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ABSTRACT  An algorithm 1s given to find maximum two-commodity flow in an undirected graph The algorithm
1s an improvement on Hu’s two-commodity flow algonithm using the methods of Dinic’s single-commodity flow
algonthm Karzanov’s improvement of Dinic’s algorithm can be applied to yield an O(| V |*) algonthm.

It 1s shown that finding maximum two-commodity flow m a directed graph 1s much more difficult, in fact 1t
15 as difficult as linear programming Finally, the problem of finding feasible flow in an undirected graph with
lower and upper bounds on the edges 1s shown to be NP-complete even for a single commodity

KEY WORDS AND PHRASES augmenting path, directed graph, flow network, linear programming, max-flow,
min-cut, multicommodity flow, NP-complete, polynonually equivalent, undirected graph

CR CATEGORIES 525,532,541

1. Introduction

Classical flow problems deal with a single commodity which has to be transferred from the
source through the network to the terminal. The edges of the network have finite capacity
and we have to maximize the flow from the source to the terminal while satisfying both the
capacity constraints at the edges and the conservation of flow at the vertices.

Single-commodity flow problems were studied by Ford and Fulkerson [6] who intro-
duced augmenting path algorithms. However, their algorithm is not polynomially bounded.
Edmonds and Karp [3] presented an O(] V|| E[?) algorithm and Dinic [2] and Even and
Tarjan [5] presented an O(|V|?| E|) algonthm. Recently, Karzanov [10] implemented
Dinic’s algorithm in O(| ¥|?) ume.

A natural generalization is to consider two distinct commodities each with 1ts own source
and terminal. As an application, consider a telecommunications network in which tele-
phone and telex share the same lines. The maximum flow indicates the maximum number
of bits of information which can pass through the network.

Hu [7] devised an algorithm to find maximum two-commodity real flow 1n an undirected
graph. This algorithm is based upon a max-flow min-cut theorem. First he found a
maximum flow of the first commodity while the second commodity flow was zero. Then
he used pairs of augmenting paths to recirculate the first commodity and increase the
second. The algorithm has the interesting and useful property that if all capacities are even
integers the maximum flow found is in integers. The convergence proof is based on this
fact. A drawback of this approach 1s that the number of steps of this algorithm is not
bounded by a function of the number of edges but rather by-the size of the capacities. This
leads in some cases to an exponential number of steps (in terms of the length of the input
data).

If we consider an abstract machine which can perform arithmetic on arbitrary real
numbers, then Hu’s process may not terminate. Guaranteeing termination for arbitrary
real numbers is important for yet another reason. Hu stated the max-flow min-cut theorem
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for two-commodity flow. Its proof is based on the assumption that the algorithm termnates.
Consequently, his proof is valid only for networks for which the capacities are expressed
mn rational numbers. The modified algorithm which converges for arbitrary real numbers
removes this restriction on the proof.

We change Hu’s algorithm 1n two ways. First, in each augmentation we increase the
flow as much as possible, thus eliminating the need to repeat an augmenting path. Second,
we find the augmenting paths in order of increasing length by a technique similar to that
of Dinic [2] and Even and Tarjan [5]. The resulting algorithm has running time O(| V' |?| E|)
regardless of the size of the capacities. (We do assume, however, that all arithmetic
operations on the capacities are primitive, i.e. can be done in one step). It is interesting to
note here that the inclusion of only one of the improvements does not suffice to guarantee
a polynomial time algorithm.

Karzanov’s [10] method of improving Dinic’s algorithm can be applied to yleld an
O(|V|® algonithm. Ford and Fulkerson have also shown that for a single commodity,
mteger capacities imply the existence of a maximum flow which is also in integers. For two
and more commodities this is no longer true. See Even et al. [4] for a proof that the two-
commodity integer flow problem is NP-complete. The two-commeodity flow problem for
undirected graphs has then a somewhat unique feature. It 1s polynomially solvable in reals,
and if the capacities are integers, the algorithm produces a maximum flow which may not
be in integers but in units of one-half (e.g. 7/2, 17/2, 16/2). Yet, if one insists on a solution
in integers, the problem is NP-complete.

Considering the complexity of two-commodity flow in a directed network, it is shown
that this problem is as difficult to solve as linear programming in the sense that the two
problems are polynomially equivalent [9].

Finally, the problem of a single-commodity flow with upper and lower bounds on the
edges is considered. Ford and Fulkerson showed that the single-commodity directed case
is reducible to the problem of finding maximum flow for a directed single-commodity
network with lower bounds equal to zero. We show that for m = 2 commodities, there
exists a reduction to finding maximum directed flow. However, for the undirected case
even the single-commodity flow problem with lower and upper bounds is NP-complete.

2. Undirected Two-Commodity Flow

2.1 DeFINITIONS. An undirected two-commodity flow network consists of the follow-
ing:

(1) An undirected finite graph G = (¥, E) with no parallel edges and self-loops. An
edge between u and v is denoted [u, v].

(2) A capacity function of c:E — R*, where R” is the set of nonnegative real numbers.
(We denote the capacity of the edge [u, v] by c[u, v].)

(3) Vertices s; and s; (not necessarily distinct) which are called sources.

(4) Vertices , and #; (not necessarily distinct) which are called terminals.

Since the graph is undirected, [, v] = [v, 4]. However, flows and paths are directed. We
shall use the notation (- , ) for ordered pairs. Abusing the notation, (%, v) € E means that
the edge [u, v] € E.

The problem is to find two feasible flow functions f;: VXV — R, i = 1, 2; fi(u, v)# 0
only if [u, v] € E. The ith flow function indicates the amount of commodity i which passes
through the edge. If the flow passes in direction from u to v, then fi(u, v) > 0 and
S, w)y=—fi(u, v) <O0.

The flow functions are feasible if they satisfy:

(a) Capacity constraint: For every (u, v) € E, | f.(u, v)| + | fo(u, V)| < [y, ¥], indicating
that the total flow in both directions along an edge is bounded from above by the capacity
of the edge.

(b) Conservation of flow: For each commodity and each vertex v € ¥V — {s, &},
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Yuev fi(u, v) = 0. The amount of flow of each commodity which enters a vertex equals the
flow which emanates from it.

For each commodity let the total flow be defined as F, = Yuev fi(s,, v). Our aim is to
maximize the total flow, i.e. to maximize the function F; + F..

2.2 THE UNDIRECTED Two-CoMMoDITY FLow ALGORITHM. We follow Hu’s algo-
rithm to some extent. To maximize F; + F; we first maximize F; while f; = 0, then increase
F; without changing F; (although f; may change on some edges). It will be proved that
such a scheme maximizes Fy + F». The crux of the method is the way F; is increased.
Towards this end, pairs of augmenting paths are found. Let 7 be a path; then (i, v) € 7 if
v immediately succeeds u in .

For every (u, v) € E define a(u, v) = 4(c[u, v] ~ fi(u, v) — fo(u, v)). 2a(u, v) is the upper
bound on the additional flow that can be pushed from u to v through the edge [u, v].

A forward path is a simple (s, 12) path (a path from s; to £, which does not cross itself),
o = (52 = Vo, ... , V» = t2) Where a(v,, vi41) > 0,i =0, ..., r ~ 1. The residual capacity of a
forward path is a(7,) = min {au, v)|(u, v) € 7}.

For every (u, v) € E define B(u, v) = Hc[u, v] — fi(u, v) + fo(u, v)). (Note that in general
a(u, v) # B(u, v).) 2B(u, v) is the upper bound on the additional flow that can be pushed
through (u, v) € E; where the additional first commodity is pushed from u to v and the
additional second commodity is pushed from v to u.

A backward path is a simple (t2, s2) path mg = (&2 = vo, - , vg = 52) where B(v,, v.+1) > 0,
i=0,..,q— 1 The residual capacity of a backward path 15 B(mg) = min{B(w, v)|
(u, v) € mg}.

A pair of augmenting paths (7, mg) consists of a forward path =, and a backward path
7. The residual capactty of a pair of augmenting paths y(7,, 7g) = mun {a(7.), B(7s)} -

A maximum flow of the first commodity may block the flow of the second commodity.
Possibly, a diversion of the flow of the first commodity would allow an increase of the flow
of the second commodity. The algorithm finds pairs of augmenting paths. y units of the
first commodity are recirculated through the paths (7., 73), thus enabling the increase of
the second commodity by y units from s, to #; along each path.

TWO-COMMODITY FLOW ALGORITHM

Step 1 Let the imtial £z be zero. Find a maximum flow fi (from s, to #).

Step 2. Find a pair of augmenting paths (7., 75) If no such pair exists, stop maximum flow has been reached

Step 3 For every (4, v) € 7., increase the flow of each commodity by y (in the direction of the path)

Step 4 For every (u, v) € g, increase the flow of the first commodity by y and decrease the flow of the second
commodity by the same amount

Step S Gotostep 2

2.3 CORRECTNESS OF THE ALGORITHM. To show that the algorithm indeed finds
maximum feasible flow, we first show that the resultant flow is feasible (satisfies the
capacity and the conservation constraints).

LEMMA 2.1. Starting with a feasible flow, at the end of each iteration the flow is feasible.

ProoF. To show conservation of flow, observe that the flow is changed only along
augmenting paths. For any vertex other than s; and #,, any path entering the vertex must
emanate. Hence the amount of additional flow equals the amount of flow which is
subtracted. At s the backward path enters with y units of f; and the forward path emanates
with v units of fi, so that f; is conserved at s;. The conservation of f; at #, follows similarly.

To show that the capacity constraints are fulfilled, a detailed case analysis is conducted
on the edges for which the flow has been changed.

Four exclusive cases are considered:

Case 1. (4, v) € my; (u, v), (v, u) € 75
Case 2. (v, w), (u, v) &€ 7, (u, v) € mp.
Case 3. (4, v) € 75 (u, v) € mp.
Case 4. (4, v) € 7y (v, ¥) € 75
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Reversing the roles of u and v yields a total of eight exhaustive cases. Because of symmetry
only the above four cases need be considered.

Let f(u, v) be the flow before the augmentation, f:(u, v) the flow after augmenting along
7. and 7 (f; stands for f, (4, v) when no confusion arises; a, o', 8, 8’ are defined similarly).
We discuss only Case 1; the other cases follow similarly.

Case 1. (4, v) € ms (0, V), (v, ) & 5. Y(7e ) S (7)) S a(u, VY=Y —fi—fo); f1 =
fityvi=12

Proceed to subcases depending on the signs /1 and f%.

i) f1=0,f2=0

fil+ 2ol =fitfo=(L+ D+ (+ Y
sfitfrt2asfi+fot+t(c—-fi-fo)=c

@) f1=20,/4<0:
fl+Ifel=fi-fi=(i+tn-a+=fi-f<lfil +|fil<c
(ili) f1 <0, f2= 0 as (ii) by symmetry.
(iv) f1<0,f2<0:
Il +1fel=-fi-fe=-(h+D-(e+VN<-Hi-fi<c
Q.E.D.

Note that it does not suffice to check only worst subcases (e.g. for Case 1, f1, f2 = 0)
since a, B and y depend on the sign and magnitude of f; and f>.

Assuming that the algorithm halts, by Lemma 2.1 the flow is feasible at termination. To
show that it is maximum, we digress and recall a few facts concerning flow network theory.

Let X C ¥, X = V — X. The set of ordered pairs (X, X) = {(u, V)|u € X, v € X,
(u, v) € E} is a cut. Its value is (X, X) = Ywuewxx) clu, v]. A cut (X, X) separates u from
vifu€ Xandve Xorue€ Xandv € X.

Let v(uy, ... , tm; V1, ... , ¥m) denote the value of a minimum cut which separates , from
v. 1 = 1, ... , m). Ford and Fulkerson’s [6] max-flow min-cut theorem states that for a
single commodity the value of a maximum flow is equal to the value of a minimum cut,
ie. F1 = v(sy; 1o). Let 7(u1, uz; v1, v2) denote the value of a minimum cut (X, X) such that
, u € X and », v; € X. (Note that in general T(ui, uz; vi, v2) = ¥(uy, Uz, Vi, V2) since
p(uy, uz; v1, v2) may be achieved in a cut (X, X) for which u;, v € X and uz, v € X.)

LemMa 2.2. (Hu). In an undirected graph,

v(s1, S23 h, t2) = min{r(s1, 52; t, ), T(51, Lz} S, H)}.

LEMMA 2.3. If for any feasible flow (fi, f2) found by the algorithm there exists no pair of
augmenting paths, then

FF+F= V(Sl, So; N, tz).

Proor. Consider two cases:

(a) There exists no forward path. Define X = {u|u € V there exists a path (s; = uy, ...,
u, = u) from s, to u such that a1, u) >_0, i=1, ..., r}. From the definition, s; € X, and
since there is no forward path then £, € X.

For all (4, v) € (X, X), a(u, v) = ¥(c[u, v] - Si(u, v) — fo(u, v)) = 0. Thus clu, v] = fi(u, v)
+ fo(u, v). Since cfu, v] = | fi(u, v)| + | fo(u, v)}, then fi(u, v), fo(u, v) = 0.

If fi(u, v) = 0 for all (u, v) € (X, X), then fo(u, v) = c[u, v]. The total f; flow is equal to
o(X, X) = v(sy; t2). Hence, from the single-commodity max-flow min-cut theorem f; is a
maximum flow (regardless of f;) and F; = p(sy; ). Since the algorithm started with Fy
maximized and it was left unchanged throughout the algorithm, Fy = »(sy; #2).

+ F= V(Sl; t1) + ll(sz; t2) = ’T(S), So; Iy, 12).
Otherwise, there exists a pair (¥, v) € (X, X) such that fi(u, v) > 0; then 5; € X,
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t € X (otherwise to conserve flow there would be a pair (w, y) € (X, X) such that fi(w, y)
< 0). Therefore,

Fi+ F, = (X, X) = 1(s, 533 1, 12).

(b) There exists no backward path.
We can conclude similarly that Fy + F» = 7(s1, t2; 52, 11). Consequently,

FF+ F= min{'r(sl, s2; 4, k), 7(51, lz; S2, tl)} = (81, 82; 4, t).

Since also F; + F2 < v(sy, 53 f, £2), equality has been proved. Q.E.D.

We have just shown the following corollary.

COROLLARY 2.4. If the algorithm stops, a maximum flow has been found.

The ordered pair (4, v) € E is a bottleneck (with respect to the paths 7, and 75 and the
flows f1, f2) if a(u, v) = y(7., 7g) and (4, v) € 7, or B(u, v) = ¥(7a, 75) and (u, v) € 7.

LeEMMA 2.5. If (u, v) is a bottleneck, then after the augmentation one of the paths m, or
g can no longer be used.

ProoF. The proof proceeds by analyzing the cases of Lemma 2.1:

Case 1. (4, v) € 7y (4, v), (v, ) & 7, a = y. The new flows are nonnegative:

fishita=sfitic—fi-f)=Hc+tfi-fy=dc-|fil-|LD=0
f2=0 similarly.

The new flow saturates the edge:

fitfo=fi+fo=(hi+ta)+(L+ta)=fitfrt+(c—H—-fi)=c

After the augmentation, a forward path cannot pass through (1, v) since
vy =Hc—-f1-f2)=0.
The other cases follow similarly. Q.E.D.

2.4 FINDING AUGMENTING PATHS. We have not yet specified how to find the pairs of
augmenting paths at step 2; if they are not chosen properly, the number of iterations for
some networks is exponential. Here we can follow Edmonds and Karp [3], choosing
shortest paths. However, following Dinic [2] and Even and Tarjan [5] yields a better time
bound.

The algonthm works 1n phases. In each phase, pairs of augmenting paths with equal
lengths are found, i.e. in the course of a phase, two numbers /, and /; are determined, such
that for all pairs (7., 7g) found in the phase, the length of =, is /, and that of 7z is /.

The flow in the network is increased using the augmenting paths until there exists no
forward paths of length [, or no backward paths of length /s. At this point, the phase
terminates. In the next phase, I, and Iy do not decrease and at least one of them strictly
increases. Consequently, there may be at most 2(]¥| — 1) such phases. We now describe
a single phase, first constructing the forward auxiliary graph G,.

CONSTRUCTING G,

1 Perform a breadth-first search from s; considering only ordered pairs (4, v) € E for which a(u, v) > 0

2. If the search does not reach 1, the entire two-commodity flow algorthm terminates.

3 The vertices of the flow network are divided by the search into levels Let the level of s; be numbered zero and
let I, be the level of £

4 A vertex v € V belongs to G, if either 1ts level 1s less than L, or v = 15

5 An ordered pair (4, v) € E 15 a directed edge of G 1f a(u, v) > 0 and the level of v 1s greater by 1 than that of
u

The paths from s; to f; n G, correspond to forward paths of length /, in the current flow
network.

The backward auxiliary graph G; is constructed similarly; this time we start with #, end
with 53, and B replaces «. The paths from # to 52 in G correspond to backward paths of
length /; in the current flow network.
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Here and in the sequel, statements concerning «, G., 7., and I, may be stated and proven
also for B, Gg, my, and Ig.

Let (7., mg) be a pair of augmenting paths (of length . and /g). The two-commodity flow
algorithm uses these paths to increase fz by 2y(., 7). The following lemma shows how the
restdual capacity changes as a result of the augmentation: a(«, v) changes only if (, v) or
(v, u) belongs to ..

LEMMA 2.6. Suppose (7., mg) is a pair of augmenting paths, and (u, v) € E. Then

a(u, v) — vy, U, v)E 7,
a'(u, v) a(u, V) +v, (U, v) E mg,
a(u, v), otherwise.

PROOF.

Case 1. (4, v) € =,.

Subcase 1.1. (u, v) € m. The additional flow through . increases both fi(u, v) and
Jf2(u, v) by vy, while the additional flow through =, increases fi(u, v) but decreases fo(u, v).
Therefore, fi(u, v) increases by 2y, while fo(u, v) remains unchanged.

o' (u, v) = Hclu, vl = f1(u, v) — fo(u, v))
= $clw, v] = (fi(w, v) + 2y) — fo(u, v))
= %(c[u, V] —fl(u’ V) _fZ(u’ V)) -Y= a(u’ V) -

Subcase 1.2. (v, u) € 7. fi(u, v) remains unchanged since the increases cancel each
other. fa(u, v) increases by 2y.

o' (u, v) = $(clu, v] = fi(u, v) — fa(u, v))
= 4(clu, v] — fu, v) — (fa(u, v) + 2Y))
= alu, v) — v.

Subcase 1.3. (u, v), (v, ) € mg. Both fi(u, v) and fi(u, v) increase by v.

o' (u, v) = Ycfu, v] = f1(v, v) = f2(u, v))
= J(c[u, v] = (filw, v) +v) = (fo(w, V) + 7))
= a(u, v) — v.

The remaining cases are proven similarly. Q.E.D.

COROLLARY 2.7. No forward paths of length less than or equal to I, are introduced as a
result of the augmentation process.

PrROOF. Let 7 be a new forward path; then # contains an edge (v, v) € G.. If
(v, u) € G, then level(u) = level(v) + 1 Otherwise, (4, v), (v, u) & G, and the value
of a(u, v) has not changed. Since (4, v) € 7, then a(u, v) > O after and before the
augmentation. If level(v) > level(u), then (4, v) € G,—a contradiction. Therefore, level(x)
< level(v).

The edges of 7 N G, lead from one level to the following one, and the remaining edges
of wdo not lead to a higher level. Therefore, the length of 7 is strictly greater than /,,. Q.E.D.

Consequently, to find all forward paths of length /. 1t suffices to find (s, #) paths in G..

A SINGLE PHASE OF THE TWO-COMMODITY FLOW ALGORITHM

1 Construct the auxihary graphs G, and Gg (Let I, be the distance from s; to & 1n G, and I the distance from
t2t0 s21n Gg)
2 While G, contains an (s, #2) path — 7,, and G contams a (t;, s2) path — 7, do
(1) Increase the flow 1n the network by y(7., mg)
(2) Update a and B according to Lemma 2 6
(3) Delete the saturated edges from the appropnate auxihiary graph (1 e, 1if a(, v) has been decreased to zero
then delete (u, v) from G, and 1f B(u, v) = 0 then delete (¢, v) from Gz ) end

Implementation Note. By definition, (7., ) = mm{a(n), B(mp)}. If y(ms, mp)
= a(7,) < B(mp), then we may continue to use 74 in the next iteration. Furthermore, there
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1s no point in increasing the flow through 7 in this iteration; we may wait until the increase
is equal to B(ms) (or until the end of the phase). This optimization ensures that in each
phase all paths used are found and updated at most once. Corollary 2.7 implies that the
paths in the updated auxiliary graph also correspond to the forward paths of length /. in
the current flow network.

To find the paths in the auxiliary graphs, a depth-first search 1s conducted as follows:
For G, we start tracing from s; moving through an edge of G, to a vertex of level 1, from
there to a vertex of level 2, etc. If we reach £;, we have found a forward path. If the depth-
first search reaches a deadend, namely, a vertex v from which no edge emanates, we
backtrack to the vertex preceding v on the path and erase the last edge of the path from G..
The search is continued from there. If we cannot proceed from s; then the phase is over.

Since G, has I, + 1 levels, at most /, edges may be traced until either #; is reached or an
edge is deleted. In either case at most /, edges are scanned until an edge is deleted. The
next path 1s found by continuing scanning from the edge nearest s, which was deleted
from the previous path.

If G, contains | E,| edges, then finding the paths of G, requires O(] E.]/.) time. Since by
the implementation note each path is updated at most once and there may be at most | E, |
(s2, 12) paths in G., the entire updating also requires at most O(} E.|l,) time.

A similar process is applied to Gs. Thus each phase requires at most O(} E. |l.) + O(| Ep|lp)
= O(| V]| E|) time. Since there are at most O(| V|) phases, the entire two-commodity flow
algorithm requires O(| V|*| E}) time.

The previous discussion and Corollary 2.4 are summarized in the following theorem.

THEOREM 2.1. The two-commodity flow algorithm finds a maximum flow in at most
O(| V|*|E)) time.

Zadeh [14] exhibited a network in which | V| augmenting paths are found by Edmonds
and Karp’s single-commodity flow algorithm. As noted in [5], for this network Dinic’s
algorithm requires O(| V|| E|) time. The network can be modified to show that O(| V' |*| E|)
is also a lower bound to steps 2 through 5 of the undirected two-commodity flow algorithm.

2.5. PROPERTIES OF THE ALGORITHM. We present some properties of the algorithm.

(1) Maximum two-commodity flow 1s achieved with the first commodity having maxi-
mum flow.

(2) If the capacities are integers, the maximum flow obtained is in units of one-half.
This follows since in this case «, are integers throughout the algorithm. In this property
the algorithm follows Hu’s original algorithm. However, the finiteness of our algorithm
does not depend on this fact.

(3) The two-commodity max-flow min-cut theorem [7] states that in an undirected two-
commodity flow network the maximum flow is equal to the value of the minimum cut:
V(Sh So; ty, tz).

The proof 1s based on the fact that after a finite number of steps there exists no pair of
augmentmg paths, and by Lemma 2.3 the flow achieved is equal to the minimum cut. Hu’s
algorithm is not necessarily finite for arbitrary real capacities. Moreover, one could
construct an example, similar to that of Ford and Fulkerson [6, p. 21] in which an infinite
series of flows converges to a value smaller than the minimum cut. Therefore, Hu’s proof
of the two-commodity min-cut max-flow theorem is valid only for networks with integer
or rational capacities. The existence of a finite algorithm for networks with arbitrary real
capacities removes this difficulty.

(4) We can use the algorithm to solve a related problem: undirected two-commodity
real flow with requirements. This problem is similar to the previous one except that two
constants R;, R, are given, and it is required to find feasible flow such that F1 = R, and
Fo= Rs.

We augment the network with two new sources 51, 5; and edges [51, 51, [52, 52] of capacities
Ry, Rq, respectively (51, s2 are now ordinary vertices). The maximum flow in the new
network is equal to R; + R if and only if there exists feasible flow in the original network
such that F; = R; and Fz = R..
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2.6 AN IMPROVED ALGORITHM. Recently Karzanov [10] discovered a more efficient
algonthm for finding a maximum single-commodity flow. The method is quite involved
and will not be explained in detail. It takes advantage of the fact that the flow added in a
single phase of Dinic’s algorithm blocks all the augmenting paths 1n an auxiliary graph.
Karzanov finds in O(| V' [°) time a flow that blocks all augmenting paths in that auxiliary
graph. This flow is used to augment the flow in the network instead of finding and
updating each path separately.

This approach 1s applicable to two commodities as well. In each phase the additional
flow blocks all the augmenting paths in one of the auxiliary graphs. Hence we may first
find the additional flow tn the phase, then use this flow to augment the flow in the network.

Each phase is conducted as follows: First two auxiliary graphs G, and G are constructed.
Then flows f, in G, and f; in G which block all the augmenting paths are found. If, for
mstance, F, < Fg then f is replaced by a flow the value of which 1s equal to F,. (This flow
may be obtained by first adding to G; a new vertex #, and a new edge (#, ;) of capacity F,
and then finding a blocking flow from #; to s; in the new Gj.)

Finding f, and f; of the same value involves at most three applications of Karzanov’s
method, hence O(] V|*) ume. Constructing the two auxiliary graphs and updating the flow
requires O(| E]) ime. Since there are at most O(| V|) phases, the entire algorithm requires
O(| V*) time.

3. Directed Two-Commodity Flow

3.1 DEFINITION AND Basic PROPERTIES. In directed flow networks the graph is di-
rected and the commodities flow only 1n the direction of edges. (A directed edge from u to
v is denoted (u, v).)

(a) The capacity constraint is fi(u, v) + fa(u, v) < c(u, v), (4, v) € E.

(b) The conservation law states that for all i = 1, 2 and for all vertices v € V — {s,, 1.},
Y woer il V) = Tiw wwery (v, W).

Apparently, the directed case 1s more difficult than the undirected one.

The properties of single-commodity flow do not carry on to the two-commodity directed
case:

(i) The max-flow min-cut theorem does not hold. In Figure 1 the maximum flow 1s
obtained when F; = 4, F; = 1; F) + F; < 2, the value of a minimum cut.

(i) Evenifthe capacities are integer, the maximum flow may be rational (not necessarily
in units of one-half). In Figure 2 all the capactties are equal to 1 and the maximum flow
1s depicted on each edge.

(iii) The maximum cannot always be achieved when the flow of the first commodity 1s
maximum (in Figure 1 if F; = |, then F; = 0, F; + F; = 1, which 1s less than the maximum
possible flow).

However, all multicommodity flow problems may be considered as special cases of
linear programming [6] (Letting f,(u, v) be the varables, all the constraints and the target
function are linear with coefficients {— 1, 0, 1}.)

Fic 1
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The worst case behavior of linear programming 1s not well understood: No upper bound
less than exponential has been proved and in many cases exponential worst case behavior
has been demonstrated [11, 14). On the other hand, it is not known whether hinear
programming is NP-complete [9]. Furthermore, there seems to be some evidence to the
contrary: The complement of linear programming (all sets of linear inequalities which do
not have a feasible solution) is a member of the class NP. None of the NP-complete
problems are known to have this property; if the complement of any NP-complete problem
belongs to NP, then the complements of all NP problems also belong to NP, which seems
quite unlikely. Ladner [12] has shown that if P ¢ NP there is an infinite hierarchy of
“polynomial equivalent” degrees (equivalence classes) within NP. The lowest degree is P:
all the problems solvable in polynomial time; the highest is the NP-complete degree.
Possibly, linear programming belongs to an intermediate degree (i.e. it cannot be solved by
a polynomally time bounded deterministic Turing machine, but on the other hand not all
the problems of NP are reducible to it). We show that directed two-commodity real flow
is polynomially equivalent to linear programming. Thus any polynomial algorithm for the
flow problem would yield such an algorithm for linear programming.

While proving this, we obtain some auxiliary results which are interesting for their own
merit.

3.2 SoME SIMPLIFIED LINEAR PROGRAMMING PROBLEMS. The following problems are
polynomially equivalent.

(1) LP: Linear Programming. Given a matrix 4, vectors b, ¢ (ay, b., ¢, € Z, the integers)
and an integer K. Determine whether there exists a nonnegative rational vector x
(x; € @) such that Ax < b and cx = K.

(2) LI: Linear Inequalities. Given 4, b as mm LP. Determine whether there exists a
nonnegative rational vector x such that 4x < b.

(3) LE: Linear Equalities. As LI except that “=" substitutes for “<”. From the classical
theory of linear programming LP, LI and LE are polynomially equivalent [6]. Without
loss of generality we assume that the vector b, the right-hand side (r.h.s.), is nonnegative.

(4) [/, u] LE: LE with Bounded Coefficients. An LE problem in which a,,, b, are integers
between [ and u.

LemMMA 3.1. LE o< [-2, 2] LE. (< denotes “polynonually reducible” [9].)

ProoF. The proof is based on bitwise decomposition of each equation of an LE
problem. For example,

(1) Let 5x; + 3x2 — 7x3 = 6 be one of the equations. Then it may be rewntten:

Ly + 1xz = 1x3)2° 4+ (Oxy + Lxg — 1xs)2' + (Ixy + Oxz — 1x3)22 =0 2°+ 1 2' + 1-2%

Consider the computation of each bat, thus obtaining an equation for each power of 2.
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m) 1x; + Ox2 — lxz =0,
Ox1 4+ Ixe — Ixz =1,
1x; + Ox2 — 1lx3 = 1.

However, the system of equations (ii) has no solution. The reason is that i (1) there is a
carry from the computation of one bit to that of the higher bit. To overcome this difficulty,
we introduce the following system:

(lll) 1x; + 0xe — 1x3 — 2(60 - do) = 0,
Ox; + Ixz — Ixs + (co — do) - 2y — dl) =1,
I1x; + Oxe — lxs + (Cl - dl) = 1.

The variables ¢, di pass the carry from one equation to the next. (The carry may be
positive or negative; since the variables are required to be nonnegative, two such variables
are introduced so that their difference can obtain any real value.)

From any solution to (i) 1t 1s easy to derive a solution to (iii). For example, let x; = 1.6,
X2 = 4, x3 = 3 be a solution to (i). Then x and ¢, = 0, ¢; = 0.4, dp = 0.2, d; = 0 satisfies (1ii).

In the other direction, If (x, ¢, d) solves (iii) then x solves (i).

The above process is performed on all the n equations, obtaining a system of nK
equations in (#n + 1)K — 1 variables (K = 1 + [log max{|ay|:1=1, ... ,mj=1, .., m)
U {|b/]:7 =1, ..., m} 7). This reduction is polynomual in the size of the input.

The coefficients and the r.h.s. of the new system are integers in the region [—2, 2]. The
new system is solvable if and only if the original system is. Q.E.D.

LEmMMA 32, [-2,2] LEo[-1, 1] LE.

The construction which transforms any [~2, 2] LE problem to an equivalent [—1, 1] LE
problem is sketched as follows.

For every occurrence of the vanable x, with coefficients a; = +2 put +(x; + x;) and add
the equation x; — x; = 0 If b, = 2, change ¥ lia,x;, = b, to

ayx, — z, = 1; z,=1.

[ aok

J

3.3 HomoLocous FLow. Following Berge and Ghouila-Houri [1] we introduce ho-
mologous flow problems and show that they are polynomially equivalent to the problems
of the previous section.

First, consider a generalization of the capacity rule: An (/, u) flow network is a flow
network in which every edge (v, w) has a lower bound, /(v, w), and an upper bound,
u(v, w). ((I(v, w), u(v, w)) 15 a pair of real numbers, called the generalized capacity. An edge
is nonrestricted if 1ts generahzed capacity is (0, «).) A flow f1s feasible 1f the generalized
capacity rule holds, ie. Y(v, w) € E, I(v, w) < f(v, w) < u(v, w). We wish to determine
whether an (/, u) flow network has a feasible flow.

Two edges (v, w) and (v, w') are homologous 1f it is required that f(v, w) = f(v', w'). A
homologous flow network consists of a single commodity (/, #) flow network with pairs of
homologous edges. We wish to determine whether there exists a feasible flow which
satisfies the homologous requirements.

Homologous flow is polynomially equivalent to LP, as seen by the following lemma.

LEMMA 3.3. [—1, 1] LE o< homologous flow.

PrOOF. Let

(i) Y21 ayx, = b, i=1, .., nbe an instance of [—1, 1] LE. Forg = -1, 0, 1, letJ: =
{jla, = o}. Then (i) 1s equivalent to

) X% — e, %= b

The homologous flow network constructed below has a feasible flow (which also satisfies
the homologous requirements) if and only if (i) (or (ii)) has a solution.

The homologous flow network consists of n sections. Each section contains m + 5
vertices {¥i, ... , Vm, J, 2, J1, Jb, Ji}. The edges in the ith section depend on the ith
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equation. For 6 = —1, 0, 1, if j € J; then v; is connected to J, by a nonrestricted edge.
J1iis connected to Z* by an edge of generalized capacity (b., b,).Ji and J*, are connected
to ¥* by nonrestricted homologous edges (i.e. 0 < f(J4, y') =f(J41, ') < ). J4 and y* are
connected to z* by nonrestricted edges. (See Figure 3.)

The network contains an additional vertex s = z° which is the source. The terminal is

t = 2" For each y (j = 1, ... , m) the network contains the nonrestricted pairwise
homologous edges (2°, v)), (2%, v}), ..., ("%, W}).
Given a solution x to (1) we define a feasible flow as follows: x, = f(°, v)) = --- = f(z",

v~1). The edges are homologous so that the value of the variable x; stays the same in all
the equations.

SULY)=fUS V) =Fen, % =2y % — b

The flow on the remaining edges is defined so that the conservation rule is preserved.

Given a feasible flow it is easy to construct a solution to (i). Therefore, the equalities are
satisfiable if and only if there exists a feasible flow. QE.D.

3.4. SELECTIVE FLow. In this section we define additional flow networks and show
that the existence of feasible flow in these networks is polynomially equivalent to solving
the problems of the last two sections.

An edge is selective if only a specific commodity may pass through it. In such networks
we specify the commodities which pass through each edge. A selective (I, u) 2CF 1s a two-
commodity directed flow network with lower and upper bounds on the sum of the flows
on each edge. We get rid of the homologous requirement by introducing a second
commodity.

LEMMA 3.4. Homologous flow o selective (I, u) 2CF.

Proor. Without loss of generality, we may assume that each edge (v, w) 1s homologous
to at most one other edge. (If (v, w) is homologous to (y, z) and (), 2') then replace (v, w)
by two edges (v, x) and (x, w) such that x is a new vertex incident only to these two edges
and (v, x) 1s homologous to (y, z) and (x, w) is homologous to (}/, z).)

Let (v, w) and (y, 2) be homologous edges both with generalized capacity (/, u). Replace
these edges by the construction of Figure 4.

The vertices vw, vw', yz, and yz’ are new. sz and # are the source and the terminal of the
second commodity. The permussible subsets appear above the edges. Cis a large constant.

Clearly, fi(yw, w) + fovw, vw) = C, fi(yz, yz’) + fu yz, yz') = C.

Since fz(vw, vw') = fo( yz, yZ'), then fi(vw, vw') = fi( yz, yZ’), and the effect of homologous
edges is achieved.

There remains a subtle point: The constant C must be as large as the largest flow on any
edge. Since we allowed nonrestricted edges it is not clear whether a uniform bound can be
found a priori. Moreover, the reduction is polynomial only if the number of bits in the
representation of C is bounded by a polynomial of the number of bits of the input.

@

Fic 3
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As already mentioned, every flow problem 1s a special case of linear programming. For
homologous flow the entries of the resultant matrix are {—1, 0, +1}. The entries of the
r.h.s. are bounded by the maximum capacity. From the theory of linear programming we
learn that the existence of a solution implies the existence of a basic solution. Let Apasc be
the submatrix corresponding to a basic solution. Abasic 15 Abasic €xcept that the ith column
1s replaced by the r.h.s. By Cramer’s rule,

"xl| = Idet(AﬁaleN/Idet(Abasw )l = Idet(Ai)asw)I .

Let M be a bound on the finite capacities; then the r.h.s. is also bounded by M. By
Hadamar’s inequality, | x,| < M n*/. Therefore, C< M n™?, and 1ts representation re-
quires at most log M n*® = log M + inlog n bis. Hence the reduction is
polynomial. Q.E.D.

We can drop the requirement for selective edges if we maintain the requirement for
lower and upper bounds.

LemMA 3.5. Selective (I, u) 2CF o< (I, u) 2CF.

Proor. We simulate the selective edges by changing each selective edge (v, w) of
capacity (!, u) which accepts only commeodity i into the structure of Figure 5 (vw and vw/
are new vertices).

Without loss of generality we may assume that no edge enters s, or emanates from f,.
The capacity requirements are fulfilled if and only if / < f,(v, w) < u and the flow of the
other commodity is zero. Q.E.D.

3.5. FLow WITH REQUIREMENTS AND MaxiMUM FLow. A two-commodity flow net-
work with requirements (2CFR) consists of two real numbers R; and R, and a two-
commodity directed flow network with only upper bounds on the edges (all lower bounds
are equal to zero). A flow is feasible if it satisfies the capacity and conservation rules and
F=zR,1=12

LEMMA 3.6. (], u) 2CF < 2CFR.

ProOF. Given an instance of (/, #) 2CF, an equivalent instance of 2CFR is constructed
by changing the graph G into G as follows:

() The sources and the terminals of G are the new vertices 51, 5o, {1, fa, respectively.
(The vertices s, 52, 11, and £z become ordinary vertices which satisfy the conservation
rule.)

(i) Every edge (x, y) of capacity (I, u) 1s replaced by the construction of Figure 6.

(iti) Let M be the sum of all the upper bounds of all the edges of G. Fori = 1, 2, let z,
z/ be new vertices and add the construction of Figure 7.

The requirements are R; = R, = 2M. We show that the two flow problems are equivalent.

(a) If there exists a legal flow in the G then there exists a legal flow in G.

Let f be a flow in G which satisfies the requirements, then f saturates all the edges

Fig 5
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incident with 5, and t,(1=1,2). For _t_l this follows because the sum of the capacities of all
the edges entering 1, is ¥ *"<Fc(xy, 1,) + (2, &) = 2M = R..

The flow f1n G 1s defined as fi(x, y) = fi(x, xp) (=f(xy’, )). Obviously, this flow fulfills the
conservation rule and is less than the upper bound. It remains to demonstrate that the
lower bounds are satisfied.

Because of the conservation of f; at xy, fi(x, xy) + f(x)', xy) = fxy, &) = u. Therefore,
S =, ) =2u -3 fxy, x)=22u~-Qu—1)=1 )

(b) If there exists a legal flow f in the original graph G, then there exists a legal flow f
in the new graph G.

Define:

(@) Jix, xp) = Fi', ) = £, ), Fiy', xp) = u = fix, 3), Jiloxy, B) = i ) = .

(11) ﬁ(tu Zz) =ﬁ(zly sl) = E,ﬁ(z,’, Zl) =M - F;,f,(z,, t;) =ﬁ(3'1, 21') =M.

For these edges the flow of the other commodity is zero. )

By definition the requirements are fulfilled. Flow is conserved at the vertices of G since
1t is conserved in G. To complete the proof we show that the capacity constraints are
fulfilled. For the edges (x, xy), (x)’, y), (z» &), (s, '), this follows from the construction of
the flow. For (xy’, xy) the following holds. )

Since . fi(x, y) = Kx, y), then fi(xy', xp) = u(x, y) — fu(x, y) and . fu(xy', xp) = 2u(x, y)
= % flx, p) < 2u(x, y) = I(x, y) = e(xy, xy). Q.E.D.

Note. This construction 1s easily generalized to m-commodity flow. In fact, this reduction
continues Ford and Fulkerson’s [6] reduction for the single-commodity case. (Their original
construction does not work form = 2)

Let 2CF be the problem of maximizing the sum of the flow (max(F: + F2)).

LeMMA 3.7. 2CFR o< 2CF.

The proof is similar to that of property (4) of Section 2.5.

3.6 FRoM LINEAR PROGRAMMING TO Two-ComMobpITY FLOow. Since all the pre-
vious problems are special cases of linear programming, we may summarize the previous
lemmas as follows.

THEOREM 3.1. All the following problems are polynomially equivalent: LP, LI, LE,
[—1, 1]LE, homologous flow, (/, ¥) 2CF, 2CFR, 2CF.

Notes. (1) We can generahze all the previous two-commodity flow problems to m = 2
commodities. Therefore, all these problems are polynomially equivalent to linear program-
ming.

(2) The reductions increase the size of the problem linearly except that of Lemma 3.4
where the size might grow by n log n.

(3) Starting from integer programming [9] instead of from linear programming, the
reductions would still carry through while requiring all vanables to be nonnegative
integers. Thereby, we have given another proof to the fact that two-commodity integer
flow is NP-complete [4].
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4. Undirected Flow Networks with Lower Bounds

For directed flow networks, Lemmas 3.6 and 3.7 showed the computational equivalence of
networks with lower bounds and networks without lower bounds. In this section we show
that for undirected networks a similar construction 1s quite improbable, since for undirected
networks the former problem is NP-complete and the latter is polynomially solvable 2, 3,
5, 6, 10]. To this end we define three auxiliary network flow problems and show that they
are all NP-complete. For all three, it is required to determine whether there exists feasible
flow.

P1. An undirected single commodity flow network with lower and upper bounds on the
edges. The vertices s and ¢ are each incident with a single edge ([s, s”}, [¢”, ¢]) for which the
lower and upper bounds are equal to F.

P2. A single-commodity mixed flow network with lower and upper bounds (some edges
are directed and some are undirected). All flow enters ¢ (emanates from s) through a single
directed edge (7, 1) ((s, 5")) of capacity (F, F).

P3. Undirected single-commodity flow network with lower and upper bounds.

Let equal-occurrence SAT be the satisfiability problem of Boolean expressions 1n
conjunctive normal form for which each literal appears exactly k times, for some integer
k [9].

LEMMA 4 1. Equal occurrence SAT is NP-complete.

PrOOF. We show that SATISFIABILITY o< equal occurrence SAT.

Let ¢ be a Boolean expression in conjunctive normal form, in which x, (%) occurs k, (k.)
times. Let k£ = 1 + max{k, IE,|1 =1, ..., n}. Construct the Boolean expression y = ¢-D,

D,, where D, = (x,+ +x,+Xx+ - +x) andx (X)occursk—k, = 1(k—k
= 1) times in D,

Each literal appears exactly k times in . Furthermore, ¢ 1s true exactly when ¢ 1s.
Obviously, ¢ can be computed from ¢ in polynomial time. Q.E.D

LEMMA 4.2. P2 i1s NP-complete.

ProoF. We show that equal occurrence SAT o P2.

Let ¢ be an instance of equal occurrence SAT with p clauses C, ..., Cp and n vanables
X1, ... , X such that each literal occurs exactly k times. We construct the network depicted
in Figure 8. In addition to the edges exphcitly drawn, if x, (X;) occurs ¢ times in the clause
C,, there 15 an edge of capacity (0, ¢) between the vertex x, and the vertex C,.

The resultant network is an wnstance of P2 and can be constructed from  in polynomial
time. It remains to show that the network contains feasible flow if and only if ¢ is
satisfiable.
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if there exists feasible flow, then the undirected edge [x,, X} must be saturated. Therefore,
all flow in the triangle (,, x,, X,) must pass either from y, to . and then to x, (in which case
x, is designated true) or from y, to x, and then to X, (in which case x, is false). In the former
case, to conserve flow at x, the edge (x, C)) must be saturated; otherwise (x,, C.) is
saturated. Since f(C,, 1) = KC,, 1) = 1, to conserve flow at C,, there exists an edge (z, C))
with posttive flow. The vertex z corresponds to a literal which belongs to C,. Since flow
emanates from z, z has been designated true, and 1t causes the clause G, to be satisfied.
Since this applies forall C,, j = 1, . p, the expression { is satisfiable.

The other direction follows immediately. Q.E D.

LEMMA 4.3. Pl is NP-complete.

PrOOF. We show that P2 o< PI.

We shall simulate the directed edges by structures of undirected edges. The edge (¢, 1)
((s, 8") is replaced by [t”, #] and [¢”, '] ([s”, 5'] and [s, 5']) of capacities (F, F) and (F + U,
F + U), respectively (U is the sum of the upper bounds over all the directed edges except
(¢, £y and (5, 5)). See Figure 9.

Let (a, b) (3(s, 5), (¢, ¢)) be a directed edge of capacity (/, u); 1t 1s replaced by the
structure of undirected edges (Figure 10). (The vertices ab and ab’ get introduced only
once in the entire construction.)

Without loss of generality, f{s, 5”), f(t”, {) = 0 (otherwise, reverse the direction of the
flow.) Since ¢ 1s connected only to t”, f{t', t") = F and f{ab, ") = u. To satisfy the
conservation rule at ab, fla, ab) = 0. Consequently, / < f{a, ab) < u and 0 < flab’, ab) = u
— fla, ab) < u — I. Conclude similarly that f{s”, ab’) = u and f{ab’, b) = f(a, ab) = ] and the
total flow from a to b 1s nonnegative.

A flow on the structure which simulates the flow on the directed edge is easily
constructed. Q.E.D.

Since Pl is a special case of P3 we have proven the following theorem.

THEOREM 4.1. The problem of deternuning whether there exists a feasible flow in an
undirected single commodity network with lower and upper bounds on the edges is NP-
complete.

5. Conclusions

When comparing directed and undirected network flow problems we see that some

0 @ (¢,u) () (0,u-8) oy (2,u) :b

(F+U,F+U) (u,u) (u,u)

(F,F) (F,F)

Fic 9 Fic 10

TABLE 1 SUMMARY OF RESULTS

Number of commodities

The problem

1 2 m

Maximum flow

undirected 4K L4E ?

directed R4 LP LP
Maximum mteger flow

undirected and directed 4k NPC NPC
Lower and upper bounds

undirected NPC NPC NPC

directed 14K LP LP

Notes |V|° There exists a O(|V’) ume algonthm LP Polynomially equivalent to hinear programming NPC
NP-complete



Two-Commodity Flow 611

problems are easier for undirected networks; whereas other problems are easily solvable 1n
the directed case, while notoriously difficult for undirected networks. Table I summarizes
the results.
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