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THEORY OF MACHINES AND COMPUTATIONS

QUEUES, STACKS AND GRAPHS
S. Even and A, Itai

The Weizmann Institute of Science
Rehovot, Israel

Abstract

The problem of realizing a given permutation through a
network of queues in parallel and through a network of
stacks in parallel is considered. Each one of these prob-
lems is translated into a coloration problem of a suitable
‘graph, In the case of parallel queues, the resulting
graph is a permutation graph, and therefore very easy to
color. The number of gueues necessary to realize the per-
mutation is equal to the chromatic number of the graph.

The case of parallel stacks defines two different problems,
depending on whether or not we insist on completion of the
stacks loading before unloading them., TIf we accept this
condition, the resulting graph is again a permutation
graph, " However, if we allow unloading of stacks be-
fore loading is complete the resulting graph, called the
union graph, may not be a permutation graph. An alterna-
tive way of defining a union graph as the graph describing
the intersection of chords in a circle is shown. 1In spite
of the fact that the set of all union graphs is a proper
‘subset of all graphs, no efficient algorithm to color them

‘has yet been found,

1. Queues in Parallel

. A queue is a linear storage device, It has one en-
‘trance and one exit, The elements exit in the same order
{in which they have entered (FIFQ). The elements may be
stored any length of time and the number of elements that
‘can be stored in any one queue is assumed to be unbounded.
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Assume we have, in a queue A, the elements 1,2,...,n
in their natural order and we want to transfer them into a
queue B in such a way that theilr order is .
P(1),P(2),+..,P(n) , where P isg some permutation, Clear-
ly, P= {i) is the place (the number of the place when the
places are enumerated from left to right) in which i ap=-
pears in B after the transfer.

Assume we have m intermediate queues Qlsz""'Qﬁ .
We may take the first:.element in A and transfer it to
some Q. (it exits A and enters Q,). This may be fol-
lowed by transferring the second elemént to some Q. ,
where i may or may not be identical with 3, etc? We
shall refer to a transfer from A to some Q. as loading.
No transfers from one  Q to another f{or thelsame) 0, is
allowed. Thé only place elements may enter upon exiting a
Qi .is to enter B , This type of transfer is called
unloading. No unloading of .B is allowed. Naturally,
this configuration is referred to as a system of m queues

in Earalle .

_ Two different modes of operations are defined by ei-
‘ther insisting that all n elements be loaded before un=-
loading begins, or not. :

It is clear that every permutation P on n elements
is realizable through a system of n gueues, by first
‘loading each element on a separate intermediate queue and
‘then unloading P(1l), then P(2), etc. OCur aim is to find
the smallest m such that a system of m queues in paral-
lel will suffice to realize the given P , -gollgwing Even,
Lempel and Pnueli 1 , a permutation graph G(N,R) is de~
. fined for P where the set of Xertices N is {1,2,¢4.,n}
13nd the set of directed edges R;lis givenlby
R={i*j}] 1 < 3 and P () >PT (3}

Lemma 1: In every realization of P Qy a system of queues
| in parallel, if i+ 3J in G- then i and j
do not pass through the:same intermediate gqueue.

Thus 1 exits A before
then i is before J in
o A contradiction.

;Proof: If 1+ 3 then i <3.
'3 « If they enter the same o)
the gqueue. Thus, P 1i4)< le lﬁ)

i .
i et : ) I - : Q.E.D.'

CHOA i
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Clearly.if i1/ j and i< 5§, then Pﬁl(i)< Pul(j)
and there exists a realization in which i and j do pass
through the same queue,

Lerma 2: If P is realizable through a system of m
' queues in parallel, then there exists a partition
of N to m blocks such thgt no two elements in
one block are connected in G .

Proof: Definelthe block B, to consist of all the ele-
ments which pass through Qi , and use Lemma 1. 0.E.D,

Lemma 3: If N has a partition into m blocks such tha
no two elements in one block are connected in G
then P is realizable through a system of m
queues in parallel.

Proof: We can load all the elements of a block B, into
0, . Clearly, in each gueue the elements are in tﬁeir
natural order, (lLoading ig completed before unloading
begins,)

There can be no element b which precedes P{1l) in
its gueue, (This would have implied that b < P(1l) , and
since P 1(b) > 1 , it would have implied that b -+ P(l),
and they cannot belong to the same block.,) Thus, P(1) _
can be unloaded., Assume P(1),P(2),...P(%) have been un-
loaded. P(L+1) is the first element in its queue, by a
similar argument, -

QlEoDo

Note that in the realization of the proof we first complete
the loading before unloading begins, Thus, if a realiza=
tion without this restriction exists with m queues, by
Lemma 2 we have a partition intoc m blocks such that no
two elements in one block are connected in G , and by the.
proof of Lemma 3 we get a realization satisfying the re-

striction. Thus, we have proved the following:

"Lemma 4: Every permutation which is realizable by a system

of m queues in parallel is also realizable by
the same system with completion of loading bhefore
unloading begins,
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Thus, the problem of finding the smallest m such
that P is realizable by a system of ™, queues in parallel
is equivalent to minimal coloration of G , Very efficient
algorithms for coloring Eermutation graphs were given by
Even, Lempel and Pnueli . '

2, Stacks in Parallel~Loading Before Unloading

A stack is also a linear storage device. It has only
one orifice, The elements exit in the reverse order of
their entrance (LIFO)., Here too, the elements may be stored
any length of time and the number of elements that can be
stored in one stack at any time is unbounded,

Again we shall assume that the elements of N are
stored on an input quewe A in their natural order, and
that they have to be transferred to an output gueue B in
the order specified by P ., Assume we have m intermediate
stacks S tSorese,S o We may transfer from A to any one
of the stiacks, and Trom any stack to B . No transfer be-
tween stacks or reloading A or unloading B is allowed.
This is called a system of m stacks in parallel.

The gréph E'(N,ﬁ') is defined by

R = {1~ i i <3 and P-l(i) < Pfl(j)} .

E'(N,ﬁ') » as the notation suggegts, is also a directed
graph and is the complement of G . (That is, if+ i<
then i+ 3j in G' if and only if i—» 3 in G) .

Lemma 5: In every realization of P by a system of stacks
in parallel, with completion of lgading before
unloading beging, if i + j "in G' then i and
j do not pass through the same stack.

Proof: If i+ j then i < j ., Thus 1 exits A before
j « If they enteflthe,samgi S, 'then j 1is stored on top
of 1. Thus, P "(j) <P (i¥ W« A contradiction,

! - D.E.D.

_, Clearly, if i-» j in G and-1 <3, then
P (i) > P-7{j) and there exists a realization by stacks

in parallel, with completion of loading before unloading, in
which i and 9§ pass through the same stack. Indeed, J

'

IV EATAE
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is stored on top of 1 , but it is also unloaded before i,

Lemma 6: If P 4is realizable by a system of m stacks in
parallel, with loading completed before unloading
begins, then N can be partitioned intc m
blocks such that no two elements in one block are
connected by an edge in G' ,

The proof follows immediately by Lemma 5.

Lemma 7: If N can be partitioned into m blocks such
that no tyo elements which are connected by an
edge in G' are in the same block, then P is
realizable by a system of m stacks in parallel,
where loading is completed before unloading be-
gins,

The proof is similar to the proof of Lemma 3, Thus, the
problem of finding the smallest number of stacks in a sys-
tem of parallel stacks, for realizing a given permutation
P , when we insist on completion of loading before un-
}oading begins, is equivalent to the goloration problem of
G' , Even, Lempel and Pnueli 1. showed that G' is a
permutation graph, and thus the problem of its coloxation
is very easy to solve.

3., Stacks in Parallel - Without Restnictions on Unloading

Unlike the situation in queues in parallel, the re-
moval of the restriction on completion of loading before

. unloading begins creates a completely new problem, Con-

sider, for example, the identity permutation I (I(i) = i
for i=1,2,...,n) . G' is a completely connected graph
{an edge between every two vertices) and therefore its
chromatic number is n . However, one stack is sufficient
.to realize it: Load 1, unload 1, load 2, unload 2, etc,

Qur aim is to define a graph whose coloration problem
is equivalent to that of finding the smallest number of

iy 8tacks necessary in a parallel system for realizing a

I Le
FAE S

/given permutation P .,

o - ok
Define for every kul,z,...Ln a graph Gk(vk,R ) as

' follows: .
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v - {i] 1 <k ana P lx) < p7i(y))
B - {i >3] i,5¢ VK and i < j and Pﬂl(i) <P-1(j)}..

N > g R .
'The union gxaph, GU(V,R) is defined by

n n -
v =y ¥ and R=U Eﬁ'.
k=1 k=1
+k - .
Each G s a subgraph of G' of the previous section,
Therefore, G. is also a subgraph of G' , but is not
necessarlly identical to it, '

f' Example 1: P = [3,5,1,2,4] . E'(N,ﬁ') is shown below,

Now, El ’ 32 and Eq are empty.

+3 .
‘G consists of the vertices 1 and 2:

% is shown below. N
! . .

F
L
I
i

: +5 ]
1 Thus, the uniog graph, EU "is identical with G and is
‘not equal to G', '

! ) - 1

) Lemma B: If i+ 3 in G_ then there ig no realization °
A of P by a systém of stacks in parallel in

o which i and j pass through the same stack.
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Proof: If i * 3 in E r,, then there exists an element
k_lsuch that 1 * j .in " G, Thus, i< j <k and
P 7(k) <P (i) <P "(3§) . Therefore, i and 7§ are
loaded on the stacks before k leaves A and k is un-
loaded from the stack it passes through before i and j
leave the stacks in which they are stored, Thus, if both
i and j are stored on the same stack, j is stored on
tgg of i _ind must be unloaded first, This contradicts
P <SP (.

0.E,D,

ILet S be a set of elements which pass through a
given stack in some realization, Lemma 8 implies that
SNV 1is an independent set in G {a set of vertides such
that no two of them are connected by an edge). Thus, a re-
alization of P py a system of stacks in parallel implies
a coloration of the vertices of GU N

Conversely, let {C!,C.,4ee:C .be a coloration of
the vertices of G, . (ﬁacﬁ C, 1s the set of vertices
which are colored By the i~th color. Clearly, no two ver-
tices in one C,” are connected by an edge in G, .) ‘Let
Cy = C{V (8-V} | Thus, {cl,cz,....,c‘}' is a partition of
No n}

1'C2"€;Cm} is a partition of N such that
{Clﬂ+v , C r\V,...,Cmer} ig a legal coloration
of” G, then there exists a realization of P by -
a sysgem of m stacks S5,,5,;4.4,5 in parallel
in which the elements of Cﬁ pass %hrough SE .

Proof: let us use the following rulelr Assume
P(L),P(2),¢4.,P(k~l) are already on B ., If P(k) is
available (on top of one of the S,'s) .for unloading, un=
load it and repeat the rule. If not, load the next element
in line on A to its corresponding stack and repeat the

‘rule,

; Let us prove now, by induction on. k , that it will
‘never happen that P(1), P(2),...,P(k=1) are already on
‘B, P(k) 4is out of A and yet it is not available for

-unloading.

§ ~First consider P(l), If it is already out of A,
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then its exit out of its stack cannot be blocked, because
when it first enters the stack, the rule guarantees that
it is immediately unloaded. - Now, assume the statement is
true for i=1,2,,.,,k=1 , and that P(1},P{2},4..,P(k=l)
are already on B and P(k) is already out of A . If
P(k) is not on top in its stack, then some element a is
on top of it, Let the elements on B be
P(1),P(2),...,P{i=1) when a is loaded. By the inductive
hypothesis P(i) is not loaded yet. fThus, P({i) > a . We
also know that i <k , a > P{(k) and P"1l(a) » k . Sum=-
marizing, we have '

1

P(k) <a < P(i) and P H(R()) < PR < P a),

Thus in Ep(i) R Pik) +a and P(k) and a cannot have
the same color in Gy o
Q.E.D,
Lermas 8 and 9 imply that the problem of finding the
smallest m such that P is realizable by a system of m
- stacks in parallel, when unloading is permitted before
loading is completed, is equivalent to the problem of
finding minimum coloration of its union graph. Let us now
show an example of a union graph which is not a permutation
graph. In fact it is not even transitive.: ‘

Example 2: P = [5,2,7,4,1,6,3] .

El and E3a are enpty.

Ez is

34 is

ES is

36 is 5
57 is

.Thus, ¢ is as follows:

)
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Clearly, there is no way of redirecting its edges to make
it transitive.

One may suspect that every undirected graph is the
layout of some union graph, and that the coloration problem
for union graphs is as hard as for graphs in general. Un=-

. fortunately, we have not found an efficient algorithm for
i, coloring union graphs as yet. However, pessimism is not
justified, First, the fact that the edges of the union
graph are directed may be of help, as in the case of
transitive graphs . Second, there exist undirected
graphs which are not the layout of any union graph. One
such graph is the following: '

We postpone the proof of this fact to the next section,

%1 Lemma 10: If i -+ j and both> i iﬂd j are ver-
P tices of G tHen i~+j in G .

. Proof: Since 1 -+ 3 in G then there exists an & such,
Y that 1 <j <& and P J'(SL)<P“'1($.) < P (j) . However,

" since i and j are in G, then 1<k, j<k and
7 ek < PPH4)” ana PTr(k) < PTl(j) , It follows that

¢ i1<j<k and PR <PThm) <P NI .
M , k o
.T_hlJS, i nd )| ~in E ° . . . Q.E.D.
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A graph H 1is called a vertex-subgraph of a graph G
if the set of vertices of H 1is a subset of the set of _
vertices of G and all the edges of G connecting vertices
which appear in H are also edges of H . H has no other ,
edges, (This is sometimes called a section graph.) ;

Lemma 10 implies that each Ek is a vertex-subgraph

. of GU .

Lemma 11: If &eV then there exists a k # £ such that
->£ . »ék
G 1s a vertex-subgraph of o

. Proof: Since fLeV ,_fhere exéits a k such Ehat levk o
Thus, & <k _and P if) <P () . If iev’” then
i_i L a,nd_lP (2) <p “fr.) . Thus, i < k and

P (k) <P 7{i)  and ilev -1 Furthgimore, éf i+ 3 in
G then i < j <} and P (L) < Py (i) <P "(3) . Thus,
i<j<k Eﬂd P "(k) <P (i) < P "(§) . Therefore
i+3j in G . .

QOEDD!

; . +k
! Corollary: EU is the union of graphs G such that kgv .

;u»‘f The following lemma is not difficult to prove.

Lemma 12: Every vertex-subgraph of the union graph of
some permutation is the union graph of some
permutation,

R 4, Circle Graphs and their Relation to Union Graphs

| Let C be a set of chords drawn in a circle, Define
the corresponding undirected circle graph G(C,R) by re~
! presenting each chord by a vertex; two vertices are con-
' nected by an edge if a?? only if the corresponding chords

intersect, e

(©)
o“o

o
®

SR Example 33
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Let us show now an undirected graph which is not the
circle graph of any circle with chords:

It is now impossible to add a Sixth ¢hord which will intex=
sect all the existing five choxds, ' '
4
Next, let us describe an algorithm for generating a
permutation whose union graph has a layout isomorphic to
the given circle graph of a given circle with chords.. (We
assume the number of chords is -not zero.)

f (

-

(1) Choose a point on the circle which is not an end point

of a choxd. Call it g (the first artificial vertex),
Also set 1+ 1, J :

1(2) Move (clockwise, starting at o) along the circle until

you reach an end point of a chord, p .

1 (3) Iet p have the label i and the other end point of

the same chord have the lapel i' . Increment i
(i+i+1) ., ‘ '

§
i

1. S
:

;

11
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(4) Move (clockwise, starting at p} dlong the circle, If
you reach an unlabeled end point of a chord, call it
p and go to Step (3). If you reach a labeled end
point of a chord (it must have a primed label), let ¢
have the label 'i' and increment i (i + i + 1} .

(5) Move (clockwise, starting at the last labeled end
point found in Step (4)), ignore additional labeled
end points of chords as you go along. If you reach an
artificial vertex, stop. If you reach an unlabeled end
point of a chord p (a new chord) put a new artifi-
cial vertex, g , on the arc between the last end point
encountered and g and go to Step (3).

The resulting permutation is achieved By reading the primed
vertices off the circle, starting from the first artificial

vertex and tracing clockwise.

Example 4: Consider a circle with five chords which has a

.pentaﬁan as its circle graph: .

3!
L A B 1
2
6.
L 3
1t "
JI E 4.
4°F HC_-‘,? er
6 !

Assume we start at point: A ; this is. the first artificial

vertex. (If we start between B, and C we get a dif=-
ferent permutation,) Going clockwise, we label B as 1
and J°' as 1' ,C as 2 and F as ;2', D as 3 and
L as 3' , E as 4 and I as 4' . Nextwe encounter
F which is already labeled 2' . The present value of 1
is 5, thus A is labeled 5' . We continue to trace
from I and encounter an end point of;a new chord, H .
Thus, we put a new artificial veftex, G , between F and
H. We label H as & and K as 6' ., Next, we en-
counter I which is already labeled 4' . We label G as
‘9% and continue tracing from I.. No unlabeled vertices
are encountered. until we reach the artificial vertex A
and stop. The resulting permutation 1§

P = [5,2,7,4,1,6,3] .

12

R
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See Example 2,

Theorem I: Assume P. is a permutation which is derived
from a circle with chords through Algorithm 1 .,
The underlying undirected graph of the union
graph of P 18 ldentical with the cirxcle
graph,

Proof: Agssume the algorithm assigns the end points of a
given chord the labels i and 4i' . There exists an arti-
ficial vertex before i' ‘(the one nearest to it) with a
label k' , where k > i . Thus, i is a vertex in the
union graph.,

An artificial vertex is assigned a number after all
the vertices which precede it are labeled., Thus, its label
is higher than these and it is not a vertex in the union

. graph.

Thus, we have already shown that the circle graph and
the union graph have the same set of vertices,

Next, agssme that i-~3j in the circle graph; that is,
the chord i intersects the chord 3J 'in the circle. (Here
the chord names are as assigned in the algorithm,) Thus,
the labels i, j, i', j' appear in this order on the
circle. Consider the last artificial vertex before J ,
say k' . The algorithm implies'that "k > J and therefore,
i > j in the union graph. ! )

P 1

Finally, assume i - j in the union yraph. Thus,
there exists a k , not in the union graph (by the
Cgfollary fgllowing_%emma 11) such that i < j <k and
P (k) <P (i) <P ~{j) . 2Thus, i'  appears before j!
on the circle, and k' appears before i' . If i' ap~-
pears before 3j , then there must be an artificial vertex
between i' and j , and k .< j , Therefore: i,j,1i',3!
must appear in this prder and d—3J in, the circle graph,

. ! 0.E.D.

Now assume we are given a pgrﬁutation P . The fol~
lowing algorithm will construct a circle with chords such

that the underlying undirected graph o; the union graph of

ot

13
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P is identical with the circle graph, Let V be the set
of vertices ik the union graph, Let us call the numbers in
N-V artificial vertices (they will turn out to be similar
to the artificial vertices defined in Algorithm 1),

Algorithm 2

(1) Dpraw a circle. Choose n points around it and label
them P(1),P(2),.s.,P(n} , in this order, with primes.

{(2), Set k+P(l) and i+ 1. (k 1is an artificial
" vertex,)

(3) If i 4is an artificial vertex, reset k to be the

next artificial vertex following i in P , and go to
Step (5). ) \ .

(4) Draw vertex i in. the arc between k' and the next
primed vertex, after other unprimed vertices which
have already been drawn in this arc,

(3) Increment i (i<« i + 1) .o If i <n , go to Step
(3). Otherwise, stop.

Example 5: Let P = (5,3,4,7,2,1,6] . Its union graph is
€ ~(e=——(2)

and the artificial vertices are 5 and 7 .
5!
6l
1t 3

4\

!

6 3t

7! 4!

21

First we draw the points 5',3',4',7',2',1',6' on the
circle in this order, We start with k=5 .and i=1.
Next, vertices 1,2,3 and 4 are drawn by Steps (3), (4),
(5) applied four times, Now i =5 and 5 is an

14
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artificial vertex. We set k=7, i =6 and vertex 6
is drawn batween 7' ‘and 2' . Now 4§ = 7 , and we stop.
The resulting chords and labels-are shown above.

Theorem 2: ILet P be any permutation. Algorithm 2 will
construct a.circle with chords whose circle
graph is identical with the underlying uns
directed graph of P's union graph GU(V,R) o

Proof: For every i , i' is drawn on the circle in Step
(1) . Note that n (the highest integer in P ) is always
artificial and that the subsequence of artificial vertices
of P is always an increasing sequence., Assuming that
n>1l, it will never happen that Step (3) is applied to
i=n, and if i <n , then there is a next artificial
vertex to become the value of k .,

The algorithm will also draw gvery non artificial ver-
tex 1 . Now, assume i + j in G _ ,! Thus there exists a
lgist‘artigicial vertex Kk such that fi < j < k and
P 7(k) <P (i) <P "(j) . Thus; i' -is drawn before 3j'
on the circle. Clearly, i is drawn before j , and when
the running artificial vertex is' k , 'j is drawn before
it . Thus the four vertices i, j, i', j' appear in this

ordexr and i~—j in the circle graph. .

If i—3j in the circle graph, and 1 < j , then
i, j, i*, J' appear in this order on the circle., Also, 3
comes after some gitificiallvertex _E »>3J « Thus,
§<3<k and P (k) <P (i) <P (J) ,and i+ 3 in
G. . ' '

U
Q.E.D.

Corollary: Every circle graph is the fayout of some union
graph, and the layout of every union graph is a circle

graph, \

Thus, the coloration of circle graphsiis the same

' problem as the coloration of union graph. Also, since we

‘have shown a graph which is not a circle graph (Example 3),
the same graph is not the layout of any union graph.

i The interested reader may find related results in re-
‘ferences 2,3 and 4. Some of our results, and additional

T ]

15
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results on related subjects are reported _in 5. The circle
graph has been suggested to us by Yagil .
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