
Information Processing Letters 22 (1986) 77-80
North-Holland

18 January 1986

A FAST AND S I M P L E R A N D O M I Z E D PARALLEL ALGORITHM FOR
MAXIMAL M A T C H I N G

Amos ISRAELI * and A. ITAI **

Department of Computer Science, Technion - - Israel Institute of Technology. Haifa 32000, Israel

Communicated by K. Mehlhorn
Received 12 October 1984
Revised April 1985

A parallel randomized algorithm to find a maximal matching is presented. Its expected running time on a CRCW-PRAM
with [E I processors in O(log I E I). The expected time is independent of the structure of the input graph. This improves the best
known deterministic algorithm by a factor of log~-[E I.

Kcywords: Maximal matching, parallel algorithm, randomized algorithm

1. Introduction

Let G(V, E) be an undirected graph. A set
M ~ E is a matching if no two edges of M have a
common vertex. The matching M is maximal if it
is not properly contained in any other matching.
Note that this does not necessarily imply that M
has more edges than any other matching.

A maximal matching can be found sequentially
by the following greedy algorithm: Start with an
empty matching and add any edge which is not
adjacent to any edge that i sa l ready in M. Unfor-
tunately, it is not clear how to use parallelism to
implement this algorithm in less than linear time.
The best known deterministic parallel algorithm
for maximal matching is given in [2], where
I V I + I E I processors are needed to find a maxi-
mal matching of a graph G(V, E) in log 3 I EI time.
The model of computat ion is the CRCW-PRAM
which allows simultaneous READ/WRITE by more

* Present affiliation: Aiken Computing Laboratory, Harvard
University, Cambridge, MA 02138, U.S.A.

** Currently on sabbatical leave at the Department of Com-
puter Science, The University of Chicago, IL, U.S.A.

than one processor f r o m / t o the same memory cell.
Other maximal matching algorithms apear in [3,4].

In this paper we present a very simple random-
ized algorithm for maximal matching. The ex-
pected complexity of the algorithm is O(loglEt)
on the CRCW-PRAM and [El processors are
used. The algorithm is randomized in the sense of
[5], i.e., it employs randomly chosen numbers. I t s
properties and efficiency do not depend on the
assumption that the input graph is random. A
basic operation of our algorithm is the following
Random Choice Operation (RCO): Given a non-
zero boolean vector x, choose an index i such that
x, 4: 0, where all indices with nonzero entries have
the same probability to be chosen.

In Section 2 we outline the algorithm. In Sec-
tion 3 we prove that the expected time complexity
of the algorithm is O(log lEI r) where r is the time
needed for each RCO. This leads to a trivial,
O(l°g 2 [E I), implementation of the algorithm on
an EREW-PRAM. In Section 4 we show how to
perform RCO in O(1) expected time on a CRCW-
PRAM, which yields the promised O(loglE[)
complexity. This is a novel feature which we be-
lieve to be of an independent interest.

0020-0190/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 77

:olume 22. Number 2 INFORMATION PROCESSING LETTERS 18 January 1986

!. An outline of the Algorithm

The maximal matching algorithm is divided into
~hases. Let ~ be the ith phase. The input of cI)~ is
l graph G, ~ G and the output is a (not neces-
;arily maximal) matching of G~, M~. The union of
tll M,'s is a maximal matching. The input graph
o r qb~+ ~, G~+ 1. is obtained by removing the edges
)f M, and their incident edges from G, (G~ = G).
Fhe algorithm terminates when all the edges of the
nput graph are removed.

Each phase ~b, is divided conceptually into two
;tages.

Mgorithm
Stage 1. Find a sparse subgraph of G i, S i, with

naximal degree less than or equal to 2.
Stage 2. Find a matching of the sparse sub-

~raph.
A more detailed outline of ~ is given below.
Stage 1.1 (Choose an edge). Each vertex v ~ V

:hooses at random (with equal probability) an
adjacent edge and directs it outward.

Comment: Let RI(V, ER,) be the subgraph of
,3~ induced by all the chosen edges. The outdegree
~f every vertex v ~ V satisfies d°Ut(v) = 1. The Ri
maximal indegree of a vertex in R~ is still un-
9ounded.

Stage 1.2 (Bound indegrees). Each vertex v ~ V
inch that d'~,(v) >/1 chooses an incoming edge.

Comment: Let Si(V, Es.) be the graph induced
by all the chosen edges, where the directions im-
posed in Stage 1.1 are now ignored. Every vertex
v ~ V satisfies d s (v)~< 2.

Stage 2.1 (Finda matching). Each vertex choos-
es at random an incident edge of S~. An edge
e ~ Es, belongs to the matching M~ if it was
zhosen by both its endpoints.

Stage 2.2 (Cleanup). Remove from G i all the
edges of M, with all their incident edges to get
G~ + ~--the input graph for the next phase.

3. The complexity of the Algorithm

A vertex v ~ V of a graph G(V, E) is bad if the
degree of at least 2 of its neighbors is greater than
its own degree. A vertex is good if it is not bad.

An edge e ~ E is bad if both its endpoints are bad.
Otherwise it is good. In order to prove that the
expected number of phases is logarithmic we first
show that the expected number of good edges
removed from G~ at the end of cI), constitutes a
constant fraction of the total number of good
edges of G i.

Lemma 3.1. The probability that a good vertex of
positive degree in G i has a positive degree in S, is
greater than or equal to 1 - e- ~/3.

Proof. Let v be a good vertex of degree d > 0 in G~
and neighbors u 1 u o. The vertex v has k

I neighbors, k >/ [3d] + 1 such that dj = d (u j) 4 d,
j = 1 k. If any uj chooses the edge (u j, v) in
Stage 1.1 of the Algorithm, then surely d s (v) > 0.
The probability that uj chose the edge (u j, v) in ~
is 1 / d j > /1 /d . The probability that ul u k did
not choose the edge (v, u j) is

4 1 - (d) d/3 = [(1--~1)6] 1'/3 < e -~/3 .

Thus, the probability that some edge (v, u j) is in
R~ is greater than 1 - e - ~ / 3 > 0. Note that by
ignoring the possibility that the edge chosen in
Stage 1.1 by the vertex v is in S~ we only have
decreased the probability that d s (v) > 0. []

A matching M is incident with a vertex v if v is
an endpoint of an edge e ~ M.

Lemma 3.2. The probability that a vertex of positive
degree in S i is incident with M i is greater than or
equal to ½.

Proof. The graph S, is a collection of cycles and
paths. An isolated edge (a path of length 1) is
surely in M~. Hence, the probability that M, is
incident with one of its endpoints is also 1. It is
easy to see that the probability that M~ is incident
with any other vertex of G, is ½. []

In order to prove expected logarithmic depth
we bound the number of bad edges in a graph.

78

Volume 22, Number 2 INFORMATION PROCESSING LETTERS 18 January 1986

Lemma 3.3. A t least one-third of the edges of any
graph are good.

Proof. Let G(V, E) be an arbitrary graph. Assume
that each edge of G is directed from the endpoint
of smaller degree to the endpoint of higher degree.
An edge with equal degree endpoints is directed
lexicographically. The resulting directed graph is
acyclic.

Every bad vertex v ~ V satisfies di"(v)
1 I O U I Z x ~< ~a tv). Hence, it is possible to associate with

each edge e entering a bad vertex v a pair of edges
leaving v such that different edges have disjoint
pairs. These edges sl(e), s2(e) are called edge suc-
cessors. In other words: for every two bad edges
e 1 4:e 2 of G the edges s1(%), s2(el), sl(e2), and
s2(e 2) are distinct.

The edges s l(e) and s 2 (e) are twin-edges and the
edge e is their parent. Note that:

(a) Every bad edge has two successors but those
two are not necessarily bad edges.

(b) Not all edges leaving a bad vertex have a
parent.

A root-edge is a bad edge that either has no
parent or whose twin is a good edge. A leaf edge is
a bad edge with (at least one) good edge successor.
Since the successors are all distinct, every leaf edge
has 'its own' good edge successor. We prove the
claim of the lemma by showing that the number of
leaf edges is greater than the number of nonleaf
bad edges.

Let r ~ , . . . , r k be the root edges of G. We show
how to partition the bad edges of G into k edge
disjoint directed acyclic subgraphs of G, D 1, . . . ,
D k. The graph D~ starts with the root edge r~ and
contains its successors and their successors until
reaching leaf edges. The directed graph D~ is
acyclic since it is a subgraph of an acyclic orienta-
tion of G. With each D~ we associate the good
edges whose parent edge is in D~. Each leaf edge is
the parent of (at least) one good edge and different
leaf edges have different good edges. We shall
prove that at least ½ I D~ I good edges are associated
with each D~. Summing over all the D~'s yields our
result.

If the D~'s were full binary trees (i.e., every
internal vertex had two children), then the number
of nonleaf edges of D~ would have been one less

than the number of leaf edges of D~. Unfor-
tunately, D, need not be a binary tree since two
edges of D~ may enter the same vertex. However,
for each D, we construct a full binary tree T,
whose vertices correspond to edges of D~. The
vertices v 1 and v 2 are the children of v, in T~, if the
corresponding edges e~ and e 2 are the successors
of the edge e, corresponding to v. The number of
leaf vertices of T~ is greater than the number of its
nonleaf vertices. Thus in D~ the number of leaf
edges is greater than the number of nonleaf edges.
[]

Combining Lemmas 3.1-3.3 we achieve the fol-
lowing theorem.

Theorem 3.4. The probability that a good edge of
G i is removed in ¢b i is at least ½(1 - e-1/3).

Proof. An edge is removed in ~i if it is in M, or
adjacent to an edge of M i. The claim follows
since:

(1) Every good edge is incident with at least
one good vertex and the probability of a good
vertex of G~ to be in S~ is not less than 1 - e ~/3
(Lemma 3.1).

(2) The probability of M, to be incident with
any vertex of S~ is greater than or equal to ½
(Lemma 3.2). []

Using the fact that at least one-third of the
edges of any graph are good (Lemma 3.3), it is
easy to see that the expected number of edges
removed in dP i is at least ~ (1 - e-1/3). Thus, we
get the following corollary.

Corollary 3.5. The expected number of phases of the
algorithm is O(log I E I)-

Proof. The proof follows since the expected num-
ber of edges removed in ~ is at least 61-(1 - e - ~/3).
[]

The only implementation problem posed by the
Algorithm is the equal probability choice in Stages
1.1 and 1.2. If we assign a processor for each edge,
we can perform this operation in O(loglEI) time
with no concurrent write (or read) needed. Thus,

79

Volume 22, Number 2 INFORMATION PROCESSING LETTERS 18 January 1986

we get a complexi ty of O(log21E l) expected time
on an E R E W - P R A M with I E I processors.

4. Concurrent random choice

The R a n d o m Choice Operat ion (RCO) was de-
fined as follows: Choose a nonzero entry of a
nonzero boolean vector x where all nonzero entries
have the same probabi l i ty to be chosen.

Let ~, I xf = d, be a boolean vector. Assume
that x is not identically zero. The R C O succeeds if
it chooses an r such that x~ --- 1. It fails if, for all
i, x r, -- 0. We show how to implement the R C O on
the vector x in a C R C W - P R A M with d processors
in constant expected time and with a small prob-
ability of failure.

An outline of RCO: Initially, the register called
entry has value 0, on termination it will either
remain 0 or contain a random index i such that
xi =g 0.

(1) Each processor p~ chooses at random a
number r~, 1 ~< r i ~< d.

(2) If x ~, 4: 0, then entry := r i.
Comment: Here is the only place where concur-

rent writes are used.
The C R C W - P R A M is the Parallel R a n d o m

Access Machine that allows concurrent write to
the same memory cell by more than one processor.
In this case, there is a need to specify the mecha-
nism by which the value in the cell, to which more
than one processor wrote, is determined. Define
the Priority-PRAM as the C R C W - P R A M in which
the value after concurrent write is the value writ-
ten by the processor with lowest index. It is easy to
see that on the Pr ior i ty -PRAM a successful RCO,
as outl ined above, indeed results in a random
choice.

Lemma 4.1. The probability that the RCO succeeds
is > l - e -1.

Proof . The probabi l i ty for success is minimal when
there is only a single i such that x~ = 1. In this
case, the probabi l i ty that rj = i is l / d , and the
probabi l i ty that, for all processes, rj ~ i is (1 -
1 / d) d < e -1. Thus, the probabi l i ty for success is
greater than or equal to 1 - (1 - l / d) d > 1 - e -~.
[]

Remark 4.2. If the number of nonzero entries is f,
then probabil i ty of success is 1 - e -f. Thus, it
approaches 1 if f is an increasing function of d.

Remark 4.3. The model of a Priority-write P R A M
was introduced for definiteness and Lemma 4.1
depends on this assumption. If, for example, the
value written depended on the value a t tempted to
be written instead of the index of the processors,
the above procedure would not choose a random
nonzero value. However, (2) can be replaced by:

(2a) If x r, :~ 0, then entry .'= i,
(2b) If entry = i, then entry := L-

In this version, concurrent writes may occur only
in step (2a) and Lemma 4.1 still holds. Moreover,
a Priority-write may be simulated in constant time
by a C R C W - P R A M in which all concurrent writes
a t tempt to write the same number [1] (for our
Algori thm the number of processors remains

o (I E I)) .

Let v be a vertex of G whose degree is d. In
Stage 1.1 (1.2) of a phase, v has to choose at
random one incident (entering) edge. This can be
done by an R C O on the vector of edges incident
with v where a zero entry stands for an already
removed edge. The Algori thm works even if some
vertices do not choose any edge. Thus, the only
effect of failures is an increase of the expected
running time by a constant factor.

Also, the Algorithm, as presented, may run
forever (with probabi l i ty zero). This, however, may
be amended without affecting the expected run-
ning time.

References

[1] A. ltai, Arithmetic with concurrent writes, in: 4th ACM
Symp. on Principles of Distributed Computing, Minacki,
Ontario, 1985, to appear.

[2] A. Israeli and Y. Shiloach, An improved parallel algorithm
for maximal matching, Inform. Process. Lett. 22 (1986)
57-60 (this issue).

[3] R.M. Karp and A. Wigderson, A fast parallel algorithm for
the maximal independent set problem, Proc. 16th Ann.
ACM Syrup. on Theory of Computing (1984) 266-272.

[4] G. Lev, Size bounds and parallel algorithms for networks,
Tech. Rept. CST-8-80, Dept. of Computer Science, Univ. of
Edinburgh, 1980.

[5] M.O. Rabin, Probabilistic algorithms, in: J.F. Traub, ed.,
Symp. on Algorithms and Complexity, New Directions
(Academic Press, New York, 1976) 21-39.

80

