SIAM J. COMPUT. ©1979 Society for Industrial and Applied Mathematics
Vol. 8, No. 2, May 1979 0097-5397/79/0802-0004$01.00/0

MAXIMUM FLOW IN PLANAR NETWORKS*

ALON ITAIt AND YOSSI SHILOACH#

Abstract. Efficient algorithms for finding maximum flow in planar networks are presented. These
algorithms take advantage of the planarity and are superior to the most efficient algorithms to date. If the
source and the terminal are on the same face, an algorithm of Berge is improved and its time complexity is
reduced to O(n log n). In the general case, for a given D >0 a flow of value D is found if one exists; otherwise,
itis indicated thatao such flow exists. This algorithm requires O(n2 log n) time. If the network is undirected a
minimum cut may be found in O(n? log n) time. All algorithms require O(n) space.

Key words. algorithm, network flow, planar graph

1. Introduction.
1.1. Basics. A directed flow network N = (G, s, t, ¢) is a quadruple, where:
(i) G=(V, E) is a directed linear graph;

(ii) s and ¢ are distinct vertices, the source and the terminal respectively;

(iii) ¢:E - R™ is the capacity function (R"* denotes the set of nonnegative real
numbers).
Henceforth, n and m denote the number of vertices and edges respectively
and u - v denotes a directed edge from u to v.

A function f: E > R™ is a flow if it satisfies:

(a) the capacity rule: f(e)=c(e)VeeE;

(b) the conservation rule:

IN (f,v)=OUT (f,v) VYveV—{s1}.

Where IN (f, v)=Y,.uover) f(u—>v) is the total flow entering v; and OUT (f,v)=
Y iw:v-werlf (v = w) is the total flow emanating from v.
The flow value |f| is defined by

|fl=OUT (£, s) - IN ({, 5).
A flow is a maximum flow if | f|Z|f| for any other flow f'.

1.2. Results. Ford and Fulkerson [6] stated and proved the Max Flow-Min Cut
theorem and established the technique of augmenting paths for finding a maximum
flow. Edmonds and Karp [5] provided the first polynomial algorithm (O (nm?)), based
on finding shortest augmenting paths. By using auxiliary graphs, Dinic [3] managed to
reduce the time bound to O(n*m) (see also [4]). By the method of preflows Karzanov
implemented Dinic’s algorithm in O(n?) time [9]. Note that when m = O(n) all these
algorithms require O(n>) time [1].

A flow network N = (G, s, t, ¢) is planar if G is a planar graph. (See [7, Chap. 11]
for the properties of planar graphs.) In this paper we discuss the problem of finding 4
maximum flow in planar networks.

Section 2 deals with (s, t) planar networks (s and ¢ are on the same face of G).
Berge [2, p. 190] proposed an algorithm to find a maximum flow, a straightforward
implementation of which requires O(n ?) time. Here, an O(n log n) implementation is
presented. It is also shown that O(n log n) is a lower bound to any implementation of

* Received by the editors February 7, 1977, and in revised form July 6, 1978.
t Department of Computer Science, Technion—Israel Institute of Technology, Haifa, Israel.
{ Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.

135

136 ALON ITAI AND YOSSI SHILOACH

Berge’s algorithm. (An O(n log n) algorithm to find a minimum (s, ¢)-cut for this case
appears in [8, p. 151]; however, this algorithm does not produce the flow function
itself.)

In § 3, for D >0 we find a flow of value D in a directed planar network if such a flow
exists, otherwise we indicate this fact. This algorithm requires O(n” log n) time.

In undirected graphs, let u—v denote an undirected edge between the vertices u
and v. A flow network is undirected if the graph is symmetric, i.e. if u > v € E then also
v->uekFE and c(u > v)=c(v->u). In this case G is considered to be undirected (each
pair of directed edges u »> v and v - u is replaced by the undirected edge u—v with the
same capacity).

In § 4, we present an O(n” log n) algorithm for finding a minimum (s, ¢) cut in an
undirected planar network. Thereby, a maximum flow in an undirected network may be
found in O(n?log n) time.

The Appendix contains an alternative proof of the validity of Berge’s algorithm.

1.3. Datastructures. Throughout the paper we assume that the graph G has a fixed

planar representation.

The graph is represented by incidence lists, i.e. each vertex v has a list E,, of all the
-edges to which v is incident (edges of the form u - v or v > w).

€0 €
ez
e3 ‘ l

FIG. 1

The set E, is represented by a circular list corresponding to the circular clockwise
ordering of the edges around v (see Fig. 1). Each edge ¢ € E, has a unique successor
edge succ,(e) in E,. The lists E, are used to find successor edges. In the course of the
algorithm some edges are deleted from the network. The deletion of an edge from E, is
deferred to the time it is traversed when looking for a successor edge. At this time the
predecessor edge is known; consequently, singly linked lists suffice. Each edge induces a
linear order on E, as follows:

eo=e, e =succ,(ei-1); i=1,--,|E,|—-1.

2. Maximum flow algorithm on (s, t) planar networks. This sections deals with
(s, t) planar networks, i.e. s and ¢ belong to the same face, and can be connected by an
edge without violating the planarity. Without loss of generality, ¢ - s € E, (otherwise it
may be added with zero capacity). We also assume that ¢ - s is incident with the exterior
face.

P=(vo, " ', vx) is a directed (vo, vx)-path if v;-y>v,;€E,i=1,---,k A pathis
simple if all its vertices are distinct. Let Py=(s=wvg, - ,vc=t) and P,=
(s=uo,"*+,u.=t) be two simple (s,t) paths. Py lies above P, if vi=u;i=
0, -, r, U1 # vr41and v, > v,4; precedes v, - U, in the linear order of E,, induced by
v,—1- U, (If r =0 then the order on E; is induced by ¢ > s.)

The “lies above” relation is a full anti-symmetric order relation on the set of all
simple (s, ¢)-paths. Hence, it has a unique maximum the uppermost path. (See Fig. 2.)

MAXIMUM FLOW IN PLANAR NETWORKS 137

F1G. 2. The uppermost path appears in boldface.

2.1. Berge’s algorithm. If s and ¢ are on the exterior face, maximum flow may be
found by Berge’s algorithm. The algorithm starts by pushing as much flow as possible
through the uppermost path. Thereby, at least one edge becomes saturated. Such an
edge is deleted, and the process is repeated using the uppermost path of the resultant
graph.

The algorithm uses the residual capacities : res (e) = c(e)— f(e), where f denotes the
flow found thus far by the algorithm.

Let P be an (s, t) path, an edge e® € P is a bottleneck if res (e®)=Min.cp res (e).
The bottleneck value is res (e?).

BERGE’S ALGORITHM.

1. Initialize: seti=1;

start with zero flow:
for all e € E set fo(e)=0, res (e) = c(e).

2. Find the uppermost path P?, if none exists then stop.

3. Let e? be a bottleneck of P? .

4. Increase the flow by res (e?) units along P?:

B, _ f.B_l(e)+res(e,5) if ec P?
file)= {f 21(e) otherwise

res (€)= c(e)—f7 (e).

5. Delete the bottleneck ef from G.
6. Seti=i+1 and go to 2.

The algorithm is illustrated in Fig. 3.

A proof of the validity of Berge’s algorithm can be found in [2]. See the Appendix
for an alternative self-contained proof.

A straightforward implementation of Berge’s algorithm (even step 4 alone)
requires O(n %) time for the network of Fig. 4. (Note that all the algorithms mentioned in
the introduction require O(n”) time for this network.)

Let I(e) and L(e) denote the index of the first and last uppermost paths in which the
edge e participates. The following lemma reveals a useful property of Berge’s
algorithm; its proof follows from Lemma 2.5 below.

LEMMA B. Ife participates in any uppermost path then e participates in all the paths
between Pr., and P).

COROLLARY. Lete € E and I(e)<i=L(e) then fZ(e)=|fF|~|fre)-1].

The proof follows immediately by induction on i using Lemma B.

2.2. The modified capacity method. We propose an O(n log n) implementation of
Berge’s algorithm. To this end, we use modified capacities instead of residual capacities.

138 ALON ITAI AND YOSSI SHILOACH

The capacities are depicted above the edges:

i The uppermost path PgB Residual capacity Bottleneck | f,-Bl

1 (s, v1, 02, 03, 1) (3,1,4,3) V1> Uy 1

2 (S, Uy, Uy, U2, U3, t) (2r 1, 3, 3, 2) V1204 2

3 (5, v4, 02, V3, 1) (2,2,2,1) V3>t 3

4 (s, v4, 1) 1,2) RN 4

5 (S, Us, t) (2a 2) Vs>t 6
FiG. 3

Let fM denote the flow after finding the ith uppermost path, then the modified capacity
is defined by M(e)—|f¥f)-1]+c(e). Note that the modified capacity of each edge
receives a value once in the algorithm and is not updated (in contrast to the residual
capacity which is updated in each iteration). The flow at each iteration, is not found
explicitly for each edge only its value, | £, is found.

ALGORITHM M.
Initialize: set |fo'|=0; Py = &; i=1.
Find the uppermost path P}, if none exists then go to 7.
For e e P — Py, set M(e)=c(e)+|fiti].
Find a bottleneck e} € P.. M(e¥)=Min..pMM(e); set | 11| = M(eM).
. Delete e from E.
. Seti=i+1 and go to 2.

AUnR W=

n vertices

n vertices

Fi1G. 4

MAXIMUM FLOW IN PLANAR NETWORKS 139

7. Find the flow of each edge: set

M(e) = { if e does not belong to any uppermost path,
|ftio)| = | flee-1| otherwise.

Algorithm M as applied to the network of Fig. 3 is illustrated in Fig. 5.

Modified capacities
i The uppermost path of the path The bottleneck | f?" |
1 (s, 01, 02, 03, 1) (3,1,4,3) V1> 1
2 (S» vy, Vg, Uy, U3, t) (3, 2’ 4, 4, 3) V1> 04 2
3 (8, v4, U2, 03, 1) 4,4,4,3) v3>t 3
4 (s, v, t) 4,5) s> vy 4
5 (s, vs, 1) (6,6) vs>t 6
e I(e) L(e) f(e) e I(e) L(e) fle)
s>, 1 2 2 V3>V — — 0
S§>U4 3 4 2 v3->t 1 3 3
s> s 5 5 2 V4> Uy 2 3 2
V1>V, 1 1 1 V4> Us — — 0
V10, 2 2 1 vyt 4 4 1
V- U3 1 3 3 vs>t 5 5 2
t>s — — 0
FI1G. §

The following lemma shows that the two algorithms are equivalent.

LEMMA 2.1. Let f1 be the flow found in the ith iteration of Berge’s algorithm. Let
P2, -, PR be the uppermost paths found in Berge s algorithm, PY -+, PY the
uppermost paths found by algorithm M. If each P has a unique bottleneck e} then

i) PB PM

iii) ef=eM fori=1,---,k.

iv) ff =f

Proof. By induction on i. If i =1 then since both P? and P} are the uppermost
path of the same graph G, P} = P}".

140 ALON ITAI AND YOSSI SHILOACH

At this point, for each e e P}, res (e)=c(e)=M(e). M(e}')=Min,p» M(e)=
Min,p= res (e) =res (e?).

Therefore, e} is the unique bottleneck of PT, i.e. ef = e}’ Also, |f|=M(e})=
res (e7) =|f7.

Suppose the lemma is valid for all j <i. At this stage, the graph is the same in both
algorithms, since by the induction hypothesis the same bottlenecks have been deleted.
Both P? and PM are the uppermost path of the same graph; therefore PM=pB

For e € P?

res (e)=c(e)—fi-1(¢) (from corollary to Lemma B)
= (&)= (Ifa |~ |ffe1)
=c(e) +|f1te-1]=Ifi4]

=M(e)—|f,51|.

Since for the edges e € PP = P}, res (¢) and M (e) differ only by a fixed value—]|f2,|,
M(e?)=Min,. P M(e)= M (eM). The equality e =¢? follows from the hypothesis
that e? is the unique bottleneck of PB

Furthermore,

|F2=1f2 1] +res (€)= fa |+ (M(e?) = f1]) = M(eP)= M(e") = | '].
Q.E.D.

If a path P; has more than one bottleneck, Berge’s algorithm does not specify which
bottleneck is chosen. Therefore, for any choice of the bottlenecks in Algorithm M there
is a corresponding choice in Berge’s algorithm such that the sequences of paths,
bottlenecks and flow values are identical in both algorithms. Since both algorithms find
the same flow, and Berge’s algorithms finds a maximum flow, we have:

THEOREM 2.1. The modified capacity method (Algorithm M) finds a maximum
flow.

In order to determine the time complexity of Algorithm M, we must first specify
how the uppermost paths, the bottlenecks and the indices /(e) and L(e) are found.

2.3. Finding uppermost paths. Let P;,_;=(s=uvo, ' -,v,=t) be the (i—1)st
uppermost path. Deleting a bottleneck v; - v;+; from P;_, breaks it into two paths: P*
from s to v; and P’ from vj4; to .
Algorithm U below constructs P; by continuing P* until it meets P’ (P, is found by
connecting P° = (s) and P’ = (¢).) To this end, we conduct a partial depth first search
from v; until we reach a vertex of P".
ALGORITHM U
1. P,=Pv=u;
2. Let e = u > v be the edge in P; which enters v (if v =s then e =t - 5).
3. If E, ={e} then (v is a deadend)
if v = s then stop (no (s, t) path exists).
Otherwise, (backtrack) set v = u; delete e from G and P;;
go to 2. (See Fig. 6a.)

4. Lete' =succ,(e). If e’ enters v (e’ is in the wrong direction) delete e’ and go to 3.
(See Fig. 6b.)

5. (Inthiscase e’ =v > w.)If wg P, U P’ theninclude e’ in P, set v = w and go to 2.
(See Fig. 6¢.)

MAXIMUM FLOW IN PLANAR NETWORKS 141

6. If we P’ (the desired path has been found) include e’ in P;; delete the edges
from v;4; to w along P‘; add the remaining edges of P’ to P;, and
stop. (See Fig. 6d.)

7. (w € P;). Delete the edge e’ and the edges P; between w and v; Set v = w and go
to 2. (See Fig. 6e.)

Note that I (e) and L(e) can be found in Algorithm U as follows: Whenever an edge

e isincluded in P; (step 5 or 6) set I (e) = i. If an edge e is deleted in the ith iteration then
set L(e)=1i—1;if ¢ is not deleted L(e) gets the index of the last uppermost path.

Visl
AW N\:}w
TN
I -
‘¢ Ny
FI1G. 6a
. w Visl
V'
u_ e -e_
S(\D)t

FI1G. 6b

F1G. 6¢

Visl

FIG. 6e

Fi1G. 6

142 ALON ITAI AND YOSSI SHILOACH

2.4. A validity proof of Algorithm U. An edge e incident with the exterior face is
left-exterior (l.e.) if it is either incident only with the exterior face, or it is incident also
with another face but the exterior face is on its left hand side (see Fig. 7).

Whether an edge is l.e. depends also on the planar representation of G ; we choose a
particular representation in which ¢t > s is l.e.

F1G. 7. The l.e. edges appear in boldface.

A path is le. if all its edges are l.e. The above definition implies the following
lemma:

LEMMA 2.2. Ifu->visan le. edge and v > w =succ,(u - v) then v > w is also l.e.

The proof follows immediately from the definition of l.e.

LEMMA 2.3. Let G; be the graph resulting after finding the path P.. If P° and P' are
Le. in G;_; then P; is l.e. in G

Proof. If P;=(s) and the edge s > w is added to P; then s > w =succ,(¢ > s) and
therefore is l.e.

Assume that P; is a nontrivial path, and u - v is its last edge. When an edge v - w is
added to P, v > w =succ,(# > v) and by Lemma 2.2, v - w is also l.e. The algorithm
may delete edges but if an edge is l.e., then the deletion of other edges does not change
this property.

The edges of P’ added to P; (at step 6) are l.e. since P’ was l.e. in Gi-;. Q.E.D.

COROLLARY. Every path P; found by Algorithm U is l.e. in G;.

_Proof. By inductionon i. Fori=1, P*=(s), P' = (t)and the premise of Lemma 2.3
holds. In general, assume that P,_, is l.e. Deleting the bottleneck of P;_; yields
P°, P' c P;_, which are also l.e. and by Lemma 2.3 P; is also l.e. Q.E.D.

LEMMA 2.4. Ifvy, 02, v3 and v4 are on the exterior face in this cyclic order then every
(v1, v3)-path and every (v2, v4)-path have a common vertex.

Proof. Assume to the contrary that P; and P, are disjoint (v1, v3)- and (v2, v4)-
paths. Add a vertex vs in the exterior face and the edges vs—>v;, i =1, - -, 4. Then the
resulting graph is both planar and contractible to Ks—a contradiction (see Fig.
8). Q.E.D.

MAXIMUM FLOW IN PLANAR NETWORKS 143

LEmMMA 2.5. Eevery edge deleted by Algorithm U cannot participate in any
subsequent uppermost path.

Proof. Edges are deleted in four places:

i) (step 3). The vertex v is a deadend and no (s, #)-path can pass through v;
therefore, e = u - v is useless (Fig. 6a).

ii) (step 4). Let e'=w - v. Since e € P, is an l.e. edge, (corollary to Lemma 2.3).
e’ =succ,(e) and therefore e’ is incident with the exterior face. Since t € P;_4, s,
v, w and ¢ are on the exterior face in this cyclic order. Thus, by Lemma 2.4,
every directed (s, ¢) path which uses w - v must cross itself. This property is not
changed when edges are deleted. Therefore, any subsequent (s,t) path
containing v > w is not simple and is not uppermost (Fig. 6b).

iii) (step 6). If edges are deleted in this step then v;4; # w and w is incident with
three l.e. edges. Consequently, w is an articulation point separating the deleted
edges from the vertices s and ¢, and any (s, ¢) path which uses any of the deleted
edges is not simple (Fig. 6d).

iv) (step 7). Since the edge v > w is an l.e. edge then w is an articulation point and
there is no simple (s, ¢)-path through any vertex x which belongs to the directed
cycle closed by v » w, (Figure 6e). Q.E.D.

The above lemmas yield:

THEOREM 2.2. If there exists an (s, t)-path then Algorithm U finds the uppermost

path.

Proof. If there exists an (s, t)-path there exists an uppermost path. By Lemma 2.5
after deleting edges there still exists an (s, t)-path. In this case the algorithm terminates
in step 6 and a path is returned. By the corollary to Lemma 2.3 this path is l.e. It is easy
to see that any l.e. (s, ¢)-path is uppermost. Therefore, the path is the uppermost path of
the resultant graph. Since by Lemma 2.5 only useless edges are deleted, this path is also
the uppermost path of the initial graph. Q.E.D.

At this point we wish to make a few observations. Algorithm U finds the uppermost
paths and can be used both in Berge’s Algorithm and Algorithm M. The validity of
Berge’s Algorithm does not depend upon the method by which the uppermost paths are
found. However, since by a proper choice of bottlenecks every method yields the same
sequence of uppermost paths, Algorithm U may be used to prove properties of Berge’s
Algorithm, in particular Lemma B above.

Proof of Lemma B. It suffices to prove thatif e € P;, e P;.1, then e P; forj>i. If e
is the bottleneck of P; then it is deleted by Berge’s Algorithm and cannot participate in
any subsequent uppermost path. Otherwise, e is deleted by Algorithm U, and by
Lemma 2.5 cannot participate in any subsequent uppermost path. Consequently, e£ P;
forj>i. Q.E.D.

Note that Lemma B is a property of Berge’s Algorithm, not of Algorithm U.

Therefore, it may be used to show the equivalence of Berge’s Algorithm and Algorithm
M.

2.5. Efficient implementation of Steps 5-7 of Algorithm U. To obtain an
O(n log n) algorithm, Steps 5-7 must be implemented efficiently.

Step 5. In this step we should identify the new vertices (those vertices which have
not appeared in P; or any previous uppermost path). To this end, on initialization (step 1

of Algorithm M) we mark vertices s and ¢ as old and all other vertices new. Step 5 should
be:

5. If w is new, then: include e’ in P;,
mark wold, set v = w and go to 2.

144 ALON ITAI AND YOSSI SHILOACH

The paths P; and P’ are represented as follows:

Every vertex belongs to at most one of the paths P; or P*. Every vertex x has one pointer
field. If x € P; then the pointer points to its predecessor in P;; if x € P’ then it points to its
predecessor in P,

Steps 6,7. Here we should determine whether an old vertex w is in P* or P,. This is
done by backtracking along the back pointers. If w € P* then the backtracking from w
stops when we encounter v;.; and the backtracking from v stops when s is met. If w € P;
then when backtracking from w, s is encountered and when backtracking from v, w is
encountered. If the backtracking is done from v and w in parallel and stopped when the
first terminating condition is met, the number of edges processed is at most twice the
number of edges deleted in Steps 6 and 7.

LEMMA 2.6. The number of edge traversals in Algorithm M (insertions to an
uppermost path, deletions from the graph and backtracking) is proportional to the number
of edges.

Proof. Each edge may be inserted and deleted at most once. An edge is traversed at
insertion or deletion, and at backtracking. From the previous discussion, the total
number of edge traversals caused by backtracking is at most twice the number of
deletions, and thus it is also linear. Q.E.D.

2.6. The complexity of Algorithm M. In order to find a bottleneck efficiently, we
use a priority queue. A priority queue [10] is a data structure to which we may insert or
delete an element in O(log q) time (q is the number of elements in the queue), and find
the minimum in constant time. We keep the modified capacities of the edges of the
current P; and P’, in the same priority queue. Edges are inserted to the priority queue,
when added to P; in Steps 5 and 6 of Algorithm U. Whenever an edge of the graph is
deleted, it is deleted also from the priority queue (provided it was there). Each edge is
inserted and deleted at most once. Therefore, there may be at most m edges on the
queue, and the entire deletion and insertion time is O(m log m)= O(n log n). By
Lemma 2.6 this bound also dominates the execution of the entire algorithm. Consider
the graph of Fig. 9. The ¢;’s are the bottlenecks. In any implementation of Berge’s
Algorithm they are found in an increasing order. Therefore, Berge’s Algorithm may be
used to sort{cy, - - -, c.}. Hence, Berge’s Algorithm (in any implementation which uses
comparisons to find the bottleneck) requires at least O(n log n) time.

Cn

c C C=Max C;

FI1G. 9

3. Finding a flow in a general planar network.

3.1. Preliminaries. Let N be a general planar network (i.e. s and ¢ are not
necessarily on the same face) and let D € R*. We wish to find a flow f of value D in N.
Algorithm G, described below, finds f if it exists, otherwise, the algorithm terminates
indicating that there is no such flow. The algorithm requires at most O(n” log n) time.
The Max Flow-Min Cut theorem [6] implies that such a flow exists iff D = C—the value
of a minimum cut. However, we did not find an O(n’ log n)algorithm to determine C in
a general directed planar network. In § 4 we present an O(n> log n) algorithm to find a
minimum cut in an undirected planar network.

A function f: E > R" is a pseudo-flow if it satisfies the conservation rule. Since the
capacity rule is not necessarily satisfied, a pseudo-flow is not necessarily a flow. An edge

MAXIMUM FLOW IN PLANAR NETWORKS 145

e is over-flowed (with respect to a pseudo-flow f) if f(e)<c(e).If e=u-> v, then &
denotes the edge v > u. We make use of two conventions concerning the edges e, é:
i) If e € E then also ¢ € E (¢ may be added with zero capacity).
ii) If a flow (pseudo-flow) passes through e, no flow passes through ¢ (i.e. if f(e) >0
then f(é) = 0).
Let fi, f> be pseudo-flows; the pseudo-flows f;+f» and f; —f, are defined by:

(fi£f2)(e)=Max {0, fi(e)—f1(€)= (fale)~ f2(€))}-
Therefore, if for example, fi(e)=3, f2(é)=5, then

(fit+f2)e)=0, (fi—f2Xe)=8,
(fitf)e)=2, (fi—f2)@é)=0.

3.2. General planar flow algorithm. Algorithm G starts with an initial pseudo-flow
the value of which is equal to D.

At each stage we pick an over-flowed edge x - y and construct a new pseudo-flow
of the same value. The new pseudo-flow satisfies the capacity rule for the edges which
satisfied it before, as well as for the edge x > y.

ALGORITHM G.

1. Find a shortest (s, ¢)-path, P.

2. Let f be the pseudo-flow obtained by pushing D units of flow through P.

3. Choose an over-flowed edge e, = x - y. If none exists stop—f is a legal flow of

value D.
4. Let N'=(G', x,y,c) where G=(V, E'), E'=E —{eo, éo}
0 if f(e)>c(e),
and c'(e)=<cle)—f(e) if cle)=f(e)>0,

c(e)+f(é) otherwise (f(e)=0).

Find a flow f’ in N’ such that |f'| = f(eo)— c(eo). If none exists then stop, there
exists no flow of value D in N.

5. Set f'(é)=|f|; f=f+f; goto 3.

3.3. The validity and complexity of Algorithm G. In this section we prove the
following theorem:

THEOREM 3.1. Let N be a general planar network and De R™.

i) If there exists a flow of value D in N then Algorithm G finds one.
ii) If there exists no such flow then Algorithm G terminates indicating this fact (at
step 4).

iii) Algorithm G requires at most O(n’ log n) time.

First, we show that the algorithm always terminates.

LEMMA 3.1. Let p denote the number of edges of the path P (found in Step 1),
then the number of iterations of Algorithm G is bounded by p.

Proof. From the definition of ¢’ it follows that if an edge e satisfied the capacity rule
for f, then after updating f in Step 5 the rule is still satisfied, i.e.

if fe)=c(e) then (f+f)e)=c(e).

Moreover, after the execution of Step 5, the edge ¢, also satisfies the capacity rule
(f(eo)=c(eo)). Consequently, after each iteration the number of over-flowed edges
strictly decreases. Since there are at most p such edges, the number of iterations is
bounded by p. Q.E.D.

146 ALON ITAI AND YOSSI SHILOACH

The proof of the theorem depends on the following lemma.

LEMMA 3.2. If D=C then in Step 4 there exists a flow f' in N' of value:
|f’| = f(eo)—c(eo)

Proof. Let f° be a flow of value D in N. Define f*=f® —f. fi& (f* restricted to
E’) is a flow in N': Since |f| =|f"|= D, f* satisfies the conservation rule at s and ¢ as
well as for all the other vertices. The capacity rule is satisfied because of the definition
of ¢'.

Since f* satisfies the conservation rule at x, the value of fi’;-f is:

|| =F*@)~F*(e)=(F? @)~ FE)N—(f°(e)—f(e))
=€) +fle)~f (e)=f(e)~f"(e)=f(e)—c(e)>0.

Since N’ has a flow, the value of which is at least f(e)— c(e), it also has a flow f’ of
value f(e)—c(e). Q.E.D.

Proof of Theorem 3.1.

i) If D = C then there exists a flow of value D in N. By Lemma 3.2 the algorithm
terminates at Step 3, when no over-flowed edges exist, i.e. the final f is a flow.
Since throughout the algorithm the value of f is not changed, at termination,
flow of value D is found.

ii) If D > C then the algorithm cannot terminate in Step 3. Since by Lemma 3.1
the algorithm is finite, it terminates in Step 4, indicating that no flow of value D
exists.

iii) We bound the execution time of each step.

Step 1. requires O(m)= O(n) time;

Step 2. O(p)= O(n) time;

Step 3-5. are executed at most p times. On each iteration, Step 3 requires at
most O(1) time.

In Step 4 a flow f* of value f(e)—c(e)is required. To find ', N’ is augmented by the
vertex x, and the edge x; - x of capacity f(e)—c(e).

Let f™* be a maximum flow from x; to y. If | f™**| = f(e)— c(e) then the desired flow
is f™ restricted to E'. Otherwise, |f™|<f(e)<c(e), there exists no flow f’, and the
algorithm immediately terminates.

In N', x and y are on the same face. Hence, there exists a planar representation of
the augmented network, in which x; and y are also on the same face. Therefore, we may
use Algorithm M to find f™ in O(n log n) time. Consequently, Step 4 requires
O(n?log n) time.

Hence, the complexity of Algorithm G is O(pn log n)=O(n*logn). Q.E.D.

Note that in some cases a shorter initial path can be found by adding edges of zero
capacity.

4. Finding a minimum (s, #) cut in an undirected planar network. In this section we
present an O(n”log n) algorithm for finding a minimum (s, f)-cut in an undirected
planar network.

Henceforth, we assume that G is triconnected. Otherwise, the graph may be
triangulated in linear time using zero capacity edges. (Every triangulated planar graph
with more than three vertices is triconnected.) The value of a minimum (s, ¢)-cut
obviously does not change by this process. The minimum cut of the original graph
consists of the original edges which participate in a minimum cut of the new graph.

Since G is triconnected, it has a unique dual G¢ = (X, A), [11, Chap. 3]. G% is also
triconnected. Let F and ® denote the set of faces of G and G* respectively. There exists
a 1-1 correspondence between the elements of V< ®, E < A and F < X (see Fig. 10).
Let o € E denote the dual of « € A. The length of an edge a € A is defined by:

l(a)=c(a®).

MAXIMUM FLOW IN PLANAR NETWORKS 147

Let ¢, and ¢, denote the faces in G which correspond to s and ¢ respectively.
Henceforth, we assume that ¢; is the exterior face of G*“. The following lemma is
intuitive; however its formal proof is tedious, and therefore, omitted.

LEMMA 4.1. If C is a minimum (s, t) cut then C*={ala’ec C} is a cycle of
minimum length enclosing o..

Let e, £'co and let [I=(£°=¢,,- - -, & =¢°) be a shortest (£°, ¢')-path in
G% Letay=¢_1—&fori=2, -+ k.

Let Ay denote the set of all edges of G? which have exactly one endpoint on I1. An
edge £ — ¢ € A is I1-left if it precedes a;.1 in the linear order around ¢; induced by a;.
(See § 1.3.) The edge & —¢; is I1-right if it succeeds, a;. in this order. Two vertices &,
&+ and two edges ao = £o—¢&; and oy = & — &k+1 are added to G (see Fig. 11) to
make this definition meaningful also for the edges which are incident with &¢° = £, and

&=¢.

- right edges

FiG. 11

148 ALON ITAI AND YOSSI SHILOACH

Note that since G is triconnected no edge is both IT-left and IT-right. A &-cycle isa
simple cycle which uses exactly one Il-left and one II-right edge and its I1-left edge is
incident with &, (see Fig. 12).

F1G. 12

It is easy to see that every &;-cycle (i=1, - - -, k) encloses ¢,.

LEMMA 4.2, Let C be a shortest cycle enclosing ¢,. Then there exists a &;-cycle of the
same length.

Proof. The proof follows immediately from the fact that IT is a shortest (£°, £') path
and therefore a subpath of I between & and any ¢; is a shortest (¢, &) path. Moreover,
every cycle enclosing ¢, must intersect II. Q.E.D.

(This argument does not work in directed graphs.)

The previous lemma implies that in order to find a minimum cycle enclosing ¢, we
may find for each i =1, -, k a minimum §; cycle. The shortest of these k cycles is a
minimum cycle enclosing ¢,. In order to find minimum ¢&;-cycle we use the following
construction.

Let G be the directed graph obtained from G* in the following manner: Every
I1-left edge & — n is directed from &; to n. Every II-right edge & — n is directed from 1 to
&. All the other edges £ —n are replaced by two edges £ > 7 and n > £,

LEMMA 4.3. Let & ell. If & is a shortest simple nontrivial directed path from &; to
itself in G*, then the corresponding undirected edges in G* form a shortest &-cycle.

Proof. Itcan be easily verified from the definition of G thatif a directed path from
& toitself uses more than one I1-left edge or more than one I1-right edge, then it crosses
itself and therefore it is not a shortest &;-cycle. Q.E.D.

Finding a minimum ¢;-path for a given i is therefore equivalent to finding a shortest
nontrivial (¢, &)-path in G This can be done in O(m log n)= O(n log n) time and
therefore the entire algorithm requires at most O(n” log n) time.

5. Conclusions. We have presented an O(n log n) algorithm to find a maximum
flow in an (s, ¢) planar network. The algorithm was programmed and compared on (s, t)
planar networks with Berge’s and Dinic’s algorithms. On networks which exhibit
Dinic’s O(n®) behavior, the special purpose algorithms (Berge’s and ours) were
superior.

The tests were also conducted on random data. Since it was unclear how random
(s, t) planar graphs can be algorithmically constructed, the algorithm was tested on
several (s, t) planar graph with random capacities. For these networks the results were
less clear cut. The performance of our algorithm and Dinic’s were about the same;
however there were differences on different networks. Berge’s algorithm was superior
to both.

This behavior is explained by two observations:

i) The number of augmenting paths found by Dinic’s algorithm was much less
than the upper bound.

MAXIMUM FLOW IN PLANAR NETWORKS 149

ii) The priority queue involves considerable owerhead.

In the general case the value of a maximum flow is equal to that of the minimum
cut. We have presented an O(n %log n) algorithm to find the minimum cut in an
undirected planar network. Using this algorithm and Algorithm G a maximum flow in
an undirected planar network may be found in O(n’log n) time.

We have not found an O(n? log n) method to find the value of the minimum cut for
the directed case. However, since Algorithm G indicates whether D is less than or equal
to the value of the maximum flow, if the capacities are integers it may be used to find the
maximum flow. However, this method requires log Y, . c(e) iterations of Algorithm G,
and hence its complexity is a function of the size of the capacities, as well as the number
of vertices. Nevertheless, if the capacities are all small integers the method is superior to
the existing algorithms.

Appendix. A validity proof of Berge’s algorithm. Let f be a flow in N=
(G, s, t,¢), G =(V, E); then the graph Gy is defined by:

Gs=(V, Ey), Ej={e: ecE and f(e)>0}.

Let P=(s=uvo, -, vr=t) be the uppermost path of G, and e, = vy, > vr+1 for h =
0, --,k—1. Let f be a maximum flow such that
k k
(A.1) Y f(en)= Y f'(en) for any maximum flow f'.
h=1 h=1

LEMMA A.1. Let e® be the bottleneck of P then f(en)=c(e®), (h =0, -+, k—1).
Proof. Assume to the contrary that r is the first index such that f(e,)< c(e®). Then

(A.2) flen)<c(e®) forh=rr+1, -, k—1.

We prove (A.2) by induction on h. By hypothesis it is true for A = r. Assume it holds
forh=rr+1,---,j—1.

If f(e;)= c(e®) then f(e;)> f(e,) and therefore there exists an (s, v;) path P, in Gj,
which does not pass through e,. Since OUT (f, v,)> f(e,) there exists a (v,, t) path P, in
Gy, which does not pass through ¢,. By Lemma 2.4, P, crosses P;; let x be their common
vertex (see Fig. 13).

FiG. 13.

Let P; be the path in Gy constructed from the subpath of P, from v, to x and the
subpath of P, from x to v;. Psis a (v,, v;) path in G;. Let P’ denote the subpath of P from
v, to v;. The edge e, belongs to P’ but not to Ps, therefore, P' # P;. By the induction
hypothesis the edges of P’ are not saturated. Thus, we may divert flow from P; to P'. The
resultant flow f’ violates (A.1), this completing the proof of (A.2).

To complete the proof of the lemma, let P, be a (v,, £)-path in Gy; then by diverting
flow from P, to P, (A.1) is violated. Q.E.D.

150 ALON ITAI AND YOSSI SHILOACH

THEOREM A.1. Berge’s algorithm finds a maximum flow.

Proof. By induction on the number of edges:

i) The claim is obvious if the network contains only one edge.

ii) For m>1 edges, let ¢® be the bottleneck of P, define the flow network
N =(G, s, t, ¢) as follows:

- _fc(e) ifee E—P,
C(e)—{c(e)—c(eB) ifeeP.

Let

7o) fle) ifeecE—P,
2 {f(e)—c(eB) ifeecP.

By Lemma A.1 f(¢)=0 Ve € P, and therefore f is a legal flow. Obviously, f is a
maximum flow in N and | f]=|f]—c(e®).

In Berge’s algorithm we push c(e®) units of flow through P and then apply the
same process on the resultant network—N which has at least one edge (e®)less than N.
By the igduction hypothesis—the algorithm, applied to N finds maximum flow of value
|fl—c(e®).

Consequently, the algorithm applied to N finds a flow of value (|f]—c(e®))+
c(e®)=|f|. That is, Berge’s algorithm finds a maximum flow. Q.E.D.

Note added in proof. It was brought to our attention by Professor T. C. Hu that what
we call “Berge’s Algorithm” was originated by L. R. Ford and D. R. Fulkerson in their
paper Maximal flow through a network, Canad. J. Math., 8 (1956), pp. 399-404.

REFERENCES

[1] A. E. BARATZ, Construction and analysis of network flow problem which forces Karzanov algorithm to
ON 3) running time, MIT Laboratory for Computer Science Report MIT/LCS/TM-83, Mass. Inst.
of Tech., Cambridge, 1977.

[2] C. BERGE AND A. GHOUILA-HOURI, Programming, Games and Transportation Networks, Methuen,
Agincourt, Ontario.

[3] E. A. DINIC, Algorithm for solution of a problem of maximal flow in a network with power estimation,
Soviet Math. Dokl., 11 (1970), pp. 1277-1280.

[4] S. EVEN AND R. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.
507-518.

[5] J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow
problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

[6] C. R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[7] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[8] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.

[9] A. V. KARZANOV, Determining the maximal flow in a network by the method of the preflows, Soviet
Math. Dokl., 15 (1974), pp. 434-437.

[10] D. E. KNUTH, The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA, 1973.

[11] O. ORE, The Four Color Problem, Academic Press, New York, 1967.

