins, etc.) hash tables are not the
method of choice for most databases.

Bt-trees are by far the most popular access method. In practice, they provide accessing
an item within 2-3 disk accesses. In addition they allow to efficiently process the file sequen-
tially by the primary key and provide reasonable performance for sequential processing by
a secondary key. However, we need to keep an index (separate Bt-tree) for each key and
each index has to be updated with each update of the database. Moreover, a node with &
children, must contain k — 1 keys. For long keys that arise in many application, most of the
storage of the node is dedicated to keys. Given that the size of the block is fixed, when the
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keys are long, the maximum degree of a node is small, thus the height of the tree is large,
requiring more disk accesses to retrieve an item.

Tries [6] can be used instead of search trees to store and retrieve data. However, they
have two drawbacks that lead to a lack of efficiency:

e They are wasteful in space,

o they lead to unbalanced structures: i.e., accessing some data might require passing
through a long chain of blocks.

In our proposal we suggest a new way to implement tries that overcome both these
problems.

Traditional implementations of tries are discussed in Section 2. In Section 3 we introduce
the stratified indexing scheme for tries. In section 4 we show how PAATRICIA tries save
space by keeping only part of each key. We then create a stratified index over the PATRICIA
tries. However, applying this savings to might lead us to read the wrong block, however,
such errors are immediately detected, and the correct block is read. In Section 5 we compare
our data structure with the String B-tree proposed by Ferragina and Grossi [4, 3]. Finally
in Section 6 we compare the performance of the new access method to BT-trees.

2 Tries

Let X be a finite set of characters (to be referred to as the alphabet), a string over ¥ is a
finite sequence of characters, and ¥* denotes the set of all such strings.

Let T' be a tree such that every edge has a label £ € ¥ and the labels of all edges that
emanate from a node are distinct. For each vertex v € T' there is a unique path P(v) leading
from the root to v . Let the string S(v) denote the sequence of labels of the edges of P(v) .
Let W(T) = {S(v):visaleaf of T} . For a set W of strings, if W = W(T') then T is a trie
for W .

Each trie node is consists of several pointer field. A trie can be very wasteful in space since
there might be a long path of vertices each having a single child (Figure 1 (a)). To overcome
this problem, such paths are condensed to a single edge (Figure 1 (b)). If (vo,...,vn) is
such a path with edge labels (44,...,¢,,), we replace the path by a single edge (v, v,,) with
label ¢y, and keep a pointer to the string ¢5---¢,, at v,, . This representation requires less
space since we need a single pointer for the entire path, instead a pointer for each node of
the path. Note that since in the resultant condensed trie every internal node has at least
two children, there are fewer internal nodes than leaves. Hence, a condensed trie with n keys
has at most 2n — 1 nodes.

A more serious problem is that in many cases the trie is not balanced, even in the absence
of long paths (Figure 1 (c)).

The manner in which nodes are implemented is also an important issue. A straightforward
implementation calls for nodes each containing an array of |X| pointers, where the i-th pointer
connects v to a child v’ such that the edge (v, v’) has label ¢ € ¥ . This implementation wastes
space if most vertices have much less than |X| children, since we have to allocate a large node,
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Figure 1: (a) A trie with a long path (b) Condensed trie (c) an unbalanced trie.

even when the actual node has only a small number of children. This representation is time
efficient, since the search requires constant time at each node, and no comparisons are made.

Alternatively, for a node with d children one maintains a pointer to each child. Thus
the search time depends on d, and since this implementation requires maintaining d labels.
When d =~ |¥| it requires more space than the previous method.

Consider a stratified index over tries. It is a sequence of tries: On the lowest level we
have a trie of the keys. The next levels provide an index to facilitate the search. Thus we
overcome both the space and time deficiencies of the basic trie structure and provide an
efficient implementation.

3 A stratified index over a trie

3.1 Description of the data structure

As explained in the Introduction, a trie can be very unbalanced, and hence might not be
efficient. To allow efficient searching in the trie, we add an indez, which provides an efficient
search structure to the trie.

We utilize the fact that external storage, such as disks, stores data in pages and partition
the trie into page sized blocks, such that the induced subgraph of each block is connected,
i.e., a tree (See Fig. 2). Hence, each block B is a sub-trie rooted at root(B). For each block
B we define the key, common(B), to be the string associated with root(B), the root of B’s
sub-trie, i.e., common(B) = W (root(B)). The string common(B) is a prefix of all the keys
of the block B, and is thus called the common prefiz of block B.

Let T° denote the trie. To facilitate searching T°, we create another trie T on the
common prefixes K' = {common(B) : B is a block of T°}. (For the keys of the trie of Fig
2 the set of keys is {A,10,11,1110, 1111}, see Fig 3.)

Every node v' € T! for which W(v') € K', has a pointer, v'.outptr, to the block B of
T°, for which common(B) = W(v'). Since each leaf of T corresponds to a block of T°, each
leaf has such a pointer, as well as some internal nodes.

This process is continued in the same fashion, creating additional tries 7%, ..., T", until
creating a trie 7" that fits in a single block.



Figure 2: A partitioning a trie into blocks of size 3

Figure 3: The tries T°, T' and T2



Let n; denote the number of out-pointers of T¢. Since each T* is a compact trie, the
number of vertices of 1" is at most 2n; — 1. If each block contains at least 3 > 3 nodes,
|T**1|, the number of nodes of T*!, satisfies

o< 2

Consequently, the number of levels h satisfies & < logg/, 7 .
The number of blocks for all the indices is

h .
[T
i=0
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Note that even storing only the pointers to the keys requires n/3 blocks. Thus the index
at most doubles the storage requirements. In Section 4 we will see how to reduce the amount

of storage.

3.2 Searching
Introduce the following notation:

1. For a key z, let ||z|| denote its length, z[i] denote its i-th character and z[i..j] the
sequence z[t]z[t + 1]---2[7] . Thus, c =2 [0.. ||z|| — 1].

2. For z,y € ¥*, y is a prefiz of « (denoted y C z), if y =« [0.. ||y|| — 1].

3. Let @,y € ¥*. Then match(x,y) is the length of the longest common prefix of z and
y,le,2[0..5—1] =y[0..7 — 1] and if both ||z|| and ||y|| > 7 then z[s] # y[j]-

4. Let B'(x) denote the block B of level i which maximizes match(common(B), ).
Lemma 3.1 Let z € ¥*, and let v € T? be the deepest node such that W(v) C z. Then
1. If z is a key of a record R in the database then W(x) = v and v points to R.
2. ve Bx).
Proof:

1. Immediate from the construction.

2. By definition v € T° Suppose v € B’ # B°=x). By the definition of B°(z),
common(B') is a proper prefix of common(B°(z)). Thus the path from root(7°) to
v first passes through B’ then to B%(z) and finally returns to B’. Thus the nodes of
B’ do not form a connected component, contrary to the way we partitioned 7° into

blocks.

Since T is a trie over K' = {common(B) : B is a block of T"7'}, we get:

5



Corollary 3.2 Fori > 1, T® has a unique node v € B'(x) that points to B'~(z).

Thus the search proceeds from B" = B"(z) level by level. At level 7, we search the sub-trie
of B'(z) to find a node u which maximizes match(z, W (u)), and points to a block B of level
i — 1 and continue to B*~!(z) = B.

DISK_ADDRESS Search(key x, Database D){
B = root block of D;
while B is not a leaf do
B =Search_in_Block(z, B);

return Search_in_Leaf(z, B);

Program Search

To search a leafl we use

DISK_ADDRESS Search_in_Leaf(key «, block L){

let v = root(L);

i = depth[v];

while there exists an edge (v,v’) labeled z[i] do {
v ="
1 =1+ 1;

}

if v.outptr # NULL then /* W(v) ==« */
return v.outptr; /* FOUND */

return NULL; /* NOT FOUND */

Program Search leaf

At that level the search ends at a vertex v € T", such that W (v), the sequence of labels
of the edges of the path from root(T") to z, is equal to z[0.. ||W(v)|| — 1] and v has no
child labeled « [||W (v)||]]. We climb up the tree, until finding an ancestor u of v such that
u.outptr # NULL. (Possibly u = v.) Let B"™! = u.outptr.

DISK_ADDRESS Search_in_Block(key z, Block B){
let v = root(L);
i = depth[v];
while there exits an edge (v, v’) labeled z[i] do {
v ="
1 =1+ 1;
} /* v is the lowest vertex of B.trie which satisfies W(v) C a */
while v.outptr == NULL do
v = parent(v);
return v.outptr;




Program Search block

Corollary 3.3 1. If x is in the database the search procedure above finds it.

2. The search requires exactly one block per level.

3.3 Insertion

To insert a record R with key z, we add R to the database, and add x to T°. To find the block

to which to add x, we a conduct a search for z, passing through blocks B"(z), B"~!(z),..., B(z).
Let k = common(B°(x)). We add the remainder of z, i.e., z[||k]| .. ||z|| — 1], to the sub-trie

of B°(z). Let v be the last node added, i.e., W(v) = z. Then we let v point to R.

Insert_to_Block(key z, Block B, Record_or_Block R){
let v = root(B);
i = ||common(B)|[;
while there exits an edge (v, v’) labeled z[i] do {
v ="
1 =1+ 1;
}
/* v is the lowest vertex of B.trie which satisfies W(v) C « */
while ¢ < ||z|| do {
let v’ be a new node;

add edge (v,v’) labeled z[1];

v =1

1 =1+ 1;
}
v.outpr = R;

Program Insert to block

If block B%(z) overflows, we split the block to B°(z) and B’ (see Section 3.4) and add
common(B') to B'(x). This process might continue up-to the root. If B"(x) splits, we add
a new level, h + 1, with a single block B"*!(x) which points to B"(z) and to the new block
of level h.



Insert(record R, Database D){
Add R to the database at location v;
let © = R.key;
Search for z in D,
suppose the search went through blocks B"(z),..., B%(x).
1 = 0;
y =
A = address of R;
while 7 < h do {
Insert_to_Block(y, B'(z), A);
if block B* did not overflow then
return ;
Split block B'(z) to get a new block B’;
y = common(B');
1 =1+ 1;
A = address of B’;
}
Add a new block B"*! whose trie consists of common(B") and common(B’).
The appropriate nodes point to B"* and B’. }

Program Insert

3.4 Splitting

When adding keys to the trie of a block B, the number of nodes of the trie might exceed the
capacity of the block. In this case, a subtree rooted at some node v € T'(v) is moved to a
new block B’. In order to achieve logarithmic search time, we would want that each of the
blocks B and B’ hold at least half of the original nodes of B. However, this is not always
possible: Let 0 < a < 1. Consider, for example, a block of size |B| < |X|. If T(B) consists
of a single node with |X| children, there is no vertex v such that o < |T,|/|B| < 1 — a.
However, if |X| = 2, then there always exists a good partition.

Lemma 3.4 Let T be a binary tree of at least three nodes. Then there exists a node v € T
such that
T _ 2

<

< =
T T3

1
3
Thus if we want to ensure a good split, we embed the Y-trie in a binary trie, i.e., we replace
each character ¢ € ¥ by a binary word of length [log |¥|]. Thus a key of k characters is

replaced by a binary key of length & [log |X||. We construct the binary trie for which we are
guaranteed that a good split node exits. See Figure 4.

Implementation note

In practice we need not construct the binary trie explicitly, instead, we construct a binary
trie only for the parent of the node v of Lemma 3.4.
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Figure 4: (a) A trie with no split node (b) A binary trie

4 A stratified index over a PATRICIA trie

In other tree data structures, such as BT-trees, the keys require a large amount of space—
a large key might be replicated at each level of the tree. In contrast, in a trie, each key
appears at most once. Sometimes the size of the trie is smaller than the data, e.g. the keys
{0 00, 0 -01,...,0---0 9}, require one path of length m that ends with a vertex with

m

10 children.”
However, we go much further in reducing space by using PATRICIA tries (PT). To
distinguish the PT from the tries discussed above will will refer to the latter as full tries.

4.1 PATRICIA tries

We start with a full trie for the keys Kj,..., K,, over the alphabet 3. Thus n vertices
of the full trie represent the keys. Each full trie vertex contains its depth—distance from
the root—and || pointers labeled 0,...,|¥| — 1. Each such pointer can be NULL or be an
outgoing edge leading to a child. The search path to a string follows the edge from the root
labeled with the first character of the string. The path from the root to a full trie vertex v
defines a string W (v). Let u be an ancestor of v. Then the following trie-invariant holds:

W(u) = W(v)[0..depth(u)] . (1)

Thus, all data keys for which W (u) is a prefix are reachable from descendents of w.

A PT is an index into the data, not the data itself. Thus we need to separately represent
the keys Ki,..., K, as strings in main memory or the disk. The PT is obtained from a full
trie on the keys by repeatedly replacing a vertex v with only one child and its incident edges
by an edge leading from v’s parent to its only child. Consequently, all non-leaf vertices of
the resultant tree (except perhaps the root) have at least two children. (See Figure 5.)

Each vertex v that corresponds to a key K has a pointer (called out_pointer) that points
to the record with that key. Let v be a node of a PT at depth d, then all the keys descending
from v agree on the first d characters. Denote this string W(v). (Actually, W(v) of a
PT is equal to that of the corresponding full trie vertex.) The PT also maintains the trie
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Figure 5: A full trie and PT on the keys 00000, 11100, 11110, 11111.

invariant—Eq. (1)—and as in the full trie, the path from u to v exits u by an edge labeled
W (v)la].

4.1.1 Search

To search for a key P, one first descends the PT according to the blind search procedure
described below. If P belongs to the PT, the blind search reaches a vertex v for which
W(v) = P. Otherwise, the search reaches some vertex v for which W (v) # P. Thus to

distinguish between a successful and unsuccessful search, check whether W(v) = P.

Blind search

To search for a pattern P, start from the root of the PT and follow the labels according to
the depths. Le., when arriving at vertex v, follow the edge labeled P[depth[v]] if it exists. If
no such edge exists, the search terminates.

node blind search(key P, PT T'){
v = root of T’
while depth[v] < ||P|| do {
i = depth[v];
if v has no outgoing edge labeled P[:] then
return v;
v = child of v pointed to by the edge labeled P[i];
return v;
}
}

Program Blind Search

For example, to search the key P = 11100 in the PT of Figure 5. start from the root
(depth 0) and follow the edge labeled 1 = P[0] to reach the vertex at depth 3. Since P[3] =0
we take the edge labeled 0, to reach the desired key. If P does not belong to the PT, the
search might lead us to a key K # P, so one has to check if K = P. For example, when
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searching the key P = 10010, one follows the edge labeled 1 = P[0] to reach a vertex at
depth 3, then the edge labeled 1 = P[3] to reach a vertex at depth 4, and finally the edge
labeled 0 = P[4] to reach key K = 11110.

node PT _search(key P, PT T){
v =blind_search(P, T');
if Key(v) = P then
return “SUCCESS at v”;
else return “FAIL at v”;

Program PT Search

4.1.2 Insertion

To insert a record R with a new key P, we first find its PT-parent, i.e., a PT-vertex y
that points to the new record. Let u be the deepest vertex for which Key(u) C P, if
P [depth[u]] = NULL then y = u. Otherwise we need to add a new vertex y between v and
its child in direction P [depth|u]].

PT-node PT-parent(key P, PT T){
v = blind_search(P,T);
if Key(v) C P then return v;
let « = the first position where P[i] # Key(v)[i];
u = v;
while depth(u) > i do
u = parent(u);
let y = u — out_edge [P[depth[u]]];
if y # NULL then {
Yy = new Vertex;
depthly] =
y — out edge [Key(v)[i]] = v — out_edge [Pldepth[u]]];
u — out_edge [Pldepth[u]]] =

}

return y;

Program PT-parent

Once the parent is found, insertion is straightforward.
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PT-insert(key P, PT T){
v = PT-parent(P, T);
if W(v) = P then return ;
Allocate P in block R.
Add an edge from v to R, labeled P [depth[v]];

return ;

Program PT-insert

4.2 Implementing block indexes as PT

We saw that a stratified index over a full trie was somewhat wasteful in space. To overcome
this problem, we replace the full tries 7°,...,7" by PATRICIA tries.

The out-pointers of T° point to blocks that contain the records. Let Biy,... B, be
the blocks of T%. Then the keys of T**! are common(B'),...common(B',,), and the out-
pointers of Tt lead to the blocks of T¢. To perform the searches efficiently, each block
contains the common prefix of all its records. (Each record maintains its full key.)  See
Figure 6 for a two-level index (h = 1).

A R -
i 2 nn m
uuv S hd
0) S g <
1
o0~ R
000000 N\ 10100/ 1111111}
10100 $ '
____________________ 00110010 00110011

Tl e e
11010001 111010100 1100111/

0 i
T 1010010 1010011:

Figure 6:

Since a block does not contain the keys of the blocks it points to, the stratified index
over PT is space efficient. This leads to better space utilization of each level, i.e., each block
contains less key information and more outgoing pointers. Thus using PT decreases the
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number of levels. However, this savings comes at a price. Since the blind-search procedure
for key P might lead to a vertex v such that Key(v) # P, the search might involve reading
superfluous blocks. We will address these problems in the next section.

4.3 Search

In principle, we would like to perform a search of the stratified indexes over PT the same
way we searched stratified indexes with full keys. However, since T, the PT of level 1 +1,
consists of the common prefizes of the blocks of T, not the keys of T%, the PT-search in
block B*!(z) might not lead to B'(z). The PT-search is guaranteed to succeed only on keys
in the PT. and if x # common(B'(z)), the search might result in a failure.

Example 4.1: Consider a database consisting of the keys 000000, 00110010, 00110011,
1010001, 1010010, 1010011, 1010100, 110111, 1111111 (Figure 6. Searching for = 1010100
in T leads to the block whose common prefix is 10100, instead of to the block with common
prefix 1. a

Therefore, for sparse keys we replace the procedure Search_in_Block by Search_sparse_Block
below. This is essentially the PT-parent procedure that was used for insertion into a PT.

Searching a key P in a non-leaf block B® of level i should lead to a block Bi~! of level
i — 1 such that common(B'~') = common(root(B'~')) C P. Starting from root(B) at the
general step we are at vertex v of the PT, and move to its child u such that (v,u) is labeled
Pldepth[v]]. If there is no such edge, we move up the PT until we find an ancestor v’ such
that v'.outptr # NULL. (It is possible that v = v'.)

We now move to block B’ = v'.outptr and check whether common(B’) C P. If the
answer is positive, then B’ is indeed the block from which we should continue the search.
Otherwise, let j be the first index of the mismatch, i.e., common(B’)[0..5—1] = P[0..5—1]
and common(B')[j] # P[j]. We return to block B to the vertex v’ from which we moved to
B’ and climb up the path from root(B) to v’ to find the lowest ancestor v” of v' whose depth
is less than j and has an pointer to a block B” of level i — 1. (See Figure 7).

B
root B
v |
v’ B
=
v
Figure 7:

We summarize the search procedure by Program Search_Sparse_Block.
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Search_Sparse_Block(key P, block B){

v = blind_search(P, root(B));

v =v;

while v".outptr == NULL do
v’ = v'.parent;

if key(v'.outptr) C P then
return v’ .outptr;

J = match(v'.outptr(j'], P);

v" = parent(v');
while depth[v"] > j or v".outptr # NULL do
v" = parent(v");

if v".outptr # NULL then
return v”.outptr;
return FAIL;

Program Search sparse block

Lemma 4.2 Let BZ(J}) be the block of level 1 chosen by the procedure Search(P, D) Then
Bi(z) = B'(P).

Proof: We show by induction on j that Bh_j(x) = B"I(P).

Base 7 = 0:

Level h consists of a single block B". The requirements hold since common(B") = A C P.
Induction step we assume that Bh_j(x) = B"7 and show that the Bh_j_l(x) = Bhi-1,
By definition B"~7 contains a vertex u that points to B"77~!. Let v be the deepest node of
B reached by the search, v’ the lowest ancestor of v (in the PT) that contains a pointer to a
block of level h — j — 1, and v” the lowest ancestor of v’ (in the PT) that contains a pointer
to a block of level A — j — 1 and in addition key(v".outptr) C P. u € B"77(P) is the node
that points to B"=~!(P). (These nodes need not be distinct.)

Claim 4.2.1 u is an ancestor of v.

Proof: Suppose the claim is false. Then there are two cases:
(1) wis a proper descendant of v: Since key(u) C P, v has an edge labeled P[depth[v]]
leading to u. When the search reached v, we would have continued to that edge and not

have stopped at v.

(2) _u is neither an ancestor or a descendant of v: Let w be the deepest common ancestor
of v and v. Since w is an ancestor of v and key(u) C P, key(w) C P. Moreover, the edge
that leads from w to u is labeled P [depth|w]], hence, the search would have gone to u and

not to v. O
Claim 4.2.2 u is an ancestor of v'.

Proof: Suppose u were a proper descendant of v'. While climbing up the path root(B) to
v we checked for each node w whether key(w.outptr) C P and hence would have stopped at
U. O

If key(v') C P then v’ = u and Bh_j_l(x) = v'.outptr = u.outptr = B"I7L(P).
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Claim 4.2.3 [f key(v') L P then u=1".

Proof: k = match(P, key(v')) < depth[v’]. Since u is an ancestor of v/, key(v") C P, and

by construction v” is the lowest node whose outptr points to a block whose key is a prefix

of P. In this case, v” = v and B"=~1(z) = v".outptr = uw.outptr = B"=9=1(P). O

O

To search a key P in a leaf L for which key(K) C P, we conduct a PT_ search in L’s
PT. If the PT _search fails, then P does not belong to the database.

Remark 4.3: To save space, the keys common(B) will be maintained incrementally. Let
B",...,B° (B' € T") be the set of blocks that lead to block B°, and d' = depth[root(B*)].
Then let A(B') = common(B*)[d~!..d" — 1], the characters of common(B*) that do not
appear in common(B*~!. Thus A(B") = A and common(B') = A(B"™1)--- A(B"). At each
block B* we compare the next characters of the key to A(B'). In the record we can also just
keep the increment.

Remark 4.4: At each level we might have to read two blocks B’ = v’.outptr and B" =
v".outptr, only on one of which the search is continued. Thus at most 2h + 1 blocks are
examined. If the two topmost levels reside in memory, we need to read 2h — 1 blocks.

4.4 Insertions

Insertions with sparse keys is similar to insertions with full keys. First, we find the block
B°(P), insert P to it using procedure Insert_to_Sparse_Trie below. Then if the block over-
flows, split it, and insert the key of the new block to B'(P). Thus the insertion process
might continue up to B* = B"(P).

Insert_to_Sparse_Trie(key P, Sparse_Trie S){
Add a new record R whose key is P.
Proceed as as search sparse block,
to find the lowest node u such that key(u) C P.
If depthlu] < ||P|| then
Add the edge (u, R) and label it Pldepth[u]].
else {
let (u,u’) be the edge labeled Pldepth[ull;
let j = match(P, key(u'));
add a new node u” of depth j;
add the edge (u,u”) and label it P[depthlu]];
add the edge (u”,u’) and label it key(u')[J];
add the edge (u", R) and label it P[j];

Program Insert to PT
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4.5 Sequential processing

The sparse key implementation is well suited to processing the file sequentially by increasing
key value. Consider first the full trie. Because of the nature of the full trie, when processing
the leaves in inorder from left to right, the keys are encountered by increasing lexicographical
order. The crucial point is that the left-to-right order of the leaves in the PT is identical
to that of the full trie. Hence also in the PT implementation, processing the leaves from
left to right implies that the file in processed by increasing order of the keys. Therefore, in
sequentially processing the file, after exhausting all the links from the index block, it can be
discarded, hence at every instance we need to keep only one index block of each level and
each index block need be read only once.

5 String B-trees

Recently Ferragina and Grossi [4] proposed a similar data structure—the String B-tree.
However, there are important differences: The space they require is at least twice as large
as ours, and mainly, the time complexity to search a database of n records, and page size B
is O (longn). Moreover, the constant hidden in the “big O” is much larger than ours.

As in stratified indexes over PT, they construct an index, and each index node is organized
as a PT. They start with a B-tree. However, each parent node contains two pointers to each of
its children. One labeled by the minimum key reachable from the child node and the second
labeled by the maximum key reachable from the child. Each internal node is organized as a
PT on the maximum and minimum keys of its children. Thus String B-trees require twice
as many pointers as stratified indexes over PT, incurring a waste of space.

A stratified indexes over PT reflects the structure of the trie, while String B-tree reflect
a B-tree structure, i.e., keys with no common prefix might be reachable from the same (non-
root) node, while, keys with a large common prefix are reachable from different nodes. Thus
String B-trees do not maintain the common prefix of internal nodes.

Consequently, when searching the String B-tree the error might be detected only when
reaching the records themselves. When an error occurs at a block at level ¢ the correction
procedure leads us to the correct block at level : — 1. Since, a search might involve an error
at each level, the search complexity for a database of n keys and page size B is 6 (logBZn).

Each String B-tree pointer contains a pointer to a record the keys of these records might
be needed to correct the errors of the blind-search. This incurs an additional overhead. See
[5] for a complete counterexample.

6 Evaluation

The number of disk accesses depends on several factors:

N - the number of records in the file,
B - block size (in bytes),

K - key size (in bytes),
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R - record size (in bytes)

P - pointer size,

Pp - average number of pointers in a block.
Rp - average number of nodes in a block.

a - average density of a block, the average number of nodes per block divided by the
maximum number of nodes that fit in a block. nodes.

The number of blocks required by the records of the file is No = N/Rp, this is typically more
than the size of the file N x R divided by the block size, since not all blocks are necessarily
full.

The level 1 index requires one pointer for each block of the file thus the number of blocks
is Ny = No/Pg = N. The next level requires Ny = N;/Pg = N;/P} blocks, and level i
index N; = N/(RpPjy) blocks. Thus the number of levels is h = [long N/RBW.

We shall assume that levels h and h — 1—the root and its children—reside permanently
in main memory, thus to access a record, we need to pass through levels 0,...,h — 2, i.e.,
h — 1 levels.

In the worst case, each level accessed entails a miss, thus the number of block accesses is
2(h — 1). However, experience indicates that this is very pessimistic, in reality the number
of accesses is much closer to h — 1. Moreover, when the file becomes larger, the keys become
denser, and the path to a leaf contains more levels, hence the probability that a level is
skipped is reduced, thereby reducing the probability of a miss.

The average number of pointers pointing out of a block, depends on the block size, the
size of the trie node the density of the block, and #—the proportion of nodes that point to
other blocks. Since in the PT each internal node has degree at least 2, the number of pointers
to other blocks is greater or equal to the number of nodes. i.e., 8 > 1. Consequently,

Pp > aiB.

node_size
Suppose a pointer to a block requires 4 bytes, in addition with each pointer we need one
more byte for the label, hence we need 5 bytes per pointer. In addition to the pointers, we
need space for the nodes this space is independent of the number of children of the node.
For a large file, the nodes near the root of the trie have many children, thus we may ignore
the overhead needed for storing the node itself.

Under these hypotheses, a block of size B = 8KB can accommodate 8192/5 = 1638
pointers. For o = In2 = 0.69 we get that Pg = 1140 *. Even if we bring into account the
space required for the nodes, Pg > 1000. Thus an index of height 3 can accommodate over
Pg® > 10° records. Thus even for very large files no more than three index levels are needed.
Since the first two levels reside in main memory, only one level of the index resides on the

disk.

1This choice of a is customary, since it arises in the analysis of the insertion process of B-trees [1] and
similar structures.

17



There are no disk misses at index levels that reside in main memory, and none for the
records themselves, hence about only two disk accesses are required (one for the index and
one for the record).

7 Other stratified indexes

We now wish to consider the stratified indexes over PT as a particular implementation
of a more general construction. This construction allows to abstract several known data
structures such as B-trees, and extendible hashing [2] as well as many new ones.

We start with a partitioned search structure—a data structure consisting of m blocks of
data. Each block has a representative key from some domain K. The representative keys
suffice for search, i.e., given a key K € K one can find the block that contains the record
with K by searching the representative keys. More formally, there exists a search function
S:Kx K™ 1,...,m, such that given a search key K € K then S(K, (K, ..., K,,)) is the
block of key K.

Example 7.1: The partitioned search structure is a sorted sequence of records partitioned
into blocks of 3 records each. In Fig. 8 the representative keys are R = (17,32,120,420).

The search function is S(K, R) = max{:: R; < K}. O
17 28 29 120 : 220 @ 321 1200 ' 1220 @ 1321
32 103 ' 110 420 ' 521 @ 621 4204 ' 5215 ' 6216

Figure 8: A partitioned search structure of 12 records.

In many cases the keys are sorted and the representative key is the minimum key of each
block. The search function consists of a sequential search of the representative keys.

Given a partitioned search structure, we can construct an indez to facilitate the search.
The index consists of levels. The first level is a partitioned search structure of the represen-
tative keys, and each successive level is a partitioned search structure of the representative
keys of previous level. This procedure is repeated until the level fits in a single block. Thus
we get levels [, 1", ... I° = the original partitioned search structure. Each key of I’ is
a representative key of I'"!. The index contains pointers from the keys of I’ to the cor-
responding blocks of I'~1. See Fig. 9 for the index to the search structure of Example 7.

7.1 Examples

The resultant data structure depends on what was the base partitioned search structure.
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~l 17 128 1 99

32 | 103 | 110
17 | |

120 ' 220 i 321
420 ' '

""" \\\\\\\\\m 420 - 420 | 521 | 621

1200/ 1200; 1220 1321

level 2 index

poi e 4204 5215 6216

base partitioned

level 1 index search structure

Figure 9: A partitioned search structure and 2-level index.
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B-tree The base partitioned search structure is a sorted array partitioned into (at least half

full) blocks.

Skip list The base partitioned search structure is a linked list.

Extendible-hash The base partitioned search structure is a hash table, and each level,
requires one less bit.

Stratified indexes over full tries The base partitioned search structure is a trie, parti-
tioned into blocks, such that each block is a tree.

Note that the base partitioned search structure need not be the same as the search structure
used in the indexes, thus giving rise to hybrid systems such as BD-files [7, §].

7.2 Search

To search for a key K, we search for K in the last level index—I", to reach block B""}(K) €
I"=1. Then this block is searched as part of the level A — 1 index to reach block B"~%(K) €
[h—2

To search for K = 1321 in the indexed search structure of Fig. 9, we first search for K
in the single block of I*) and follow the pointer from 420 to B'(K)—the second block of
I'. We continue the search in B'(K) and follow the pointer from 1200 to B*( K )—the sixth
block of I° (the base partitioned block structure).

Each search involves accessing only one block at each level, thus the number of blocks
accessed is equal to the number of levels. If the topmost two levels (level A and h — 1) reside
in main memory, and the remaining levels on disk, then each search requires h — 1 disk
accesses. In general, if each block contains at least 3 keys then an index for N keys consists

of h <logy N) levels.

7.3 Space

If each block contains at least 3 keys, the size of the level 7 index is N/3', and the additional
space required for the index is bounded by

I} B N
=15 T p-1

Thus for large blocks (8 > 1) and small keys, the space required by the index is negligible.

7.4 Insertions

Insertions follow the B-tree paradigm: to insert a new record, we first insert it into the
appropriate level 0 block. If this block overflows, we split it into two, obtaining a new
representative key, which should be inserted into the next level index.
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