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Abstract

Let A and B be two sets of n objects in R%. We pro-
pose to use bottleneck matching as a convenient way for
measuring the resemblance between them, and present
several algorithms for computing, as well as approx-
imating, this resemblance. The running time of all
these algorithms is close to O(n'-%). For instance, if
the objects are points in the plane, the running time
is O(n'-%logn).

We also consider the problem of finding a transla-
tion of B that maximizes the resemblance to A under
the bottleneck matching criterion. When A and B are
point-sets in the plane, we present an O(n®° logn) time
algorithm for determining whether for some translated
copy the resemblance gets below a given p, improving
the previous result of Alt, Mehlhorn, Wagener and
Welzl by a factor of almost n. We use this result to
compute the smallest such p in time O(n® log® n), and
give an efficient approximation scheme for this prob-
lem.

1 Introduction

In the field of pattern recognition it is often required
to measure the resemblance between two sets A and
B of objects in d-dimensional space. This problem
often arises when an input image is given, and we seek,
among model images stored in some library, the one
that is most similar to the given image.

Many methods have been suggested for quantify-
ing this similarity. Perhaps the most common of
which is the Hausdorff Distance, defined as the max-
imum distance between an object in one set and
its closest neighbor in the other set. Many algo-
rithms and applications have been suggested for com-
puting and applying the Hausdorff Distance (e.g.
(12, 13, 14, 26, 25]). However, measuring the re-
semblance by the Hausdorff Distance suffers from a
fundamental drawback: the mapping defined by as-
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sociating each object in A to its closest neighbor
in B is not necessarily a bijection (one-to-one).
Quite often it is required that

each object in an image be o

matched by one and only one
object in the other image. In
such cases the Hausdorff Distance is useless. See Fig-
ure above.

[ JON ]

O

In this paper we propose a different measure of sim-
ilarity: We assume that both images A and B have the
same number of objects, and we seek a perfect bipar-
tite matching between A and B, such that the maxi-
mal distance between any matched pair of objects is
minimized. We refer to this measure as the bottleneck
matching criterion, and define the distance between
the two images as the longest distance between any
matched pair. Let Match(A, B) denote this distance.

The disadvantage of bottleneck matching, as well
as any distance that relies on one-to-one matching,
is that it is probably more complicated to compute,
and the algorithms tend to be less efficient. A par-
tial explanation is that the known algorithms attack
the problem as a purely graph-theoretic one without
taking advantage of its geometric nature.

Furthermore, the problem of minimizing the resem-
blance under some rigid motion or other transforma-
tion of one image relatively to the other, has hardly
been investigated, and the best known algorithms are
either computationally inefficient [6], or significantly
restrict the inputs [7].

For the case where the sets A and B are points in
the plane, Vaidya [35] explored the geometric struc-
ture of the problem to obtain an algorithm for finding
amatching between A and B, for which the sum of dis-
tances between the matched points is minimal (among
all perfect matchings between A and B). (This crite-
rion is different from our bottleneck criterion.) He
obtained an O(n*°logn)-time algorithm for the Eu-
clidean distance, and an O(n?log® n)-time algorithm
for the L., distance. The solution of the Euclidean
case has recently been improved by Agarwal, Efrat and
Sharir [2] to O(n?*¢) (for any ¢ > 0). However, the re-
sulting algorithms remain relatively complicated. See
also [10] for fast algorithms for other types of graphs



related to geometric configurations.

For computing Match(A, B) we use a parametric
search technique, reminiscent of the one proposed by
Megiddo [33]. We introduce in Section 3 an ora-
cle that determines, for a parameter r, whether r <
Match(A, B). In Section 4 this oracle is used to find
the minimal r for which a perfect matching exists.
The exact running times depend on the norm and the
dimension. When A, B C R? are point-set, and the
underlying norm is Lo, (the planar Euclidean point-
sets case) our algorithm runs in time O(n'-%logn). In
the case that A is a set of n points, B is a set of seg-
ments in the plane, and the norm is an arbitrary L,,
or in the case that A and B are sets of points in the
plane and the distance is additively weighted, the run-
ning time is slightly worse—O(n!-**¢), for any ¢ > 0.
When the norm is Lo, and A, B are point-sets in the
d-space, (the Lo, point-sets d-space case) the running
time is to O(n!%log? ' n). These results are listed in
Theorem 4.7.

Section 5 presents an approximation scheme that
computes an e-approximation for Match(A, B) in any
dimension in time O(n'-®*logn), where the constant of
proportionality depends on the dimension and on e.
We believe that these schemes are relatively easy to
implement, with reasonably small constant of propor-
tionality, and therefore would do reasonably well in
practice.

We also show in Section 6 an application of our
technique for the following translation problem: Let
A and B be two n-point sets in the plane, and p a
fixed number. The problem is to find a translation
B’ of B such that Match(A, B’) is at most p, or de-
termine that no such translation exists. Alt et al. [6]
gave an O(n®)-time algorithm for this problem. We
improve this bound to O(n®logn), and show how to
find the minimum such p in time O(n®log®n). Fi-
nally, we present a scheme to approximate the trans-
lation that minimizes this distance among all possible
translations.

In Section 7 we discuss two problems strongly re-
lated to the matching problem. The first is the Par-
tial matching in which we are given A, B (not nec-
essarily of the same cardinality) and a parameter
1 < k < min{|A4|,|B|}, and we seek a matching of
cardinality & for which its longest edge is as short
as possible. The second problem is the longest per-
fect matching in which we are given A, B, and seek
Match(A, B), the largest r for which a perfect match-
ing exists, such that the length of all its edges is r or
more. Surprisingly enough, in the case of points in
RR3, this problem is easier to tackle than the problem
of finding Match(A, B).

2 Matching in bipartite graphs
Let us first discuss the connection between our prob-
lem and standard graph-matching theory. A graph-
matching of a bipartite graph G = (X UY, F) is a set
of edges M C E(G) such that no vertex of G is inci-
dent to more than one edge of M. A graph-matching
M is perfect if every vertex of GG is adjacent to an edge
of M. The problem of finding a perfect matching in
a bipartite (or arbitrary) graph has been well studied.
See for example [31, 32] for textbooks on this sub-
ject. The best known algorithm for finding a perfect
matching in a bipartite graph runs in time O(m+/n)
(where n is the number of vertices and m is the num-
ber of edges) and is due to Hopcroft and Karp [25].
When a weight is associated with each edge, and we
seek a perfect matching for which sum of weights of
its edges is minimal, the best known algorithm runs
in time O(n?®), using the so called Hungarian method,
and is due to Kuhn [30].

Let us define our problem in graph-theoretical
terms: The images A and B are each a set of n vertices
of a complete bipartite graph G = (AU B, E). The
weight of the edge (a,b) € E is d(a,b)—the distance
between a € A and b € B. The bottleneck match-
ing is, therefore, the matching M C E that minimizes
max(q p)em d(a, b).

Let G[r] be the bipartite graph whose vertex set
is AU B, and whose edges consist of all pairs (a,b)
a € A, b € B for which d(a,b) < r. Note that
Match(A, B) < r if and only if there exists a per-
fect graph-matching in G[r]. We therefore focus on
finding a maximum graph-matching in G[r]—a graph-
matching of largest cardinality.

Given a graph-matching M of a bipartite graph
G = (AU B, E), the vertices incident to edges of
M are called matched and the remaining vertices are
exposed. The path m = (v1,...,v2) is an alternating
path if vy is an exposed vertex of A, (vy;, vaiy1) € M
and (vg;—1,v2) € E\ M (¢ = 1,...,t). Note that the
odd vertices of 7 belong to A, and the even ones to
B. This path is called an augmenting path if vy is
an exposed vertex. If 7 is an augmenting path then
M =Mor=(M\n)U(r\ M) is a graph-matching
too and |M'| = 1+ |M|.

A theorem of Berge [9] states that a matching is
maximum if and only if there are no augmenting paths.
Thus one may start with the empty matching and aug-
ment it by augmenting paths found in a greedy fash-
ion.

Edmonds and Karp [18] found alternating paths by
order of increasing length. Instead of finding the alter-
nating paths one by one, Hopcroft and Karp [25]! and

1A similar algorithm appeared also in [28]



Dinitz [16] find all shortest alternating paths together.
We follow Dinitz’s terminology.

To find all shortest alternating paths, we conduct a
breadth-first-search to get layers L1, ..., L. The first
layer, L1, consists of all exposed vertices of A; Lg; con-
tains all vertices of B not appearing in Uj<22- L; and
connected (in G) to some vertex of Lg;—1. If Ly; con-
tains exposed vertices, then it is the last layer. Other-
wise, we define Lg; 41 to contain all vertices connected
(in the matching M) to vertices in Ly;. Note that
the odd layers contain only vertices of A and the even
layers only vertices of B. .

The layer graph £ consists of the vertex set Uf;l L,
and edges of M that connect vertices of Ly; to vertices
of Lyj+1, and edges of G that connect vertices of Ly;_;
to vertices of Ly;.

Dinitz found a maximal set of edge-disjoint alter-
nating paths by conducting a depth-first search of the
layer graph. His algorithm requires O(|E|) time to
construct the layer graph and to find the alternating
paths. For sufficiently large values of r, G[r] contains
0(n?) edges, hence his algorithm requires O(n?) time
per layer graph. We take advantage of the geometric
features of G[r] to improve the efficiency of Dinitz’s
algorithm. We will represent the edges of £ implic-
itly, and thus our construction enables us to find the
alternating paths in £ in almost O(n) time.

3 Maximal matching in G[r|

In this section we describe an oracle to decide whether
a given r is less than, equal to or greater than r* =
Match(A, B). The oracle searches for a perfect match-
ing in G[r], using Dinitz’s algorithm and taking advan-
tage of the geometric setting.

3.1 Constructing £ implicitly

Our goal is to find the set of vertices of each layer L;;
however, we will not explicitly construct all the edges
of L. Instead, we shall use an abstract data-structure
D, (S) for a set of objects S. The data-structure sup-
ports the following operations:

e neighbor,(S,q): For a query point ¢, return an
element s € S whose distance from ¢ is at most r. If
no such s exists, then neighbor, (S, ¢) = 0.

e delete, (S, s): Delete the object s from S.

The exact implementation of D, (-) depends on the
dimension, the objects of S and the underlying norm.
Various implementations will be described in Sec-
tion 3.3. Let T'(|S|) denote an upper bound on the
time of performing one of these two operations on
Dr(S). We disregard the time needed to construct the
data structure, since in all relevant cases it is bounded
by O(n - T'(n)), and therefore does not influence the
overall complexity.

Let us turn now to the algorithm. Initially, set D —
D,(B). In the course of the algorithm, some vertices
of B will be deleted. Using this data structure, the
layer graph is constructed by the following procedure:

procedure ConstructLayerGraph(G, M)
L1 «— exposed vertices of A ;
i—1;D—D,(B);
Repeat forever
Lo; — 0;
For each a € Ly;_1 Do
While neighbor, (D, a) # 0
b — neighbor, (D, a) ;
/* Find all b’s which are neighbors
of some a € Ly;—1 in G[r] */
Add b to Ly; ;
delete, (D, b);
End
End
If Lo; is empty
Then no augmenting path exists. Stop.
Else If Ls; contains exposed vertices,
Then the construction of £ is complete;
Output £ ;
all vertices of A adjacent
to Lo; via edges of M.

/* prevent re-finding b */

Else L2i+1 —

1—14+1;
End

Each matched vertex of A is reached in O(1) time
from its pair in M. Also, each vertex of B is found at
most once by a query of neighbor, (D, a) and deleted
from D at most once. Thus the construction time of

Lis O(n-T(n)).

3.2 Finding augmenting paths in £
We now show that any maximal set of edge-disjoint
augmenting paths are vertex disjoint.

Lemma 3.1 Let M be a graph-matching of a bipartite
graph G = (AU B, E), let II be a set of edge-disjoint
augmenting paths, and let v be an intermediate vertex
of some path of II. Then v cannot participate in any
other augmenting path of 1I.

Proof: Since v is neither the first nor the last vertex
of the augmenting path, v is not exposed so it must
be incident to exactly one edge (v,v') € M. Suppose
v € Lyj. By our construction, (v,v') connects Lg; and
Loj4+1. Hence, every augmenting path that contains v
must also contain the edge (v,v’). Since the paths of
II are edge disjoint, v cannot belong to any other path
of II. A similar argument holds when v belongs to an
odd layer. a



Next we look for augmenting paths from the ex-
posed vertices of L; to exposed vertices of Lg; (the
last layer). First we construct Do; = D, (Lg;) for each
of the even layers Ly; C B. Then we conduct a depth-
first search: We start from an exposed vertex in L
and construct an alternating path. To advance from
a vertex a € Lg;_1, we perform neighbor, (D, a). If
it returns a vertex b € Lg; then we add (a,b) to the
current path and advance to b. Otherwise, it returns
indicating that no neighbors of a remain in Ly;. Thus
a does not lead to an exposed vertex of Lo; and we
should backtrack.

To advance from b € Lo; (i < t), let (b,a™) € M.
We add (b,a™) to the path and advance from a* (b is
not exposed since all exposed vertices of BN L belong
to Log). If b € Ly, is an exposed vertex then we have
found an augmenting path. We increase M and delete
all its vertices from the appropriate Lg;’s. (This is
justified by Lemma 3.1.)

To backtrack from a € Ly;—1 (i > 2), let (b7, a) €
M and let a~ be the vertex preceding b~ on the path.
We remove a and b~ from the path and continue from
a~. If a € L1 we simply delete it from L;.

The search for augmenting paths (and the phase)
terminates when there remain no more exposed ver-
tices in L1.

If all the vertices are matched, then we conclude
that 7* < r, otherwise, we continue to the next phase.
If during the construction of £ one doesn’t reach any
exposed vertex of B, then G[r] contains no perfect
matching. We therefore halt and conclude that r* > r.

Note that the time spent on finding all alternating
paths in a single layer graph is again O(n-T'(n) ). By a
theorem of Hopcroft and Karp [25], Dinitz’s matching
algorithm requires O(+/n ) phases. Hence we have the
following theorem:

Theorem 3.2 Let A and B be two sets of n objects.
Match(A, B) can be found in time O(n'® - T(n)),
where T'(|S|) is the time required to perform an op-
eration on D,(S).

3.3 Implementing D, (-)

The implementation of D, (S) depends on the setting:
The bounds in this subsection are in the amortized
sense, but this does not effect the time bound of the
algorithm.
o A CR?is a set of points, and B C R? is one of the
following:

(i) Bis aset of n disjoint objects, and the underlying
norm is Ly, for some 1 < p < oo. The distance
from a point ¢ € R? to a segment b € B is the
distance from ¢ to its closest point in b.

(ii) B is a set of n points, and each b; € B is associ-
ated with a non-negative weight w;, so that for a
point ¢ € R? we have d(q, b;) = w; + ||g — b;]|2.

These two cases are handled similarly. For imple-
menting the data-structure D, (B) we use the dynamic
nearest-neighbor scheme of Agarwal, Efrat and Sharir
[2]?, who presented such data structures for both these
problems. These data structures enable us to find
(efficiently) the closest object of B to the query g,
and hence to implement neighbor, (B, ¢), by check-
These data
structures support deletions of objects as well, hence
T(n) = O(n°), for any € > 0.

e A and B are planar point-sets, and the underlying

ing if its distance to ¢ is at most 7.

norm is the Euclidean norm. (The same data structure
may also be used for Ls,.) Here we maintain a set S
of disks of radius r, centered at the points of S, and
neighbor, (S, ¢) is answered by checking if any such
disk contains gq.

This is done as follows: We divide the plane into a
grid T' of square cells of size r. Let ¢ be such a cell,
andlet S, = {s €S:sNc#0}. We store the cells ¢
for which S. is not empty in a search tree 7, so that
given a query point, finding the cell containing it is
done in O(logn). Let St C S, consist of those disks
of S. whose centers inside ¢. A disk s lies below a cell
¢ if the y-coordinate of the center of s is less than the
y-coordinate of every point of ¢. Let S& C S, denote
the set of disks of S, below ¢. The relations above,
left, right and the sets S S! S” are defined similarly.
Obviously, S, equals the disjoint union St US?US%U
SLUST. Note that the total size of all these sets, taken
over all cells of T' is O(n).

Let ¢ be the cell containing the query point ¢. If
St # @, then neighbor, (S, ¢) returns some disk of S¢.
Let us explain how to find if any disk of S’ contains ¢.
The other cases are deals similarly. This is done by a
data structure reminiscent of the dynamic convex hull
of Hershberger and Suri [22]. We construct a binary
tree W whose leaves are the elements of S% sorted by
the x-coordinate of their centers, and each internal
node v 1s associated with the set ¥, of disks in v’s
subtree. Each node v maintains (implicitly) i, , the
upper envelope of P,. A crucial observation is that for
each v, Uieps_son(v) and Upight_son(v) intersect at most
once. The coordinates of this point are stored in v.

In the full version of the paper we explain how the
tree ¥ enables us to find whether ¢ is below U,.q01(w)
(which happens if and only if ¢ is contained in some
disk of S%) in time O(logn). We also show how to
reconstruct Uy o1(3) after the deletion of a disk from S?

2see also the full version of [2], in preparation.



in (amortized) time O(logn). Hence T'(n) = O(logn).
e A and B are sets of n points in R¢, for fixed d,
and the underlying norm is Lo,. As in the previ-
ous case, we maintain a set of d-dimensional cubes
of size 2r, centered at the points of S. D,(S) con-
sists of d — 2-levels interval-trees (on the projection
of the cubes on the first d — 2 axis), and the two-
dimensional data structure of the previous case, built
on the projection of the cubes on the last two axis.
Hence T'(n) = O(log*~' n). (This is a reminiscent of
the orthogonal range trees described in [35]).

4 Computing Match(A, B)

In this section we show how we use the oracle of The-
orem 3.2 to find r*—the minimal » for which a perfect
matching exists. We first note that »* is a distance
between an object in A and an object in B. Thus,
we have a set of n? distances, called critical distances,
on which we can perform binary search. In order to
satisfy our time bounds, we do not produce the crit-
ical distances explicitly. The techniques by which we
generate these values depends on whether we deal with
points and/or segments in R% or with points in higher
dimension R

4.1 The 2-dimensional case

In order to minimize the number of times the oracle is
called, we need to efficiently solve the following variant
of the the £’th distance selection problem. Let A C R?
be a set of n points and B C R? a set of n objects.
For a; € A,b; € B let d;; denote the distance from a;
to b;. The k’th distance selection problem is to find
d®) | the k’th largest value in the sequence d;;, when
k is a given parameter.

Lemma 4.1 (Katz 95 [29]) Let A, B CR? be sets of
n points, and 1 < k < n? an integer. Then d*) can
be found in time O(n*/3log® n).

Lemma 4.2 Let A CR? be a set of n points, and B C
R? of n disjoint convexr objects of bounded complexity,
or a set of n points, and L, is the underlying norm.
for 1 < p<oo. Let 1<k <n? Then d*) can be
found in time O(n'®log® n).

Proof Omitted.

Let us describe the usefulness of Lemmas 4.1 and
4.2. Since r* is some dU), we conduct a binary search
on k € {l,...,n?}: we use the k’th distance selection
algorithm to find d*) and then use the oracle to decide
whether d*) is too large or too small, and decrease or
increase k accordingly. The oracle of Theorem 3.2 is
consulted O(logn) times.

4.2 Arbitrary Dimension

Unfortunately, for d > 3 we know how to efficiently
tackle the matching problem in d-space only when A
and B are point-sets, and either in an approximated
fashion, which will be described later in Section 5, or
when the underlying norm is Lo,. As a method to
generate critical distances, we use the approach taken
by Chew and Kedem [12]. Note that when Lo, is the
underlying norm, r* is the distance between the pro-
jection of some a € A and b € B on one of the axes X;.
We use the oracle to perform a binary search among
all such projections on each of the axes. Consider the
first axis. Let a1,...,a, (resp. b1,...,b,) be the pro-
jection of A (resp. B) on this axis in increasing order.
Consider the matrix D = (d;;) where d;; = a; — b;.
Note that all rows and all columns of D are sorted.
Frederickson and Johnson [21] have shown how to find
a critical value in such an (implicitly stored) matrix
using O(logn) calls to the oracle, spending extra time
O(nlogn) for each such call (which does not effect the
asymptotic running time). Repeating this process for
all d axes we have shown

Theorem 4.3 Let A, B be sets of n points in R¢
(d>2), with Lo, as the underlying norm. Then after
preprocessing of O(n)time, Match(A, B) can be found
using O(logn) oracle calls.

Remark 4.4: Naturally, for d = 2 and the L., norm,
we use this method instead of the one of Section 4.1
since it is faster and simpler.

4.3 Accelerating the algorithm.

The running time of the algorithm can be improved
by a logn factor in the cases when the time for solv-
ing the distance selecting problem is not a barrier;
That is, in the cases where A and B are point-sets.
This improvement is achieved by combining the ora-
cle phase and the generic part. We describe this idea
for the more involved case of planar points with the
Euclidean norm. The d-dimensional case (under the
Lo norm) is handled similarily.

Recall that d®) is the ith largest distance between
a € A and b € B. We maintain a lower bound, d(*)
(initially £ = 1), and an upper bound, d*) (initially
u = n?), on the value of r*. In Section 4.1 and 4.2 we
conducted a binary search on the values dV), . . ., d?).
However, this introduces a log factor. The purpose of
this subsection is to save this factor.

In the course of the algorithm, we maintain a max-
imum matching M of G[d®)], and use it as an initial
matching for G[dW], (¢ < i < u). If dV) < r*, we fail
to find a perfect matching, and at some stage we even
fail to construct £, i.e. we do not reach any exposed
vertex of B. If our first attempt to construct £ fails,

1]: dlog n?
[1] g



then M is a maximum matching of G[d)]. Otherwise,
we can update M. Since the size of every matching is
bounded by n, M is updated at most n times, and at
all other times only one layer graph is constructed.

If the new matching is perfect then we can update
d™) to r. However, we might have wasted a lot of time
in constructing several layer graphs. Therefore, a first
step toward the desired improvement is to construct
L only a constant number of times for d(¥) > r*.

The key observation is that sometimes we can con-
clude that G[d®] does not contain a perfect match-
ing, without even finding the maximum matching.
For a partial matching M C G let £L(M,G) de-
note the layer graph constructed by the procedure
ConstructLayerGraph(G, M) of Section 3.1 starting
with the matching M. We denote by |L(M,G)| the
number of layers in this graph.

Lemma 4.5 Let M be a partial matching of G. If
M| < n—+/n and |L(M,G)| > +/n then G does not

contatn a perfect matching.

Proof: Let M’ be a maximum matching of G. Md M’
consists of |M’|—| M| vertex disjoint augmenting paths
(and some alternating cycles). The length of each aug-
menting path is at least |£(M, G)|. Since |[L(M, G)| >
\/n, there can be at most n/|L(M, G| < v/n augment-
ing paths. Hence |M'| < |M|++/n < n. O

£ —1; u—n? M!«<— empty matching;
While £+ 1 < u Do
step «— {(u — £+ 1)/n1/7] ; 1+ £+ step;
While 7 < u Do
Use the distance selection algorithm to find d(*)
M — M¥¢
L « ConstructLayerGraph(M, G[d"]) ;
While (£ contains exposed vertices of B)
and (|€] < v/ or [M|>n— /i) Do
Update M by the procedure of Section 3.2;
L « ConstructLayerGraph(M, G[d"]) ;
End
If [M|=n Then u«i;
Else ¢ —i; Mt — M; i— i+ step;
End
End

Lemma 4.6 The outermost loop (While £+ 1 < u) is
executed at most 14 times.

Proof: Each time the loop is executed then the range,
/7 Since
initally, « — £+ 1 = n?, the number of interactions is
2 _
at Wgstaré%ge("ﬁgv\fnthat 1éla'ch execution of the outeDr—
most loop takes (in the planar Euclidean case) time
O(n'®logn). Note first that we solve the distance se-
lection problem n'/7 times. Since this problem can

u— £+ 1, decreases at least by a factor of n

be solved in time O(n*/®log®n) [29], this sums up
to time O(n®/?'log®n) = O(n'%). The number of
times the layer graph is constructed is bounded by the
number of times that its construction procedure ter-
minates successfully—(O(1/n), by [25], as described in
Section 3.2) and the number that this procedure fails,
which is no more than the number of times we con-
sult the oracle, which is O(n'/7). The time needed for
finding augmenting paths consists of to the time spent
when the layer graph is of depth smaller than +/n, and
the time when the layer graph is of larger depth. In
the former case, the time for finding such a path is
O(nlogn), while in the latter cases there are O(/n)
paths. Note that there are only 14 phases.

Note again that the very same idea can be imple-
mented for the Lo, norm, since, using Fredrickson and
Johnson algorithm, we are able to find #(*) in time

O(nlogn) [21, Thm. ?7].

4.4 Summary of results

Theorem 4.7 o Let A and B be two sets of
n points in R? with Ly as the wunderlying
norm. Then Match(A, B) can be found in time
O(n'logn).

o Let A CR? be a set of n points and B CR? a set
of n disjoint objects, and the underlying norm is
Ly, for some 1 < p < co. The distance from a
point ¢ € R? to a segment b € B is the distance
from q to its closest point in b. Then Match(A, B)
can be found in time O(n'>%¢), for every ¢ > 0.

o Let A CIR? be a set of n points and B is a set of n
points, and each b; € B s associated with a non-
negative weight w;, so that for a point ¢ € R?, we
have d(q,b;) = w;i+ ||g—b;||2. Then Match(A, B)
can be found in time O(n'>*¢), for every ¢ > 0.

o Let A and B be two sets of points in RY, with Le,
as the underlying norm. Then Match(A, B) can
be found in time O(n'5log?~! n).

5 Approximating Match(A, B)

In this section we show an approximation scheme for
r*. To simplify the notation we restrict the discussion
to the Euclidean norm. However the same construc-
tion works for all L,.

Theorem 5.1 Let A and B be sets of n points in R,
and let € > 0 be a parameter. Let r* = Match(A, B)
when Ly is the underlying norm. We can find in time
O(C(e,d)-n'%logn) a Matching M®PP between A and
B satisfying v* < r?PP < p*(1 + €), when r®PP s
the distance of the furthest matched pair in M?PP, and
C(e,d) depends only on € and d.

[2]: 777777 7



Arya et al. [8] described a data structure for a set
of points S C R% that can report in time O(d(1 +
1/e)%logn) = O(logn) an approximated nearest-
neighbor of a query point ¢ € R?. That is, a point
s € S for which [lg—s||, < (1+¢)-||lg —&||p, where s’
is the closest point of S to ¢, and € a pre-determined
parameter. The construction takes time O(nlogn).
This data structure can also be dynamized so that a
deletion takes time O(logn) [34]. Let D, (-) denote this
data structure. To implement neighbor, (D, (B),q) ,
we consult D,(B) to find s (the approximated near-
est neighbor) and if [|s — ¢[]2 < 7 - (1 +¢), we re-
port that neighbor,(D,(B),q) is s. Otherwise, re-
port that neighbor,(D,(B),q) = 0. Our approxi-
mation scheme consists of applying the procedure of
Theorem 3.2, with the approximating data-structure
replacing the exact one. Let us refer to this procedures
as the approzimating oracle.

Lemma 5.2 If the approzimating oracle finds a per-
fect matching, then r(1+¢) > r*. Otherwise, r < r*.

Proof: Sketch: Note that if H O G then any match-
ing in G is also a matching of H. Moreover, if M is
a matching of G which can be increased by an aug-
menting path, then for any matching of size |M| of H
there exists an augmenting path in H.

When applying the approximate distance query, we
get a graph G4 D G[r]. instead of the graph G[r] G4
contains all the edges of length < r and some of the
edges of length between r and (1 + ¢)r, but no longer
edges, i.e., G[r] C G4 C G[(1+ ¢)r]. Thus if G[r] has
a perfect matching, so does GA. Since all the edges of
G4 have length < (1 + ¢)r, the maximum edge in the
matching is bounded by (1 4+ ¢)r. O

We find R, an upper bound of r* such that R <
Cr*, for a constant C' which depends only on the di-
mension and on €. Let r)) = Match(A, B) when using
the Lo,-norm. Let us turn for a moment to approxi-
mating r%.

Note that Arya et al.’s data structure [8] can also be
used for Lo, norm. We use it for deducing an approx-
imating oracle for the L., norm. Using this approxi-
mating oracle, combined with the procedure of Fred-
erickson and Johnson [21], as described in Section 4.2,
and with the improvement described in Section 4.3,
we can find in time O(n!®logn) a distance r2PP for
which (by Lemma 5.2) 7%, < r2PP < (1 4 ¢)rk,.

Note that %, < r* < (V/d)-r%, . Since a ball of radius
V/dr fully contains a cube of size 2r. Substituting, we
get

< (Vd) 3P < (L4e)(Vd) -1l < (L+e)(Vd)

Let R = (V/d) - 2P and C = (1 4 €)(v/d). The last
equation yields r* < R < C'r* as desired.

Let us divide the interval [0, R] into 4/¢ equal subin-
tervals, and let i < ro < ... < r,, denote their end-
points, for m = [4/¢]. Use the approximated ora-
cle to perform a binary search among these values,
and let r?PP be the smallest r; for which the oracle
succeeds in finding a perfect matching. As easily ob-
served, 7* < r®P < r*(1 4 ¢), which establishes the
proof of Theorem 5.1.

6 The Translation Problem

Let A and B be two sets of n points in R2 For a
translation 7 € R? let 7 + B denote the set B trans-
lated by 7. The translation problem is to find 7, a
translation 7 that minimizes Match(A, T + B). Let
p* = Match(A, 7" + B).

Theorem 6.1 Given A, B as above, the translation
problem can be solved in time O(n®log® n).

Let p be a fixed parameter, and let us obtain an or-
acle that determines if there is a translation 7 for
which Match(A, ™+ B) < p. This problem was pre-
viously investigated by Alt et al. [6] who showed how
to solve this problem in time O(n®). We use our tech-
nique to improve the running time of their algorithm
to O(n%logn).

Let us briefly describe their algorithm, and refer
the reader to their paper for details: If for a transla-
tion 7, Match(A, 7+ B) < p then there also exists a
translation 7’ and a pair of points @ € A, b € B such
that match(A, 7'+ B) = p and the distance from a to
T+ b is exactly p. Hence we can limit out attention to
translations 7 which bring some point of A to distance
p (exactly) of some point b € B.

For a € A let a” denote the disk of radius p (un-
der the underlying norm) centered at a, and let A”
denote the union of all disks a” for all a € A. For
a € A b€ B, let C¥, denote all rigid continuous sets
of translations that bring a to distance p from b.

The algorithm checks for each pair a € A, b € B
if Match(A, T+ B) < p for some translation 7 € C¥,.
That is, if there exists a perfect matching in the graph
G[p] determined by A and 7+ B. Let 15 be a fixed
translation of C¥,. We first evaluate Match(A, o+ B).
If its value is less than or equal to p then we are done.
Otherwise, we translate B rigidly by all translations
of C¥ . During this process, points of B are moved
into, or out of disks of A”, implying that edges are
inserted into or deleted from the graph G,[p]. We
call such events critical events. Because of the con-
vexity, each edge is inserted and deleted at most once.



Hence C?, contains at most n? such critical events. Af-
ter each critical event, we might need to re-compute
Match(A, 7+ B). Each critical event adds or deletes a
single edge: In the case of an insertion, the matching
increases by at most one augmenting path (containing
the new edge). If an edge of the matching is deleted,
we need to search for a single augmenting path. Thus
in order to update the matching, we need to find a
single augmenting path in G,[p], for which we need
only one layer graph.

Alt et al. [6] use standard graph theoretical tech-
niques to find the path, and hence spend O(n?) time
for each critical event. Summed over all pairs a €
A b € B, the total number of critical events encoun-
tered in the course of the algorithm is O(n*), so the
total time spent by the algorithm of Alt et al. is
O(n*) x O(n?) = O(n®).

We suggest to use the procedure for constructing
the layer graph of Section 3.1. This procedure re-
quires only O(nlogn) time for each path. Taken
over all O(n*) critical events, the total time sums to
O(n® log n).

Finding p*: In order to find p*, the smallest p for
which such a translation exists, we use the parametric
searching technique of Megiddo [33]. Again, we as-
sume familiarity of the reader with this technique, and
refer to [19] for a similar application of this technique.
We use the procedure described above as an oracle.
However, in contrast to the “traditional” parametric
searching technique, we avoid inducing a parallel ver-
sion of this procedure for a generic algorithm. Instead
we show that a simple parallel sorting algorithm will
do. Let us describe how we generating critical values
of p. Let a € A/b € B. Consider the translations
of Cyp as defined above, but for the unknown value p.
Consider the sequence of graphs determined when B is
translated along Cyp. While changing p, this sequence
(combinatorially) changes at a set of critical radii p.
Each such critical value is determined for one of the
following events, for some a’,a” € A and ¥',0" € B
(not necessarily distinct):

(i) The smallest p for which 7 + b’ intersects the
boundary of a’# (for some 7).

(i1) A value of p for which there exists 7y, such that
the boundary of a’? is intersected by 79 + b, and the
boundary of a’’# is intersected by 7o + b”.

Note that p* must be such an event. Note also that
the number of events of the second type is Q(n°) in
the worst case, hence we cannot generate them all.
However, to obtain the combinatorial structure of the
graph at p*, it suffices to first to find (in O(1) paral-
lel steps) all events of the first type, and then to sort
for each pair a,b the critical values T(f’b’a,jb,, (among

all values of 7) defined as the translations 7 for which
T(f’bﬂ,’b, + b is at distance p from a and T(f’bﬂ,’b, + b is
of distance p from a’. We can sort these 7 in parallel,
using for example, the sorting network of Ajtai et al.
[4]. Implementing sequentially this network combin-
ing with the acceleration scheme of Cole [15], yields
an algorithm that finds p* in time O(n*logn), us-
ing O(logn) calls to the oracle. Hence the total time
for finding p is O(n®log® n) time, thus proving Theo-
rem 6.1.

Approximating the optimal translation. Note
that while finding a translation 7* which minimizes
d(A, 7+B) is anon-trivial problem for which only high
degree polynomial algorithms are known, it is easy to
find translation 7°PP that brings d(A, 7+ B) within a
factor of 2 of the optimum—that is d(A4, 7®PP + B) <
2d(A, " 4+ B). This translation 72PP is determined by
translating B so that the lower-left corner of its axis-
parallel smallest-enclosing rectangle coincides with the
lower-left corner of the axis-parallel smallest-enclosing
rectangle of A. The proof that the last equation holds
follows from the same arguments as in [5], and is
easily established. Moreover, if we care for a bet-
ter approximation to p* = Match(A, 7* + B), we use
the following approach, borrowing some ideas from
[20]. Let 0 < ¢ < 1 be a fixed parameter. Let
pl = d(A, 7P + B). Surely, 7 is inside a cube ¢
of size 2p! centered at 72PP. Consider the grid I' de-
fined on ¢, such that each cell of I' is a cube of size
2p! /e (so T consists of [¢] 4 cells). For each transla-
tion 7 represented as a vertex of I', we approximately
evaluate Match(A, T+ B) using the procedure of The-
orem 5.1, and choose 7/, the best one. The total time
of this process is O(e~%(1 + 1/¢)¥n!5 logn loge™1)
(since the time of each operation on the approximated
data structure is O((1+1/¢)? logn)). It can be shown
that Match(A, 7' + B) approximates p* up to a factor
of 1 +e.

7 Related Problems

Several related problems are easily tackled by our
method.
Partial matching: Let A, B C R? be point-sets
(not necessarily with the same cardinality), and let
1 < k < min{|A4]|,|B|} be an integer. The problem
is to find r*, the smallest r for which a matching of
cardinality k exists in G[r]. This problem might arise
in pattern matching, when we suspect that some of
the points are superfluous, and/or that we seek the
appearance of a relatively small pattern A inside a
large picture B. Using almost the very same ideas
that led us to Theorem 4.7, we can solve this problem
in O(|B|log|B| + |A|*-%log |B|).

For k < n/2 the following simple algorithm finds



in time ? a matching M* of size k and whose longest
matched edge is at most r* The algorithm repeated
selects the closest pair (a,b) and removes it from the
graph. We stop after matching k such pairs. Let r*
denote the distance between the last matched pair. It
can be shown that if ¥ < n then ¥ < r*: If ¥¥ > ¢*
then G[r*] D G[r*], and therefore, G[r*] contains a
perfect matching M. Since each edge of M* is adja-
cent to at most two edges of M, n/2 > k = |[M*| >
3IM|=n/2.)

Furthermore, if k£ = (1 — a)n, then arguments sim-
ilar to Lemma 4.5 show that the depth of the layer
graph is at most 1/«. Thus for fixed « we need only
a constant number of layer graphs, i.e., the algorithm
takes time O(nlogn).

Finding the longest perfect matching. Let us de-
scribe briefly another set of problems. Let A and B
be two sets of n points, and let G[r] denote that graph
on AU B whose edges are pairs of points of distance
at least r. The problem is to find Match(A, B), the
largest r for which a perfect matching exists in G[r]
(in this scenario, this problem is the dual of finding
Match(A, B)). Surely, our basic scheme will do here
as well, provided we obtain a data-structure D,(B) for
finding a point of B whose distance from a query point
q is at least r, and to delete a point from B. Fortu-
nately, these operations are obtained efficiently in the
planar case by maintaining the Circular Hull of B —
namely the region consists of the intersection of all
disks of radius r containing B. Hershberger and Suri
[23] showed how both these operations can be handled
in (amortized) time O(logn). Hence Match(A, B) can
be found in this scenario in time O(n!-®logn).

In our opinion, it is interesting to note that while we
failed to find efficient data-structure for implementing
D,(-) in order to find Match(A, B) in R3 (i.e. with
running time o(4/n)), obtaining such data structure
for finding Match(A, B) in R3 is rather easy. Let B,.(.S)
denote the set of three-dimensional balls of radius r,
centered at the points of S. Note that if some point
s € S is at distance larger than r from a query point
g, then ¢ ¢ NB,(S). Agarwal et al. [2] suggested
a data structure =(S) for a set of congruent three-
dimensional balls. This data structure enables us to
determine whether a point is in NB,(S), and to delete
a point from S, in time O(n®). To use this structure,
we build a binary balanced tree 7, whose leaves are
the points of S, and each internal node v is associated
with S,, the points associated with the leaves of v’s
subtree. We also associate with v the data structure
Ey = E(Sy). To perform neighbor, (S, ¢) (that is, to
find s € S whose distance from ¢ is larger than r),
we use =, when v = root(7T), to find if ¢ ¢ NB(S,),

and if so, we recursively check each of its two children
to find (at least) one v/, such that ¢ ¢ NB(S,). We
repeat this process until v’ is a leaf, where in this case
we return the singleton S,. Deletion is carried out a
trivial fashion. Note that both these operations are
done in time O(n®), hence when A, B are point-sets in
R3, Match(A, B) can be found in time O(n!-**¢) for
any € > 0.
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