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Abstract

The traditional “trap and emulate” I/O paravirtualization
model conveniently allows for I/O interposition, yet it in-
herently incurs costly guest-host context switches. The newer
“sidecore” model eliminates this overhead by dedicating host
(side)cores to poll the relevant guest memory regions and re-
act accordingly without context switching. But the dedication
of sidecores on each host might be wasteful when I/O activity
is low, or it might not provide enough computational power
when I/O activity is high. We propose to alleviate this prob-
lem at rack scale by consolidating the dedicated sidecores
spread across several hosts onto one server. The hypervisor
is then effectively split into two parts: the local hypervisor
that hosts the VMs, and the remote hypervisor that processes
their paravirtual I/O. We call this model vRIO—paraVirtual
Remote I/0. We find that by increasing the latency somewhat,
it provides comparable throughput with fewer sidecores and
superior throughput with the same number of sidecores as
compared to the state of the art. vRIO additionally constitutes
a new, cost-effective way to consolidate I/O devices (on the
remote hypervisor) while supporting efficient programmable
I/O interposition.

1.

Interposition 1/O virtualization decouples logical from
physical I/O through an indirection layer. The host exposes
a virtual I/O device to its guest virtual machines (VMs). It
then intercepts (“traps”) VM requests directed at the virtual
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device, and it fulfills (“emulates”) them using the physical
hardware. This trap-and-emulate approach [28./54] allows the
host to interpose on the I/O activity of its guests.

The benefits of I/O interposition are substantial [69]]: im-
proving utilization of the physical devices via time and space
multiplexing; enabling live migration and suspend/resume
using the indirection layer to decouple and recouple VMs
from/to the physical device; enabling seamless switching be-
tween different I/O channels, which allows for device aggrega-
tion, load balancing, and failure masking; and supporting such
features as monitoring, software-defined networking (SDN),
file-based images, replication, deduplication, snapshots, and
security related functionalities such as record-replay, encryp-
tion, firewalls, and intrusion detection.

SRIOV The virtual I/O indirection layer hinders perfor-
mance, mainly due to the overhead generated by exits [1]],
namely, the guest-host context switches upon I/O operations,
which are being trapped and emulated. This overhead has
motivated hardware vendors to develop the Single Root I/O
Virtualization (SRIOV) technology [34,/52]], whereby a physi-
cal I/O device can self-virtualize, supporting multiple virtual
instances of itself that can be individually assigned to VMs.
SRIOV thus bypasses the host, which is largely removed from
the critical data path. The result is significantly better per-
formance for I/O intensive workloads [411/44./46./56./72.76].
There is a serious drawback, however, to using SRIOV, as it
eliminates the indirection layer and thus only provides multi-
plexing out of the benefits of virtual I/O listed above. Notably,
SRIOV negates live migration, memory overcommitment,
metering, and other such features that rely on interposition
and that are crucial for VM environments.

Paravirtualization Consequently, real-world applications
of virtualization today, including most enterprise data centers
and cloud computing sites, seldom use SRIOV. Instead, they
realize virtual I/O through paravirtualization [11},58,66[70],



exemplified by VMware VMXNETS3 [[67]], KVM virtio [58]],
and Xen PV [11]]. Paravirtual I/O boosts the performance
of the virtualization indirection layer while retaining all the
aforementioned benefits of interposable virtual I/O. Paravir-
tualization achieves this goal by requiring guests to install a
host-specific device driver that is purely software based. The
latter is not modeled after any real device. Rather, it is opti-
mized to minimize the overheads associated with guest-host
communication and context switching.

Sidecores While offering an improvement, paravirtualiza-
tion still hampers performance due to the exits it induces [13]
22,140,44157,74]]. Recent studies show that the sidecore ap-
proach is effective in combating this problem [4}/13}31,39,/43|
45]]. The host’s cores are divided to (1) sidecores dedicated
to processing virtual I/O, and to (2) VMcores for running the
VMs that generate the I/0. Each VM writes its I/O requests
to memory shared with the host as is usual for the paravirtual
I/0 model. Unusual, however, is that VM does not trigger
an exit. Instead, the host sidecore polls the relevant memory
region and processes the request on arrival. The benefit of this
approach is twofold: more cycles to the VMs (whose OSes
are asynchronous in nature and do not block-wait for 1/0)
and less cache pollution, yielding a substantial performance
improvement. For example, the Elvis system—which imple-
ments paravirtual block and net devices on sidecores—is up
to 3x more performant than baseline paravirtualization and is
oftentimes on par with SRIOV [31].

The sidecore virtual I/O model has an inherent draw-
back. A sidecore must continuously poll the relevant mem-
ory regions of its associated VMs. Therefore, 100% of the
sidecore’s cycles are consumed, even when the I/O load gen-
erated by these VMs is light. In this case, polling wastes
valuable CPU cycles that could have otherwise been used
to support other, more productive activity. Conversely, it is
also possible that the load generated by the corresponding
VMs exceeds the processing capabilities of their designated
sidecores, and thus the sidecores might become a bottleneck
in the system.

Sidecore Consolidation The most notable benefit of virtu-
alization is, arguably, resource consolidation, enabling mul-
tiple OSes to multiplex the physical hardware. Experience
shows that multiple virtual servers can be adequately serviced
by much fewer physical servers. We contend that the same
reasoning holds for sidecores, and that applying it will alle-
viate the problem of having too few or too many per-server
sidecores, making this newer I/O model more cost effective.

Departing from the traditional trap-and-emulate virtual-
ization model, the sidecore paradigm already decouples the
host’s I/O processing from the VM’s core, executing it on
a different (side)core. In the context of rack scale comput-
ing, we propose to take this paradigm a step further and
migrate sidecores to a different server. We call this I/O
model Paravirtual Remote I/O (VRIO). In vRIO, hosts are
either VMhosts or IOhosts, consisting of either VMcores or
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sidecores. VMhosts do not process (and are unaware of) the
paravirtual I/O of their VMs. Consolidating the sidecores
in IOhosts allows us to achieve superior performance using
the same number of CPUs, or comparable performance us-
ing fewer CPUs. In exchange for reducing the CPU number,
VRIO requires additional networking infrastructure in the
rack; we show how this tradeoff yields a cheaper system.

Device Consolidation  Supporting the cost-effectiveness of
the net/CPU tradeoff is the fact that vRIO introduces a
new type of device consolidation for VMs. Splitting the
hypervisor into local and remote components makes the
remote devices at the IOhost efficiently accessible to local
VMs via the paravirtual I/O interface. Note that this feature is
complementary to existing device consolidation approaches,
such as storage area networks (SANs). The reason: if the VM
is configured to use a SAN directly (not as a virtual device),
then we lose interposition entirely. Otherwise, the SAN is
exposed to the VM as a traditional paravirtual device and
so the associated overheads of traditional paravirtualization
come into play yet again.

Hypervisor Independence The vRIO model bypasses the
local hypervisor, so the vRIO driver is independent of the
local hypervisor, thus providing several additional advantages.
It is possible, for example, to implement a layer-2 virtual LAN
that seamlessly works for virtualized OSes across different
processor architectures and hypervisor types. This feature
is valuable, as there are nowadays fewer (guest) OSes in
widespread use than hypervisors. VRIO also supports bare
metal (non-virtual) OSes that install its driver, e.g., they too
can be easily incorporated in the aforementioned LAN.
Notably, system-wide services and policies can be imple-
mented for all hypervisor types in one location. Moreover,
the IOhost hardware can be specialized for I/O processing.

Minimizing Latency To enjoy the benefits of vRIO, we
must make the penalty of adding one hop to the I/O path
tolerable. To this end, somewhat surprisingly, we utilize
SRIOV. Whereas SRIOV negates interposition in existing
I/0O models, vRIO is able to use it in a compatible manner.
Specifically, the vRIO paravirtual driver installed in the VM
generates the same 1/O as in traditional paravirtualization. But
instead of handing the I/O to the local hypervisor via shared
memory, the VRIO driver communicates it to the IOhost
through an SRIOV channel. Additionally, vRIO entirely
eliminates the overhead of interrupt processing from the
virtualization layer by: (1) coupling the SRIOV channel with
exitless interrupts [5,|29]] at the VMhost; and by (2) polling
the Network Interface Controllers (NICs) at the IOhost in
accordance to the sidecore paradigm.

Preview of Results vRIO trades off CPUs for NICs and
latency for improved resource utilization. We describe sup-
posed vRIO setups that are 8-38% cheaper than the alterna-
tive, and we manage to bound vRIO’s latency to be at most
1.18x longer than state-of-the-art sidecore paravirtualization



for network I/O. The latency is up to 2.20x longer if, in ad-
dition to sidecores, we also migrate local block devices to
reside in the remote IOhost. The benefit is achieving, e.g.,
1.82x the throughput using the same number of sidecores, or
0.92x the throughput using half the number of sidecores.

2. Existing Virtual I/O Models

The vRIO model builds on and extends existing I/O virtualiza-
tion models. Next, we briefly survey them, highlighting some
additional aspects beyond those already mentioned above.
The most naive implementation of virtual I/O devices is
emulation, whereby the hypervisor implements an interface
identical to that of an existing, widely supported hardware
device. (For NICs, this is Intel’s €1000.) The hypervisor
delivers the required functionality by trapping and emulating
[28L|54]. Emulation is convenient, because it is hypervisor-
agnostic and leaves VMs unaware of being virtualized.

Baseline The cost of emulation is degraded performance,
as the physical device was not designed with virtualization
in mind, inducing costly exits upon each interaction between
the VM and its emulated device. Consequently, installations
overwhelmingly prefer paravirtualization, which is similar
to emulation except that the emulated device does not cor-
respond to any existing hardware but instead is designed
to minimize VM-device interactions. Despite being similar
in essence across different hypervisors, paravirtual device
drivers are hypervisor-specific, because vendors opted to use
different interfaces. Thus, VMs must install the appropriate
paravirtual device drivers to reap the benefit. In the paper, we
use KVM virtio 58] as the state-of-practice representative of
paravirtualization. We denote it as the baseline configuration.

Optimum  Although more performant than naive emula-
tion, paravirtualization still traps upon every I/O request and
thus fails to deliver bare metal (non-virtual) performance
[41,46,56L72,(76]]. The PCI-SIG has thus standardized the
SRIOV extension of PCle [34,52], which allows physical
I/O devices to self-virtualize and support multiple virtual in-
stances of themselves such that each instance can be assigned
to a different VM. SRIOV outperforms paravirtualization, as
I/0 requests generated by guests do not trap. But it does not
provide bare metal performance, because device interrupts are
still handled by the host [5|14},[22,/29/|311140,/44,/72]]. The exit-
less interrupts approach (denoted Eli) overcomes this barrier,
devising a virtual I/O model in which guests directly receive
the interrupts of their SRIOV instances without host involve-
ment [5,29]. SRIOV+Eli provides bare metal performance
for VMs. We thus denote it as the optimum configuration.
Despite the hype, using SRIOV is problematic, because it
negates many of the key benefits of virtualization that rest on
interposition. For example, it conflicts with memory overcom-
mitment and host swapping [6], as DMAs do not tolerate page
faults, forcing the host to either pin the entire image of the VM
to memory [[12]/53]], or to become aware of all its DMA target
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buffers via explicit guest-host interaction [4}15,141}62L/71].
SRIOV likewise conflicts with live migration [38,|51L{64}77]],
because the source host cannot decouple the device while it
is working, and because the target host might not have this
particular device. Other problems include the host not be-
ing able to meter, account for, suspend, resume, log, isolate,
and manipulate the I/O activity [30]. All the features that
interposable I/O provides are missing.

Elvis The sidecore approach is an interposable I/O model
that provides all the benefits of—but is more performant
than—traditional paravirtualization. The approach dedicates
cores to poll relevant memory regions, observe changes
that reflect I/O requests, and process these requests without
inducing the overhead of trapping. The sidecore paradigm has
been applied to various tasks such as IOMMU virtualization
[4]], storage virtualization [13]], TCP/IP processing [33]], and
GPU processing [|63]]. The Elvis system applies this paradigm
to our baseline KVM virtio setup [31]. It utilizes Eli to deliver
exitless interrupts (in the form of IPIs) from host (side)cores
to guest cores. Elvis was shown to be superior to the baseline,
oftentimes approaching the optimum. The Elvis source code
is publicly available [23]]; we use it as a representative of the
state-of-the-art of interposable virtual I/O.

The number of sidecores utilized by Elvis is static, so
their computational power might be too low or to high,
thereby wasting valuable cycles or hindering performance.
Conceivably, we could dynamically (de)allocate sidecores
in response to the changing load [49]]. But this approach is
limited for two reasons. First, because sidecores are discrete—
it is impossible to allocate a fraction of a sidecore even if
only a fraction is required. Namely, if only p of the sidecore’s
cycles are needed, then 1 — p are wasted. The second, more
significant limitation of dynamic sidecore allocation is that
it is irrelevant when the aggregated need for VM and I/O
processing exceeds the capacity of the individual physical
server, for example, because of load imbalance. In such cases,
we might consider to resort to live migration so as to hand
some of the work to another server. But live migration is a
costly, coarse-grained activity that noticeably disrupts service,
with reduced response times and downtimes that might reach
seconds to tens of seconds [7,(17,36,47,/59,|68l73]]; this
limitation may explain why Amazon’s AWS does not support
live migration as some anecdotal evidence suggests [55]].
vRIO, in contrast, is better suited to accommodate workload
imbalance. (In addition to its other benefits, like I/O device
consolidation with efficient programmable interposition.)

3. Cost Effectiveness of vRIO

Using VRIO involves hardware tradeoffs; in this section, we
assess the associated cost.

Price Trends The vRIO infrastructure allows the number of
processors and other devices local to the server to be reduced
(by consolidating them in the IOhost), at the cost of increasing
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Figure 1. Within the server, CPU upgrades are costlier than NIC
upgrades. CPU data is based on Intel’s pricing list [35]]. NIC data is
based on multiple web sources.

the number of NICs in that server. Figure [I] shows current
trends in NIC and CPU costs that suggest that this tradeoff
may be advantageous. The CPU data points in the figure are
computed based on the latest pricing list of Intel processors
as of this writing [35]. Each data point corresponds to an
“adjacent” pair of Xeon CPUs, such that CPUs c; and c; are
adjacent if: (1) the number of cores of ¢; is smaller than that
of ¢2; (2) the series, version, speed (GHz), and feature size
(nm) of the two are identical; and (3) the cache size (MB),
power (W), and QPI speed (GT/s) of c; are proportionally
smaller than or equal to that of ¢;. For example, the following
two CPUs are adjacent:

c1: $3,059 12-core 2.3GHz E7-8850 v2 24MB 105W 7.2GT/s QPI 22nm
c2: $4,616 15-core 2.3GHz E7-8870 v2 30MB 130W 8.0GT/s QPI 22nm

The (x,y) data points in Figurereﬂect the relative cost of
upgrading from c; to ¢, and the resulting relative number of
added cores: x = gg:g;g ~15landy= 533?22 =1.25.

The NIC data points in Figure|[I|are equivalently computed
based on “adjacent” NIC pairs from Chelsio, Dell, Emulex,
HotLava, Intel, Mellanox, and SolarFlare. NICs n; and ny
are adjacent if: (1) the throughout of #; is smaller than that
of ny; (2) their vendor, product series, port number, form
factor, connector type, and offload capabilities are the same;
and (3) the power and PCle generation and lanes of n; are
proportionally smaller than or equal to that of n;,. For example,
the following two Mellanox NICs are adjacent:

nyp: $560 2x10GbE ConnectX-3 MCX312B-XCCT SFP+ PCle3 x8
ny: $1121 2x40GbE ConnectX-3 MCX314A-BCCT QSFP PCle3 x8

The corresponding (x,y) data points in Figure [1] likewise
reflect the relative upgrade cost and the consequent added
bandwidth. In our example, x = 342l ~2 and y = gggggz

Clearly, all CPU data points in Figure[T]are below the main
diagonal, whereas NIC data points are above, indicating that
augmenting a server’s compute hardware involves a premium

absent from augmenting its NICs. A similar observation

—4.
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was made regarding the rapidly declining per-port price of
network switches and switch modules [|16}/75|

One reason underlying the price trends observed in Fig-
ure [T might perhaps be that the server-class processor market
is largely dominated by Intel, whereas NICs are manufactured
and sold by multiple competing vendors. A second reason
could the objective difficulty involved in designing a general
purpose computational processor as opposed to a domain-
specific one. Regardless of the reason, the observed trends
suggest that utilizing CPUs more efficiently (and thus having
to purchase less of them) with the help of some additional
networking infrastructure could be cost beneficial.

Cost Benefit of vRIO CPU Consolidation We next exem-
plify the cost tradeoffs made possible with VRIO. Networking
infrastructure involves more than just NICs, so the way to
check whether vRIO is cost effective is to assess the price of
incorporating it in a real rack setup. We use Dell’s website,
which associates prices with server components, allowing
us to configure them online [21]] and to compare prices of
equivalent Elvis and vRIO systems. We only apply changes
to individual servers, possibly rewiring them to an IOhost
instead of the switch, as indicated. We constrain the discus-
sion to a single Dell server model for simplicity, although it
is likely cheaper to specialize the IOhost. Our comparison
applies to racks with 10GbE or 40GbE switches/cabling. We
assume 10GDbE, as it is more widely deployed [19]. All se-
tups mentioned in this section can be purchased from Dell
as specified. We account for the price of all the hardware we
use, notably networking hardware.

VMbhosts can be connected to their [Ohost directly or via
a switch. Next, we consider the former alternative, which is
cheaper, because it allows us to utilize the existing switch and
cabling without hampering performance—vRIO supports the
same volume of network traffic as its competitors. In §4.6] we
consider the drawbacks of this approach and the alternative
of connecting VMbhosts to IOhosts through a switch.

Consider three Dell PowerEdge R930 Elvis servers, each
equipped with two 10Gbps dual-port NICs and four 18-core
CPUs, such that 1/3 of the cores serve as sidecores (we demon-
strate the use of such a ratio at the end of §3). We calculate
the compute-to-network rate based on a study that measured
the per-core network throughput granted by 4 cloud providers
(Amazon, Google, Rackspace, and Softlayer) and found it to
be between 113-380 Mbps when cores concurrently engage
in networking [50]]. For our R930, this finding translates to
at most 4(CPUs) x 18(cores) x 380Mbps = 26.72Gbps per
server, which is why it is enough to connect to the switch only
3 out of the 4 per-server 10Gbps ports, as shown in Figure 2h.

We contend (and show below) that vRIO allows for effi-
cient sidecore consolidation, thereby providing all the benefits

! The observation regarding the declining cost of networking infrastructure
is applicable within the rack, as its size is fixed. It may not be applicable to
networking infrastructure between racks in growing data centers that house
more and more racks [[30]]. The scope of this work is rack scale.
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regularly associated with virtualization. Specifically, when
assuming that the workload is such that most VMs do not
typically utilize all their resources all the time, we contend
that vRIO is capable of delivering comparable performance
with, e.g., half the number of sidecores (depending on the
workload). Alternatively, vRIO is capable of boosting the
performance with the same number of sidecores. In this sec-
tion, we focus on the former case of halving the number. The
corresponding VRIO setup is depicted in Figure [2b; halving
allows us to use a “lighter” server as the IOhost with half the
CPUs, while leaving the overall number of VMcores identical
in both the Elvis and vRIO setups across the three servers.

Assigning the VMs that previously ran on the IOhost
to the two VMhosts means that each of them should now
handle 1%){ the VMs. They have exactly that many addi-
tional (VM)cores thanks to the sidecore reconfiguration.
But they also need a proportionally higher bandwidth:
26.72Gbps x 1% = 40.08Gbps per VMhost. The IOhost
needs even more: it should handle twice the aggregated
throughput of the VMhosts, as every packet transmitted or
received by a VMhost must also be (i) received and (ii) re-
transmitted by the IOhost. The IOhost must therefore handle
2 x 2(VMhosts) x 40.08Gbps = 160.31Gbps. We support
these bandwidths by installing one and two 40Gbps dual-port
NICs in the VMhosts and IOhost, which provide 80 Gbps
and 160 Gbps, respectively.

Notably, the use of 40Gbps NICs between VMhosts and
IOhosts is agnostic to whether the switch supports 10GbE or
40GbE. And IOhost ports are connected to the switch using
either 40GbE-to-4x10GbE cables (assuming a 10GbE switch)
or 40GbE cables (assuming a 40GbE switch); in both cases
the number of cables connecting the IOhost to the switch is
smaller than the corresponding number in the Elvis setup.

Like bandwidth, the memory of the VMhost is 1%){ big-
ger. We use a rate of 4GB per core, so each Elvis server is
equipped with 72 (cores) x 4GB = 288 GB, and each VMhost
is equipped with 432 GB. Conversely, the IOhost memory re-
quirements are minimal, because its sole purpose is handling
the network activity that flows through it. We equip it with
64GB (minimum for R930), which is more than enough.
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light  heavy
component price elvis vmhost  iohost  iohost
base $6,407 1 1 1 1
18 core CPU $8,006 4 4 2 4
8GB DRAM $172 2 8 8
16GB DRAM $273 18 26
10Gbps NIC DP $560 2
40Gbps NICDP  $1,121 1 2 4
total server price $44.5K $47.0K $26.0K $44.2K
total Gbps 40.00  80.00 160.00 320.00
required Gbps 26.72  40.08 160.31 320.63

Table 1. Dell R930 per-server price, components, and throughput.
The CPU is an 18-core 2.5GHz Intel Xeon E7-8890 v3. The NICs
pertain to the dual port (DP) Mellanox adapters mentioned earlier;
their price includes cable. In the VMhost, we use 2x8GB instead of
one 16GB DIMM, as the DIMM number must be even.

elvis vrio elvis vrio
setup servers — servers price price diff.
R930x 3 3 2+1  $1334K $120.0K -10%
R930 x 6 6 4+1  $266.9K $232.3K -13%

Table 2. Overall price of the Elvis and vRIO setups. The k + j
notation specifies the number of VMhosts (k) and IOhosts ().

If we take two Elvis 3 x R930 setups and transform them
to VRIO, we can merge their two “light” IOhosts into a single
“heavy” IOhost as depicted in Figure[Zc, thereby utilizing five
servers instead of six for increased savings. The throughput
and prices of individual R930 server types are specified in
Table [Tl We list the cost and relative difference between the
setups we configured in Table 2] which indicates that the
VRIO setups are 10% and 13% cheaper.

Cost Benefit of vRIO Device Consolidation A vRIO setup
can use the IOhost to further consolidate other devices, in ad-
dition to sidecores—SSDs, for example. Such consolidation
is inherently orthogonal and complementary to other systems
that offer storage consolidation, such as SANs, as: (1) if VMs
are allowed to use a SAN directly—not through a paravirtual
device—then the host forgoes the ability to perform pro-
grammable general-purpose interposition; and (2) if the SAN
is made available to VMs as a traditional paravirtual device,
then the associated excessive overheads take effect. vVRIO’s
goal is to alleviate these overheads and allow for performant
programmable interposition. Consequently, it makes sense to
expose SANs via vRIO in setups that require interposition.
Returning to our example, the R930 can hold up to eight
3.2TB or 6.4TB FusionlO SX300 PCIeSSDs (that cost
$12,706 and $24,063). If we want to improve the perfor-
mance of an Elvis setup with such drives, we have to install at
least one per server, whereas VRIO allows us to consolidate.
As with CPUs, consolidation does not necessarily mean we
want to reduce the overall number of drives to get a cheaper
setup. We can instead use the same number of drives but make
all of them efficiently available to all the servers, thereby in-
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Figure 3. Price of vRIO relative to Elvis for different drive con-
solidation ratios (using 3.2TB/6.4TB FusionlO PCIeSSDs).

creasing the amount of SSD-residing data accessible to each
server and boosting overall performance. The SX300 drives
deliver up to 2.7GB/sec bandwidth (21.6 Gbps) [60]], so con-
solidating three or six drives requires us to add one or two
2x40Gbps NICs. (The R930 supports up to ten such NICs, so
we can add them.)

Let e = v denote the SSD consolidation ratio, namely,
the number of drives installed in an Elvis setup (e) and in its
competing VRIO setup (v). Figure 3] shows the price of the
vRIO setups relative to the corresponding Elvis setups, for
different consolidation ratios of the aforementioned drives.
The cost reduction is between 8%—-38%.

4. Design and Implementation

When designing vRIO, our goal is to support sidecore con-
solidation while trading off as little latency as possible so as
to deliver comparable throughput with fewer resources (or
better throughput with similar resources) as compared to the
state of the art. To this end, we borrow from and extend the
three virtual I/O models described in

4.1 Architecture

The vRIO model consists of several components that work
together to offload I/O processing from a set of VMhosts to
their IOhost, which houses the VMhosts’ sidecores. Usually,
VMbhosts run guest VMs, but they may also host bare metal
OSes as will be discussed later on. We thus use the term
1Oclients to collectively denote the software entities that run
on the VMhosts. All I/O processing takes place on the IOhost,
on behalf of the IOclients. This transfer of responsibility frees
the VMhosts to dedicate more cores to their non-I/O tasks.
vRIO is implemented as a set of drivers in the IOclients
and kernel modules in the IOhost. Similarly to the baseline
virtio I/O model, vRIO supports both network and block de-
vices. The virtio protocol dictates that guests and host commu-
nicate by placing the I/O requests and responses in a shared
memory ring buffer (Figure fp). Elvis follows this protocol,
but instead of taking exits on the core of the guest VM, it
polls the ring from a different (side)core and allows the VM to
continue to compute without interference (Figure @p). vRIO
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preserves this architecture but introduces one major change,
substituting the shared memory ring with a communications
channel (Figure [k). The latter is exclusively dedicated to
encoded I/O traffic that flows between the IOclients and their
1/0 hypervisor—the software that controls the IOhost.
VRIO’s dedicated channel is commodity 10Gbps Ethernet,
though other interconnects like PCle [65] or RDMA could be
used and would likely provide better performance. Guided by
our goal to minimize the latency induced by vRIO, we connect
each IOclient to the IOhost through its own SRIOV+Eli
instance. Using SRIOV in this manner does not negate
interposition, as the I/O hypervisor is free to manipulate
the I/O of its clients as it pleases. The only support that
VRIO requires from local hypervisors is to assign guests
with SRIOV channels. Henceforth, local hypervisors remain
uninvolved and unaware of the I/O performed by their guests.

IOclient The IOclient has two driver layers. The first con-
sists of front-ends, which expose paravirtual block and net
devices to guests, as do virtio and Elvis. The second consists
of the transport driver, exclusive to VRIO. It is coupled with
the aforementioned SRIOV instance and is used to generi-
cally support both block and net device types, communicating
with the I/O hypervisor as needed. When performing an I/O
request, the IOclient hands it to the relevant front-end driver,
which in turn hands it to the transport driver. At this point,
the request needs to be associated with metadata information,
such as the front-end device identifier, type of request, and
request size. We directly reuse the virtio protocol—which
supplies this information—for this purpose.

The transport driver is responsible for segmenting requests
sent to the I/O hypervisor according to the Ethernet protocol.
Likewise, it reassembles and decapsulates responses arriving
from the I/O hypervisor, before calling the handler functions
of the corresponding paravirtual front-end, which notifies the
IOclient that a response has arrived.

In virtio and Elvis, the administrator determines the num-
ber and type of front-ends assigned to each VM through the
local hypervisor. In vRIO, device creation is done via the I/O
hypervisor. The transport driver therefore has a secondary
role: receiving commands from the I/O hypervisor to create
and destroy paravirtual devices in the IOclient.

I/0 Hypervisor In the interposable models (virtio, Elvis,
vRIO), each front-end device is coupled with an (IO)host
back-end, which provides the expected functionality. This
emulation layer is where interposition activity takes place,
allowing the (IO)host to run services such as block or packet
level encryption, SDN, deep packet inspection, intrusion de-
tection, anti-virus, deduplication, and compression.

The vRIO I/O hypervisor consists of a set of workers,
each running on a different (side)core. Workers service
I/O requests from IOclients or from external parties that
communicate with them. Requests arrive through IOhost
NICs and are directly intercepted by the workers, without
going through the TCP/IP stack. A worker that becomes
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Figure 4. Side-by-side comparison of the components used for implementing a virtual network device across the four virtual I/O models. The
baseline virtio, Elvis, and vRIO are interposable; SRIOV is not. vRIO replaces the shared memory buffers with networking communications.

Virtual block devices are not shown but are implemented similarly.

sync  guest intrpt host 10host
1/0 model exits intrpts injection intrpts intrpts sum
optimum 0 2 0 -
vrio 0 2 0 0 0 2
elvis 0 2 0 2 - 4
vrio w/o poll 0 2 0 0 4 6
baseline 3 2 2 2 - 9

Table 3. Qualitative comparison between the overheads of the
different virtual I/O models induced upon a single request-response.

idle takes a batch of packets off a relevant NIC receive ring,
splits it into sub-batches, and divides the sub-batches between
the workers. In a sub-batch, packets are processed in order.
For each virtual device D, so long as there exists a still-
unprocessed packet of D designated for processing on the
sidecore of worker W, then any subsequent requests of D will
be steered to W as well. This policy preserves the order of
the original requests and rids network stacks from the need
to handle out-of-order packets.

4.2 Interrupts and Exits

Interrupts degrade the performance of virtual setups [S}[29].
But sidecores poll by design, and VRIO carefully uses this
property to minimize the overhead. In fact, vVRIO completely
eliminates the overhead of virtual interrupts, partially coun-
teracting the added latency incurred by the extra hop. In this
respect, VRIO is superior to Elvis, as will be described next.
Table [3] schematically compares the number of exits and
interrupts induced by the virtual I/O models when receiving
one network request from an external client and sending back
a response. The table contains two VRIO versions—with and
without polling at the IOhost. As the comparison is qualitative,
we ignore such issues as batching and interrupt coalescing.
Let us go over the table from left to right. Under virtio,
a VM induces three synchronous exits: one when sending
the response, and two when writing to the end-of-interrupt
(EOI) LAPIC register of the virtual hardware after handling
the interrupts that notify the VM that (1) a request has
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Figure 5. Turning polling off in vRIO and enabling interrupts
substantially degrade the performance of ApacheBench. The pertfor-
mance perfectly correlates with the “sum” column in Table[3]

arrived and that (2) the response has been sent. The latter
interrupts account for the “2” that appears throughout the
“guest interrupts” column, as they asynchronously occur in
all the I/O models.

Elvis and VRIO do not induce synchronous exits when the
virtual NIC is accessed due to their sidecores, whose role is to
avoid such exits. Likewise, the optimum avoids these exits as
SRIOV provides direct access to the virtual NIC. And none
of the models but virtio trigger exits upon EOI because of
their use of Eli (which exposes the EOI register directly to the
guest by configuring the relevant MSR bitmap to not cause
an exit when the guest writes to the EOI register). Similarly,
because Eli delivers interrupts of the virtual NIC directly to
the VM, all models but virtio avoid the penalty of interrupt
injection (4th column in Table 3).

The two virtual device interrupts (“‘guest interrupts” col-
umn) could be the result of two physical interrupts triggered
by the backing device, which are handled by the host. The is
the case in the baseline and, as it happens, in Elvis (“host inter-
rupts” column). Namely, Elvis’s sidecores poll the guest/host
shared memory associated with the virtual device (Figure
M), but they interact with the physical device in the standard
interrupt-driven way. In contrast, the optimum and vRIO use
SRIOV at the local host and thus do not induce this overhead.



The “IOhost interrupts” column applies to VRIO only. No-
poll vRIO treats physical interrupts like Elvis does, letting
them drive the IOhost net activity. The number of interrupts is
then twice that of Elvis, as every packet reaching the IOhost is
received and sent, yielding 4 interrupts per request-response
in total. Polling vRIO entirely eliminates this overhead; it
polls the NIC, analogously to Elvis’s shared memory polling.

Thus, vRIO completely eliminates the overhead of virtual
interrupts, allowing it to often outperform Elvis despite the
extra hop. Figure 5] supports this analysis by showing that the
throughput of ApacheBench is inversely proportional to the
“sum” in Table 3| (see experimental details in §5).

4.3 Segmentation and Reassembly

Using Ethernet for VMhost/IOhost communication means
that we must segment I/O requests and responses when packet
sizes are larger than the maximum transmission unit (MTU),
and we must reassemble them at the other end. Of the interpos-
able virtual I/O models, only vRIO suffers from segmentation
and reassembly overhead, because shared memory—used by
Elvis and the baseline for guest/host communication—does
not require segmentation or reassembly.

We optimize the corresponding code paths to reduce this
overhead. We configure vRIO to use Ethernet jumbo frames
for VMhost/IOhost communication (consisting of 8100 bytes
instead of 1500). And we use the TCP segmentation offload
(TSO) extension supported by most modern NICs. vRIO
works at the raw Ethernet level, but it is nevertheless able
to leverage TSO by adding fake TCP/IP headers [20]. This
optimization is applicable for chunk sizes as big as 64KB
(the maximum buffer size allowed for TCP/IP) and is thus
highly effective. Network stacks do not produce packet sizes
bigger than 64KB, so the VRIO transport driver only needs to
segment block I/O traffic. Reassembly is still done directly
by the VRIO software.

4.4 Zero Copying

VvRIO copies as little data as possible to minimize CPU con-
sumption and cache pollution. In the IOclient, zero copying
is implemented differently for the two front-ends. For the net
device, the optimization is straightforward, as the front-end
hands a socket buffer (SKB) to the transport driver (T') that
already includes all virtio metadata. Then, T adds the afore-
mentioned fake TCP header to the SKB, using existing SKB
memory designated for this purpose. It decrements the SKB
head pointer to indicate this addition and sends the SKB to
the IOhost as explained in Receiving is similar: 7 incre-
ments the head pointer and hands the SKB to the front-end.
When the block front-end hands data to T to be written,
it uses a block I/0 buffer, not an SKB. T therefore allocates
its own SKB, but it assigns to it pointers of the said block
I/O buffer, avoiding a copy. The data is sent, arrives at the
IOhost, and is DMAed by the NIC to an IOhost memory
buffer. The worker that handles the request reuses this buffer
when initiating the corresponding write operation. However,
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writes to a block device must be aligned to sector size, so the
worker uses for zero copy inner portions of the buffer that are
aligned, while copying the buffer edges.

When an IOhost reads, the data must be copied to the
buffers provided by its block system, preventing zero copying.

Zero copy at the IOhost is trickier when handling network
messages sent by IOclients. Recall that T utilizes the TSO
extension with a fake TCP header to segment messages. The
I/O hypervisor must therefore carefully reassemble the origi-
nal message before it is able to forward it to its destination.
The I/0 hypervisor starts with an empty SKB. A Linux SKB
can map up to 17 fragments, such that each must be contained
within a 4KB page. For this reason, VRIO chooses a jumbo
frame size of MTU=8100 bytes (rather than the maximal
jumbo frame size, which is 9000 bytes). This MTU ensures
that each TSO fragment (along with its headers) can be stored
in two 4KB pages. At the same time, the maximal size of a
single TCP/IP message is 64KB. Thus, the maximal number
of per-message TSO fragments is 9, such that 8 of these 9
consist of two 4KB pages and the 9th fragment is smaller than
one 4KB page (64KB — 8100 x 8 = 736 bytes). It follows that
all the fragments of the original message can be stored in 17
pages as required, ensuring that the I/O hypervisor is able to
reassemble the message in a zero copy manner.

4.5 Error Handling

Ethernet is unreliable. Using it as the dedicated communi-
cation channel therefore means that vRIO might experience
packet loss. For virtual networking I/O, this does not pose a
problem, because TCP connections are reliable and retransmit
when necessary, and UDP connections might experience loss
anyhow. This reasoning does not hold for virtual block I/O,
and so VRIO must implement a retransmission mechanism for
its block device traffic in order to provide a reliable media.

Block devices may process different requests simultane-
ously. It is the responsibility of the guest OS disk scheduler
(not its driver) to reorder requests, making sure that each in-
dividual block has only one outstanding request associated
with it, while all subsequent requests for that block are pend-
ing [[10]]. Accordingly, vRIO retransmits block requests that
it considers lost without worrying that new requests for the
same blocks will arrive from the IOclient.

To support retransmission of block requests, vRIO asso-
ciates a timeout and a unique identifier with each request (or
retransmission). The initial timeout is 10ms, and it is doubled
upon each subsequent expiration. When a timeout expires, the
request is presumed lost and is retransmitted. After the num-
ber of unsuccessful retransmissions exceeds some threshold,
VRIO concludes that the request cannot be served and raises
a device error. vVRIO ignores “stale” responses for requests
whose unique identifier differs from the current identifier.

We validated the correctness of this mechanism by artifi-
cially dropping I/O requests arriving at the IOhost. Further-
more, in our initial experiments, we encountered loss and
retransmission of requests “in the wild”. vRIO correctly re-



covered, but the recovery activity affected performance some-
what. Increasing the vRIO receive ring buffers (Rx) from 512
to 4096 packets in the communication channel NIC at the
IOhost eliminated this problem.

4.6 Features and Limitations

Device Consolidation Conveniently, efficient sidecore con-
solidation implicitly allows for efficient I/O device consoli-
dation, for increased utilization. If IOclients are adequately
served by fewer devices, consolidation implies comparable
or better performance at a lower or the same cost. This ben-
efit is accentuated by expensive devices such as PCle SSDs.
Rack architects can decide to share devices among IOclients
instead of limiting their use to individual physical servers.
Recall that this type of consolidation is orthogonal, for ex-
ample, to SANs or NASs: if a SAN/NAS is used directly by
IOclients, then there is no interposition, and if it is exposed
as a virtual device, then vRIO’s advantages come into play.

Friendliness to Heterogeneity Replacing shared memory
with network channels as a means of guest-host communica-
tion implies that there are no dependencies between the local
and remote hypervisors. A handy side-effect of this feature is
that the I/O hypervisor is agnostic to the type of the local hy-
pervisor (and its processor architecture), allowing centralized
deployment of services and policies that apply to all.

In fact, vRIO does not require a local hypervisor at all. It
provides the same services to bare-metal OSes that install
its drivers. Bare-metal clouds can thus provide software-
based functionality such as firewalls and anti-virus, without
“stealing” CPU cycles from the bare-metal machines. (Any
software running on the I/O hypervisor cannot be disabled by
the IOclient.)

Live Migration The IOhost’s transport interface (7') and its
net front-end interface (F') are associated with different MAC
addresses. T"’s address is exclusively used for communicating
with the IOhost and is unknown to the outside world; any
party that wishes to communicate with the IOclient does
so via F’s address. The T interface can be implemented
using an SRIOV instance (7y0y) as described above. But
any other NIC will do, notably traditional virtio (7,1, ). This
architecture facilitates VM live migration between VMhosts
that share an IOhost. It allows F to dynamically switch
between channeling traffic via Ty, and T,yj0. Once Ty
is used, migration can commence as usual. Then, F in the
target host switches back to Tj,j,,. Our VRIO implementation
correctly runs using Tirtio, Tyriov, and any other NIC. But we
did not implement the dynamic switch.

Migrating a VM away from its IOhost to an arbitrary
server (S) is similarly possible, regardless of whether S sup-
ports VRIO. First, F notifies the IOhost to stop encapsulating
its incoming traffic with vRIO headers. Then, instead of chan-
neling its outgoing traffic (with headers) to the remote IOhost
via Ty,i0v, F switches to channel the traffic (without headers)
via shared memory to its local hypervisor. This works since
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the underlying traffic is traditional virtio in both cases. Once
F uses traditional virtio, migration can take place as usual.
However, if S is a non-vRIO host, it must locally provide the
same services previously provided by the IOhost.
Paravirtual block devices (D) migrate as usual: if D is
an interface to distributed storage, then this storage will be
available in §; otherwise, D’s content should be copied to S.

Fault Tolerance VvRIO setups as in Figure [2] make the
system less fault tolerant. If the IOhost fails, VMhosts cease
to be reachable. Reachability in the face of failure can be
ensured by connecting VMhosts to their IOhost through the
rack switch and configuring the switch to channel IOclient
traffic (F addresses) to the appropriate IOhost; this setting
requires a costlier switch that can handle the added bandwidth,
but it allows for a typical rack arrangement. Alternatively,
reachability can be obtained by connecting VMhosts to a
secondary fallback IOhost, which requires additional cables
and matching ports that would increase price and complexity.

Recall that the IOclient corresponds to F’s MAC address.
Thus, assuming reachability, the network can recover from an
IOhost failure by falling back on regular virtio. Virtual block
device activity can similarly recover if D is backed by dis-
tributed storage; otherwise, if the storage resides exclusively
on the IOhost, losing it is akin to losing a local drive.

Energy An inherent downside of the sidecore approach is
that polling consumes energy. In principle, this cost can be
reduced [4]] by trading off some latency and utilizing the
CPU’s monitor/mwait capability, which enables the core to
enter a low-power state until a monitored cache range is
modified [8]]. This optimization is outside the scope of this
work.

5. Evaluation

Methodology We do not have the resources to conduct an
evaluation with setups as described in Instead, we focus
on the individual (side)core and compare the performance
it delivers in the different I/O models. Our testbed system
consists of up to 7 servers: two VMhosts, one IOhost, and
four load generators. The VMhosts are IBM System x3550
M4 machines, each with: two 8-core Intel 2.2GHz Xeon E5-
2660 CPUs; 56GB memory; and an Intel x520 dual port
10Gbps SRIOV NIC, allowing 20Gbps per VMhost. The
IOhost is an IBM System x3650 M4 with: two 8-core Intel
2.7GHz Xeon E5-2680 CPUs; 128GB memory (we made
sure the IOhost only uses a small fraction of it); and two
NICs identical to that of the VMhosts, supporting 40Gbps.
The load generators are IBM System x3550 M2 machines,
each with: two 4-core 2.93GHz Intel Xeon 5500 CPUs;
12GB memory; and an Emulex OneConnect dual port 10Gbps
NIC. VMhost hypervisors are KVM/QEMU, hosting VMs
configured with one VCPU and 1GB of memory each, backed
by 2MB pages. All machines run Linux 3.9: guests, hosts,
and bare metal. We turn off hyperthreading and all power
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Figure 6. Simplest experimental setup.

optimizations—sleep states (Cstates) and dynamic voltage
and frequency scaling (DVFS)—to avoid reporting artifacts
caused by nondeterministic events.

Although IOhost specialization is an inherent vRIO advan-
tage, our IOhost is different from the VMhosts because we did
not have enough identical machines available. Note, however,
that we only use a small fraction of the IOhost in our experi-
ments and carefully equalize the number of cores available to
each competing setup, as explained in detail below.

We evaluate vRIO against the I/O models we have consid-
ered thus far (§2)—the KVM/virtio baseline as the state of
practice [58]], Elvis as the state of the art [31], and SRIOV+Eli
as the non-interposable optimum [5,[29]. We use the bench-
marks: (1) Netperf UDP RR (request-response), a standard
tool to measure network latency [37]], repeatedly sending one
byte and waiting for a byte response; (2) Netperf TCP stream,
a tool to measure the maximal throughput sent over one TCP
connection—we use a 64B packet size to stress the /O mod-
els, as bigger sizes quickly saturate the network links and hide
the differences; (3) Apache [24}25]], an HTTP web server
driven by ApacheBench [9]; (4) Memcached [26], an in-
memory key-value storage server driven by Memslap [3]; and
(5) Filebench, a filesystem and storage benchmark that gener-
ates both micro and macro workloads (as specified later) [48].

We execute each experiment 5 times and present averages.
The standard deviation for all the Elvis, vRIO, and optimum
models is less than 2% of the average, and it is less the 5%
for all the baseline experiments, which are less stable due to
nondeterministic scheduling of vhost threads.

Latency The most troubling aspect of VRIO is the impact
of adding a hop to the I/O path. We evaluate this impact in the
least favorable conditions for VRIO—when no interposition
is involved. With interposition, the relative weight of vRIO
overheads is reduced. For example, if interposition takes
100us per-packet and vRIO adds 10us, then performance
drops by less than 10% regardless of the I/O model we
compare against. We initially use our simplest experimental
setup, depicted in Figure [6] For all I/O models but vRIO the
setup consists of one VMhost directly communicating with
one generator. With vRIO, the two communicate indirectly
via the IOhost. Only one 8-core CPU is used on the VMhost.

Figure 7. Netperf RR latency.
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Figure 8. Netperf RR/VRIO contention.

Using Netperf RR, we measure the latency of the 1/0
models as a function of N—the number of VMs in the
VMhost that run the benchmark. For each given N, we
constrain the number of active cores to be N + 1 for Elvis,
vRIO, and the baseline: for Elvis, the extra core is in the
VMbhost serving as a sidecore; the baseline is similar, but
Linux uses the core to run I/O threads and VCPUs as it
pleases; and for vRIO, the extra (side)core resides on the
IOhost. In the optimum SRIOV/EIi setup, we use only N
cores, as an extra core would stand idle with only N VMs,
seeing it has no host I/O threads or interrupts to process.
(Later, we conduct another experiment where we equalize the
number of cores for the optimum setup.)

The results, shown in Figure[7] indicate that the optimum
enjoys close to perfect scalability, with 30-32us latency on
average per request-response; VRIO exhibits a similar slope,
yet its latency is about 12us higher—-this is the cost of the
added hop. A closer examination of the difference between
the latencies of VRIO and the optimum reveals that it slowly
increases with N from about 12us to 13us, as depicted in
Figure[§](left y-axis). The small increase is due to “contention”
over the remote sidecore of VRIO, as exemplified by Figure[§]
(right y-axis), which shows the fraction of packets that had to
wait at the IOhost before being processed.

The real competitor of VRIO, however, is Elvis, as both
support interposition whereas the optimum does not. Initially
(N = 1), the latency of VRIO is 8us longer than Elvis’s. This
gap pertains to the 1.18x increased latency we report in the
introduction, and it is the highest performance degradation
induced by vRIO that we observed for network workloads.
As the number of VMs increases, the gap shrinks until vRIO
becomes faster than Elvis at N = 6 due to the manner by
which vRIO reduces interrupts activity (§4.2)).

The tail latency is shown in Table[d] The results are mixed,
with Elvis and VRIO fairing better at different percentiles:
Elvis has lower 99.9% and 99.99% latency, but vRIO has a
lower 99.999% and maximal latency.

Throughput The Netperf stream throughput is shown in
Figure[9] Elvis and the optimum achieve similar performance,
and VRIO is 5-8% lower. The degradation is due to the added
processing time incurred by the vRIO driver, quantified in
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Figure 9. Netperf stream throughput of
VRIO is 5-8% smaller than the optimum.
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Figure 12. Benchmarks performance (kilo transactions/second).

percentile  optimum  elvis  vrio
99.9% 35 53 60
99.99% 42 71 156
99.999% 214 466 258
100% 227 480 274

Figure 13. vRIO’s IOhost scalability—Ilatency and throughput.

associated overheads. Notably, the cost of interrupts is sub-
stantial despite the fact that both the hardware (NIC) and
software (OS) employ interrupt coalescing [5,29].

Table 4. Tail latency in microseconds for one VM.

Figure[I0] Since VRIO spends 9% more cycles on processing
each packet, its throughput is lower.

The number of VMs in our experiments so far was fixed
(N), so the optimum used one less core. Next, we equalize the
number of cores by comparing the N = 7 throughput results
(Figure [9) to that of the optimum setup utilizing 8 cores to
run N = 8 VMs. Figure [T shows the outcome. As expected,
this setup yields superior throughput, highlighting the price
paid for having the ability to interpose on the I/O of the VMs.

Macrobenchmarks ~ Figure[I2]displays the performance of
Memcached and Apache. The results—showing that vRIO ap-
proaches the optimum whereas Elvis falls behind—coincide
with that of the latency experiment for higher N values (Fig-
ure[7). As noted in when load is high, Elvis is inferior
to VRIO, because it needs to handle additional physical in-
terrupts, whereas VRIO polls the device and thus avoids the
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I0host Scalability 'When consolidating the I/O processing
of several VMhosts onto one IOhost, scalability is a concern.
We assess VRIO’s scalability by serving all the machines
at our disposal (see beginning of §5)) with one IOhost. We
configure the two 16-core VMhosts to simulate four 8-core
VMbhosts: each physical VMhost has two 8-core CPUs and
two 10Gbps ports, so we partition it to two logical VMhosts
such that each CPU is exclusively associated with a single
port.

In this experiment, we systematically increase the load
by adding one VM to each of the four logical VMhosts.
In the first run there are 4 VMs (one per VMhost), in the
second there are 8, and in the final run there are 28 (seven
VMs per VMhost). Each VMhost is connected to its own
load generator, yielding a setup where the IOhost collectively
serves eight multicore machines divided to four VMhost/load-
generator pairs.

Figure [I3p shows the results of this experiment with
Netperf RR and an IOhost that utilizes 1, 2, and 4 sidecores.
More sidecores reduce the observed latency. Yet, even with 4
sidecores, the latency increases. This degradation, however,
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Figure 14. The vRIO Filebench/ramdisk results improve with
increased concurrency until, counterintuitively, it outperforms Elvis.

turned out to be due to NUMA effects on the load generators.
Each generator has two 4-core CPUs with a single PCle
bus that is directly connected to CPU 0. Initially, this CPU
generates the load. Since we designate one core for interrupt
handling only, N = 16 is the first run that uses a core from
CPU 1, causing the drop in performance. Beyond that, every
additional core being used on CPU 1 further increases the
average DRAM latency and hence the overall performance.

We repeat the experiment using Netperf stream (Fig-
ure [13p) and find that throughput scales linearly while
sidecores are not saturated, and that a sidecore gets saturated
when servicing about 13 VMs, processing around 13Gbps.
Indeed, the curves are converged for N=4,8,12 (and then for
N=16,20,24). We conclude that handling VMs from different
VMbhosts on the same sidecore does not affect performance;
only the number of VMs is significant, regardless of where
the VMs are hosted.

Making a Local Device Remote Suppose we want to accel-
erate VM storage performance using fast I/O block devices,
but we are unwilling to purchase a device for each physical
server, or we want all servers to enjoy the devices of the other
servers. Further suppose that the devices must be interpos-
able (unlike, say, SAN), so they cannot be used directly by
the VMs. With vRIO, these goals can be easily achieved by
placing the device(s) at the IOhost rather than locally. We
next evaluate the performance implications.

We simulate the device using ramdisk, exposing 1GB to
each VM. We use three instances of Filebench: (1) a reader,
(2) areader and a writer (“pair”), and (3) two readers and two
writers (“2 pairs”), such that the readers and writers perform
4KB random I/O within their VM. To avoid benchmarking
the guests’ filesystem cache, we open the virtual block device
with O_DIRECT, so all I/O requests pass the guest-host
boundary. We do not benchmark the optimum setup, because
there is no such thing as an SRIOV ramdisk.

Figure[T4] depicts the results. The reader effectively mea-
sures latency (inverse of throughput). It shows that vRIO
scales somewhat better than the baseline but worse than Elvis.
This result refers to the 2.2x latency reported in the introduc-
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Figure 15. The CPU utilization and running average indicate that
vRIO makes better use of its sidecore cycles as compared to Elvis.

tion. VRIO improves with one pair, and, counterintuitively,
outperforms Elvis with two pairs. The reason is the num-
ber of involuntary context switches in Elvis guests, which is
two orders of magnitude higher as compared to vRIO. The
relatively low latency of the local ramdisk combined with
the relatively high number of CPU cycles required to pro-
cess each request results in threads contending over the CPU,
degrading throughput.

We utilized a ramdisk to approximate the overhead in-
curred by vRIO on future, faster I/O devices. When applied
to SATA SSDs available to us, the reader’s baseline and
VvRIO throughput become 75%—-95% and 83%-95% relative
to Elvis.

Improving Utilization Resources consolidation is suitable
when VMs make partial use of them. In our context, it
means that their I/O is semi-intensive and so they do not
require all the computational power of their sidecores. Our
next experiment consists of two VMhosts, each running five
VMs, utilizing 5+1 cores (N=5). All VMs run Filebench’s
Webserver I/0 personality, modeling a block device workload
generated by a typical webserver. The workload includes
30K files of variable sizes with a mean size of 28KB. Each
webserver has 4 threads performing open, read, and close
operations while updating a log file. We empty the hypervisor
page caches before each run. We evaluate three setups: (1)
Elvis with two sidecores, one per VMhost; (2) vRIO with
a single “consolidated” sidecore at the IOhost serving both
VMhosts; and (3) the baseline serving the five VMs with six
cores (N+1) on each VMhost. All VMs have a 1GB ramdisk
block device, but in vRIO it is remote rather than local.

Figures [[5p—b show the CPU used by the Elvis sidecores.
Both are underutilized, spending together about 150% CPU
on useless polling. Figure [[5k shows that the consolidated
VRIO sidecore is more effective. Figure [[6p shows the result-
ing throughput. We see that vRIO is significantly better than
the baseline but is 8% below Elvis. This outcome constitutes
a typical consolidation tradeoff in virtual environments: sac-
rificing some performance (-8%) to get significant savings in
physical resources (halving the sidecore number).
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Figure 16. With sidecore consolidation, we can use fewer or the
same resources and get comparable (a) or better (b) performance.

Load Imbalance Resource consolidation is most suitable
to handle load imbalance. Suppose our budget consists of
two sidecores, and we need to decide where to place them.
In vRIO, we consolidate them at the IOhost, whereas in
Elvis we allocate one per VMhost. Suppose that only one
VMhost currently requires service (the Webserver personality
of Filebench) while the other is idle or engaged in activity that
requires little I/O. To increase the imbalance, the Webserver
makes use of I/O interposition for seamless encryption. We
use AES-256 as the encryption algorithm and invoke it
through standard Linux APIs. In vRIO, two sidecores can
process the VMhost’s I/O and encryption, whereas in Elvis
the VMhost can only make use of its one local sidecore.
Figure [I6p shows the outcome: VRIO provides an 82%
improvement over Elvis with the same sidecore budget. This
performance boost is an inherent benefit of vRIO.

Heterogeneity Finally, we demonstrate that vRIO enables
hypervisor agnostic I/O interposition. We run Netperf stream
within a Linux IOclient that is: (1) a VM hosted on VMware
ESXi 5; (2) a VM hosted on KVM; and (3) a bare metal OS.
All setups attain line rate and have comparable CPU utiliza-
tion in both sidecore and VMcore. We perform another test
involving an IBMPOWER 710 with a 1Gbps Intel 82571EB
NIC to show that VRIO is also hardware platform agnostic.
We install the vRIO driver on the host OS, making it a bare-
metal client that involves no virtualization. We run the same
test on an x86 guest after installing a 1Gbps NIC in it so as to
have comparable setups. Here too both servers attain line rate
and have comparable CPU usage ( under 10%). We conclude
that it is possible to seamlessly run VRIO services on the
IOhost for multiple hardware platforms and hypervisor types.

6. Related Work

The sidecore approach is a parallelization technique to accel-
erate the execution of virtual machines by polling relevant
memory regions via host cores external to the VMs. Rather
than taking exits on the cores that run the VMs, the host
sidecores continuously observe the requests of VMs and ser-
vice them accordingly, thereby (1) eliminating the direct and
indirect overheads of exits, and (2) offloading the correspond-
ing work to sidecores, freeing VM cores to process other
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activities. In essence, the sidecore approach offloads work
from guest cores to host cores while replacing the costly
trap-and-emulate guest/host communication mechanism with
simple, much faster load/store operations directed at the co-
herent memory caches.

The sidecore approach was first introduced in 2007 by
Kumar et al. [27,39]. They used it to accelerate network
interrupts and page table management processing of paravir-
tual guests. In 2009, Liu and Abali reintroduced the same
concept, calling it virtualization polling engine (VPE) and
using it to additionally accelerate the receive and transmit
network I/O paths [45]. In 2012, Ben-Yehuda et al. imple-
mented a block device on a sidecore [13]]. In 2013, Har’el et
al. proposed Elvis [31]—used in this paper—combining the
sidecore paradigm with exitless interrupts [5,29] and making
it applicable to any virtio device (block, as well as net) such
that it linearly scales with the number of cores (VMs).

All of the aforementioned sidecore work was done using
paravirtualization, whereby the guest VM code is changed
to explicitly cooperate with a host that runs on sidecore,
rather than on the same core with regular trap-and-emulate
exits. Conversely, Amit et al. exposed a virtual [IOMMU
(“vIOMMU”) to unmodified VMs, and they were able to
substantially improve performance by running the vVIOMMU
code on a sidecore, keeping the VMs unaware of the fact they
are not using the physical IOMMU [4].

Landau et al. proposed a hardware extension (“SplitX”")
that allows the hypervisor and its unmodified guests to run on
disjoint sets of cores, such that every exit occurring on a VM
core is delivered to, and is serviced by, a host sidecore [40].

The insight underlying vRIO is that, logically, the func-
tionality of sidecores is very similar to that of I/O devices,
and therefore it could be advantageous to consolidate them.
Thus, different than all the above studies, VRIO takes the
sidecore approach a step further by migrating sidecores to an-
other server, reaping the benefits of consolidation as outlined
above. In this respect, vRIO is reminiscent of supercomputer
architectures that distinguish between I/O nodes and compute
nodes [2,/18}/32,/42,/61]]. But such architectures—if used to run
VMs—either hinder programmable interposition or induce
the overheads of traditional interposable virtual I/O.

7. Conclusions

Given that sidecores are an effective way to optimize for
virtual I/O, we show that it makes sense—in terms of price
and performance—to consolidate them remotely across the
network rather than to spread them across the rack.
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