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ABSTRACT An algorithm is given to fmd maxtmum two-commodity flow m an undirected graph The algorithm 
is an improvement on Hu's two-commodity flow algorithm using the methods of Dmlc's single-commodity flow 
algorithm Karzanov's Improvement of Dmlc's algorithm can be applied to yield an O(I V ] 3) algorithm. 

It is shown that finding maximum two-commodity flow m a dwected graph is much more dffficuh, in fact it 
Is as difficult as hnear programming FmaUy, the problem of finding feasible flow m an undirected graph with 
lower and upper bounds on the edges is shown to be NP-complete even for a single commodity 
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1. Introduction 

Classical flow problems deal with a single commodi ty  which has to be transferred from the 
source through the network to the terminal.  The  edges of  the network have finite capacity 
and  we have to maximize the flow from the source to the te rminal  while satisfying both the 
capacity constraints at the edges and  the conservat ion of  flow at the vertices. 

Single-commodity  flow problems were studied by  Ford  and  Fulkerson  [6] who intro- 
duced augment ing  path algorithms. However,  their a lgori thm is no t  po lynomia l ly  bounded .  
Edmonds  and  Karp  [3] presented an  O(I VIIEI 2) algori thm and  Dinic  [2] and  Even  and  
Tar j an  [5] presented an  O(I VI21EI) algorithm. Recently,  Karzanov  [10] implemented  
Dinic 's  a lgori thm in O(I V I 3) time. 

A na tura l  general izat ion is to consider two distinct commodit ies  each with its own source 
and  terminal .  As an  application,  consider a te lecommunica t ions  ne twork  in  which tele- 
phone  and  telex share the same lines. The m a x i m u m  flow indicates the m a x i m u m  n u m b e r  
of  bits of  informat ion  which can pass through the network. 

H u  [7] devised an  algori thm to f ind m a x i m u m  two-commodi ty  real flow m an  undirected 
graph. This  algori thm is based upon  a max-flow min-cu t  theorem. First  he found  a 
m a x i m u m  flow of  the first commodi ty  while the second commodi ty  flow was zero. T h e n  
he used pairs of  augment ing  paths to recirculate the first commodi ty  and  increase the 
second. The algori thm has the interesting and  useful property that if  all capacities are even 
integers the m a x i m u m  flow found is in  integers. The  convergence proof  is based on  this 
fact. A drawback of  this approach ~s that the n u m b e r  of  steps of  this a lgori thm is no t  
bounded  by a funct ion of  the n u m b e r  of  edges bu t  rather by ' the  size of  the capacities. This  
leads m some cases to an  exponent ia l  n u m b e r  of  steps (in terms of  the length of  the input  
data). 

I f  we consider an  abstract machine  which can  perform ari thmetic on  arbi t rary real 
numbers ,  then Hu ' s  process may  not  terminate.  Guaran tee ing  te rmina t ion  for arbi t rary 
real numbers  is impor tant  for yet another  reason. H u  stated the max-f low min-cu t  theorem 
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for two-commodity flow. Its proof is based on the assumption that the algorithm termmates. 
Consequently, his proof is valid only for networks for which the capacities are expressed 
m rational numbers. The modified algorithm which converges for arbitrary real numbers 
removes this restriction on the proof. 

We change Hu's algorithm m two ways. First, in each augmentation we increase the 
flow as much as possible, thus eliminating the need to repeat an augmenting path. Second, 
we find the augmenting paths in order of  increasing length by a technique similar to that 
of  Dinic [2] and Even and Tarjan [5]. The resulting algorithm has running time O(I V[2[ED 
regardless of  the size of  the capacities. (We do assume, however, that all arithmetic 
operations on the capacmes are primitive, i.e. can be done in one step). It is interesting to 
note here that the inclusion of only one of the improvements does not suffice to guarantee 
a polynomial time algorithm. 

Karzanov's [10] method of improving Dinic's algorithm can be applied to yield an 
O([ V[ 3) algorithm. Ford and Fulkerson have also shown that for a single commodity, 
integer capacities imply the existence of a maximum flow which is also in integers. For two 
and more commodities this is no longer true. See Even et al. [4] for a proof  that the two- 
commodity integer flow problem is NP-complete. The two-commodity flow problem for 
undirected graphs has then a somewhat unique feature. It is polynomially solvable in reals, 
and if the capacities are integers, the algorithm produces a maximum flow which may not 
be in integers but in units of  one-half (e.g. 7/2, 17/2, 16/2). Yet, if one insists on a solution 
in integers, the problem is NP-complete. 

Considering the complexity of  two-commodity flow in a directed network, it is shown 
that this problem is as difficult to solve as linear programming in the sense that the two 
problems are polynomially equivalent [9]. 

Finally, the problem of a single-commodity flow with upper and lower bounds on the 
edges is considered. Ford and Fulkerson showed that the single-commodity directed case 
is reducible to the problem of finding maximum flow for a directed smgle-commodity 
network with lower bounds equal to zero. We show that for m I> 2 commodities, there 
exists a reduction to finding maximum directed flow. However, for the undirected case 
even the single-commodity flow problem with lower and upper bounds is NP-complete. 

2. Undirected Two-Commodity Flow 

2.1 DEFINITIONS. An undirected two-commodity flow network consists of  the follow- 
ing: 

(1) An undirected finite graph G = (V, E)  with no parallel edges and self-loops. An 
edge between u and v is denoted [u, v]. 

(2) A capacity function of c: E ~ R +, where R + is the set of  nonnegative real numbers. 
(We denote the capacity of  the edge [u, v] by c[u, v].) 

(3) Vertices sl and s2 (not necessarily distinct) which are called sources. 
(4) Vertices h and t2 (not necessarily distinct) which are called terminals. 
Since the graph is undirected, [u, v] = [v, u]. However, flows and paths are directed. We 

shall use the notation (- , ) for ordered pairs. Abusing the notation, (u, v) E E means that 
the edge [u, v] ~ E. 

The problem is to find two feasible flow functions~: V×V--> R, i = l, 2;f~(u, v) # 0 
only if [u, v] ~ E. The / th  flow function indicates the amount of  commodity i which passes 
through the edge. I f  the flow passes in direction from u to v, then f~(u, v) > 0 and 
fi(v,  u) = - f , (u,  v) < O. 

The flow functions are feasible if they satisfy: 
(a) Capacity constraint: For every (u, v) E E, [.fi(u, v)[ + [f2(u, v) I ~< c[u, v], indicating 

that the total flow in both directions along an edge is bounded from above by the capacity 
of  the edge. 

(b) Conservation of  flow: For each commodity and each vertex v E V - {s,, t~}, 
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~ev f i (u ,  v) -- 0. The amount of  flow of  each commodity which enters a vertex equals the 
flow which emanates from it. 

For  each commodity let the total flow be defined as F, -- ~ v f , ( s , ,  v). Our aim is to 
maximize the total flow, i.e. to maximize the function F1 + F2. 

2.2 THE UNDIRECTED Two-COMMODITY FLOW ALGORITHM. We follow Hu's  algo- 
rithm to some extent. To maximize F1 + F2 we first maximize F1 whilej~ = 0, then increase 
F2 without changing F1 (although f~ may change on some edges). It will be proved that 
such a scheme maximizes F1 + F2. The crux of  the method is the way F2 is increased. 
Towards this end, pairs of  augmenting paths are found. Let ¢r be a path; then (u, v) ~ ~r if  
v immediately succeeds u in ~r. 

For  every (u, v) ~ E define a(u, v) = ½(c[u, v] - j~(u,  v) - f2(u ,  v)). 2c~(u, v) is the upper 
bound on the addit ional flow that can be pushed from u to v through the edge [u, v]. 

A forward path is a simple (s2, t~) path (a path from s2 to t2 which does not cross itself), 
~'~ = (s2 = vo . . . . .  v, = t2) where ~x(v,, v,+l) > 0, i = 0 . . . . .  r - 1. The residual capacuy of a 
forward path is ct(~r~) = rain {c~(u, v) l(u, v) ~ ~r,}. 

For  every (u, v) E E defme fl(u, v) = ½(c[u, v] - f l ( u ,  v) +f2(u, v)). (Note that in general 
a(u, v) # lt(u, v).) 2fl(u, v) is the upper bound on the addit ional  flow that can be pushed 
through (u, v) E E; where the addit ional  first commodity is pushed from u to v and the 
additional second commodity is pushed from v to u. 

A backward path is a simple (t2, s2) path m = (t2 = v0, .. , Vq = s2) where fl(v,, v,+~) > O, 
i = 0 . . . . .  q - 1. The residual capacity of  a backward path is fl(~ra) = min {fl(u, v)[ 

A pair of  augmenting paths (z,~, ~ra) consists of  a forward path ~r~ and a backward path 
m. The residual capao ty  of  a pair  of  augmenting paths y(~r~, ~ra) = mln {o~(¢r~), fl(~ra) } . 

A maximum flow of  the first commodity may block the flow of  the second commodity.  
Possibly, a diversion of  the flow of  the first commodity wouM allow an increase of  the flow 
of  the second commodity. The algorithm finds pairs of  augmenting paths, y units o f  the 
first commodity are recirculated through the paths (~r~, ~rB), thus enabling the increase of  
the second commodity by y units from s2 to t2 along each path. 

TWO-COMMODITY FLOW ALGORITHM 

Step I Let the imtmlf2 be zero. Fred a maximum flowf~ (from s~ to t~). 
Step 2. Fred a pair of augmenting paths (~r,, ~ra) If no such pmr exists, stop maxtmum flow has been reached 
Step 3 For every (u, v) ~ ~,  increase the flow of each commodity by "t (in the dtrecUon of the path) 
Step 4 For every (u, v) ~ ~r,, increase the flow of the first commodity by y and decrease the flow of the second 

commodity by the same amount 
Step 5 Go to step 2 

2.3 CORRECTNESS OF THE ALGORITHM. TO show that the algorithm indeed finds 
maximum feasible flow, we first show that the resultant flow is feasible (satisfies the 
capacity and the conservation constraints). 

LEMMA 2. I. Starting with a feastble flow, at the end of  each iteration the f low is feastble. 
PROOF. To show conservation of  flow, observe that the flow is changed only along 

augmenting paths. For  any vertex other than s2 and t~, any path entering the vertex must 
emanate. Hence the amount of  addit ional  flow equals the amount  of  flow which is 
subtracted. At s2 the backward path enters with "y units off1 and the forward path emanates 
with -g units of  J~, so thatf~ is conserved at s~. The conservation of  J~ at t2 follows similarly. 

To show that the capacity constraints are fulfilled, a detailed case analys~s is conducted 
on the edges for which the flow has been changed. 

Four  exclusive cases are considered: 

Case 1. (u, v) ~ ~r~; (u, v), (v, u) ~5 ~r~. 
Case 2. (v, u), (u, v) ¢ ~r~; (u, v) ~ ~r~. 
Case 3. (u, v) ~ ~ra; (u, v) ~ ~r~. 
Case 4. (u, v) E ~ra; (v, u) ~ ¢r~. 
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Reversing the roles of  u and v yields a total of  eight exhaustive cases. Because of  symmetry 
only the above four cases need be considered. 

Letf,(u, v) be the flow before the augmentation, fI(u, v) the flow after augmenting along 
~r~ and ~r~ (fi stands forfi(u, v) when no confusion arises; a, a' ,  fl, fl' are defmed similarly). 
We discuss only Case 1; the other cases follow similarly. 

Case 1. (u, v) E ~r~; (u, v), (v, u) ¢ era. T(cra, ~ra) ~ a(Ir~) ~< a(u, v) = ½(c - f l  - f 2 ) ; f ' ,  = 
f i + T , i =  1,2. 

Proceed to subcases depending on the signsf~ andf~. 
(i) f~ ~> 0,f~ ~> 0: 

If l l  + Ifhl = f l  + f ~  = (fl  + T) + ( ~  + "t) 
~<fi + ~  + 2a ~<ffi + ~  + ( c - f f i  - J~)  = c. 

(ii) f~ ~> 0,f~ < 0: 

If~l + Ifhl = f ~  - f ~  = (fl  + T) - (f2 + T) = f i  - ~  ~ IJll + If21 ~ c. 

(iii) f~ < 0, f~ I> 0 as (ii) by symmetry. 

(iv) f~ < 0,f~ < 0: 

If~l + If~l = - f~  - f ~  = - ( f i  + 7) - (f l  + T) < - f i  - f z  ~ c. 

Q.E.D. 

Note that it does not suffice to check only worst subcases (e.g. for Case 1, f~, f~ ~> 0), 
smce a, fl and T depend on the sign and magnitude of f i  andS .  

Assuming that the algorithm halts, by Lemma 2.1 the flow is feasible at termination. To 
show that it is maximum, we digress and recall a few facts concerning flow network theory. 

Let X_C V, 22 = V -  X. The set of  ordered pairs (X, 22) = {(u, v)lu ~ X, v E 22, 
(u, v) E E} is a cut. Its value is c(X, 22) = ~(u.o~etx,:t) cIu, v]. A cut (X, 22) separates u from 
v i fu  E X a n d  v E 22 or u ~ 22 and v E X. 

Let v(u~, . . . ,  Urn; V~, . . . ,  V~) denote the value of  a minimum cut which separates u, from 
v, (t = 1 . . . . .  m). Ford and Fulkerson's [6] max-flow min-cut theorem states that for a 
single commo&ty the value of  a maximum flow is equal to the value of  a minimum cut, 
i.e. F~ = p(s~; t2). Let z(u~, u2; v~, v2) denote the value of  a minimum cut (X, 22) such that 
u~, u2 E X and v~, v2 E 22. (Note that in general ~-(u~, u~; v~, v~) I> ~(ul, u~; v,, v~) since 
~(u~, uz; v~, vz) may be achieved in a cut (X, 2 )  for which u~, v~ ~ X and uz, v~ ~ 22.) 

LEMMA 2.2. (Hu). In an undirected graph, 

v(s~, s~; t~, t~) = min {z(sl, s~; 8, t~), ~-(s~, re; ssz, 8)}. 

LEMMA 2.3. I f  for  any feasible f low (fi ,  J~) f ound  by the algorithm there exists no pair o f  
augmenting paths, then 

F~ + F2 = v(si, s2; t~, t2). 

PROOF. Consider two cases: 
(a) There exists no forward path. Define X = {ulu ~ V there exists a path (s2 = Uo . . . . .  

Ur = U) from s2 to u such that a(u,-b u,) > 0, i = 1 . . . . .  r}. From the definition, s2 ~ X, and 
since there is no forward path then t2 ~ 22. 

For all (u, v) ~ (X, 22), a(u, v) = ½(c[u, v] - J i ( u ,  v) - f2(u, v)) = 0. Thus c[u, v] = f i(u,  v) 
+~(u ,  v). Since c[u, v] ~> [fi(u, v)l + If2(u, v)l, thenfl(u, v),J~(u, v) ~> O. 

Iffi(u, v) = 0 for all (u, v) ~ (X, 22), thenf2(u, v) = c[u, v]. The totalj~ flow is equal to 
c(X, fO I> v(s~; t2). Hence, from the single-commodity max-flow min-cut theoremf2 is a 
maximum flow (regardless o f f 0  and F2 = v(sz; t2). Since the algorithm started with F~ 
maximized and it was left unchanged throughout the algorithm, F~ -- v(s~; tz). 

F~ + Fz = ~,(s~; 8) + v(sz; t~) t> r(s~, se; 8, te). 

Otherwise, there exists a pair (u, v) ~ (X, 22) such that f i (u,  v) > 0; then s~ ~ X, 
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tl E X (otherwise to conserve flow there would be a pair (w, y) ~ (X, X) such that)q(w, y) 
< 0). Therefore, 

Fx + F2 = c(X, X )  >~ *(&, s2; tx, t2). 

(b) There exists no backward path. 
W e  can conclude similarly that F I  + F2 ~> r(sl, t2; s2, tx). Consequently, 

F~ + F2 ~> min{~-(s~, s2; tl, t2), ~-(s~, t2; s~, tl)} = ~,(sl, s2; tl, t2). 

Since also F~ + F2 ~< v(sl, s2; tl, t2), equahty has been proved. Q.E.D. 
We have just shown the following corollary. 
COROLLARY 2.4. I f  the algorithm stops, a maximum f low has been found. 
The ordered pair (u, v) E E is a bottleneck (with respect to the paths era and era and the 

flowsfi,f~) if a(u, v) = T(er~, era) and (u, v) E er~ or/3(u, v) ffi Y(ero, era) and (u, v) ~ era. 
LEMMA 2.5. I f  (U, V) IS a bottleneck, then after the augmentation one of  the paths ere or 

era can no longer be used. 
PROOF. The proof proceeds by analyzing the cases of  Lemma 2.1: 
Case 1. (u, v) E ~r~; (u, v), (v, u) ~ era, a = Y. The new flows are nonnegative: 

f~  = f i  + a = f l  + ½(c - f i  - f 2 )  = ½(c + ~  - f 2 )  ~> ½(c - If~l - I.AI) ~> 0 
f [  ~> 0 similarly. 

The new flow saturates the edge: 

f~ + f [  = f ~  + f [  ffi (fi + a) + (fi + a) = f i  + f i  + ( c - f i  - f i )  = c. 

After the augmentation, a forward path cannot pass through (u, v) since 

d(u,  v) = ½(c - f ~  - f [ )  = 0. 

The other cases follow similarly. Q.E.D. 
2.4 FINDING AUGMENTING PATHS. We have not yet specified how to lind the pairs of  

augmenting paths at step 2; if they are not chosen properly, the number of  iterations for 
some networks is exponentml. Here we can follow Edmonds and Karp [3], choosing 
shortest paths. However, following Dinic [2] and Even and Tarjan [5] yields a better time 
bound. 

The algorithm works m phases. In each phase, pairs of  augmenting paths with equal 
lengths are found, i.e. in the course of  a phase, two numbers 1~ and l a are determined, such 
that for all pairs (~r~, 7ra) found in the phase, the length of  era is I, and that of  era is l a. 

The flow in the network is increased using the augmenting paths until there exists no 
forward paths of  length I~ or no backward paths of  length l a. At this point, the phase 
terminates. In the next phase, l~ and la do not decrease and at least one of  them strictly 
increases. Consequently, there may be at most 2( I V I - 1) such phases. We now describe 
a single phase, first constructing the forward auxiliary graph G~. 

CONSTRUCTING Go 

1 Perform a breadth-first search from s2 consldenng only ordered pmrs (u, v) E E for wMch a(u, v) > 0 
2. If the search does not reach t2, the enure two-commodity flow algorithm termmates. 
3 The vertices of the flow network are dw~ded by the search mto levels Let the level of s2 be numbered zero and 

let l~ be the level of t2 
4 A vertex v ~ V belongs to G~ ff either ns level is less than I~ or v = t2 
5 An ordered pair (u, v) ~ E is a directed edge of G~ ff a(u, v) > 0 and the level of v is greater by 1 than that of 

u 

The paths from s2 to tz in G, correspond to forward paths of  length l~ in the current flow 
network. 

The backward auxiliary graph G a is constructed similarly; this time we start with t2, end 
with s2, and/3 replaces a. The paths from t2 to s2 in Ga correspond to backward paths of  
length lp in the current flow network. 
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Here  and in the sequel, s ta tements  concerning a, G., ~r~, and  1, m a y  be s ta ted and  p roven  
also for fl, G,, ~r,, and  l~. 

Let (~r~, ~r,) be a pa i r  of  augment ing  paths  (of  length l.  and  1~). The  two-commodi ty  flow 
a lgon thm uses these paths  to increasef~ by 2"~(~r~, ~r,). The  fol lowing l e m m a  shows how the 
residual  capaci ty  changes as a result of  the augmenta tmn:  a(u, v) changes on ly  i f  (u, v) or 
(v, u) belongs to ~r~. 

LEMMA 2.6. Suppose (~r~, ~r,) is a pair o f  augmenting paths, and (u, v) ~ E. Then 

[ ~ ( u ,  v) - ~, (u, v) ~ ~o, 

a'(u,  v) = ~ a ( u ,  v) + r ,  (u, v) ~ ~r~, 
Lee(u, v), otherwise. 

PROOF. 
Case 1. (u, v) E ~r~. 
Subcase 1.1. (u, v) E ~rp. The  addi t iona l  flow through ors increases both  f i (u,  v) and  

~ (u ,  v) by y, whde the addi t iona l  flow through Irp increasesf i (u ,  v) but  decreasesf2(u,  v). 
Therefore,  f i (u,  v) increases by  2y, whilej~(u,  v) remains  unchanged.  

a'(u, v) = ½(c[u, vl - f~ (u ,  v) - f ~ ( u ,  v)) 
= ½(c[u, v] - 0q(u,  v) + 2~,) - j ~ ( u ,  v)) 
= ½(c[u, v] - f a ( u ,  v) - ~ ( u ,  v)) - ~ = ,~(u, v) - ~,. 

Subcase 1.2. (v, u) E ~ra. f i(u,  v) remains  unchanged  since the increases cancel  each  
other. A(u, v) increases by 2y. 

a'(u, v) = ½(c[u, v] - f~(u, v) - f [ (u ,  v)) 
= ½(cIu, v] - f i ( u ,  v) - (~(u,  v) + 2y)) 
= a(u,  v) - ~,. 

Subcase 1.3. (u, v), (v, u) ~ ~r,. Both f i(u,  v) andJ~(u, v) increase by y. 

a'(u, v) -- ½(cIu, vl - f ~ ( u ,  v) - f [ ( u ,  v)) 
= ½(cIu, v] - ~f,(u,  v) + .y) - ~ ( u ,  v) + ~))  
= a(u,  v) - "y. 

The remaining  cases are proven  similarly.  Q.E.D. 
COROLLARY 2.7. No forward paths o f  length less than or equal to l~ are introduced as a 

result o f  the augmentation process. 
PROOF. Let ~r be a new forward path; then ~r contains an  edge (u, v) ~ G~. I f  

(v, u) E G~, then level(u) = level(v) + 1 Otherwise,  (u, v), (v, u) ~ G~ and  the value  
of  a(u, v) has not  changed.  Since (u, v) ~ ~r, then a(u, v) > 0 after  and  before  the 
augmenta t ion .  I f  level(v) > level(u), then (u, v) E G~--a  contradict ion.  Therefore ,  level(u) 
~< level(v). 

The  edges of  ~r fq G~ lead f rom one level to the fol lowing one, and  the remain ing  edges 
of  ~r do not  lead to a h igher  level. Therefore,  the length of~r is strictly greater  t han  1~. Q.E.D. 

Consequent ly ,  to f ind all forward paths  of  length 1~ it suffices to f ind (sz, t2) pa ths  in G~. 

A SINGLE PHASE OF THE TWO-COMMODITY FLOW ALGORITHM 

1 Construct the auxdmry graphs G. and Ga (Let I. be the distance from s2 to t2 m G~, and la the distance from 
t2 to s2 m Ga ) 

2 While G~ contains an (s2, t2) path - ~r~, and G, contains a (t2, s2) path - ~a, do 
(1) Increase the flow m the network by "y(zr,, ~rB) 
(2) Update a and fl according to Lemma 2 6 
(3) Delete the saturated edges from the appropriate auxdmry graph 0 e, ff a(u, v) has been decreased to zero 

then delete (u, v) from G,, and ff fl(u, v) ~ 0 then delete (u, v) from G~ ) end 

Imp lemen ta tmn  Note.  By definit ion,  y(~r~, ~r,) = mln{c@r~), fl(~r,)}. I f  y(~r,, ~r,) 
= a(~r,) < fl(~r,), then we m a y  cont inue to use ~r B in the next  iteraUon. Fur the rmore ,  there  
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~s no point in increasing the flow through ~r, in this iteration; we may wait until the increase 
is equal to fl(~r,) (or until the end of  the phase). This optimization ensures that in each 
phase all paths used are found and updated at most once. Corollary 2.7 implies that the 
paths in the updated auxlhary graph also correspond to the forward paths of  length/~ in 
the current flow network. 

To find the paths in the auxiliary graphs, a depth-first search ~s conducted as follows: 
For G~ we start tracing from s2 moving through an edge of  G~ to a vertex of  level 1, from 
there to a vertex of level 2, etc. I f  we reach t2, we have found a forward path. I f  the depth- 
first search reaches a deadend, namely, a vertex v from which no edge emanates, we 
backtrack to the vertex preceding v on the path and erase the last edge of  the path from G~. 
The search is continued from there. I f  we cannot proceed from s2 then the phase is over. 

Since G~ has l~ + 1 levels, at most l~ edges may be traced until either t2 is reached or an 
edge is deleted. In either case at most ls edges are scanned until an edge is deleted. The 
next path is found by continuing scanning from the edge nearest s2 which was deleted 
from the previous path. 

I f  G, contains I Eol edges, then fmding the paths of  G, requires O(IEolI~) time. Since by 
the implementation note each path is updated at most once and there may be at most ]E~ I 
(s2, t2) paths in G~, the entire updating also requires at most o(Ig~llo) time. 

A similar process is applied to G B. Thus each phase requires at most O(1E~ II~) + O(1Eal lp) 
= O(I VIlE I) time. Since there are at most O(I v I) phases, the entire two-commodity flow 
algorithm reqmres O(1 V I 2 ] El)  time. 

The previous discussion and Corollary 2.4 are summarized in the following theorem. 
THEOREM 2.1. The two-commodity f low algorithm finds a maximum flow in at most 

o(I VI21EI) time. 
Zadeh [14] exhibited a network in which I V] a augmenting paths are found by Edmonds 

and Karp'8 single-commodity flow algorithm. As noted in [5], for this network Dinic's 
algorithm requires O(I V I 21 El)  time. The network can be modified to show that O(I V I 21 El)  
is also a lower bound to steps 2 through 5 of  the undirected two-commodity flow algorithm. 

2.5. PROPERTIES OF THE ALGORITHM. We present some properties of  the algorithm. 
(1) Maximum two-commodity flow is achieved with the first commodity having maxi- 

mum flow. 
(2) I f  the capacities are integers, the maximum flow obtained is in units of  one-half. 

This follows since in this case a,fl are integers throughout the algorithm. In this property 
the algorithm follows Hu's  original algorithm. However, the fimteness of  our algorithm 
does not depend on this fact. 

(3) The two-commodity max-flow min-cut theorem [7] states that in an undirected two- 
commodity flow network the maximum flow is equal to the value of  the minimum cut: 
v(sx. s2; tl, t2). 

The proof  ~s based on the fact that after a t'mite number  of  steps there exists no pair of  
augmenting paths, and by Lemma 2.3 the flow achieved is equal to the minimum cut. Hu's  
algorithm is not necessarily finite for arbitrary real capacities. Moreover, one could 
construct an example, similar to that of  Ford and Fulkerson [6, p. 21] m which an infinite 
series of flows converges to a value smaller than the minimum cut. Therefore, Hu 's  proof  
of  the two-commodity rain-cut max-flow theorem is valid only for networks with integer 
or rational capacities. The existence of a finite algorithm for networks with arbitrary real 
capacities removes this difficulty. 

(4) We can use the algorithm to solve a related problem: undirected two-commodity 
real flow with requirements. This problem is similar to the previous one except that two 
constants R1, R2 are given, and it is required to fred feasible flow such that F1 t> R1 and 
F2 >~ R2. 

We augment the network with two new sources 3~, ~2 and edges [~, Sl], [sz, s2] of  capacities 
R~, R2, respectively (s~, s2 are now ordinary vertices). The maximum flow m the new 
network is equal to R~ + R~ if and only if there exists feasible flow in the original network 
such that F1 ~ R~ and F2 ~- R2. 
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2.6 AN IMPROVED ALGORITHM. Recently Karzanov [10] &scovered a more efficient 
algorithm for finding a maximum single-commodity flow. The method is quite involved 
and will not be explained in detail. It takes advantage of  the fact that the flow added in a 
single phase of  Dinic's algorithm blocks all the augmenting paths m an auxiliary graph. 
Karzanov finds in O(1 VI 2) time a flow that blocks all augmenting paths in that auxiliary 
graph. This flow is used to augment the flow in the network instead of  finding and 
updating each path separately. 

This approach IS applicable to two commodities as well. In each phase the additional 
flow blocks all the augmenting paths in one of  the auxdiary graphs. Hence we may first 
find the additional flow in the phase, then use this flow to augment the flow in the network. 

Each phase is conducted as follows: First two auxiliary graphs Go and G~ are constructed. 
Then flows f~ in Go and f~ in Ga which block all the augmenting paths are found. If, for 
instance, Fo < F~ thenfB is replaced by a flow the value of  which is equal to F~. (This flow 
may be obtained by first adding to Ga a new vertex iz and a new edge (i2, t2) of  capacity F~ 
and then finding a blocking flow from i2 to sz in the new G~.) 

F lndmgf ,  andf~ of  the same value involves at most three applications of  Karzanov's 
method, hence O(I V 12) time. Constructing the two auxiliary graphs and updating the flow 
requires O(I E I) time. Since there are at most O(I VI) phases, the entire algorithm reqmres 
O(I VI a) time. 

3. Dtrected Two-Commodi ty  Flow 

3.1 DEFINITION AND BASIC PROPERTIES. In directed flow networks the graph is di- 
rected and the commodities flow only in the direction of  edges. (A directed edge from u to 
v is denoted (u, v).) 

(a) The capacity constraint isfl(u, v) +f2(u, v) ~< c(u, v), (u, v) E E. 
(b) The conservation law states that for all i = 1, 2 and for all vertices v ~ V - {s,, t,}, 

£~u ~u,o)~) f ,(u,  v) = E~w <o,w)~) f,(v, w). 
Apparently, the &rected case is more difficult than the un&rected one. 
The properties of  single-commodity flow do not carry on to the two-commodity directed 

case: 
(i) The max-flow min-cut theorem does not hold. In Figure 1 the maximum flow is 

obtained when F~ = ½, F2 = 1; F~ + Fz < 2, the value of  a minimum cut. 
(n) Even if the capacities are integer, the maximum flow may be rational (not necessardy 

in units of  one-hal 0. In Figure 2 all the capacities are equal to 1 and the maximum flow 
IS depicted on each edge. 

(iii) The maximum cannot always be achieved when the flow of  the first commodity is 
maximum (in Figure 1 if F~ = 1, then Fz = 0, Fa + Fe = 1, which is less than the maximum 
possible flow). 

However, all multlcommodity flow problems may be considered as special cases' of  
hnear programming [6] (Lettlngfi(u, v) be the vanables, all the constraints and the target 
funcUon are hnear with coefficients { -  1, 0, 1} .) 

(1,0) 

,'-..~,/.~o,½) 
FIG 1 
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Flo 2 

The worst case behavior of  hnear programming is not well understood: No upper bound 
less than exponential has been proved and in many  cases exponential worst case behavior 
has been demonstrated [11, 14]. On the other hand, it is not known whether hnear 
programming is NP-complete [9]. Furthermore, there seems to be some evidence to the 
contrary: The complement of  hnear programming (all sets of  linear inequalities which do 
not have a feasible solution) is a member  of  the class NP. None of  the NP-complete 
problems are known to have this property; if the complement of  any NP-complete problem 
belongs to NP, then the complements of  all NP problems also belong to NP, which seems 
quite unlikely. Ladner [12] has shown that if P # NP there is an infinite hierarchy of  
"polynomial equivalent" degrees (equivalence classes) within NP. The lowest degree is P: 
all the problems solvable in polynomial time; the highest is the NP-complete degree. 
Possibly, linear programming belongs to an intermediate degree (i.e. it cannot be solved by 
a polynomially time bounded deterministic Turing maclune, but on the other hand not all 
the problems of NP are reducible to it). We show that directed two-commodity real flow 
is polynomially equivalent to linear programming. Thus any polynomial algorkhm for the 
flow problem would yield such an algorithm for linear programming. 

While proving this, we obtain some auxiliary results which are interesting for their own 
merit. 

3.2 SOME SIMPLIFIED LINEAR PROGRAMMING PROBLEMS. The following problems are 
polynomiaUy equivalent. 

(1) LP: Linear Programming. Given a matrix A, vectors b, c (a,~, b,, ¢~ ~ Z, the integers) 
and an integer K. Determine whether there exists a nonnegative rational vector x 
(xj ~ Q+) such that A x  ~ b and ¢x ~ K.  

(2) LI: Linear Inequalities. Given A, b as m LP. Determine whether there exists a 
normegative rational vector x such that A x  ~ b. 

(3) LE: Linear Equalities. As LI except that "--"  substitutes for "~" .  From the classical 
theory of  linear programming LP, LI and LE are polynomially equivalent [6]. Wkhout  
loss of  generality we assume that the vector b, the right-hand side (r.h.s.), is nonnegative. 

(4) [/, u] LE: LE with Bounded Coefficients. An LE problem m which a~, b, are integers 
between I and u. 

LEMMA 3.1. L E  oc [ -2 ,  2] LE .  (oc denotes  ' ~ o l y n o m m l l y  reducible" [9].) 
PROOF. The proof is based on bitwlse decomposition of  each equation of  an LE 

problem. For example, 
(0 Let 5Xl + 3x2 - 7x3 = 6 be one of the equations. Then it may be rewritten: 

(lXl + l x 2 -  lx3)2 ° + (OXl + I x 2 -  1x3)21 + (Ix1 + 0 x 2 -  1x3)2 2 = 0 2 o + 1 21 + 1.2 2 . 

Consider the computation of  each bit, thus obtaining an equation for each power of  2. 
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(n) lxx + 0x2 -- Ix3 = 0, 
0xl + l x 2 - -  Ix3 = 1, 
Ix1 + 0x2- -  Ix3 = 1, 

However,  the system of  equaUons (ii) has no solution. The  reason is that  m (0 there is a 
carry f rom the computa t ion  of  one b~t to that  of  the h igher  bit. To  overcome this difficulty,  
we introduce the fol lowing system: 

0ii)  lx l  + 0x2 - Ix3 - 2(c0 - do) = 0, 
Oxl "4- Ix2 -- lx3 -1- (Co -- do) - 2(cl - d l )  = 1, 
lXl + 0x2 - Ix3 -4- (Cl - dl) = 1. 

The variables ck, dk pass the carry f rom one equat ion  to the next. (The  carry m a y  be 
posiUve or negative; since the var iables  are required to be nonnegat ive,  two such var iables  
are in t roduced  so that  their  difference can obta in  any real  value.) 

F r o m  any solut ion to (i) zt ts easy to der ive a solutmn to (iii). F o r  example ,  let xl  = 1.6, 
x2 = 4, x3 = 3 be a solution to (i). Then  x and Co = 0, c~ = 0.4, do = 0.2, d l =  0 saUsfies 0ii). 

In the other  direction,  if  (x, c, d)  solves (iii) then x solves (i). 
The above  process is pe r formed  on all the n equauons ,  ob ta in ing  a system of  nK 

equat ions in (n + l ) K  - 1 var iables  (K = 1 + [log max{ lay [ :  I = 1 . . . . .  n; j  = 1 . . . . .  m} 
U {1 b: [ :j  = l . . . . .  m} ]). This  reduct ion is po lynomia l  in the size of  the input.  

The coeff ioents  and  the r.h.s, o f  the new system are integers in the region [ -2 ,  2]. The  
new system is solvable if  and  only i f  the or iginal  system is. Q.E.D. 

LEMMA 3.2. [--2, 2] L E  oc [ -1 ,  l] LE. 
The construct ion which t ransforms any [ -2 ,  2] LE p rob lem to an equivalent  [ - l ,  1] LE 

problem is sketched as follows. 
Fo r  every occurrence of  the var iable  x: with coefficients a v = _+2 put  _+(x: + x~) and  add  

the equat ion  x: - x:  = 0 I f  b, = 2, change ~=~avx: = b, to 

~ a v x :  - -z ,  = 1; z, = 1. 
J~l 

3.3 HOMOLOGOUS FLOW. Fol lowing  Berge and G h o u i l a - H o u r i  [1] we in t roduce  ho-  
mologous  flow problems  and show that  they are po lynomia l ly  equivalent  to the p rob lems  
of  the previous  section. 

First,  consider  a general izat ion of  the capaci ty  rule: A n  (l, u ) f low network is a flow 
network in which every edge (v, w) has a lower bound,  l(v, w), and an upper  bound,  
u(v, w). ((l(v, w), u(v, w)) is a pa i r  of  real  numbers ,  called the generalized capacity. A n  edge 
is nonrestr ic ted if  Its generahzed capaci ty  is (0, oo).) A flow f is feasible i f  the generahzed  
c a p a o t y  rule holds, i.e. V(v, w) ~ E, l(v, w) ~< f(v ,  w) ~< u(v, w). W e  wish to de te rmine  
whether  an (l, u) flow network has a feasible flow. 

Two edges (v, w) and (v', w') are homologous ff it is required t ha t f (v ,  w) =f (v ' ,  w'). A 
homologous f low network consists of  a single commodi ty  (/, u) flow ne twork  with pairs  o f  
homologous  edges. W e  wish to de termine  whether  there exists a feasible flow which 
satisfies the homologous  requirements .  

Homologous  flow is po lynomml ly  eqmvalent  to LP, as seen by  the fol lowing lemma.  
LEMMA 3.3. [--1, 1] L E  oc homologous flow. 
PROOF. Let  
(i) ~ - 1  a,:x: = b,, i = 1 . . . . .  n be an instance o f  [ - 1 ,  1] LE. F o r  a = - 1 ,  0, 1, le t J~  -- 

{jla,j = a}. Then  (i) is equivalent  to 
(ii) ~:~j~ x: - ~)~,_, xj = b,. 
The homologous  flow network constructed below has a feasible f low (which also satisfies 

the homologous  requirements)  if  and  only i f  (i) (or (ii)) has a solution. 
The  homologous  flow network  consists of  n sections. Each secuon contains  m + 5 

vertices {v~ . . . . .  era, y ' ,  Z ~, ,/k~, f0,  J~}. The  edges in the ith sect ion depend  on  the ith 
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equation. For o -- - 1 ,  0, 1, i f j  ~ J'o then v~ is connected to J'o by a nonrestricted edge. 
J~ is connected to z ~ by an edge of  generalized capacity (b,, &). J~ a n d J k l  are connected 
to .y~ by nonrestricted homologous edges (i.e. 0 ~f(J~,  y') - - f (Jk~,  y') < oo). J~ and y' are 
connected to z' by nonrestricted edges. (See Figure 3.) 

The network contains an additional vertex s = z ° which is the source. The terminal is 
t = ~.  For each j ( j  = l . . . . .  m) the network contains the nonrestricted pairwise 
homologous edges (z °, v)), (z 1, v]) . . . . .  (~-1, v]). 

Given a solution x to (1) we define a feasible flow as follows: xj = f ( z  °, v)) . . . . .  f (~ -~ ,  
v~-~). The edges are homologous so that the value of  the variable xj stays the same in all 
the equations. 

f(J~,Y')  = f ( ' P - ' ,  Y') = ~,e,,_, x, = ~,~,, x, - b,. 

The flow on the remaining edges is defined so that the conservation rule is preserved. 
Given a feasible flow it is easy to construct a solution to (i). Therefore, the equalities are 

satisfiable ff and only if there extsts a feasible flow. Q E.D. 
3.4. SELeCTIVe FLOW. In this section we define addRional flow networks and show 

that the existence of  feasible flow in these networks is polynomially equivalent to solving 
the problems of the last two sections. 

An edge is selective if only a specific commodity may pass through it. In such networks 
we specify the commodities which pass through each edge. A selective (/, u) 2CF is a two- 
commodity directed flow network with lower and upper bounds on the sum of the flows 
on each edge. We get rid of  the homologous requirement by introducing a second 
commodity. 

LEMMA 3.4. Homologous flow o~ selecUve (1, u) 2CF. 
PROOF. Without loss of  generality, we may assume that each edge (v, w) is homologous 

to at most one other edge. (If  (v, w) is homologous to (y, z) and (y', z') then replace (v, w) 
by two edges (v, x) and (x, w) such that x is a new vertex incident only to these two edges 
and (v, x) is homologous to (y, z) and (x, w) is homologous to (y', z').) 

Let (v, w) and (y, z) be homologous edges both with generalized capacity (l, u). Replace 
these edges by the construction of Figure 4. 

The vemces vw, vw', yz, and yz' are new. s2 and t2 are the source and the terminal of  the 
second commodity. The permissible subsets appear above the edges. C is a large constant. 

Clearly, fi(vw, vw') + f2(vw, vw') = C, f ,(yz, yz') + f2(yz, yz') = C. 
Since~(vw, vw') =/~(yz,  y f ) ,  thenfl(vw, vw') =)q(yz, yz'), and the effect of  homologous 

edges is achieved. 
There remains a subtle point: The constant C must be as large as the largest flow on any 

edge. Since we allowed nonrestricted edges it is not clear whether a uniform bound can be 
found a priori. Moreover, the reduction is polynomial only if the number  of  bRs in the 
representatmn of C is bounded by a polynomial of  the number  of  bits of  the input. 

FIG 3 
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As already mentioned, every flow problem 1s a special case of linear programming. For 
homologous flow the entnes of the resultant matrix are {- 1, 0, + I}. The entnes of the 
r.h.s. are bounded by the maximum capacity. From the theory of linear programming we 
learn that the existence of a solution rmphes the existence of a basic solution. Let AbasIc be 
the submatrix corresponding to a basic solution. Ab BSlc is AbaSIc except that the ith column 
IS replaced by the r.h.s. By Cramer’s rule, 

Let M be a bound on the finite capacities; then the r.h.s. is also bounded by M. By 
Hadamar’s inequality, lx,1 d M n’@. Therefore, C =Z M n”“, and rts representation re- 
quires at most log M n”” = log M + f-n log II brts. Hence the reduction is 
polynomial. Q.E.D. 

We can drop the requirement for selective edges if we maintain the requirement for 
lower and upper bounds. 

LEMMA 3.5. Selective (I, u) 2CF 0~ (I, u) 2CF. 
PROOF. We simulate the selective edges by changing each selective edge (v, w) of 

capacrty (I, U) which accepts only commodity i into the structure of Figure 5 (VW and VW’ 
are new vertices). 

Without loss of generality we may assume that no edge enters sI or emanates from t,. 
The capacity requirements are fulfilled d and only if I s$(v, w) s u and the flow of the 
other commodity is zero. Q.E.D. 

3.5. FLOW WITHREQUIREMENTSANDMAXIMUM FLOW. A two-commodity flownet- 
work with requirements (2CFR) consists of two real numbers RI and Rz. and a two- 
commodity directed flow network with only upper bounds on the edges (all lower bounds 
are equal to zero). A flow is feasible if it satisfies the capacrty and conservation rules and 
F, a R,, I = 1, 2 

LEMMA 3.6. (Z, u) 2CF 0~ ZCFR. 
PROOF. Given an instance of (I, U) 2CF, an equivalent instance of 2CFR is constructed 

by changing the graph G into G as follows: 
(i) ,The sources and the terminals of G are the new vertices 51, 52, &, &, respectively. 

(The vertices ~1, SZ, tl, and tp become ordinary verttces which satisfy the conservation 
rule.) 

(it) Every edge (x, y) of capacity (L u) is replaced by the construction of Figure 6. 
(iii) Let M be the sum of all the upper bounds of all the edges of G. For i = 1, 2, let z,, 

z,’ be new vertices and add the constructton of Figure 7. 
The requirements are R, = RP = 2M. We show that the two flow problems are equivalent. 
(a) If there exists a legal flow m the G then there exists a legal flow in G. 
Let f be a flow in G which satisfies the requirements, then f saturates all the edges 

FIG 4 
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FIG. 6 

FIG 7 

incident with ~, and i, (l = 1, 2). For i, this follows because the sum of the capacities of  all 
the edges entering tz is ~lxe~eE c(xy, 7,) + c(z,, 7,) = 2M = R,. 

The flow f i n  G is defined asf i (x ,y)  =f,(x,  xy) (=f,(xy' ,y)).  Obviously, this flow fulfills the 
conservation rule and is less than the upper bound. It remains to demonstrate that the 
lower bounds are satisfied. 

Because of  the conservation off ,  at xy, f~(x, xy) + f ,(xy' ,  xy) = f~(xy, 7,) = u. Therefore, 
~,f l (x ,  y) -- Z , f , (x ,  xy) = 2u - ~ , f (xy ' ,  xy) I> 2u - (2u - 1) -- l. 

(b) If  there exists a legal f l o w f  in the original graph G, then there exists a legal f l o w f  
in the new graph (7. 

Define: 
(i) f~(x, xy) =~(xy ' ,  y)  =fi(x,  y),j~(xy', xy) = u - f i(x,  y), f~(xy, 7,) = f~(~,, xy ' )  = u. 

(il) f~(t, z,) =ffi(z,, s,) = F,  fi(z,', z,) = M - F,,~(z,, 7,) =f~(~,, L ')  = M. 
For these edges the flow of  the other commodity is zero. 
By definition the requirements are fulfilled. Flow is conserved at the vertices of  d since 

it is conserved in G. To complete the proof  we show that the capacity constraints are 
fulfilled. For the edges (x, xy), (xy', y), (z,, 7,), (~, z,'), this follows from the construction of  
the flow. For (xy', xy) the following holds. 

Since ~,f i (x ,  y) t> l(x, y), thenf,(xy' ,  xy) = u(x, y) - ffi(x, y)  and ~,~(xy ' ,  xy) = 2u(x, y)  
- E , f (x ,  y)  ~ 2u(x, y) - l(x, y) = c(xy', xy). Q.E.D. 

Note. This construction is easily generalized to m-commodity flow. In fact, this reduction 
continues Ford and Fulkerson's [6] reduction for the single-commodity case. (Their original 
construction does not work for m I> 2 ) 

Let 2CF be the problem of maximizing the sum of the flow (max(F1 + F2)). 
LEMMA 3.7. 2CFR oc 2CF. 
The proof  is similar to that of  property (4) of  Section 2.5. 
3.6 FROM LINEAR PROGRAMMING TO Two-COMMODITY FLOW. Since all the pre- 

vious problems are special cases of  linear programming, we may summarize the previous 
lemmas as follows. 

THEOREM 3.1. All the following problems are polynomially equivalent: LP, LI, LE, 
[ -1 ,  I]LE, homologous flow, (/, u) 2CF, 2CFR, 2CF. 

Notes. (1) We can generahze all the previous two-commodity flow problems to m I> 2 
commodities. Therefore, all these problems are polynomially equivalent to linear program- 
ming. 

(2) The reductions increase the size of  the problem linearly except that of  Lemma 3.4 
where the size might grow by n log n. 

(3) Starting from integer programming [9] instead of  from linear programming, the 
reductions would still carry through while requiring all variables to be nonnegative 
integers. Thereby, we have given another proof  to the fact that two-commo&ty integer 
flow is NP-complete [4]. 
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4. Undtreeted Flow Networks wtth Lower Bounds 

For directed flow networks, Lemmas 3.6 and 3.7 showed the computational equivalence of  
networks with lower bounds and networks without lower bounds. In this section we show 
that for un&rected networks a simdar construcUon is quite improbable, since for undirected 
networks the former problem is NP-complete and the latter is polynomially solvable [2, 3, 
5, 6, 10]. To this end we define three auxiliary network flow problems and show that they 
are all NP-complete. For all three, it is required to determine whether there exists feasible 
flow. 

P 1. An undirected single commodity flow network with lower and upper bounds on the 
edges. The vertices s and t are each incident with a single edge ([s, s"], [t ' ,  t]) for which the 
lower and upper bounds are equal to F. 

P2. A single-commodity mixed flow network with lower and upper bounds (some edges 
are directed and some are undirected). All flow enters t (emanates from s) through a single 
directed edge (t', t) ((s, s')) of  capacity (F, F). 

P3. Undirected single-commodity flow network with lower and upper bounds. 
Let equal-occurrence SAT be the satisfiability problem of Boolean expressions m 

conjunctwe normal form for which each literal appears exactly k times, for some integer 
k [9]. 

LEMMA 4 1. Equal occurrence SA T is NP-complete. 
PROOF. We show that SATISFIABILITY cx equal occurrence SAT. 
Let ~ be a Boolean expression in conjunctive normal form, in which x, (~c,) occurs ks (/c,) 

times. Let k = 1 + max {k,,/~)lt = 1 . . . . .  n}. Construct the Boolean expression 4' = ~ '  D~ 
Dn, where D, = (x, + + x, + ~, + + 5c,), and x, (5c,) occurs k - k, I> 1 (k - lk~ 

1) times in D~. 
Each literal appears exactly k times m ~ .  Furthermore, ~ is true exactly when ep is. 

Obviously, + can be computed from q~ in polynomial time. Q.E.D 
LEMMA 4.2. P2 ts NP-complete. 
PROOF. We show that equal occurrence SAT oc P2. 
Let ~b be an instance of equal occurrence SAT withp clauses C1 . . . . .  Cp and n vanables 

xl . . . . .  xn such that each hteral occurs exactly k times. We construct the network depicted 
in Figure 8. In addition to the edges expllcxtly drawn, if x, (5c,) occurs q times in the clause 
Cj, there is an edge of  capacity (0, q) between the vertex x, and the vertex Cs. 

The resultant network is an instance of  P2 and can be constructed from ~ in polynomial 
time. It remains to show that the network contains feasible flow if and only if ~ is 
satisfiable. 

FIG 8 



610 ALON ITAI 

If there exists feasible flow, then the undirected edge [x~, ~,] must be saturated. Therefore, 
all flow in the triangle (y,, x,, Ycj must pass either from y,  to $, and then to x,  (in which case 
x,  is designated true) or from y, to x, and then to Yc, (m which case x, is false). In the former 
case, to conserve flow at x,  the edge (x,, C~) must be saturated; otherwise (Yc,, Cr) is 
saturated. S m c e f l C j ,  t) ~> I(Cj, t) = 1, to conserve flow at C~, there exists an edge (z, Cj) 
with positive flow. The vertex z corresponds to a literal which belongs to Cj. Since flow 
emanates from z, z has been designated true, and it causes the clause Cj to be satisfied. 
Smce this applies for all Cj, j = 1 . . . . .  p, the expression ~p is satisfiable. 

The other direction follows immediately. Q.E D. 
LEMMA 4.3. PI is NP-complete.  
PROOF. We show that P2 o¢ P 1. 
We shall simulate the directed edges by structures of  undirected edges. The edge (t', t) 

((s, s')) is replaced by It ' ,  t] and [t", t'] (Is", s'] and [s, s']) of  capacities (F, F)  and (F + U, 
F + U), respectwely (U is the sum of the upper bounds over all the directed edges except 
(t', t) and (s, s')). See Figure 9. 

Let (a, b) (#(s, s'), (t', t)) be a directed edge of capacity (l, u); it is replaced by the 
structure of  undirected edges (Figure 10). (The vertices ab and ab' get introduced only 
once in the enare construction.) 

Without loss of  generality, f(s, s"), f i t" ,  t) ~ 0 (otherwise, reverse the dlrecUon of  the 
flow.) Since t is connected only to t ' ,  f i t ' ,  t ' )  = F and f lab ,  t ' )  = u. To satisfy the 
conservation rule at ab, f (a ,  ab) I> O. Consequently, l ~ f l a ,  ab) ~< u and 0 ~< f lab ' ,  ab) = u 
- f (a ,  ab) ~ u - I. Conclude similarly tha t f ( s ' ,  ab') = u and f lab ' ,  b) = f (a ,  ab) I> I and the 
total flow from a to b is nonnegaUve. 

A flow on the structure which simulates the flow on the directed edge is 'easily 
constructed. Q.E.D. 

Since P 1 is a speoal  case of  P3 we have proven the following theorem. 
THEOREM 4.1. The problem o f  de termmmg whether there extsts a feasible  f l o w  m an 

undirected smgle commodity  network with lower and upper bounds on the edges is NP-  
complete. 

5. Conclusions 

When comparing directed and undirected network flow problems we see that some 

(O,u-e) 

FIG 9 FIG 10 

TABLE 1 SUMMARY OF RESULTS 

The problem 

Number of commodmes 

1 2 m 

Maximum flow 
undirected IV] ~ ]V[ 3 9 
directed [VI ~ LP LP 

Maximum integer flow 
undirected and directed I VI 3 NPC NPC 

Lower and upper bounds 
undirected NPC NPC NPC 
directed I VI 3 LP LP 

Notes [ V[3 There extsts a O(1V[ 3) Ume algonthm LP Polynomlally equwalent to hnear programming NPC 
NP-complete 
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problems are eas~er for undirected networks; whereas other problems are easily solvable in 
the directed case, whde notoriously difficult for undirected networks. Table I summarizes 
the results. 
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