
Two-Commodity Flow

ALON ITAI

Technion--lsrael Institute of Technology

ABSTRACT An algorithm is given to fmd maxtmum two-commodity flow m an undirected graph The algorithm
is an improvement on Hu's two-commodity flow algorithm using the methods of Dmlc's single-commodity flow
algorithm Karzanov's Improvement of Dmlc's algorithm can be applied to yield an O(I V] 3) algorithm.

It is shown that finding maximum two-commodity flow m a dwected graph is much more dffficuh, in fact it
Is as difficult as hnear programming FmaUy, the problem of finding feasible flow m an undirected graph with
lower and upper bounds on the edges is shown to be NP-complete even for a single commodity

KEY WORDS AND PHRASES augmenting path, directed graph, flow network, hnear programming, max-flow,
ram-cut, multtcommodtty flow, NP-complete, polynomtally eqmvalent, undtrected graph

CR CATEGORIES 5 25, 5 32, 5 41

1. Introduction

Classical flow problems deal with a single commodi ty which has to be transferred from the
source through the network to the terminal. The edges of the network have finite capacity
and we have to maximize the flow from the source to the te rminal while satisfying both the
capacity constraints at the edges and the conservat ion of flow at the vertices.

Single-commodity flow problems were studied by Ford and Fulkerson [6] who intro-
duced augment ing path algorithms. However, their a lgori thm is no t po lynomia l ly bounded .
Edmonds and Karp [3] presented an O(I VIIEI 2) algori thm and Dinic [2] and Even and
Tar j an [5] presented an O(I VI21EI) algorithm. Recently, Karzanov [10] implemented
Dinic 's a lgori thm in O(I V I 3) time.

A na tura l general izat ion is to consider two distinct commodit ies each with its own source
and terminal . As an application, consider a te lecommunica t ions ne twork in which tele-
phone and telex share the same lines. The m a x i m u m flow indicates the m a x i m u m n u m b e r
of bits of informat ion which can pass through the network.

H u [7] devised an algori thm to f ind m a x i m u m two-commodi ty real flow m an undirected
graph. This algori thm is based upon a max-flow min-cu t theorem. First he found a
m a x i m u m flow of the first commodi ty while the second commodi ty flow was zero. T h e n
he used pairs of augment ing paths to recirculate the first commodi ty and increase the
second. The algori thm has the interesting and useful property that if all capacities are even
integers the m a x i m u m flow found is in integers. The convergence proof is based on this
fact. A drawback of this approach ~s that the n u m b e r of steps of this a lgori thm is no t
bounded by a funct ion of the n u m b e r of edges bu t rather by ' the size of the capacities. This
leads m some cases to an exponent ia l n u m b e r of steps (in terms of the length of the input
data).

I f we consider an abstract machine which can perform ari thmetic on arbi t rary real
numbers , then Hu ' s process may not terminate. Guaran tee ing te rmina t ion for arbi t rary
real numbers is impor tant for yet another reason. H u stated the max-f low min-cu t theorem

Perm~ssmn to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copynght notice and the title of the pubhcatlon and its
date appear, and notice is given that copying ~s by permission of the Assocmtton for Computing Machinery To
copy otherwise, or to republish, reqmres a fee and/or specific permlssmn.
Author's address- Computer Science Department, Techmon--lsrael Institute of Technology, Haffa, Israel
© 1978 ACM 0004-5411/78/1000-0596 $00 75

Journal of the Association for Computing Mgtchmery, Vol 25, No 4, October 1978, p 596-611

Two- Commodity Flow 597

for two-commodity flow. Its proof is based on the assumption that the algorithm termmates.
Consequently, his proof is valid only for networks for which the capacities are expressed
m rational numbers. The modified algorithm which converges for arbitrary real numbers
removes this restriction on the proof.

We change Hu's algorithm m two ways. First, in each augmentation we increase the
flow as much as possible, thus eliminating the need to repeat an augmenting path. Second,
we find the augmenting paths in order of increasing length by a technique similar to that
of Dinic [2] and Even and Tarjan [5]. The resulting algorithm has running time O(I V[2[ED
regardless of the size of the capacities. (We do assume, however, that all arithmetic
operations on the capacmes are primitive, i.e. can be done in one step). It is interesting to
note here that the inclusion of only one of the improvements does not suffice to guarantee
a polynomial time algorithm.

Karzanov's [10] method of improving Dinic's algorithm can be applied to yield an
O([V[3) algorithm. Ford and Fulkerson have also shown that for a single commodity,
integer capacities imply the existence of a maximum flow which is also in integers. For two
and more commodities this is no longer true. See Even et al. [4] for a proof that the two-
commodity integer flow problem is NP-complete. The two-commodity flow problem for
undirected graphs has then a somewhat unique feature. It is polynomially solvable in reals,
and if the capacities are integers, the algorithm produces a maximum flow which may not
be in integers but in units of one-half (e.g. 7/2, 17/2, 16/2). Yet, if one insists on a solution
in integers, the problem is NP-complete.

Considering the complexity of two-commodity flow in a directed network, it is shown
that this problem is as difficult to solve as linear programming in the sense that the two
problems are polynomially equivalent [9].

Finally, the problem of a single-commodity flow with upper and lower bounds on the
edges is considered. Ford and Fulkerson showed that the single-commodity directed case
is reducible to the problem of finding maximum flow for a directed smgle-commodity
network with lower bounds equal to zero. We show that for m I> 2 commodities, there
exists a reduction to finding maximum directed flow. However, for the undirected case
even the single-commodity flow problem with lower and upper bounds is NP-complete.

2. Undirected Two-Commodity Flow

2.1 DEFINITIONS. An undirected two-commodity flow network consists of the follow-
ing:

(1) An undirected finite graph G = (V, E) with no parallel edges and self-loops. An
edge between u and v is denoted [u, v].

(2) A capacity function of c: E ~ R +, where R + is the set of nonnegative real numbers.
(We denote the capacity of the edge [u, v] by c[u, v].)

(3) Vertices sl and s2 (not necessarily distinct) which are called sources.
(4) Vertices h and t2 (not necessarily distinct) which are called terminals.
Since the graph is undirected, [u, v] = [v, u]. However, flows and paths are directed. We

shall use the notation (- ,) for ordered pairs. Abusing the notation, (u, v) E E means that
the edge [u, v] ~ E.

The problem is to find two feasible flow functions~: V×V--> R, i = l, 2;f~(u, v) # 0
only if [u, v] ~ E. The / th flow function indicates the amount of commodity i which passes
through the edge. I f the flow passes in direction from u to v, then f~(u, v) > 0 and
fi(v, u) = - f , (u, v) < O.

The flow functions are feasible if they satisfy:
(a) Capacity constraint: For every (u, v) E E, [.fi(u, v)[+ [f2(u, v) I ~< c[u, v], indicating

that the total flow in both directions along an edge is bounded from above by the capacity
of the edge.

(b) Conservation of flow: For each commodity and each vertex v E V - {s,, t~},

598 ALON ITAI

~ev f i (u , v) -- 0. The amount of flow of each commodity which enters a vertex equals the
flow which emanates from it.

For each commodity let the total flow be defined as F, -- ~ v f , (s , , v). Our aim is to
maximize the total flow, i.e. to maximize the function F1 + F2.

2.2 THE UNDIRECTED Two-COMMODITY FLOW ALGORITHM. We follow Hu's algo-
rithm to some extent. To maximize F1 + F2 we first maximize F1 whilej~ = 0, then increase
F2 without changing F1 (although f~ may change on some edges). It will be proved that
such a scheme maximizes F1 + F2. The crux of the method is the way F2 is increased.
Towards this end, pairs of augmenting paths are found. Let ¢r be a path; then (u, v) ~ ~r if
v immediately succeeds u in ~r.

For every (u, v) ~ E define a(u, v) = ½(c[u, v] - j~(u, v) - f2(u , v)). 2c~(u, v) is the upper
bound on the addit ional flow that can be pushed from u to v through the edge [u, v].

A forward path is a simple (s2, t~) path (a path from s2 to t2 which does not cross itself),
~'~ = (s2 = vo v, = t2) where ~x(v,, v,+l) > 0, i = 0 r - 1. The residual capacuy of a
forward path is ct(~r~) = rain {c~(u, v) l(u, v) ~ ~r,}.

For every (u, v) E E defme fl(u, v) = ½(c[u, v] - f l (u , v) +f2(u, v)). (Note that in general
a(u, v) # lt(u, v).) 2fl(u, v) is the upper bound on the addit ional flow that can be pushed
through (u, v) E E; where the addit ional first commodity is pushed from u to v and the
additional second commodity is pushed from v to u.

A backward path is a simple (t2, s2) path m = (t2 = v0, .. , Vq = s2) where fl(v,, v,+~) > O,
i = 0 q - 1. The residual capacity of a backward path is fl(~ra) = min {fl(u, v)[

A pair of augmenting paths (z,~, ~ra) consists of a forward path ~r~ and a backward path
m. The residual capao ty of a pair of augmenting paths y(~r~, ~ra) = mln {o~(¢r~), fl(~ra) } .

A maximum flow of the first commodity may block the flow of the second commodity.
Possibly, a diversion of the flow of the first commodity wouM allow an increase of the flow
of the second commodity. The algorithm finds pairs of augmenting paths, y units o f the
first commodity are recirculated through the paths (~r~, ~rB), thus enabling the increase of
the second commodity by y units from s2 to t2 along each path.

TWO-COMMODITY FLOW ALGORITHM

Step I Let the imtmlf2 be zero. Fred a maximum flowf~ (from s~ to t~).
Step 2. Fred a pair of augmenting paths (~r,, ~ra) If no such pmr exists, stop maxtmum flow has been reached
Step 3 For every (u, v) ~ ~, increase the flow of each commodity by "t (in the dtrecUon of the path)
Step 4 For every (u, v) ~ ~r,, increase the flow of the first commodity by y and decrease the flow of the second

commodity by the same amount
Step 5 Go to step 2

2.3 CORRECTNESS OF THE ALGORITHM. TO show that the algorithm indeed finds
maximum feasible flow, we first show that the resultant flow is feasible (satisfies the
capacity and the conservation constraints).

LEMMA 2. I. Starting with a feastble flow, at the end of each iteration the f low is feastble.
PROOF. To show conservation of flow, observe that the flow is changed only along

augmenting paths. For any vertex other than s2 and t~, any path entering the vertex must
emanate. Hence the amount of addit ional flow equals the amount of flow which is
subtracted. At s2 the backward path enters with "y units off1 and the forward path emanates
with -g units of J~, so thatf~ is conserved at s~. The conservation of J~ at t2 follows similarly.

To show that the capacity constraints are fulfilled, a detailed case analys~s is conducted
on the edges for which the flow has been changed.

Four exclusive cases are considered:

Case 1. (u, v) ~ ~r~; (u, v), (v, u) ~5 ~r~.
Case 2. (v, u), (u, v) ¢ ~r~; (u, v) ~ ~r~.
Case 3. (u, v) ~ ~ra; (u, v) ~ ~r~.
Case 4. (u, v) E ~ra; (v, u) ~ ¢r~.

Two-Commodity Flow 599

Reversing the roles of u and v yields a total of eight exhaustive cases. Because of symmetry
only the above four cases need be considered.

Letf,(u, v) be the flow before the augmentation, fI(u, v) the flow after augmenting along
~r~ and ~r~ (fi stands forfi(u, v) when no confusion arises; a, a' , fl, fl' are defmed similarly).
We discuss only Case 1; the other cases follow similarly.

Case 1. (u, v) E ~r~; (u, v), (v, u) ¢ era. T(cra, ~ra) ~ a(Ir~) ~< a(u, v) = ½(c - f l - f 2) ; f ' , =
f i + T , i = 1,2.

Proceed to subcases depending on the signsf~ andf~.
(i) f~ ~> 0,f~ ~> 0:

If l l + Ifhl = f l + f ~ = (fl + T) + (~ + "t)
~<fi + ~ + 2a ~<ffi + ~ + (c - f f i - J~) = c.

(ii) f~ ~> 0,f~ < 0:

If~l + Ifhl = f ~ - f ~ = (fl + T) - (f2 + T) = f i - ~ ~ IJll + If21 ~ c.

(iii) f~ < 0, f~ I> 0 as (ii) by symmetry.

(iv) f~ < 0,f~ < 0:

If~l + If~l = - f~ - f ~ = - (f i + 7) - (f l + T) < - f i - f z ~ c.

Q.E.D.

Note that it does not suffice to check only worst subcases (e.g. for Case 1, f~, f~ ~> 0),
smce a, fl and T depend on the sign and magnitude of f i andS .

Assuming that the algorithm halts, by Lemma 2.1 the flow is feasible at termination. To
show that it is maximum, we digress and recall a few facts concerning flow network theory.

Let X_C V, 22 = V - X. The set of ordered pairs (X, 22) = {(u, v)lu ~ X, v E 22,
(u, v) E E} is a cut. Its value is c(X, 22) = ~(u.o~etx,:t) cIu, v]. A cut (X, 22) separates u from
v i fu E X a n d v E 22 or u ~ 22 and v E X.

Let v(u~, . . . , Urn; V~, . . . , V~) denote the value of a minimum cut which separates u, from
v, (t = 1 m). Ford and Fulkerson's [6] max-flow min-cut theorem states that for a
single commo&ty the value of a maximum flow is equal to the value of a minimum cut,
i.e. F~ = p(s~; t2). Let z(u~, u2; v~, v2) denote the value of a minimum cut (X, 22) such that
u~, u2 E X and v~, v2 E 22. (Note that in general ~-(u~, u~; v~, v~) I> ~(ul, u~; v,, v~) since
~(u~, uz; v~, vz) may be achieved in a cut (X, 2) for which u~, v~ ~ X and uz, v~ ~ 22.)

LEMMA 2.2. (Hu). In an undirected graph,

v(s~, s~; t~, t~) = min {z(sl, s~; 8, t~), ~-(s~, re; ssz, 8)}.

LEMMA 2.3. I f for any feasible f low (fi , J~) f ound by the algorithm there exists no pair o f
augmenting paths, then

F~ + F2 = v(si, s2; t~, t2).

PROOF. Consider two cases:
(a) There exists no forward path. Define X = {ulu ~ V there exists a path (s2 = Uo

Ur = U) from s2 to u such that a(u,-b u,) > 0, i = 1 r}. From the definition, s2 ~ X, and
since there is no forward path then t2 ~ 22.

For all (u, v) ~ (X, 22), a(u, v) = ½(c[u, v] - J i (u , v) - f2(u, v)) = 0. Thus c[u, v] = f i(u, v)
+~(u , v). Since c[u, v] ~> [fi(u, v)l + If2(u, v)l, thenfl(u, v),J~(u, v) ~> O.

Iffi(u, v) = 0 for all (u, v) ~ (X, 22), thenf2(u, v) = c[u, v]. The totalj~ flow is equal to
c(X, fO I> v(s~; t2). Hence, from the single-commodity max-flow min-cut theoremf2 is a
maximum flow (regardless o f f 0 and F2 = v(sz; t2). Since the algorithm started with F~
maximized and it was left unchanged throughout the algorithm, F~ -- v(s~; tz).

F~ + Fz = ~,(s~; 8) + v(sz; t~) t> r(s~, se; 8, te).

Otherwise, there exists a pair (u, v) ~ (X, 22) such that f i (u, v) > 0; then s~ ~ X,

6 0 0 ALON ITAI

tl E X (otherwise to conserve flow there would be a pair (w, y) ~ (X, X) such that)q(w, y)
< 0). Therefore,

Fx + F2 = c(X, X) >~ *(&, s2; tx, t2).

(b) There exists no backward path.
W e can conclude similarly that F I + F2 ~> r(sl, t2; s2, tx). Consequently,

F~ + F2 ~> min{~-(s~, s2; tl, t2), ~-(s~, t2; s~, tl)} = ~,(sl, s2; tl, t2).

Since also F~ + F2 ~< v(sl, s2; tl, t2), equahty has been proved. Q.E.D.
We have just shown the following corollary.
COROLLARY 2.4. I f the algorithm stops, a maximum f low has been found.
The ordered pair (u, v) E E is a bottleneck (with respect to the paths era and era and the

flowsfi,f~) if a(u, v) = T(er~, era) and (u, v) E er~ or/3(u, v) ffi Y(ero, era) and (u, v) ~ era.
LEMMA 2.5. I f (U, V) IS a bottleneck, then after the augmentation one of the paths ere or

era can no longer be used.
PROOF. The proof proceeds by analyzing the cases of Lemma 2.1:
Case 1. (u, v) E ~r~; (u, v), (v, u) ~ era, a = Y. The new flows are nonnegative:

f~ = f i + a = f l + ½(c - f i - f 2) = ½(c + ~ - f 2) ~> ½(c - If~l - I.AI) ~> 0
f [~> 0 similarly.

The new flow saturates the edge:

f~ + f [= f ~ + f [ffi (fi + a) + (fi + a) = f i + f i + (c - f i - f i) = c.

After the augmentation, a forward path cannot pass through (u, v) since

d(u, v) = ½(c - f ~ - f [) = 0.

The other cases follow similarly. Q.E.D.
2.4 FINDING AUGMENTING PATHS. We have not yet specified how to lind the pairs of

augmenting paths at step 2; if they are not chosen properly, the number of iterations for
some networks is exponentml. Here we can follow Edmonds and Karp [3], choosing
shortest paths. However, following Dinic [2] and Even and Tarjan [5] yields a better time
bound.

The algorithm works m phases. In each phase, pairs of augmenting paths with equal
lengths are found, i.e. in the course of a phase, two numbers 1~ and l a are determined, such
that for all pairs (~r~, 7ra) found in the phase, the length of era is I, and that of era is l a.

The flow in the network is increased using the augmenting paths until there exists no
forward paths of length I~ or no backward paths of length l a. At this point, the phase
terminates. In the next phase, l~ and la do not decrease and at least one of them strictly
increases. Consequently, there may be at most 2(I V I - 1) such phases. We now describe
a single phase, first constructing the forward auxiliary graph G~.

CONSTRUCTING Go

1 Perform a breadth-first search from s2 consldenng only ordered pmrs (u, v) E E for wMch a(u, v) > 0
2. If the search does not reach t2, the enure two-commodity flow algorithm termmates.
3 The vertices of the flow network are dw~ded by the search mto levels Let the level of s2 be numbered zero and

let l~ be the level of t2
4 A vertex v ~ V belongs to G~ ff either ns level is less than I~ or v = t2
5 An ordered pair (u, v) ~ E is a directed edge of G~ ff a(u, v) > 0 and the level of v is greater by 1 than that of

u

The paths from s2 to tz in G, correspond to forward paths of length l~ in the current flow
network.

The backward auxiliary graph G a is constructed similarly; this time we start with t2, end
with s2, and/3 replaces a. The paths from t2 to s2 in Ga correspond to backward paths of
length lp in the current flow network.

Two- Commodity Flow 601

Here and in the sequel, s ta tements concerning a, G., ~r~, and 1, m a y be s ta ted and p roven
also for fl, G,, ~r,, and l~.

Let (~r~, ~r,) be a pa i r of augment ing paths (of length l. and 1~). The two-commodi ty flow
a lgon thm uses these paths to increasef~ by 2"~(~r~, ~r,). The fol lowing l e m m a shows how the
residual capaci ty changes as a result of the augmenta tmn: a(u, v) changes on ly i f (u, v) or
(v, u) belongs to ~r~.

LEMMA 2.6. Suppose (~r~, ~r,) is a pair o f augmenting paths, and (u, v) ~ E. Then

[~ (u , v) - ~, (u, v) ~ ~o,

a'(u, v) = ~ a (u , v) + r , (u, v) ~ ~r~,
Lee(u, v), otherwise.

PROOF.
Case 1. (u, v) E ~r~.
Subcase 1.1. (u, v) E ~rp. The addi t iona l flow through ors increases both f i (u, v) and

~ (u , v) by y, whde the addi t iona l flow through Irp increasesf i (u , v) but decreasesf2(u, v).
Therefore, f i (u, v) increases by 2y, whilej~(u, v) remains unchanged.

a'(u, v) = ½(c[u, vl - f~ (u , v) - f ~ (u , v))
= ½(c[u, v] - 0q(u, v) + 2~,) - j ~ (u , v))
= ½(c[u, v] - f a (u , v) - ~ (u , v)) - ~ = ,~(u, v) - ~,.

Subcase 1.2. (v, u) E ~ra. f i(u, v) remains unchanged since the increases cancel each
other. A(u, v) increases by 2y.

a'(u, v) = ½(c[u, v] - f~(u, v) - f [(u , v))
= ½(cIu, v] - f i (u , v) - (~(u, v) + 2y))
= a(u, v) - ~,.

Subcase 1.3. (u, v), (v, u) ~ ~r,. Both f i(u, v) andJ~(u, v) increase by y.

a'(u, v) -- ½(cIu, vl - f ~ (u , v) - f [(u , v))
= ½(cIu, v] - ~f,(u, v) + .y) - ~ (u , v) + ~))
= a(u, v) - "y.

The remaining cases are proven similarly. Q.E.D.
COROLLARY 2.7. No forward paths o f length less than or equal to l~ are introduced as a

result o f the augmentation process.
PROOF. Let ~r be a new forward path; then ~r contains an edge (u, v) ~ G~. I f

(v, u) E G~, then level(u) = level(v) + 1 Otherwise, (u, v), (v, u) ~ G~ and the value
of a(u, v) has not changed. Since (u, v) ~ ~r, then a(u, v) > 0 after and before the
augmenta t ion . I f level(v) > level(u), then (u, v) E G~--a contradict ion. Therefore , level(u)
~< level(v).

The edges of ~r fq G~ lead f rom one level to the fol lowing one, and the remain ing edges
of ~r do not lead to a h igher level. Therefore, the length of~r is strictly greater t han 1~. Q.E.D.

Consequent ly , to f ind all forward paths of length 1~ it suffices to f ind (sz, t2) pa ths in G~.

A SINGLE PHASE OF THE TWO-COMMODITY FLOW ALGORITHM

1 Construct the auxdmry graphs G. and Ga (Let I. be the distance from s2 to t2 m G~, and la the distance from
t2 to s2 m Ga)

2 While G~ contains an (s2, t2) path - ~r~, and G, contains a (t2, s2) path - ~a, do
(1) Increase the flow m the network by "y(zr,, ~rB)
(2) Update a and fl according to Lemma 2 6
(3) Delete the saturated edges from the appropriate auxdmry graph 0 e, ff a(u, v) has been decreased to zero

then delete (u, v) from G,, and ff fl(u, v) ~ 0 then delete (u, v) from G~) end

Imp lemen ta tmn Note. By definit ion, y(~r~, ~r,) = mln{c@r~), fl(~r,)}. I f y(~r,, ~r,)
= a(~r,) < fl(~r,), then we m a y cont inue to use ~r B in the next iteraUon. Fur the rmore , there

602 ALON ITAI

~s no point in increasing the flow through ~r, in this iteration; we may wait until the increase
is equal to fl(~r,) (or until the end of the phase). This optimization ensures that in each
phase all paths used are found and updated at most once. Corollary 2.7 implies that the
paths in the updated auxlhary graph also correspond to the forward paths of length/~ in
the current flow network.

To find the paths in the auxiliary graphs, a depth-first search ~s conducted as follows:
For G~ we start tracing from s2 moving through an edge of G~ to a vertex of level 1, from
there to a vertex of level 2, etc. I f we reach t2, we have found a forward path. I f the depth-
first search reaches a deadend, namely, a vertex v from which no edge emanates, we
backtrack to the vertex preceding v on the path and erase the last edge of the path from G~.
The search is continued from there. I f we cannot proceed from s2 then the phase is over.

Since G~ has l~ + 1 levels, at most l~ edges may be traced until either t2 is reached or an
edge is deleted. In either case at most ls edges are scanned until an edge is deleted. The
next path is found by continuing scanning from the edge nearest s2 which was deleted
from the previous path.

I f G, contains I Eol edges, then fmding the paths of G, requires O(IEolI~) time. Since by
the implementation note each path is updated at most once and there may be at most]E~ I
(s2, t2) paths in G~, the entire updating also requires at most o(Ig~llo) time.

A similar process is applied to G B. Thus each phase requires at most O(1E~ II~) + O(1Eal lp)
= O(I VIlE I) time. Since there are at most O(I v I) phases, the entire two-commodity flow
algorithm reqmres O(1 V I 2] El) time.

The previous discussion and Corollary 2.4 are summarized in the following theorem.
THEOREM 2.1. The two-commodity f low algorithm finds a maximum flow in at most

o(I VI21EI) time.
Zadeh [14] exhibited a network in which I V] a augmenting paths are found by Edmonds

and Karp'8 single-commodity flow algorithm. As noted in [5], for this network Dinic's
algorithm requires O(I V I 21 El) time. The network can be modified to show that O(I V I 21 El)
is also a lower bound to steps 2 through 5 of the undirected two-commodity flow algorithm.

2.5. PROPERTIES OF THE ALGORITHM. We present some properties of the algorithm.
(1) Maximum two-commodity flow is achieved with the first commodity having maxi-

mum flow.
(2) I f the capacities are integers, the maximum flow obtained is in units of one-half.

This follows since in this case a,fl are integers throughout the algorithm. In this property
the algorithm follows Hu's original algorithm. However, the fimteness of our algorithm
does not depend on this fact.

(3) The two-commodity max-flow min-cut theorem [7] states that in an undirected two-
commodity flow network the maximum flow is equal to the value of the minimum cut:
v(sx. s2; tl, t2).

The proof ~s based on the fact that after a t'mite number of steps there exists no pair of
augmenting paths, and by Lemma 2.3 the flow achieved is equal to the minimum cut. Hu's
algorithm is not necessarily finite for arbitrary real capacities. Moreover, one could
construct an example, similar to that of Ford and Fulkerson [6, p. 21] m which an infinite
series of flows converges to a value smaller than the minimum cut. Therefore, Hu 's proof
of the two-commodity rain-cut max-flow theorem is valid only for networks with integer
or rational capacities. The existence of a finite algorithm for networks with arbitrary real
capacities removes this difficulty.

(4) We can use the algorithm to solve a related problem: undirected two-commodity
real flow with requirements. This problem is similar to the previous one except that two
constants R1, R2 are given, and it is required to fred feasible flow such that F1 t> R1 and
F2 >~ R2.

We augment the network with two new sources 3~, ~2 and edges [~, Sl], [sz, s2] of capacities
R~, R2, respectively (s~, s2 are now ordinary vertices). The maximum flow m the new
network is equal to R~ + R~ if and only if there exists feasible flow in the original network
such that F1 ~ R~ and F2 ~- R2.

Two- Commodi ty Flow 603

2.6 AN IMPROVED ALGORITHM. Recently Karzanov [10] &scovered a more efficient
algorithm for finding a maximum single-commodity flow. The method is quite involved
and will not be explained in detail. It takes advantage of the fact that the flow added in a
single phase of Dinic's algorithm blocks all the augmenting paths m an auxiliary graph.
Karzanov finds in O(1 VI 2) time a flow that blocks all augmenting paths in that auxiliary
graph. This flow is used to augment the flow in the network instead of finding and
updating each path separately.

This approach IS applicable to two commodities as well. In each phase the additional
flow blocks all the augmenting paths in one of the auxdiary graphs. Hence we may first
find the additional flow in the phase, then use this flow to augment the flow in the network.

Each phase is conducted as follows: First two auxiliary graphs Go and G~ are constructed.
Then flows f~ in Go and f~ in Ga which block all the augmenting paths are found. If, for
instance, Fo < F~ thenfB is replaced by a flow the value of which is equal to F~. (This flow
may be obtained by first adding to Ga a new vertex iz and a new edge (i2, t2) of capacity F~
and then finding a blocking flow from i2 to sz in the new G~.)

F lndmgf , andf~ of the same value involves at most three applications of Karzanov's
method, hence O(I V 12) time. Constructing the two auxiliary graphs and updating the flow
requires O(I E I) time. Since there are at most O(I VI) phases, the entire algorithm reqmres
O(I VI a) time.

3. Dtrected Two-Commodi ty Flow

3.1 DEFINITION AND BASIC PROPERTIES. In directed flow networks the graph is di-
rected and the commodities flow only in the direction of edges. (A directed edge from u to
v is denoted (u, v).)

(a) The capacity constraint isfl(u, v) +f2(u, v) ~< c(u, v), (u, v) E E.
(b) The conservation law states that for all i = 1, 2 and for all vertices v ~ V - {s,, t,},

£~u ~u,o)~) f ,(u, v) = E~w <o,w)~) f,(v, w).
Apparently, the &rected case is more difficult than the un&rected one.
The properties of single-commodity flow do not carry on to the two-commodity directed

case:
(i) The max-flow min-cut theorem does not hold. In Figure 1 the maximum flow is

obtained when F~ = ½, F2 = 1; F~ + Fz < 2, the value of a minimum cut.
(n) Even if the capacities are integer, the maximum flow may be rational (not necessardy

in units of one-hal 0. In Figure 2 all the capacities are equal to 1 and the maximum flow
IS depicted on each edge.

(iii) The maximum cannot always be achieved when the flow of the first commodity is
maximum (in Figure 1 if F~ = 1, then Fz = 0, Fa + Fe = 1, which is less than the maximum
possible flow).

However, all multlcommodity flow problems may be considered as special cases' of
hnear programming [6] (Lettlngfi(u, v) be the vanables, all the constraints and the target
funcUon are hnear with coefficients { - 1, 0, 1} .)

(1,0)

,'-..~,/.~o,½)
FIG 1

6 0 4 ALON ITAI

Flo 2

The worst case behavior of hnear programming is not well understood: No upper bound
less than exponential has been proved and in many cases exponential worst case behavior
has been demonstrated [11, 14]. On the other hand, it is not known whether hnear
programming is NP-complete [9]. Furthermore, there seems to be some evidence to the
contrary: The complement of hnear programming (all sets of linear inequalities which do
not have a feasible solution) is a member of the class NP. None of the NP-complete
problems are known to have this property; if the complement of any NP-complete problem
belongs to NP, then the complements of all NP problems also belong to NP, which seems
quite unlikely. Ladner [12] has shown that if P # NP there is an infinite hierarchy of
"polynomial equivalent" degrees (equivalence classes) within NP. The lowest degree is P:
all the problems solvable in polynomial time; the highest is the NP-complete degree.
Possibly, linear programming belongs to an intermediate degree (i.e. it cannot be solved by
a polynomially time bounded deterministic Turing maclune, but on the other hand not all
the problems of NP are reducible to it). We show that directed two-commodity real flow
is polynomially equivalent to linear programming. Thus any polynomial algorkhm for the
flow problem would yield such an algorithm for linear programming.

While proving this, we obtain some auxiliary results which are interesting for their own
merit.

3.2 SOME SIMPLIFIED LINEAR PROGRAMMING PROBLEMS. The following problems are
polynomiaUy equivalent.

(1) LP: Linear Programming. Given a matrix A, vectors b, c (a,~, b,, ¢~ ~ Z, the integers)
and an integer K. Determine whether there exists a nonnegative rational vector x
(xj ~ Q+) such that A x ~ b and ¢x ~ K.

(2) LI: Linear Inequalities. Given A, b as m LP. Determine whether there exists a
normegative rational vector x such that A x ~ b.

(3) LE: Linear Equalities. As LI except that "--" substitutes for "~" . From the classical
theory of linear programming LP, LI and LE are polynomially equivalent [6]. Wkhout
loss of generality we assume that the vector b, the right-hand side (r.h.s.), is nonnegative.

(4) [/, u] LE: LE with Bounded Coefficients. An LE problem m which a~, b, are integers
between I and u.

LEMMA 3.1. L E oc [-2 , 2] LE . (oc denotes ' ~ o l y n o m m l l y reducible" [9].)
PROOF. The proof is based on bitwlse decomposition of each equation of an LE

problem. For example,
(0 Let 5Xl + 3x2 - 7x3 = 6 be one of the equations. Then it may be rewritten:

(lXl + l x 2 - lx3)2 ° + (OXl + I x 2 - 1x3)21 + (Ix1 + 0 x 2 - 1x3)2 2 = 0 2 o + 1 21 + 1.2 2 .

Consider the computation of each bit, thus obtaining an equation for each power of 2.

Two- Commodity Flow 605

(n) lxx + 0x2 -- Ix3 = 0,
0xl + l x 2 - - Ix3 = 1,
Ix1 + 0x2- - Ix3 = 1,

However, the system of equaUons (ii) has no solution. The reason is that m (0 there is a
carry f rom the computa t ion of one b~t to that of the h igher bit. To overcome this difficulty,
we introduce the fol lowing system:

0ii) lx l + 0x2 - Ix3 - 2(c0 - do) = 0,
Oxl "4- Ix2 -- lx3 -1- (Co -- do) - 2(cl - d l) = 1,
lXl + 0x2 - Ix3 -4- (Cl - dl) = 1.

The variables ck, dk pass the carry f rom one equat ion to the next. (The carry m a y be
posiUve or negative; since the var iables are required to be nonnegat ive, two such var iables
are in t roduced so that their difference can obta in any real value.)

F r o m any solut ion to (i) zt ts easy to der ive a solutmn to (iii). F o r example , let xl = 1.6,
x2 = 4, x3 = 3 be a solution to (i). Then x and Co = 0, c~ = 0.4, do = 0.2, d l = 0 saUsfies 0ii).

In the other direction, if (x, c, d) solves (iii) then x solves (i).
The above process is pe r formed on all the n equauons , ob ta in ing a system of nK

equat ions in (n + l) K - 1 var iables (K = 1 + [log max{ lay [: I = 1 n; j = 1 m}
U {1 b: [:j = l m}]). This reduct ion is po lynomia l in the size of the input.

The coeff ioents and the r.h.s, o f the new system are integers in the region [-2 , 2]. The
new system is solvable if and only i f the or iginal system is. Q.E.D.

LEMMA 3.2. [--2, 2] L E oc [-1 , l] LE.
The construct ion which t ransforms any [-2 , 2] LE p rob lem to an equivalent [- l , 1] LE

problem is sketched as follows.
Fo r every occurrence of the var iable x: with coefficients a v = _+2 put _+(x: + x~) and add

the equat ion x: - x: = 0 I f b, = 2, change ~=~avx: = b, to

~ a v x : - -z , = 1; z, = 1.
J~l

3.3 HOMOLOGOUS FLOW. Fol lowing Berge and G h o u i l a - H o u r i [1] we in t roduce ho-
mologous flow problems and show that they are po lynomia l ly equivalent to the p rob lems
of the previous section.

First, consider a general izat ion of the capaci ty rule: A n (l, u) f low network is a flow
network in which every edge (v, w) has a lower bound, l(v, w), and an upper bound,
u(v, w). ((l(v, w), u(v, w)) is a pa i r of real numbers , called the generalized capacity. A n edge
is nonrestr ic ted if Its generahzed capaci ty is (0, oo).) A flow f is feasible i f the generahzed
c a p a o t y rule holds, i.e. V(v, w) ~ E, l(v, w) ~< f(v , w) ~< u(v, w). W e wish to de te rmine
whether an (l, u) flow network has a feasible flow.

Two edges (v, w) and (v', w') are homologous ff it is required t ha t f (v , w) =f (v ' , w'). A
homologous f low network consists of a single commodi ty (/, u) flow ne twork with pairs o f
homologous edges. W e wish to de termine whether there exists a feasible flow which
satisfies the homologous requirements .

Homologous flow is po lynomml ly eqmvalent to LP, as seen by the fol lowing lemma.
LEMMA 3.3. [--1, 1] L E oc homologous flow.
PROOF. Let
(i) ~ - 1 a,:x: = b,, i = 1 n be an instance o f [- 1 , 1] LE. F o r a = - 1 , 0, 1, le t J~ --

{jla,j = a}. Then (i) is equivalent to
(ii) ~:~j~ x: - ~)~,_, xj = b,.
The homologous flow network constructed below has a feasible f low (which also satisfies

the homologous requirements) if and only i f (i) (or (ii)) has a solution.
The homologous flow network consists of n sections. Each secuon contains m + 5

vertices {v~ era, y ' , Z ~, ,/k~, f0, J~}. The edges in the ith sect ion depend on the ith

606 A L O N ITAI

equation. For o -- - 1 , 0, 1, i f j ~ J'o then v~ is connected to J'o by a nonrestricted edge.
J~ is connected to z ~ by an edge of generalized capacity (b,, &). J~ a n d J k l are connected
to .y~ by nonrestricted homologous edges (i.e. 0 ~f(J~, y') - - f (Jk~, y') < oo). J~ and y' are
connected to z' by nonrestricted edges. (See Figure 3.)

The network contains an additional vertex s = z ° which is the source. The terminal is
t = ~. For each j (j = l m) the network contains the nonrestricted pairwise
homologous edges (z °, v)), (z 1, v]) (~-1, v]).

Given a solution x to (1) we define a feasible flow as follows: xj = f (z °, v)) f (~ -~ ,
v~-~). The edges are homologous so that the value of the variable xj stays the same in all
the equations.

f(J~,Y') = f (' P - ' , Y') = ~,e,,_, x, = ~,~,, x, - b,.

The flow on the remaining edges is defined so that the conservation rule is preserved.
Given a feasible flow it is easy to construct a solution to (i). Therefore, the equalities are

satisfiable ff and only if there extsts a feasible flow. Q E.D.
3.4. SELeCTIVe FLOW. In this section we define addRional flow networks and show

that the existence of feasible flow in these networks is polynomially equivalent to solving
the problems of the last two sections.

An edge is selective if only a specific commodity may pass through it. In such networks
we specify the commodities which pass through each edge. A selective (/, u) 2CF is a two-
commodity directed flow network with lower and upper bounds on the sum of the flows
on each edge. We get rid of the homologous requirement by introducing a second
commodity.

LEMMA 3.4. Homologous flow o~ selecUve (1, u) 2CF.
PROOF. Without loss of generality, we may assume that each edge (v, w) is homologous

to at most one other edge. (If (v, w) is homologous to (y, z) and (y', z') then replace (v, w)
by two edges (v, x) and (x, w) such that x is a new vertex incident only to these two edges
and (v, x) is homologous to (y, z) and (x, w) is homologous to (y', z').)

Let (v, w) and (y, z) be homologous edges both with generalized capacity (l, u). Replace
these edges by the construction of Figure 4.

The vemces vw, vw', yz, and yz' are new. s2 and t2 are the source and the terminal of the
second commodity. The permissible subsets appear above the edges. C is a large constant.

Clearly, fi(vw, vw') + f2(vw, vw') = C, f ,(yz, yz') + f2(yz, yz') = C.
Since~(vw, vw') =/~(yz, y f) , thenfl(vw, vw') =)q(yz, yz'), and the effect of homologous

edges is achieved.
There remains a subtle point: The constant C must be as large as the largest flow on any

edge. Since we allowed nonrestricted edges it is not clear whether a uniform bound can be
found a priori. Moreover, the reduction is polynomial only if the number of bRs in the
representatmn of C is bounded by a polynomial of the number of bits of the input.

FIG 3

Two-Commodity Flow 607

As already mentioned, every flow problem 1s a special case of linear programming. For
homologous flow the entnes of the resultant matrix are {- 1, 0, + I}. The entnes of the
r.h.s. are bounded by the maximum capacity. From the theory of linear programming we
learn that the existence of a solution rmphes the existence of a basic solution. Let AbasIc be
the submatrix corresponding to a basic solution. Ab BSlc is AbaSIc except that the ith column
IS replaced by the r.h.s. By Cramer’s rule,

Let M be a bound on the finite capacities; then the r.h.s. is also bounded by M. By
Hadamar’s inequality, lx,1 d M n’@. Therefore, C =Z M n”“, and rts representation re-
quires at most log M n”” = log M + f-n log II brts. Hence the reduction is
polynomial. Q.E.D.

We can drop the requirement for selective edges if we maintain the requirement for
lower and upper bounds.

LEMMA 3.5. Selective (I, u) 2CF 0~ (I, u) 2CF.
PROOF. We simulate the selective edges by changing each selective edge (v, w) of

capacrty (I, U) which accepts only commodity i into the structure of Figure 5 (VW and VW’
are new vertices).

Without loss of generality we may assume that no edge enters sI or emanates from t,.
The capacity requirements are fulfilled d and only if I s$(v, w) s u and the flow of the
other commodity is zero. Q.E.D.

3.5. FLOW WITHREQUIREMENTSANDMAXIMUM FLOW. A two-commodity flownet-
work with requirements (2CFR) consists of two real numbers RI and Rz. and a two-
commodity directed flow network with only upper bounds on the edges (all lower bounds
are equal to zero). A flow is feasible if it satisfies the capacrty and conservation rules and
F, a R,, I = 1, 2

LEMMA 3.6. (Z, u) 2CF 0~ ZCFR.
PROOF. Given an instance of (I, U) 2CF, an equivalent instance of 2CFR is constructed

by changing the graph G into G as follows:
(i) ,The sources and the terminals of G are the new vertices 51, 52, &, &, respectively.

(The vertices ~1, SZ, tl, and tp become ordinary verttces which satisfy the conservation
rule.)

(it) Every edge (x, y) of capacity (L u) is replaced by the construction of Figure 6.
(iii) Let M be the sum of all the upper bounds of all the edges of G. For i = 1, 2, let z,,

z,’ be new vertices and add the constructton of Figure 7.
The requirements are R, = RP = 2M. We show that the two flow problems are equivalent.
(a) If there exists a legal flow m the G then there exists a legal flow in G.
Let f be a flow in G which satisfies the requirements, then f saturates all the edges

FIG 4

608 ALON ITAI

FIG. 6

FIG 7

incident with ~, and i, (l = 1, 2). For i, this follows because the sum of the capacities of all
the edges entering tz is ~lxe~eE c(xy, 7,) + c(z,, 7,) = 2M = R,.

The flow f i n G is defined asf i (x ,y) =f,(x, xy) (=f,(xy' ,y)). Obviously, this flow fulfills the
conservation rule and is less than the upper bound. It remains to demonstrate that the
lower bounds are satisfied.

Because of the conservation off , at xy, f~(x, xy) + f ,(xy' , xy) = f~(xy, 7,) = u. Therefore,
~,f l (x , y) -- Z , f , (x , xy) = 2u - ~ , f (xy ' , xy) I> 2u - (2u - 1) -- l.

(b) If there exists a legal f l o w f in the original graph G, then there exists a legal f l o w f
in the new graph (7.

Define:
(i) f~(x, xy) =~(xy ' , y) =fi(x, y),j~(xy', xy) = u - f i(x, y), f~(xy, 7,) = f~(~,, xy ') = u.

(il) f~(t, z,) =ffi(z,, s,) = F, fi(z,', z,) = M - F,,~(z,, 7,) =f~(~,, L ') = M.
For these edges the flow of the other commodity is zero.
By definition the requirements are fulfilled. Flow is conserved at the vertices of d since

it is conserved in G. To complete the proof we show that the capacity constraints are
fulfilled. For the edges (x, xy), (xy', y), (z,, 7,), (~, z,'), this follows from the construction of
the flow. For (xy', xy) the following holds.

Since ~,f i (x , y) t> l(x, y), thenf,(xy' , xy) = u(x, y) - ffi(x, y) and ~,~(xy ' , xy) = 2u(x, y)
- E , f (x , y) ~ 2u(x, y) - l(x, y) = c(xy', xy). Q.E.D.

Note. This construction is easily generalized to m-commodity flow. In fact, this reduction
continues Ford and Fulkerson's [6] reduction for the single-commodity case. (Their original
construction does not work for m I> 2)

Let 2CF be the problem of maximizing the sum of the flow (max(F1 + F2)).
LEMMA 3.7. 2CFR oc 2CF.
The proof is similar to that of property (4) of Section 2.5.
3.6 FROM LINEAR PROGRAMMING TO Two-COMMODITY FLOW. Since all the pre-

vious problems are special cases of linear programming, we may summarize the previous
lemmas as follows.

THEOREM 3.1. All the following problems are polynomially equivalent: LP, LI, LE,
[-1 , I]LE, homologous flow, (/, u) 2CF, 2CFR, 2CF.

Notes. (1) We can generahze all the previous two-commodity flow problems to m I> 2
commodities. Therefore, all these problems are polynomially equivalent to linear program-
ming.

(2) The reductions increase the size of the problem linearly except that of Lemma 3.4
where the size might grow by n log n.

(3) Starting from integer programming [9] instead of from linear programming, the
reductions would still carry through while requiring all variables to be nonnegative
integers. Thereby, we have given another proof to the fact that two-commo&ty integer
flow is NP-complete [4].

Two-Commodity Flow 609

4. Undtreeted Flow Networks wtth Lower Bounds

For directed flow networks, Lemmas 3.6 and 3.7 showed the computational equivalence of
networks with lower bounds and networks without lower bounds. In this section we show
that for un&rected networks a simdar construcUon is quite improbable, since for undirected
networks the former problem is NP-complete and the latter is polynomially solvable [2, 3,
5, 6, 10]. To this end we define three auxiliary network flow problems and show that they
are all NP-complete. For all three, it is required to determine whether there exists feasible
flow.

P 1. An undirected single commodity flow network with lower and upper bounds on the
edges. The vertices s and t are each incident with a single edge ([s, s"], [t ' , t]) for which the
lower and upper bounds are equal to F.

P2. A single-commodity mixed flow network with lower and upper bounds (some edges
are directed and some are undirected). All flow enters t (emanates from s) through a single
directed edge (t', t) ((s, s')) of capacity (F, F).

P3. Undirected single-commodity flow network with lower and upper bounds.
Let equal-occurrence SAT be the satisfiability problem of Boolean expressions m

conjunctwe normal form for which each literal appears exactly k times, for some integer
k [9].

LEMMA 4 1. Equal occurrence SA T is NP-complete.
PROOF. We show that SATISFIABILITY cx equal occurrence SAT.
Let ~ be a Boolean expression in conjunctive normal form, in which x, (~c,) occurs ks (/c,)

times. Let k = 1 + max {k,,/~)lt = 1 n}. Construct the Boolean expression 4' = ~ ' D~
Dn, where D, = (x, + + x, + ~, + + 5c,), and x, (5c,) occurs k - k, I> 1 (k - lk~

1) times in D~.
Each literal appears exactly k times m ~ . Furthermore, ~ is true exactly when ep is.

Obviously, + can be computed from q~ in polynomial time. Q.E.D
LEMMA 4.2. P2 ts NP-complete.
PROOF. We show that equal occurrence SAT oc P2.
Let ~b be an instance of equal occurrence SAT withp clauses C1 Cp and n vanables

xl xn such that each hteral occurs exactly k times. We construct the network depicted
in Figure 8. In addition to the edges expllcxtly drawn, if x, (5c,) occurs q times in the clause
Cj, there is an edge of capacity (0, q) between the vertex x, and the vertex Cs.

The resultant network is an instance of P2 and can be constructed from ~ in polynomial
time. It remains to show that the network contains feasible flow if and only if ~ is
satisfiable.

FIG 8

610 ALON ITAI

If there exists feasible flow, then the undirected edge [x~, ~,] must be saturated. Therefore,
all flow in the triangle (y,, x,, Ycj must pass either from y, to $, and then to x, (in which case
x, is designated true) or from y, to x, and then to Yc, (m which case x, is false). In the former
case, to conserve flow at x, the edge (x,, C~) must be saturated; otherwise (Yc,, Cr) is
saturated. S m c e f l C j , t) ~> I(Cj, t) = 1, to conserve flow at C~, there exists an edge (z, Cj)
with positive flow. The vertex z corresponds to a literal which belongs to Cj. Since flow
emanates from z, z has been designated true, and it causes the clause Cj to be satisfied.
Smce this applies for all Cj, j = 1 p, the expression ~p is satisfiable.

The other direction follows immediately. Q.E D.
LEMMA 4.3. PI is NP-complete.
PROOF. We show that P2 o¢ P 1.
We shall simulate the directed edges by structures of undirected edges. The edge (t', t)

((s, s')) is replaced by It ' , t] and [t", t'] (Is", s'] and [s, s']) of capacities (F, F) and (F + U,
F + U), respectwely (U is the sum of the upper bounds over all the directed edges except
(t', t) and (s, s')). See Figure 9.

Let (a, b) (#(s, s'), (t', t)) be a directed edge of capacity (l, u); it is replaced by the
structure of undirected edges (Figure 10). (The vertices ab and ab' get introduced only
once in the enare construction.)

Without loss of generality, f(s, s"), f i t" , t) ~ 0 (otherwise, reverse the dlrecUon of the
flow.) Since t is connected only to t ' , f i t ' , t ') = F and f lab , t ') = u. To satisfy the
conservation rule at ab, f (a , ab) I> O. Consequently, l ~ f l a , ab) ~< u and 0 ~< f lab ' , ab) = u
- f (a , ab) ~ u - I. Conclude similarly tha t f (s ' , ab') = u and f lab ' , b) = f (a , ab) I> I and the
total flow from a to b is nonnegaUve.

A flow on the structure which simulates the flow on the directed edge is 'easily
constructed. Q.E.D.

Since P 1 is a speoal case of P3 we have proven the following theorem.
THEOREM 4.1. The problem o f de termmmg whether there extsts a feasible f l o w m an

undirected smgle commodity network with lower and upper bounds on the edges is NP-
complete.

5. Conclusions

When comparing directed and undirected network flow problems we see that some

(O,u-e)

FIG 9 FIG 10

TABLE 1 SUMMARY OF RESULTS

The problem

Number of commodmes

1 2 m

Maximum flow
undirected IV] ~]V[3 9
directed [VI ~ LP LP

Maximum integer flow
undirected and directed I VI 3 NPC NPC

Lower and upper bounds
undirected NPC NPC NPC
directed I VI 3 LP LP

Notes [V[3 There extsts a O(1V[3) Ume algonthm LP Polynomlally equwalent to hnear programming NPC
NP-complete

Two-Commodity Flow 611

problems are eas~er for undirected networks; whereas other problems are easily solvable in
the directed case, whde notoriously difficult for undirected networks. Table I summarizes
the results.

ACKNOWLEDGMENTS. I wish to thank Prof. S. Even who supervised the research, Dr. M.
Rodeh, and an anonymous referee whose numerous comments helped bring the paper to
its present form.

REFERENCES

l BERGE, C , AND GHOUILA-HOuRI, A Programming, Games and Transportation Networks. Methuen, London,
England, 1965

2 DINIC, E A Algorithm for solution of a problem of maximum flow in a network with power estimation Soy
Math Dokl II (1970), 1277-1280

3 EDMONDS, J , AND KARP. R M Theoretical improvements in algorithm efficiency for network flow problems
J ACM 19 (1972), 248-264

4 EVEN, S, ITAI, A, AND SHAMIR, A On the complexity of timetable and multi-commodity flow problems
SL4M J Comping 5 0976), 691-703

5 EVEN, S , AND TARJAN, R E Network flow and testing graph connectivity SIAM £ Comptng. 4 (1975),
507-518

6 FORD, L R JR, AND FULKERSON, D R Flow~ m Networks Princeton U Press, Pnnceton, N J , 1962
7 Hu, T C Multi-commodity network flows J ORSA 11 (1963), 344-360, also in Integer Programming and

Network Flows, Addison-Wesley, Reading, Mass, 1969
8 ITAI, A Mult~-commodity flow Ph D Dlss, FeInberg Graduate School, Welzmann lnst Scl, Rehovot,

Israel, 1976
9 KARP, R M Reduclbdlty among combinatorial problems In Complemty of Computer Computations, R N

Miller and J W Thatcher, Eds, Plenum Press, New York. 1972, pp 85-104
10 KARZANOV, A V Determining the maximal flow m a network by the method of preflow Soviet Math Dokl

15 (1974), 434-437
11 KLEE. V L, AND MINT'Y, G J How good is the simplex algorithm In lnequahttes I l l , 0 Shlsha, Ed,

Academic Press. New York, 1972. pp 159-175
12 LADNER. R E On the structure of polynomial time reducibility J ACM 22 (1975), 155-171
13 ZADEH, N A bad network problem for the simplex method and other mtmmum cost flow algorithms Math

Programmmg 5 (1975). 255-266
14 ZADEH, N Theoretical efficiency of the Edmonds-Karp algorithm for computing maximal flows J ACM 19

(1972). 184-192

RECEIVED JANUARY 1976, REVISED NOVEMBER 1977

Journal of the Association for Computing Machinery, Vol 25, No 4, October 1978

