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A parallel randomized algorithm to find a maximal matching is presented. Its expected running time on a CRCW-PRAM 
with [E I processors in O(log I E I). The expected time is independent of the structure of the input graph. This improves the best 
known deterministic algorithm by a factor of log~-[E I. 
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1. Introduction 

Let G(V, E) be an undirected graph. A set 
M ~ E is a matching if no two edges of M have a 
common vertex. The matching M is maximal if it 
is not properly contained in any other matching. 
Note that this does not necessarily imply that M 
has more edges than any other matching. 

A maximal matching can be found sequentially 
by the following greedy algorithm: Start with an 
empty matching and add any edge which is not 
adjacent to any edge that i sa l ready in M. Unfor- 
tunately, it is not clear how to use parallelism to 
implement this algorithm in less than linear time. 
The best known deterministic parallel algorithm 
for maximal matching is given in [2], where 
I V I + I E I  processors are needed to find a maxi- 
mal matching of a graph G(V, E) in log 3 I EI time. 
The model of computat ion is the CRCW-PRAM 
which allows simultaneous READ/WRITE by more 
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than one processor f r o m / t o  the same memory cell. 
Other maximal matching algorithms apear in [3,4]. 

In this paper we present a very simple random- 
ized algorithm for maximal matching. The ex- 
pected complexity of the algorithm is O(loglEt)  
on the CRCW-PRAM and [El processors are 
used. The algorithm is randomized in the sense of 
[5], i.e., it employs randomly chosen numbers. I t s  
properties and efficiency do not depend on the 
assumption that the input graph is random. A 
basic operation of our algorithm is the following 
Random Choice Operation (RCO): Given a non- 
zero boolean vector x, choose an index i such that 
x, 4: 0, where all indices with nonzero entries have 
the same probability to be chosen. 

In Section 2 we outline the algorithm. In Sec- 
tion 3 we prove that the expected time complexity 
of the algorithm is O( log lEI r  ) where r is the time 
needed for each RCO. This leads to a trivial, 
O(l°g 2 [ E I), implementation of the algorithm on 
an EREW-PRAM. In Section 4 we show how to 
perform RCO in O(1) expected time on a CRCW- 
PRAM, which yields the promised O(loglE[)  
complexity. This is a novel feature which we be- 
lieve to be of an independent  interest. 
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!. An outline of the Algorithm 

The maximal matching algorithm is divided into 
~hases. Let ~ be the ith phase. The input  of cI)~ is 
l graph G, ~ G and the output is a (not neces- 
;arily maximal) matching of G~, M~. The union of 
tll M,'s is a maximal matching. The input  graph 
o r  qb~+ ~, G~+ 1. is obtained by removing the edges 
)f M, and their incident edges from G, (G~ = G). 
Fhe algorithm terminates when all the edges of the 
nput  graph are removed. 

Each phase ~b, is divided conceptually into two 
;tages. 

Mgorithm 
Stage 1. Find a sparse subgraph of G i, S i, with 

naximal degree less than or equal to 2. 
Stage 2. Find a matching of the sparse sub- 

~raph. 
A more detailed outline of ~ is given below. 
Stage 1.1 (Choose an edge). Each vertex v ~ V 

:hooses at random (with equal probability) an 
adjacent edge and directs it outward. 

Comment: Let RI(V, ER,) be the subgraph of 
,3~ induced by all the chosen edges. The outdegree 
~f every vertex v ~ V satisfies d°Ut(v) = 1. The Ri 
maximal indegree of a vertex in R~ is still un- 
9ounded. 

Stage 1.2 (Bound indegrees). Each vertex v ~ V 
inch that d'~,(v) >/1 chooses an incoming edge. 

Comment: Let Si(V, Es. ) be the graph induced 
by all the chosen edges, where the directions im- 
posed in Stage 1.1 are now ignored. Every vertex 
v ~ V satisfies d s ( v  )~< 2. 

Stage 2.1 (Finda matching). Each vertex choos- 
es at random an incident edge of S~. An edge 
e ~  Es, belongs to the matching M~ if it was 
zhosen by both its endpoints. 

Stage 2.2 (Cleanup). Remove from G i all the 
edges of M, with all their incident edges to get 
G~ + ~--the input graph for the next phase. 

3. The complexity of the Algorithm 

A vertex v ~ V of a graph G(V, E) is bad if the 
degree of at least 2 of its neighbors is greater than 
its own degree. A vertex is good if it is not bad. 

An edge e ~ E is bad if both its endpoints  are bad. 
Otherwise it is good. In order to prove that the 
expected number  of phases is logarithmic we first 
show that the expected number  of good edges 
removed from G~ at the end of cI), constitutes a 
constant fraction of the total number  of good 
edges of G i. 

Lemma 3.1. The probability that a good vertex of 
positive degree in G i has a positive degree in S, is 
greater than or equal to 1 - e-  ~/3. 

Proof. Let v be a good vertex of degree d > 0 in G~ 
and neighbors u 1 . . . . .  u o. The vertex v has k 

I neighbors, k >/ [3d] + 1 such that dj = d ( u j ) 4  d, 
j = 1 . . . . .  k. If any uj chooses the edge (u j, v) in 
Stage 1.1 of the Algorithm, then surely d s ( v  ) > 0. 
The probability that uj chose the edge (u j, v) in ~ 
is 1 / d j  > /1 /d .  The probability that ul . . . . .  u k did 
not choose the edge (v, u j) is 

4 1 - ( d )  d/3 = [( 1--~1)6] 1'/3 < e -~/3 . 

Thus, the probability that some edge (v, u j) is in 
R~ is greater than 1 -  e - ~ / 3 >  0. Note  that by 
ignoring the possibility that the edge chosen in 
Stage 1.1 by the vertex v is in S~ we only have 
decreased the probability that d s ( v  ) > 0. [] 

A matching M is incident with a vertex v if v is 
an endpoint  of an edge e ~ M. 

Lemma 3.2. The probability that a vertex of positive 
degree in S i is incident with M i is greater than or 
equal to ½. 

Proof. The graph S, is a collection of cycles and 
paths. An isolated edge (a path of length 1) is 
surely in M~. Hence, the probability that M, is 
incident with one of its endpoints is also 1. It is 
easy to see that the probability that M~ is incident 
with any other vertex of G, is ½. [] 

In order to prove expected logarithmic depth 
we bound the number  of bad edges in a graph. 
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Lemma 3.3. A t least one-third of the edges of any 
graph are good. 

Proof. Let G(V, E) be an arbitrary graph. Assume 
that each edge of G is directed from the endpoint  
of smaller degree to the endpoint  of higher degree. 
An edge with equal degree endpoints  is directed 
lexicographically. The resulting directed graph is 
acyclic. 

Every bad vertex v ~ V  satisfies di"(v) 
1 I O U I Z  x ~< ~a tv). Hence, it is possible to associate with 

each edge e entering a bad vertex v a pair of edges 
leaving v such that different edges have disjoint 
pairs. These edges sl(e ), s2(e ) are called edge suc- 
cessors. In other words: for every two bad edges 
e 1 4:e 2 of G the edges s1(%), s2(el), sl(e2), and 
s2(e 2) are distinct. 

The edges s l(e) and s 2 (e) are twin-edges and the 
edge e is their parent. Note  that: 

(a) Every bad edge has two successors but those 
two are not necessarily bad edges. 

(b) Not all edges leaving a bad vertex have a 
parent. 

A root-edge is a bad edge that either has no 
parent  or whose twin is a good edge. A leaf edge is 
a bad edge with (at least one) good edge successor. 
Since the successors are all distinct, every leaf edge 
has 'its own' good edge successor. We prove the 
claim of the lemma by showing that the number  of 
leaf edges is greater than the number  of nonleaf 
bad edges. 

Let r ~ , . . . ,  r k be the root edges of G. We show 
how to partition the bad edges of G into k edge 
disjoint directed acyclic subgraphs of G, D 1, . . . ,  
D k. The graph D~ starts with the root edge r~ and 
contains its successors and their successors until 
reaching leaf edges. The directed graph D~ is 
acyclic since it is a subgraph of an acyclic orienta- 
tion of G. With each D~ we associate the good 
edges whose parent edge is in D~. Each leaf edge is 
the parent of (at least) one good edge and different 
leaf edges have different good edges. We shall 
prove that at least ½ I D~ I good edges are associated 
with each D~. Summing over all the D~'s yields our 
result. 

If the D~'s were full binary trees (i.e., every 
internal vertex had two children), then the number  
of nonleaf edges of D~ would have been one less 

than the number  of leaf edges of D~. Unfor- 
tunately, D, need not be a binary tree since two 
edges of D~ may enter the same vertex. However, 
for each D, we construct a full binary tree T, 
whose vertices correspond to edges of D~. The 
vertices v 1 and v 2 are the children of v, in T~, if the 
corresponding edges e~ and e 2 are the successors 
of the edge e, corresponding to v. The number  of 
leaf vertices of T~ is greater than the number  of its 
nonleaf vertices. Thus in D~ the number  of leaf 
edges is greater than the number  of nonleaf edges. 
[] 

Combining Lemmas 3.1-3.3 we achieve the fol- 
lowing theorem. 

Theorem 3.4. The probability that a good edge of 
G i is removed in ¢b i is at least ½(1 - e-1/3). 

Proof. An edge is removed in ~i if it is in M, or 
adjacent to an edge of M i. The claim follows 
since: 

(1) Every good edge is incident with at least 
one good vertex and the probability of a good 
vertex of G~ to be in S~ is not less than 1 - e ~/3 
(Lemma 3.1 ). 

(2) The probability of M, to be incident with 
any vertex of S~ is greater than or equal to ½ 
(Lemma 3.2). [] 

Using the fact that at least one-third of the 
edges of any graph are good (Lemma 3.3), it is 
easy to see that the expected number  of edges 
removed in dP i is at least ~ ( 1 -  e-1/3). Thus, we 
get the following corollary. 

Corollary 3.5. The expected number of phases of the 
algorithm is O(log I E I)- 

Proof. The proof follows since the expected num- 
ber of edges removed in ~ is at least 61-(1 - e -  ~/3). 
[] 

The only implementation problem posed by the 
Algorithm is the equal probability choice in Stages 
1.1 and 1.2. If we assign a processor for each edge, 
we can perform this operation in O( loglEI)  time 
with no concurrent write (or read) needed. Thus, 
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we get a complexi ty of O(log21E l) expected time 
on an E R E W - P R A M  with I E I processors. 

4. Concurrent random choice 

The R a n d o m  Choice Operat ion (RCO) was de- 
fined as follows: Choose  a nonzero entry of a 
nonzero boolean vector x where all nonzero entries 
have the same probabi l i ty  to be chosen. 

Let ~, I xf = d, be a boolean vector. Assume 
that x is not  identically zero. The R C O  succeeds if 
it chooses an r such that x~ --- 1. It fails if, for all 
i, x r, -- 0. We  show how to implement  the R C O  on 
the vector x in a C R C W - P R A M  with d processors 
in constant  expected time and with a small prob-  
ability of failure. 

An outline of RCO: Initially, the register called 
entry has value 0, on termination it will either 
remain 0 or contain a random index i such that 
xi =g 0. 

(1) Each processor p~ chooses at random a 
number  r~, 1 ~< r i ~< d. 

(2) If x ~, 4: 0, then entry := r i. 
Comment: Here is the only place where concur- 

rent writes are used. 
The C R C W - P R A M  is the Parallel R a n d o m  

Access Machine  that allows concurrent  write to 
the same memory  cell by  more than one processor. 
In this case, there is a need to specify the mecha- 
nism by which the value in the cell, to which more 
than one processor  wrote, is determined.  Define 
the Priority-PRAM as the C R C W - P R A M  in which 
the value after concurrent  write is the value writ- 
ten by the processor  with lowest index. It is easy to 
see that on the Pr ior i ty -PRAM a successful RCO,  
as outl ined above, indeed results in a random 
choice. 

Lemma 4.1. The probability that the RCO succeeds 
is > l - e  -1. 

Proof .  The probabi l i ty  for success is minimal when 
there is only a single i such that x~ = 1. In this 
case, the probabi l i ty  that rj = i is l / d ,  and the 
probabi l i ty  that, for all processes, rj ~ i  is ( 1 -  
1 / d ) d  < e -1. Thus, the probabi l i ty  for success is 
greater than or equal to 1 - (1 - l / d )  d > 1 - e -~. 
[] 

Remark 4.2. If the number  of nonzero entries is f, 
then probabil i ty  of success is 1 -  e -f. Thus, it 
approaches  1 if f is an increasing function of d. 

Remark 4.3. The model  of  a Priority-write P R A M  
was introduced for definiteness and Lemma 4.1 
depends  on this assumption.  If, for example,  the 
value written depended  on the value a t tempted  to 
be written instead of  the index of  the processors,  
the above procedure  would not choose a random 
nonzero value. However,  (2) can be replaced by: 

(2a) If x r, :~ 0, then entry .'= i, 
(2b) If entry = i, then entry := L- 

In this version, concurrent  writes may occur only 
in step (2a) and Lemma 4.1 still holds. Moreover,  
a Priority-write may  be simulated in constant  time 
by a C R C W - P R A M  in which all concurrent  writes 
a t tempt  to write the same number  [1] (for our  
Algori thm the number  of  processors remains 

o ( I E I ) ) .  

Let v be a vertex of G whose degree is d. In 
Stage 1.1 (1.2) of  a phase, v has to choose at 
random one incident (entering) edge. This can be 
done  by an R C O  on the vector of  edges incident 
with v where a zero entry stands for an already 
removed edge. The Algori thm works even if some 
vertices do not choose any edge. Thus, the only 
effect of failures is an increase of the expected 
running time by a constant  factor. 

Also, the Algorithm, as presented,  may run 
forever (with probabi l i ty  zero). This, however, may 
be amended without  affecting the expected run- 
ning time. 
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