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Abstract

Suppose that a program makes a sequence of m accesses (references) to data blocks, the
cache can hold k < m blocks, an access to a block in the cache incurs one time unit, and
fetching a missing block incurs d time units. A fetch of a new block can be initiated while a
previous fetch is in progress; thus, min{k, d} block fetches can be in progress simultaneously.
Any sequence of block references is modeled as a walk on the access graph of the program. The
goal is to find a policy for prefetching and caching, which minimizes the overall execution time
of a given reference sequence. This study is motivated from the pipelined operation of modern
memory controllers, and from program execution on fast processors. In the offline case, we show
that an algorithm proposed by Cao et al. [6] is optimal for this problem. In the online case, we
give an algorithm that is within factor of 2 from the optimal in the set of online deterministic
algorithms, for any access graph, and k, d ≥ 1. Better ratios are obtained for several classes of
access graphs which arise in applications, including complete graphs and directed acyclic graphs
(DAG).
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1 Introduction

Caching and prefetching have been studied extensively in the past decades; however, the interaction
between the two was not well understood until the seminal work of Cao et al. [6], who proposed
to integrate caching with prefetching. They introduced the following execution model. Suppose
that a program makes a sequence of m accesses to data blocks, the cache can hold k < m blocks,
an access to a block in the cache incurs one time unit, and fetching a missing block incurs d time
units. While accessing a block in the cache, the system can fetch a block from secondary storage,
either in response to a cache miss (caching by demand), or before it is referenced, in anticipation
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of a miss (prefetching). At most one fetch can be in progress at any given time. The Caching
with Prefetching (CP) problem is to determine the sequence of block evictions/prefetches, so as to
minimize the overall time required for accessing all blocks.

Motivated by the operation of modern memory controllers, and from program execution on fast
processors,1 we consider the problem of caching integrated with pipelined prefetching. Here, a fetch
of a new block can be initiated while a previous fetch is still in progress. Following Borodin et
al. [4], we capture the locality of reference in memory access patterns of real programs by the access
graph model (see below). Thus, we assume that any sequence of block references is a walk on an
access graph, G. As before, our measure is the overall execution time of a given reference sequence.

Formally, suppose that a set of n data blocks V = {b1, b2, . . . , bn} is held in secondary storage.
The access graph for the program that reads/writes into V is given by a directed graph G = (V,E),
where each vertex corresponds to a block in this set. Any sequence of block references has to obey
the locality constraints imposed by the edges of G: following a request to a block (vertex) bi, the
next request has to be either to the block bi itself or to a block bj , such that (bi, bj) ∈ E. To allow
consecutive accesses to a block bi, a self-loop is added to the corresponding vertex in G. We denote
by Paths(G) the set of paths in G.

Pipelined prefetching allows to initiate a prefetch one time unit after the previous prefetch.
Note that if block bi is replaced in order to bring block bj , then bi becomes unavailable for access
when the fetch is initiated; bj can be accessed only when the fetch terminates, i.e., after d time
units. This allows for min{k, d} fetches to be in progress, at any given time.

Let the reference sequence σ = (r1, . . . , rm), and suppose that at time t block ri is referenced.
To complete the reference, block ri should be in the cache. If at time t block ri is already in the
cache, the reference is satisfied immediately, incurring one time unit; otherwise, a prefetch of ri

was initiated by algorithm A at time ti ≤ t, and a stall for dA(ri) = d− (t− ti) time units incurs.
The total stall time of σ is

∑m
i=1 dA(ri). The total execution time of σ is the time to access the m

blocks plus the total stall time, i.e., time(A, σ) = m +
∑m

i=1 dA(ri). The problem of caching with
locality and pipelined prefetching (CLPP) can be stated as follows. Given a cache of size k ≥ 1, a
delivery time d ≥ 1 and a reference sequence σ, find an algorithm A for pipelined prefetching and
caching, such that time(A, σ) is minimized.

The adversary is an optimal offline algorithm, OPT, together with a request sequence. We use
competitive analysis (see e.g. in [5]) to establish performance bounds for online algorithms for our
problem. The competitive ratio of an online algorithm A on a graph G, for fixed cache size k and
delivery time d, is given by

cA(G, k, d) = sup
σ∈Paths(G)

time(A, σ)
time(OPT, σ)

. (1)

We abbreviate the formulation of our results using the following notation. Let c(G, k, d) be the
competitive ratio of an optimal online algorithm for CLPP on an access graph G, for fixed k and d.
We say that A is strongly competitive, if cA(G, k, d) = O(c(G, k, d)). The superscript det restricts
the set of algorithms to deterministic algorithm, e.g., cdet(G, k, d) is the competitive ratio of an
optimal deterministic online algorithm on G, for a cache of size k and delivery time d. Finally, an
access graph G is called a branch tree if G is an ordered binary out-tree in which every internal
vertex has a left child and a right child. Branch trees model program execution on fast processors
(see [11]), in which case, the cache size, k, is the length of the pipe. Since each instruction goes

1A detailed survey of these applications is given in [11].
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through k − 1 stages in the pipe before it reaches the execution phase, in our discussion of branch
trees we assume that d = k − 1.
Our Results: We study the CLPP problem both in the offline case, where the sequence of
cache accesses is known in advance, and in the online case, where ri+1 is revealed to the algorithm
only when ri is accessed. In the offline case (Section 2), we show that algorithm Aggressive (AGG)
introduced in [6] is optimal, for any access graph and any d, k ≥ 1.

In the online case (Section 3), we give an algorithm, Lazy-OL-AGG, which is strongly competitive
in the set of deterministic online algorithms for CLPP. In particular, we show that cLazy-OL-AGG(G, k, d) ≤
2 · cdet(G, k, d) for any access graph G and k, d ≥ 1. Better ratios are derived (in Section 4) for
several classes of access graphs that arise in applications. Specifically, we show that if G is a directed
acyclic graph (DAG) then cLazy-OL-AGG(G, k, d) ≤ min{1+k/d, 2} · cdet(G, k, d), for any k, d ≥ 1, and if
G is a branch tree then cLazy-OL-AGG(G, k, k − 1) ≤ (1 + o(1))c(G, k, k − 1), where the o(1) term refers
to a function of k. For complete graphs, we show that any deterministic marking algorithm2 A
satisfies cA(G, k, d) ≤ min{d + 1, k + 1}. We also show that this is almost the best possible, since
for any complete graph G and k, d ≥ 1, cdet(G, k, d) ≥ min{d + 1, k}.

For deriving upper bounds on the competitive ratios of our algorithms, we develop (in Section 3)
a general proof technique that we use also for special classes of access graphs (in Section 4). The
technique relies on comparing a lazy version of a given online algorithm to an optimal algorithm
which is allowed to use parallel (rather than pipelined) prefetches, i.e., if at time t, d′ prefetches
are in progress, upto d− d′ additional prefetches can be initiated at time t. The technique may be
useful for tackling other problems in which pipelined service is granted to a set of requests in an
online fashion.
Related Work: The concept of integrated prefetching and caching was first investigated by Cao
et al. [6]. The paper studies offline prefetching and caching algorithms, where fetches are serialized,
i.e., at most one fetch can be in progress at any given time. Algorithm AGG was shown to yield a
min{1 + d/k, 2}-approximation to the optimal. Albers et al. showed in [2] that the CP problem
can be optimally solved using linear programming. Later, Albers and Witt [3] presented an optimal
combinatorial algorithm for the problem. Recently, Albers and Büttner [1] gave a refined analysis
for AGG on a single disk and showed that it achieves the ratio min{1 + d/(k + bk

dc − 1), 2}, which
is tight.

Kimbrel and Karlin studied in [15] storage systems that consist of r units (e.g., an array of
r disks); fetches are serialized on each storage unit, thus, up to r block fetches can be processed
in parallel. The paper gives performance bounds for several offline algorithms in this setting. An
algorithm that operates similar to AGG was shown to achieve a competitive ratio of (1 + rd/k).
The papers [2], [3] and [1] give approximation algorithms for the problem of minimizing the total
stall time in a system that consists of r units, for any r > 1. Other papers (see e.g. [17, 18])
present experimental results for cooperative prefetching and caching, in the presence of optional
program-provided hints of future accesses.

The classic paging problem, where the cost of an access is zero and the cost of a fault is 1, is a
special case of our problem, in which d À 1.3 There is a wide literature on the caching (paging)
problem. (Comprehensive surveys appear e.g. in [13, 16, 5, 7].) Borodin et al. [4] introduced the
access graph model. The paper presents an online algorithm that is strongly competitive on any

2We give the precise definition of this class of algorithms in Section 4.
3Thus, when normalizing (by factor d) we get that the delivery time equals to one, while the access time, 1/d,

asymptotically tends to 0.
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access graph. Later works (e.g., [8, 14, 10]) consider extensions of the access graph model, or give
experimental results for some heuristics for paging in this model [9].

2 The Offline CLPP Problem

In the offline case, we are given the reference sequence, and our goal is to achieve maximal overlap
between prefetching and references to blocks in the cache, so as to minimize the overall execution
time of the sequence. The next lemma shows that a set of rules formulated in [6], to characterize
the behavior of optimal algorithms for the CP problem, applies also for the offline CLPP problem.
Lemma 2.1 [No harm rules] There exists an optimal algorithm A which satisfies the following
rules: (i) A fetches the next block in the reference sequence that is missing in the cache; (ii) A
evicts the block whose next reference is furthest in the future.4 (iii) A never replaces a block B by
a block C if B will be referenced before C.
The proof of the lemma follows from the next claim, which can be shown by induction on i, i ≥ 1.
(A detailed proof is given in [11].)
Claim 2.2 Any algorithm A can be transformed to an algorithm Ā which satisfies the three “no
harm” rules in the first i references, for any i ≥ 1, without incurring extra cost.

In the remainder of this section we consider only optimal algorithms that follow the “no harm”
rules. Clearly, once an algorithm A decides to fetch a block, these rules uniquely define the block
that should be fetched and the block that will be evicted. Thus, the only decision to be made by
any algorithm is when to start the next fetch. Algorithm AGG, proposed by Cao et al. [6], follows
the “no harm” rules; in addition, it fetches each block at the earliest opportunity, i.e., whenever
there is a block in the cache, whose next reference is after the first reference to the block that will
be fetched. As stated in our next result, this algorithm is the best possible for CLPP.
Theorem 2.3 AGG is an optimal offline algorithm for the CLPP problem.
Proof: We show by induction that, for i ≥ 1, any optimal offline algorithm A which satisfies
the “no harm” rules can be modified to act like AGG in the first i steps, without harming A’s
optimality.
Base: Assume that the cache is initially empty; then, both A and AGG fetch r1.
Induction Step: Assume that A acts like AGG in the first (i− 1) steps. We distinguish between
two cases in the i-th reference:

(i) A initiates a fetch of some block rx. Then, since A satisfies the “no harm” rules, and AGG
fetches in the first opportunity, clearly, AGG acts in step i like A (rx is missing in AGG’s cache
and can be fetched).

(ii) A does not initiate a fetch, but AGG does. Specifically, suppose that AGG fetches rx and
discards ry. Indeed, this implies that rx is the next block in the reference sequence that is
missing in the cache, for both AGG and A. We define an algorithm A′ that operates like AGG
in step i and then proceeds like A, until the time t > i in which A fetches rx and discards
some block rd. If rd 6= ry then A′ fetches ry and discards rd; otherwise, the contents of A′’s
cache remain unchanged. Clearly, the above occurs before the next reference to rx (which
precedes the next reference to ry). Thus, the cost of A′ is equal to that of A, and A′ acts like
AGG in the first i steps.

4If there is no future reference to two blocks A and B they are evicted from the cache in lexicographic order.
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Note that algorithm A′ may not follow the “no harm” rules after step i. Indeed, ry may not
be the first block that is missing in the cache at the time it is fetched by A′. However, by
Claim 2.2, we can modify A′ so that it satisfies the “no harm” rules at any time. (As shown
in the proof of Claim 2.2 [11], if A′ violates a “no harm” rule for the first time at t > i, then
we modify the steps of the algorithm at time t or later, therefore A′ still acts like AGG in the
first i steps).

The greediness of AGG plays an important role when d < k, as shown in the next result.
Corollary 2.4 If d < k then, in any reference sequence, AGG incurs a single miss: in the first
reference.
Proof: We show that, for any i ≥ 1, when AGG accesses ri in the cache, each of the blocks
ri+1, . . . , ri+d−1 is either in the cache or being fetched. The proof is by induction on i.
Base: i = 1. Assuming that the cache is initially empty, AGG starts at time t = 1 to fetch r1, and
stalls in the next d−1 time units, in which it initiates the fetches of r2, . . . , rd. Thus, AGG accesses
r1 in the cache at time t = d + 1, and the claim holds.
Induction Step: Assume that the claim holds till ri, and we show for ri+1. We need to handle
two cases:

(i) If at the time ri is accessed ri+d is either in the cache or being fetched, then AGG will not
interrupt this fetch or discard ri+d from the cache, by the “no harm” rules.

(ii) If ri+d is neither being fetched nor in the cache then ri+d is the first missing block (by the
induction hypothesis, all the preceding blocks are either in the cache or being fetched). By
the “no harm” rules, AGG will not discard any of the blocks ri, . . . , ri+d−1 for fetching ri+d.
In addition, since d < k, there exists in the cache at least one block re, whose next reference
is after ri+d; AGG will discard re and initiate a fetch of ri+d. Hence the claim holds also after
the ith reference.

3 The Online CLPP Problem

In this section we study the online CLPP on general access graphs. Recall that in the online case
ri+1 is revealed to the algorithm only when ri is accessed, for 1 ≤ i ≤ m− 1. Given the parameters
k, d ≥ 1 and the access graph G, our goal is to develop an online algorithm A that minimizes
the ratio cA(G, k, d), as given in (1). We start by investigating the case where the length of σ is
bounded by min{k, d}; later we extend the discussion to sequences of arbitrary length.

Let G = (V,E) be an access graph. Suppose that σ = (r1, . . . , r`), 1 ≤ ` ≤ min{k, d}, is a
reference sequence to blocks. Then σ is a path in G which – except for the first block r1 – is
unknown. Suppose that r is the current referenced block, and V ′ ⊆ V is the set of blocks in the
cache. A vertex v ∈ V \ V ′ is called a hole. If s is the length of the shortest path from r to a hole
then, provided the content of the cache is not changed, there will be no cache miss for at least s
steps. We therefore define B(r, V ′)— the benefit of V ′—as the distance from r to the closest hole.

Towards obtaining a competitive algorithm for the online CLPP, we consider first algorithms
that select a set of ` vertices to put in the cache, based solely on the initial reference r1 and
the access graph G. We call this problem the Single Phase CLPP (S CLPP). Given a reference
sequence, σ, and the subgraph GA ⊆ G selected by algorithm A, we denote by PREFσ(GA) the
maximal set of vertices in GA that form a prefix of σ. Given that the first request in σ is r1, an
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algorithm A is optimal if minσ∈Paths(G),|σ|=` |PREFσ(GA)| is maximal. Note that maximizing the
last expression is equivalent to maximizing the distance from r1 to a hole, i.e. B(r1, GA).

Algorithm S AGG below mimics the operation of AGG in solving S CLPP, i.e., in maximizing
the benefit of the selected subgraph. Denote by dist(v, u) the length of the shortest path from v
to u in G.5 Let INt denote the blocks that are in the cache or are being fetched at step t, and
OUTt = V \ INt. The following is a pseudocode description for S AGG.

Algorithm S AGG
for t = 1, . . . , ` do

Let u = arg min{dist(r1, v) : v ∈ OUTt} .
Let w = arg max{dist(r1, v) : v ∈ INt} .
If dist(r1, u) < dist(r1, w)

Evict w from the cache and initiate a fetch for u.

Lemma 3.1 S AGG is an optimal algorithm for the S CLPP problem, for any graph G and k, d ≥
1.
Proof: Note that since ` ≤ d, in the S CLLP problem we need to select a subset V ′ before
knowing any of the vertices r2, . . . , r`. Since S AGG always selects the hole that is closest to r1,
GS AGG maximizes the length of the shortest path from r1 to a hole. Hence, B(r1, GS AGG), the benefit
of S AGG, is maximum.

The above lemma facilitates the derivation of our main result for the online CLPP. Assume now
that σ has arbitrary length m ≥ 1. Let Lazy-OL-AGG be an algorithm that breaks σ into smaller
sequences and solves for each the S CLPP problem. More specifically, whenever a block is missing
in the cache, Lazy-OL-AGG initiates the fetches of ` = min{k, d} blocks, using S AGG; then, it
stalls for d time units (until the first of these block is in the cache) and starts to access blocks, until
another block is missing.
Theorem 3.2 For any graph G and k, d ≥ 1, Algorithm Lazy-OL-AGG satisfies

cLazy-OL-AGG(G, k, d) ≤ 2 · cdet(G, k, d) .

Proof: We compare two algorithms, Algorithm Lazy-OL-AGG and Algorithm Par-OL-AGG,
which uses parallelism to outperform any deterministic online algorithm. The ratio between the
performance of these algorithms constitutes a bound on the performance ratio for the problem.

Consider first Algorithm Lazy-OL-AGG. In the analysis below, we use an alternative description
of the algorithm, in which the operation of Lazy-OL-AGG is partitioned into phases. Phase i, i ≥ 1,
starts at some time ti, with a stall of d time units, for fetching a missing block – ri. (The first phase
starts at t1 = 1.) Each phase is partitioned into sub-phases. Let ti,j be the start time of sub-phase
j. The first sub-phase of phase i starts at time ti,1 = ti. At sub-phase j, Lazy-OL-AGG invokes
Algorithm S AGG to select a subset, Vi,j , of ` = min{d, k} vertices. Some of these vertices (=blocks)
are already in the cache: Lazy-OL-AGG initiates pipelined fetching of the remaining blocks. Let ri,j

be the block that is accessed first in sub-phase j of phase i, and let σd
i,j be the sequence of the first

d block accesses in sub-phase j. We denote by

Good(i, j) = σd
i,j ∩ Vi,j

the maximal set of blocks among those that are in the cache or being fetched at time ti,j + d, that
forms a prefix of σd

i,j . Let gi,j = |Good(i, j)|. (Note that gi,j is known only at time t + d + gi,j .)

5When u is unreachable from v dist(v, u) = ∞.
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• If gi,j = d then Lazy-OL-AGG waits until d blocks were accessed in the cache; at time ti,j +2d
the j-th sub-phase terminates, and Lazy-OL-AGG starts sub-phase j + 1 of phase i.

• If gi,j < d then at time ti,j + d + gi,j phase i terminates and the first missing block in the
cache becomes ri+1.

Consider now Algorithm Par-OL-AGG, which operates like Lazy-OL-AGG, except that Par-OL-AGG
has the advantage that in each sub-phase, j, all the prefetches are initiated in parallel, and d time
units after this sub-phase starts Par-OL-AGG knows the value of gi,j and the first missing block
in the cache; then, all the vertices in Good(i, j) can be accessed in parallel d + 1 time units after
the start of this sub-phase. As in Lazy-OL-AGG, if gi,j = d then Par-OL-AGG proceeds to the next
sub-phase of phase i; if gi,j < d phase i terminates. Note that, combining Lemma 3.1 with the
parallel fetching property, we get that Par-OL-AGG outperforms any deterministic online algorithm
for CLPP.

We now show that Lazy-OL-AGG is close to the optimal in the set of deterministic algorithms
for the online CLPP. To compute cLazy-OL-AGG(G, k, d)/cdet(G, k, d), it suffices to compare the length
of phase i of Lazy-OL-AGG and Par-OL-AGG, for any i ≥ 1. Suppose that there are sp(i) sub-phases
in phase i. For Lazy-OL-AGG, each of the first sp(i) − 1 sub-phases incurs 2d time units, while
the last sub-phase incurs d + g time units, for some 1 ≤ g < d. For Par-OL-AGG, each sub-phase
(including the last one) incurs d time units; thus, for any sequence σ, we get the ratio

cLazy-OL-AGG(G, k, d)
cdet(G, k, d)

≤ time(Lazy-OL-AGG, σ)
time(Par-OL-AGG, σ)

≤ d + g + (sp(i)− 1)2d

(d + 1) · sp(i)
≤ 2 .

Remark 3.1 We note that the above result relies strongly on the assumption that ri+1 is revealed
to the algorithm only after ri is accessed. In a slightly different model (used e.g. in the k-server
problem [5]), ri is revealed to the algorithm at time i. In this model, we can easily obtain for our
problem a competitive ratio of 2. This is done by waiting until the whole sequence is known (at
time m) and then solving optimally the offline CLPP. In fact, for instances in which d < k, we
can apply AGG to the online problem and get a single stall (when r1 is fetched). This yields a the
competitive ratio of 1, by Corollary 2.4.

4 Online CLPP on DAGs and Complete Graphs

In this section we discuss several classes of graphs that arise in applications. In Sections 4.1 and
4.2 we study the class of DAGs and the more restricted subclass of branch trees, for which we
can improve the bound obtained in the previous section for Lazy-OL-AGG. In Section 4.3 we study
complete graphs. We show that on such graphs pipelined prefetching is not helpful, as marking
algorithms (that do not use prefetching) achieve almost the optimal competitive ratio in the set of
deterministic algorithms.

4.1 Directed Acyclic Access Graphs

Consider now the subclass of DAGs. Our next result improves the bound in Theorem 3.2 in the
case where k < d.
Theorem 4.1 If G is a DAG then, for any cache size k ≥ 1 and delivery time d ≥ 1,

cLazy-OL-AGG(G, k, d) ≤ min{1 + k/d, 2} · cdet(G, k, d) .
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Proof: Recall that in the proof of Theorem 3.2 we showed that

cLazy-OL-AGG(G, k, d) ≤ 2 · cdet(G, k, d) .

When k < d, each phase consists of a single sub-phase. Indeed, since G is a DAG (i.e., no
self-loops), consecutive accesses to the same block cannot occur; thus, each block can be accessed
at most once along the execution of the program. It follows that, in each phase, both Par-OL-AGG
and Lazy-OL-AGG have at most k < d ‘good’ blocks in the cache (i.e., gi,1 < d), and phase i
terminates. The ratio between the length of phase i for Lazy-OL-AGG and Par-OL-AGG is then at
most (d + k)/d. This yields the statement of the theorem.

4.2 Branch Trees

The case where G is a branch tree is of particular interest in the application of CLPP to pipeline
execution of programs on fast processors (see in [11]). For this case, we show that the bound in The-
orem 4.1 can be further improved. Specifically, we show that the competitive ratio of Lazy-OL-AGG
is within factor 1+o(1) of the optimal in the set of online (deterministic or randomized) algorithms
on branch trees.
Theorem 4.2 If G is a branch tree then cLazy-OL-AGG(G, k, k− 1) ≤ (1+ o(1))c(G, k, k− 1), where the
o(1) term refers to a function of k.

For the proof we need the following lemma.
Lemma 4.3 If G is a branch tree then c(G, k, k − 1) ≥ k/ lg k.
Proof: We derive a lower bound on the expected performance ratio of any deterministic algo-
rithm, on problem instances chosen from a specific probability distribution. The theorem will then
follow from Yao’s method [19].

Recall that on branch trees d = k−1. Suppose that the tree T is rooted at r1 = r. The adversary
generates the reference sequence σ as follows. At any vertex v ∈ T , the adversary proceeds to the
left child with probability 1/2. Denote by depth(v) the depth of v in T . (The depth of r1 is 0).
Let pa(v) denote the probability that the adversary selects v for σ. Obviously, in our case this
probability depends on depth(v) and is equal to pa(v) = 1

2depth(v) .
Now, we allow the online algorithm, A, to start fetching the first k blocks at time t = 0 (rather

than one block per time unit); then, A waits for k steps. At time k, A accesses simultaneously
all the good blocks, i.e., the fetched blocks that are a prefix of σ. At this time, A knows the last
correct block in the fetched subtree. Then, at time k + 1, A starts fetching another set of k blocks.
Thus, A partitions the reference sequence to phases, each consists of k time units; in each phase A
solves S CLPP.

Recall that in S CLPP the goal of A is to maximize PREFσ(TA), where TA ⊆ T is the subtree
selected by A. Consider Algorithm BAL, that proceeds as follows. First, BAL sorts the vertices in
T in decreasing order by the values of pa(v), and then BAL fetches the first k vertices in the list.
In our case, for any i ≥ 2, in phase i BAL takes a balanced subtree of k vertices, rooted at the last
correct block of phase i− 1 (this block becomes the root of T in phase i; r1 = r).

We now calculate the expected benefit of any online algorithm, A, in a single phase. Let vj be
the jth vertex fetched to the cache. Then the expected benefit of A from selecting the subtree TA
is

B̄(r, TA) =
k∑

j=1

pa(vj) =
k∑

j=1

(
1
2

)depth(vj)

.
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We note that BAL maximizes this value, since it selects k vertices with the highest probabilities.
Hence, the expected benefit of any deterministic algorithm in solving S CLPP is bounded by the
height of a balanced tree of k vertices, that is, lg k.

Assume that A uses BAL in each phase, then clearly A outperforms any deterministic online
algorithm, since it fetches in each phase a subtree that maximizes the benefit; also, for fetching
(and accessing) a subset of k blocks, A stalls only for k time units: this is the time required for
handling the first missing block in the cache.

Since d < k, by Corollary 2.4, the total execution time of any optimal algorithm is |σ|+d, while
the expected execution time of A is at least |σ|k/ lg k.
Proof of Theorem 4.2: Consider the following simple variant of Lazy-OL-AGG: in phase i, fetch
into the cache a complete binary tree of size k′ = k/ lg k, then stall for k time units. This algorithm
incurs an average cost of k + k′ for accessing lg k′ blocks.

cLazy-OL-AGG(G, k, k − 1) ≤ k′ + k

lg k′
=

k(1 + 1/ lg k)
lg k − lg lg k

=
k

lg k
(1 + o(1)) .

Using Lemma 4.3 we get the statement of the theorem.

4.3 Complete Graphs

Suppose that G is a complete graph, i.e., G contains the edges (u, v) and (v, u) between every
two vertices u and v. We first derive a lower bound on the competitive ratio of any deterministic
algorithm.
Theorem 4.4 If G is a complete graph then, for any d ≥ 1 and cache size k ≥ 1,

cdet(G, k, d) ≥ min{d + 1, k} . (2)

Proof: W.l.o.g. we assume that |V | ≥ k + 1 (otherwise, any online algorithm that never evicts
blocks from the cache is optimal). Consider first the case where d ≤ k−1. Recall that when d < k,
the total execution time of any optimal algorithm is |σ| + d. Let A be an online deterministic
algorithm. For any t ≥ 1, if A accesses at time t some block, bj , then at most (k − 1) other blocks
can be available in the cache or in the process of being fetched. Hence, there exists a block, rf ,
that is neither in the cache nor being fetched; rf will be requested at time t+1 and incur a stall of
d time units. The same holds for any block that is being fetched by A to the cache. Thus, we can
construct a sequence in which A stalls in each reference for d time units, and for sufficiently long
reference sequences,

cA(G, k, d) =
|σ|(d + 1)
|σ|+ d

→ d + 1 .

Assume now that d ≥ k; then, in the worst case, OPT has to fetch a block every k accesses, and
its total execution time is |σ| · (d + 1)/k. Since A’s execution time is (d + 1)|σ|, we get a ratio of
k. This completes the proof.

In the following we show that the lower bound derived in Theorem 4.4 cannot be substantially
improved: the ratio in (2) can be achieved, to within an additive factor of 1, by a caching-by-
demand algorithm. Consider the set of marking algorithms proposed for the classical caching
(paging) problem (see, e.g., in [4]). A marking algorithm proceeds in phases. At the beginning of
a phase all the blocks in the cache are unmarked. Whenever a block is requested, it is marked.
On a cache fault, the marking algorithm evicts an unmarked block from the cache and fetches the
requested one. A phase ends on the first ‘miss’ in which all the blocks in the cache are marked. At
this point all the blocks become unmarked, and a new phase begins.
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Theorem 4.5 For any access graph G, cache size k and delivery time d ≥ 1, if A is a marking
algorithm then cA(G, k, d) ≤ min{d + 1, k + 1} .
Proof: Let A be a deterministic marking algorithm. We denote by nj the number of references
in phase j, j ≥ 1. We calculate the cost incurred by an optimal offline algorithm, OPT, for the
execution of phase j of A. Each phase ends once we access the (k + 1)-st distinct block; thus, any
algorithm (including OPT) has to fetch at least one block from secondary memory to the cache.
Also, if a phase consists of nj accesses, any algorithm has to spend nj steps on accessing the blocks.
Therefore, OPT needs at least max{nj , d} steps to complete the execution of phase j of A.

Now we calculate the cost incurred by A in phase j. A fetches blocks only on a cache fault,
and it can fetch at most k blocks within phase j. Therefore, the cost incurred by A for phase j is
at most kd + nj . This yields the ratio:

cA(G, k, d) ≤ nj + kd

max{nj , d} .

If d < k then max{nj , d} = nj , hence

cA(G, k, d) ≤ nj + kd

nj
≤ d + 1 .

If d ≥ k then

cA(G, k, d) ≤ nj + kd

max{nj , d} =
nj

max{nj , d} +
kd

max{nj , d} ≤ k + 1 .

¿From Theorems 4.4 and 4.5 we conclude that marking algorithms are close to the optimal in
the set of deterministic algorithms on complete graphs, as summarized in our next result.
Corollary 4.6 Let G be a complete graph and A a marking algorithm, then if d < k A is optimal
in the set of deterministic algorithms for CLPP; otherwise, A is within factor of 1 + 1/k from any
optimal deterministic online algorithm.

Note that our results for complete graphs apply also to the case where the access graph is un-
known to the algorithm, in which no deterministic algorithm can make ‘good choices’ in prefetching
blocks. Thus, marking algorithms are almost the best possible in the set of deterministic algo-
rithms.
Acknowledgments: We thank Anna Karlin, Rajeev Motwani and Prabhakar Raghavan, for
valuable discussions on this paper. Thanks also to two anonymous referees for helpful comments
and suggestions.
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