Deconstructing Amazon EC2 Spot Instance Pricing

ORNA AGMON BEN-YEHUDA, MULI BEN-YEHUDA, ASSAF SCHUSTER,
and DAN TSAFRIR, Technion — Israel Institute of Technology

Cloud providers possessing large quantities of spare capacity must either incentivize clients to purchase it
or suffer losses. Amazon is the first cloud provider to address this challenge, by allowing clients to bid on
spare capacity and by granting resources to bidders while their bids exceed a periodically changing spot
price. Amazon publicizes the spot price but does not disclose how it is determined.

By analyzing the spot price histories of Amazon’s EC2 cloud, we reverse engineer how prices are set
and construct a model that generates prices consistent with existing price traces. Our findings suggest
that usually prices are not market-driven, as sometimes previously assumed. Rather, they are likely to be
generated most of the time at random from within a tight price range via a dynamic hidden reserve price
mechanism. Our model could help clients make informed bids, cloud providers design profitable systems,
and researchers design pricing algorithms.

Categories and Subject Descriptors: G.3 [Probability and Statistics]: Time series analysis

General Terms: Economics, Design

Additional Key Words and Phrases: Amazon EC2, reverse engineering, spot instances

ACM Reference Format:

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., and Tsafrir, D. 2013. Deconstructing Amazon EC2

spot instance pricing. ACM Trans. Econ. Comp. 1, 3, Article 16 (September 2013), 20 pages.
DOI:http://dx.doi.org/10.1145/2509413.2509416

1. INTRODUCTION

Unsold cloud capacity is wasted capacity, so cloud providers would naturally like to sell
it. They would especially like to sell the capacity of machines that cannot be turned off
and have higher overhead expenses. Clients might be enticed to purchase this capacity
if they are provided with enough incentive, notably, a cheaper price. In late 2009, Ama-
zon was the first cloud provider to attempt to provide such an incentive by announcing
its spot instances pricing system. “Spot Instances [...] allow customers to bid on unused
Amazon EC2 capacity and run those instances for as long as their bid exceeds the cur-
rent Spot Price. The Spot Price changes periodically based on supply and demand, and
customers whose bids exceeds it gain access to the available Spot Instances” [Amazon
2009]. With this system, Amazon motivates purchasing cheaper capacity while ensur-
ing it can continuously act in its best interest by maintaining control over the spot
price. Section 2 summarizes the publicly available information regarding Amazon’s
pricing system.

A preliminary version of this work, which did not utilize cloud workload traces, appeared in IEEE CloudCom
2011 [Agmon Ben-Yehuda et al. 2011].

This work was partially supported by the Technion Hasso Plattner Center.

Authors’ address: O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, Computer Sci-
ence Department, Technion — Israel Institute of Technology, Haifa, Israel; email: {ladypine, muli, assaf,
dan}@cs.technion.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 2167-8375/2013/09-ART16 $15.00

DOI:http://dx.doi.org/10.1145/2509413.2509416

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:2 O. Agmon Ben-Yehuda et al.

Amazon does not disclose its underlying pricing policies. Despite much interest from
outside Amazon [Chohan et al. 2010; Javadi and Buyya 2011; Mattess et al. 2010;
Samovskiy 2011; Wee 2011], its spot pricing scheme has not, until now, been deci-
phered. The only information Amazon does reveal is its temporal spot prices, which
must be publicized to make the pricing system work. While Amazon provides only
its most recent price history, interested parties record and accumulate all the data
ever published by Amazon, making it available on the Web [Lossen 2010; Vermeersch
2010]. We leverage the resulting trace files for this study. The trace files, along with
the methodology we employ to use them, are described in Section 3.

Knowing how a leading cloud provider like Amazon prices its unused capacity is of
potential interest to both cloud providers and cloud clients. Understanding the con-
siderations, policies, and mechanisms involved may allow other providers to better
compete and to utilize their own unused capacity more effectively. Clients can likewise
exploit this knowledge to optimize their bids, to predict how long their spot instances
would be able to run, and to reason about when to purchase cheaper or costlier capacity.

Motivated by these benefits, we attempt in Sections 4 and 5 to uncover how Ama-
zon prices its unused EC2 capacity. We construct a spare capacity pricing model and
present evidence suggesting that prices are typically not determined according to Ama-
zon’s public definition of the spot pricing system as quoted here. Rather, the evidence
suggests that spot prices are usually drawn from a tight, fixed range of prices, reflect-
ing a random reserve price that is not driven by supply and demand. (A reserve price
is a hidden price below which bids are ignored.) Consequently, published spot prices
reveal little about actual, real-life client bids; studies that assume otherwise (in par-
ticular Zhang et al. [2011] and Chen et al. [2011]) are, in our view, misguided. We
speculate that Amazon utilizes such a price range because its spare capacity usually
exceeds the demand.

In Section 6, we put our model to the test by conducting pricing simulations (based
on cloud and grid workloads) and by showing their results to be consistent with EC2
price traces. We then discuss the possible benefits of using dynamic reserve price sys-
tems (such as the one we believe is used by Amazon) in Section 7. Finally, we survey
the related work in Section 8 and offer some concluding remarks in Section 9.

2. PRICING CLOUD INSTANCES

Amazon’s EC2 clients rent virtual machines called instances, such that each instance
has a type describing its computational resources as follows: m1.small, m1.large and
m1.xlarge denote, respectively, small, large, and extra-large “standard” instances;
m2.xlarge, m2.2xlarge, and m2.4xlarge denote, respectively, extra-large, double extra-
large, and quadruple extra-large “high memory” instances; and c1.medium and
c1.xlarge denote, respectively, medium and extra-large “high CPU” instances.

An instance is rented within a geographical region. We use data from four EC2 re-
gions: us-east, us-west, eu-west and ap-southeast, which correspond to Amazon’s data
centers in Virginia, California, Ireland, and Singapore.

Amazon offers three purchasing models, all requiring a fee from a few cents to a
few dollars, per hour, per running instance. The models provide different assurances
regarding when instances can be launched and terminated. Paying a yearly fee (of hun-
dreds to thousands of dollars) buys clients the ability to launch one reserved instance
whenever they wish. Clients may instead choose to forgo the yearly fee and attempt to
purchase an on-demand instance when they need it, at a higher hourly fee and with
no guarantee that launching will be possible at any given time. Both reserved and
on-demand instances remain active until terminated by the client.

The third, cheapest purchasing model provides no guarantee regarding either
launch or termination time. When placing a request for a spot instance, clients bid

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:3

the maximum hourly price they are willing to pay for running it (called declared price
or bid). The request is granted if the bid is higher than the spot price; otherwise it
waits. Periodically, Amazon publishes a new spot price and launches all waiting in-
stance requests with a maximum price exceeding this value; the instances will run
until clients terminate them or the spot price increases above their maximum price.
All running spot instances incur a uniform hourly charge, which is the current spot
price. The charge is in full hours, unless the instance was terminated due to a spot
price change, in which case the last fraction of an hour is free of charge.

In this work, we assume that instances with bids equal to the spot price are treated
similarly to instances with bids higher than the spot price.

3. METHODOLOGY

Trace Files. We analyze 64 (= 8 x 4 x 2) spot price trace files associated with the 8
aforementioned instance types, the 4 aforementioned regions, and 2 operating systems
(Linux and Windows). The traces were collected by Lossen [2010] and Vermeersch
[2010]. They start as early as 30 November 2009 (traces for region ap-southeast are
only available from the end of April 2010). In this article, unless otherwise stated, we
use data accumulated until 13 July 2010.

Availability. We define the availability of a declared price as the fraction of the time
in which the spot price was equal to or lower than that declared price. Formally, a per-
sistent request is a series of requests for an instance that is immediately re-requested
every time it is terminated due to the spot price rising above its bid. Given a declared
price D, we define D’s availability to be the time fraction in which a persistently re-
quested instance would run if D is its declared price. Formally, let H be a spot price
trace file, and let T and T, be the beginning and end of a time interval within H. The
availability of D within H during [T}, T,] is:

T{ (D)
TabilitvE (D — boe "’
availability™ (D) |(t,,1,) T, —T,’

where Tfﬁe (D) denotes the time between T}, and T, during which the spot price was
lower than or equal to D. The availability of price D reflects the probability that spot
instances with this bid would be immediately launched when requested at some uni-
formly random time within [T}, T].

4. EVIDENCE FOR ARTIFICIAL PRICING INTERVENTION
4.1. Market-Driven Auctions

Amazon’s description of “How Spot Instances Work” [Amazon 2009] gives the impres-
sion that spot prices are set through a uniform price, sealed-bid, market-driven auc-
tion. “Uniform price” means all bidders pay the same price. “Sealed-bid” means bids
are unknown to other bidders. “Market-driven” means the spot price is set according
to the clients’ bids. Many auctions fit this description. One example of such an auction
is an (N + 1)th price auction of multiple goods, with retroactive supply limitation (after
clients bid). Of course, Amazon could be using some other market-driven mechanism
consistent with their description.

In an (N + 1)th price auction of multiple goods, each client bids for a single good
(i.e., a spot instance). The provider sorts the bids and chooses the top N bidders. The
provider is free to set the number of sold goods N, as long as N does not exceed the
available capacity. The provider may set N up-front as the available capacity, but it
may also retroactively further restrict V after receiving the bids, to maximize revenue.
The provider sets the uniform price to the price declared by the highest bidder who did

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:4 O. Agmon Ben-Yehuda et al.

T

3
b
b

o
D

us—east m1 instances

o
®
T

Knee at
Ceiling
Price (C)

us—east m2.xlarge instance
us—east m2 2xlarge and 4xlarge

o
o
T

us-east c1 instances
other regions m1 instances

availability
2

Floor other regions m2.xlarge instances

Price (F) other regions m2 2xlarge and 4xlarge instances

I
[S)
T

++++oooo""m§:
S

other regions c1 instances

I I I
1.5 2 25

1
declared price [$/hour]

0.5

Fig. 1. Availability of Windows-running spot instance types as a function of their declared price. The legend
is multiplexed: us-west, eu-west, ap-southeast all appear in the legend as “other regions”. m1.small, m1.large
and m1.xlarge all appear as m1. c1.medium and c1.xlarge appear as c1.

not win the auction (bidder number N + 1) and publishes it. The top N winning bidders
pay the published price and their instances start running. In this case, the published
price is a price bid by an actual client.

The provider may also decide to ignore bids below a hidden reserve price or below a
publicly known minimal price, to prevent the goods from being sold cheaply, or to give
the impression of increased demand.

We conjecture that usually, contrary to impressions conveyed by Amazon [2009] and
assumptions made by researchers [Chen et al. 2011; Zhang et al. 2011], the spot price
is set according to a constantly changing reserve price, disregarding client bids. In
other words, most of the time the spot price is not market-driven but is set by Amazon
according to an undisclosed algorithm.

4.2. Evidence: Availability as a Function of Price

In support of this conjecture, we analyze the relationship between an instance’s de-
clared price (how much a client would be willing to pay for it) and the resulting avail-
ability between 20 January 2010 and 13 July 2010. Figure 1 shows the availability of
different spot instance types as a function of declared price (price-availability graphs),
for all examined Windows spot instance types in all regions. Results for instances run-
ning Linux (not shown) are qualitatively similar. The prices of different resources are
usually in different ranges (e.g., us-east.c1.medium’s usual price range is a third of us-
east.c1.xlarge’s), but they all share the same functional shape: a sharp linear increase
in availability, during which the price resolution is 0.1 cent. The increase may last un-
til an availability of 1.0 is reached, or end with a knee at a high availability (usually
above 0.95). A knee is a sharp change in the graph’s slope; it is usually accompanied
by a sharp decrease in the graph’s resolution. Above the knee, the availability grows
with declared price, but at a slower, varying rate.

Figure 2 shows normalized price-availability graphs for Linux: each spot price is
divided by the price of a similar on-demand instance. We see that Linux types can
be classified by region. Each of the two region classes has a distinct normalized price
range in which the availability’s dependency on the price is linear. One class contains
us-east, and the other class contains the other regions.

Figure 3 shows the data presented in Figure 1 as normalized price-availability
graphs. As in Figure 2, different types can be classified by region: us-east or all other
regions. Not as in Figure 2, different types have different normalized prices within a
class, and the relative price difference between any type pair is the same in each class.
The m1.small type, indicated in Figure 3 by an arrow, has a particularly low knee, with
an availability of 0.45. The normalized ranges of the us-east.windows.c1 instances,

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:5

P s o e

0.8+ O us-—east m1 instances
'_'? O us-—east m2.xlarge instance
‘S 06 O us-east m2 2xlarge and 4xlarge .
_(_E O us-east c1instances
Q 0.4 + other regions m1 instances
© + other regions m2.xlarge instances
0.2 + other regions m2 2xlarge and 4xlarge instances
+ other regions c1 instances

. | | | T T T T
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

declared price as fraction of on—demand price

Fig. 2. Availability of Linux-running spot instance types as a function of their normalized declared price.
The declared price is divided by the price of a similar on-demand instance. The legend is multiplexed as in
Figure 1. All 32 curves are shown in full, but most of them overlap.

o
©

us—east m1 instances

g 0.6 us—east m2.xlarge instance

E us—east m2 2xlarge and 4xlarge .
(E 0.4 us—east c1 instances

© other regions m1 instances

other regions m2.xlarge instances

o
)

us—east m1.small

other regions m2 2xlarge and 4xlarge instances

+ + + + O O O O

)) other regions c1 instances
0.4 0.5 0.6 0.7 0.8 0.9
declared price as fraction of on—demand price

Fig. 3. Availability of Windows-running spot instance types as a function of their normalized declared price.
The declared price is divided by the price of a similar on-demand instance. The legend is multiplexed as in
Figure 1. All the data is shown in full, but many of the curves overlap. us-east.windows.m1.small is indicated
by an arrow.

whose absolute prices so differed in Figure 1, are now identical. Figures 1-3 show that
availability strongly depends on declared price for all regions and all instance types,
and that this dependency has a typical recurring shape, which can be explained by
assuming that Amazon uses the same mechanism to set the price in different regions.
The particular shape of the dependency could be explained in one of two ways: either
Amazon’s spot prices reflect real client bids and the shaped dependency occurs natu-
rally, or the spot prices are the result of a dynamic hidden reserve price algorithm, of
which the shaped dependency is an artifact.

Let us first consider the assumption that the shaped dependency occurs naturally
due to real client bids. The differences between absolute price ranges of the same type
in different regions (Figure 1) show that different regions experience different sup-
ply and demand conditions. This means that uncoordinated client bids for different
types and regions would have to naturally and independently create all of the follow-
ing macro-economic phenomena: (1) normalized prices turning out identical for vari-
ous Linux types but different for Windows types; (2) a rigid linear connection between
availability and price that turns out to be identical for different types and regions; (3) a
distinct region having a normalized price range different than all the rest (which turn
out to have identical ranges); and (4) normalized prices for Windows instances which
differ from one another by identical amounts in each of the two region classes, creating
the same pattern for both.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:6 O. Agmon Ben-Yehuda et al.

If real client bids shape these dependencies, then real clients bid below the
knee. If that is indeed the case, then many spot instance clients present irrational
micro-economic behavior. As many researchers working from client perspectives have
found [Chohan et al. 2010; Mattess et al. 2010; Samovskiy 2011; Wee 2011], bidding
below the knee is not cost-effective because it will subject the instance to frequent un-
availability events. Slightly raising the bid, however, will result in the instance being
almost completely protected. Bidding below the knee is not only irrational in light of
low availability and a long waiting time for the price to drop below the bid, but also
in light of the short continuous intervals in which the low prices are valid, as noted
especially by Chohan et al. [2010]. Such short intervals might prohibit the successful
completion of a task, forcing the client to repeat it (and possibly pay for some of the
useless compute time).

For the sake of argument, let us also consider the possibility that causing the macro-
economic phenomena described above is the declared goal of a conspiring group of
clients. They have already reverse-engineered Amazon’s algorithm and submit coor-
dinated bids that cause the aforementioned phenomena. Since the phenomena we de-
scribe can be seen in all 64 analyzed traces, these clients would have to consume a
sizable share of the spot instance supply in all 64 resources, bidding low bids (which
would then eventually become the spot price). This would systematically limit the sup-
ply available to the many different legitimate clients known to use EC2 spot instances.
If the legitimate clients then bid higher than the spot price (which is usually below the
knee), the spot price would rise, terminating the conspiring clients’ instances. From
this point on, the conspiring clients’ effect on the spot price would be limited. Fur-
thermore, customers must have Amazon’s approval for the purchase of spot instances
beyond the first one hundred. Hence, we consider this explanation highly unlikely.

Our Hypothesis. We consider it unlikely that all four phenomena could have resulted
from Amazon setting the price solely on the basis of client bids. We therefore lean
towards the hypothesis that Amazon uses a dynamic algorithm, independent of client
bids, to set a reserve price for the auction, that the auction’s result is usually identical
to the reserve price, and that the prices Amazon announces are therefore usually not
market-driven. Both the simulation results presented in Section 6 and Occam’s razor—
preferring the simplest explanation—support this hypothesis.

If our hypothesis is correct, then all four phenomena listed here are easily explained
by a dynamic reserve price algorithm that gets as input prices normalized by respective
on-demand prices. This input is different for the us-east region, for different sets of
types, and for different operating systems.

4.3. Dynamic Random Reserve Price

First, we will characterize the requirements for a dynamic reserve price algorithm that
will be consistent with the published EC2 price traces. Then, we will construct such
an algorithm, and propose it as a candidate for the algorithm behind the EC2 pricing.

We contend that the dynamic reserve price algorithm gets as input a floor price F and
a ceiling price C for each spot instance type, with the floor and ceiling prices expressed
as fractions of the on-demand price. The floor price is the minimal price, exemplified
in Figure 1 for the us-east.m2.2xlarge and us-east.m2.4xlarge types. The ceiling price
is the price corresponding to the knee in the graph (shown in the same figure), or the
maximal price if no knee exists. We refer to this price range, in which availability is a
linear function of the price, as the pricing band. The algorithm dynamically changes
the reserve price such that there is a linear relation between availability and prices
in the floor—ceiling range. It guarantees that the reserve price never drops below the
floor, which reflects Amazon’s minimal-reserve price for spot instances, nor rises above
the ceiling.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:7

0.08

O

(0]

R % 0.06

e Q y = 0.39*x - 0.00026

QL O o0.04f .

c Qo

—

.i oY 0.02r §

o < ap-southeast—1

L 4=

29 0 —— linear H

g O ap-southeast-1.windows.m1.small
_002 Il Il Il Il Il Il Il

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
band width [$]

Fig. 4. Standard deviation of the white noise of the matched AR(1) process as a function of artificial price-
band width.

We deconstruct the reserve price algorithm using traces from April-July 2010, when
the spot price in eight ap-southeast.windows instance types almost always stayed
within the artificial band. We matched the price changes in those traces (denoted by
A) with an AR(1) (auto-regressive) process. We found a good match (i.e., negligible
coefficients of higher orders a; for i > 1) to the following process:

Aj = —a1A;_1 +€(0), @))

where a1 = 0.7 and €(o0) is white noise with a standard deviation o. Let F', C denote
the floor and ceiling of the artificial band, respectively. We matched o with a value of
0.39(C—F). These parameters fit all the analyzed types well, except for m1.small, which
matched different values (a1 = 0.5,0 = 0.5(C — F)). The standard deviations are given
in Figure 4. This close fit—the same parameters characterizing the randomness of
several different traces—is consistent with our hypothesis that the prices are usually
set by an artificial algorithm. The reason for m1.small’s deviation is yet to be found.

On the basis of this analysis, we construct the AR(1) reserve price algorithm: The
process is initialized with a reserve price of Py = F' and a price change of Ag = 0.1(F —
C). The following prices are defined as P; = P;_1 + A;, where A; = —0.7 - A;_1 +
€(0.39- (C —F)). The process is truncated to the [F, C] range by regenerating the white
noise component while P; is outside the [F, C] range or identical to P;_1. All prices are
rounded to one-tenth of a cent, as done by Amazon during 2010.

To evaluate whether the trace produced by the truncated AR(1) process matches the
original EC2 trace, we compare their periodograms (normalized Fourier transforms) in
Figure 5. The periodogram comparison verifies that we captured the original signal’s
frequencies correctly, and not just the average time in each price. The match shows
that our reverse-engineered reserve price algorithm is consistent with Amazon’s.

The consistency of an AR(1) process with the EC2 traces does not indicate the dy-
namics which create it. If this consistency can be explained mostly by natural fluctu-
ations, then we would expect to see at least a weekly cycle. A daily cycle is unlikely,
since clients all over the world use the same machines.

To search for a weekly cycle, we analyzed the utilization of memory in three IaaS
pay-as-you-go cloud traces (described in detail in Section 6.2) and the price in the ap-
southeast.linux traces. We computed each day’s mean value (price or utilization for spot
trace or cloud, respectively), taking into consideration the duration for which the value
was valid. Each day’s mean value was normalized by the mean value over the week

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:8 O. Agmon Ben-Yehuda et al.

O PSD estimatate of EC2 ap—southeast trace

One-sided PSD
(dB/rad/sample)

+ + PSD estimatate of AR(1) process

01 02 03 04 05 06 07 08 09 1
Normalized frequency (x & rad/sample)

Fig. 5. Power spectral density (periodogram) estimate of an EC2 price trace, and our derived AR(1) price
trace.

—&—cloud 1 —&—m1.small
cloud 2 —%— mi.large
0.8 —<— m1.xlarge
—+— m2.xlarge
—+— m2.2xlarge
06 —p— m2.4xlarge
—— cl.medium

08 —<—cloud 3

06t

—&— cil.xlarge

041

0.2r

AN
P

of normalized daily mean price

i

Sample autocorrelation function

Sample autocorrelation function
of normalized daily mean load
5

S

. . .) . . .
10 1 20 25 30 o 5 10 1

5 5
Lag (days) Lag (days)

|
o
by

20 2 %
(a) Memory utilization of three clouds (b) Price of eight ap-southeast.linux types

Fig. 6. Autocorrelation of mean daily values (memory utilization or prices), with respective approximate
confidence bounds are displayed as horizontal lines in the same colors as the autocorrelation curves. The
daily values are normalized by their week’s mean value.

to which it belongs. This local normalization is especially important when computing
mean utilization, since over the years of the trace, both the capacity and the utiliza-
tion increased. The autocorrelation of cloud utilization for three cloud workloads is de-
picted in Figure 6(a). All three clouds have a significant weekly cycle, sometimes with
a pattern lasting for several weeks. The weekly cycle is expressed by strong, positive
autocorrelation coefficients for lags of 7, 14, 21 and even 28 days. In addition, there is
strong positive autocorrelation with the previous day, meaning today’s utilization is a
good prediction for tomorrow. The confidence bounds are low (0.081, 0.084, 0.068) and
slightly different from one.

Knowing autocorrelation can be expected in a cloud, let us turn to analyze the spot
price autocorrelation that is depicted in Figure 6(b). The confidence bounds are larger
than in the cloud load graphs, and are identical to the fifth digit (0.2097). None of
the eight price traces has any weekly cycle or any significant long range correlation.
This finding agrees with Wee [2011], who shows that none of the 64 EC2 traces we
used exhibit notable weekly or daily patterns. Moreover, the one-day autocorrelation
coefficients are negative for all the traces, meaning today’s price is a bad prediction

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:9

3rd
epoch

i

LWWLMUWH o W'W |

) ___low prices low and hi gh p ices prices
Feb Mar May Jun Jul
date (Dec 2009 — Jul 2010)

normalized spot price

Fig. 7. Price history for us-east.windows.m1.small. Three time epochs are shown, with a transition period
between the second and third epochs. The spot price is presented as a fraction of the on-demand price for
the same instance.

for tomorrow. Thus, the process generating the traces cannot be explained mostly by
natural fluctuations.

Let us consider the hypothesis that natural dynamics account for a small part of
the trace: usually the spot price is the dynamic reserve price, but sometimes the spot
price rises above the reserve price due to market considerations. This would mean that
usually the price traces reflect the reserve price only, but sometimes the prices are
bids declared by real clients. This scenario is unlikely because, as discussed earlier,
bidding inside the band is not cost-effective. Nonetheless, we check this hypothesis
by analyzing mean trace prices, with the alternate hypothesis that natural dynamics
account for no part of the trace. If the alternate hypothesis is true, the mean trace price
should be the mean of the truncated AR(1) process, which is a symmetric process: the
middle of the band. If natural dynamics sometimes raise the price above the reserve
price, the mean price should be higher than the middle of the band. However, for the 8
ap-southeast.windows traces we tested here, the mean price was lower than the middle
of the band by up to 2%.

We conclude that the impact of natural dynamics on the price traces in the band
range is statistically insignificant. The spot price within the band is almost always
determined solely by the AR(1) process, that is, is equal to the reserve price. Since
we assume prices above the band usually result from natural dynamics, we need to
estimate how frequently the prices are above the band. On average, over the 64 traces
we analyzed, prices were above the band 2% of the time. We conclude that during the
other 98% of the time, prices are mainly determined by an artificial AR(1) reserve price
algorithm and hardly ever represent real client bids.

5. PRICING EPOCHS

To statistically analyze spot price histories, it would be erroneous to assume that the
same pricing model applies to all the data in the history trace. Rather, each trace is
divided to contiguous epochs associated with different pricing policies. We show here
that our main traces are divided into three epochs as depicted in Figure 7. Since the
pricing mechanism changes notably and qualitatively between epochs, data regarding
these epochs should be separated if an associated statistical analysis is to be sound.
Accordingly, for the purpose of evaluating the effectiveness of client algorithms, strate-
gies, and predictions, the data from a (single) epoch of interest should be used.

The first epoch starts, according to our analysis, as early as 30 November 2009 and
ends on 14 December 2009, the date on which Amazon announced the availability of
spot instances. During this time, instances were unknown to the general public. Hence,
the population which undertook any bidding during the first epoch was smaller than
the general public, of nearly constant size, and possibly had additional information
regarding the internals of the pricing mechanism at that time.

The second epoch begins with the public announcement on 14 December 2009. It
ends with a pricing mechanism change around 8 January 2010, when minimal spot

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:10 O. Agmon Ben-Yehuda et al.

>06 & -“"-I-‘.‘\-\-m\--r
3 4" ..--\-\--“""-‘-‘

re) s mIS I

© 05 1] g
QO s

o |J

o

o
»

= = m cloud 1

'm 1 ®m cloud 2

s cloud 3

1 LPC-EGEE-2004
GRID5000

= = SDSC-Paragon T
= = = LANL-CM5

0 1 2 3 4 5 6 7 8 9 10
runtime [days]

o
w

0.2

0.1

Fig. 8. CDF of instance or task runtimes on clouds, parallel systems and grids.

prices abruptly change in most instances (usually decrease, though Figure 7 demon-
strates an increase). It is characterized by long intervals of constant low prices.

The third epoch begins on 20 January 2010. Instance types and regions began to
change minimal price around January 8th, but we define the beginning of the epoch as
the date in which the last one (eu-west.linux.m2.2xlarge) reached a new minimal price.
Due to (1) the gradual move to the new minimal values and to (2) a bug in the pricing
mechanism that was fixed in mid-January 2010 [Amazon 2010], we choose to disregard
data from the transition period between the second and third epochs.

Additional epoch-defining dates are dates when the price-change timing algorithm
was changed, for example, 20 July 2010 and 9 February 2011 for the us-east region
(see Section 6).

These abrupt time-correlated changes in many regions and instance types further
support our hypothesis, since prices are likely to undergo abrupt changes at exactly
the same time either when the market is efficient (which is not the case here, since
absolute prices in Figure 1 are not leveled) or when the prices are artificial.

6. SPOT PRICE SIMULATION

To get a better feel for the validity of our hypothesis, we simulated two spot pricing
systems, representing the dynamic hidden reserve price hypothesis and the alternate
hypothesis of a constant reserve price. Both systems are based on a sealed-bid (N+1)th
price auction with a reserve price with retroactive supply limitation, as described in
Section 4.1. The simulator structure is described in Section 6.1.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:11

In both systems, we set the on-demand price to 1. In the constant reserve price sys-
tem we set the reserve price to 0.4. In the AR(1) reserve price system we set the reserve
prices according to the reserve price algorithm defined in Section 4.3, with a band of
[0.4, 0.45]. To run the simulation, we need to know not only what the new reserve price
should be, but also when it should be changed. To this end, we deconstructed the price
change timing, as explained in Section 6.4.

To fully model a spot pricing system, three input data sets or models are required:
for available machine supply, for instance demand, and for client bids. We modeled the
machine supply as a fixed-size, because spot instances are a good practice for a quick-
launch buffer: those machines which need to be kept running, in case an on-demand
or reserved instance is requested. We do not expect spot-instance machine supply to
represent the full variation of on-demand and reserved instance demand. We used real
grid and cloud traces for instance demand (Section 6.2), and three client bid models
(Section 6.3). The simulation results are presented in Section 6.5.

6.1. Simulator Event-Driven Loop

We created a trace-based event-driven simulator, where events are: (1) instance sub-
mission and termination and (2) price changes (due to a scheduled change or to a
waiting instance with a bid higher than the spot price). We ran the grid trace-driven
simulation on 70 CPUs, according to the number of CPUS in the trace. Since CPU
was over-committed on the cloud traces but physical memory was not, we defined each
cloud’s capacity as the maximal amount of memory concurrently used in its trace. We
ended the simulation when the last input-trace job had been submitted.

6.2. Workload Modeling

We fed the simulation with tasks with run-times in the range of 10 minutes to 24
hours, taken from several large system traces. According to Iosup et al. [2011], a typical
EC2 instance overhead is two minutes. We deem clients unlikely to wait two minutes
and pay for a full hour for an activity that lasts only a few minutes, so we only used
tasks longer than 10 minutes. We assume spot instances are usually used for relatively
short-running instances, with longer running instances more likely to be deployed on
more stable offerings such as on-demand and reserved instances. Thus, we omitted
tasks longer than 24 hours. We discuss the task length cut-off point in Section 6.5.

We used traces from one grid and three clouds. In the simulation, each task was
interpreted as a single instance, submitted at the same time and requiring the same
run-time as in the original trace to complete. The grid trace is 20K tasks from the LPC-
EGEE workload.! LPC-EGEE is characterized by tasks that are small in comparison
to the capacity of the cluster, allowing for elasticity.

We also used traces of three pay-as-you-go IaaS clouds.? These clouds were partitions
of IBM’s RC2 cloud [Ryu et al. 2011]. The partitions used different underlying physical
resources and hypervisors, and it was up to the user to choose the partition. The traces
were taken from 2 April 2009 to 22 August 2011 (2.5 years). During this time, the
capacity of the partitions changed with demand, reaching concurrent use of thousands
of CPUs (6522, 1420, and 845 for clouds 1, 2, and 3, respectively) and thousands of
gigabytes of memory (10175, 1996, and 2386 for the respective clouds). Clients of these
clouds were charged 2-3 cents per hour per GB for running instances. In addition,
creating an instance for the first time cost 20 cents.

1Graciously provided by Emanuel Medernach [2005], via the Parallel workload archive [Feitelson], file LPC-
EGEE-2004-1.2-cln.swf.

2Graciously provided by Mariusz Sabath.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:12 O. Agmon Ben-Yehuda et al.

0.35[F = = =cloud 3 0
cloud 2
031 cloud 1 B
o2s- W e LPC-EGEE i
i - = = GRID5000
g 02 + SDSC-Paragon
‘*g 015+ fi O LANL-CM5
S ot
Q
© o5
0 -
-0.05
=011

Fig. 9. Task/instance inter-arrival time autocorrelation on clouds, parallel systems (LANL CM-5, SDSC),
and grids (LPC-EGEE, GRID5000).

The workloads of these clouds are characterized by significantly longer runtimes
than grid jobs: only half the cloud instances take less than 24 hours, while 98% of
the tasks last less than a day on grids (LPC-EGEE, GRID5000°) and parallel sys-
tems (LANL CM-5,* SDSC-Paragon®) that we evaluated, as seen in Figure 8. Many
cloud instances last months and even years. Furthermore, the clouds exhibit longer
and stronger inter-arrival time correlation than typical grids, as seen in Figure 9. The
autocorrelations of their inter-arrival times is even larger than those of parallel sys-
tems, even though both system types are only accessible to a limited set of clients.

6.3. Customer Bid Modeling

Due to the lack of information on the distribution of real client bids (since we argue
that Amazon’s price traces supply little information of this type), we compare several
bidding models, and verify that the qualitative results are insensitive to the bid mod-
eling. All the distributions were adjusted to uniform minimal and on-demand prices.

The first model is a Pareto distribution (a widely applicable economic distribu-
tion [Levy and Solomon 1997; Souma 2002]) with a minimal value of 0.4, and a Pareto
index of 2, a reasonable value for income distribution [Souma 2002]. The second model
is the normal distribution N (0.7,0.3%), truncated at 0.4. The third is a linear map-
ping from runtimes to (0.4, 1], which reflects client aversion to having long-running
instances terminated.

6.4. Price Change Timing

Price changes in the simulation are triggered according to the cumulative distribution
function (CDF) of intervals between them, collected during January—dJuly 2010, and
given in Figure 10 (solid line). This period was characterized by quiet times—prices
never changed before 60 minutes or between 90 and 120 minutes since the previous
price change. It is interesting to note that such quiet times can be monetized by clients

3Graciously provided by Franck Cappello, via the Grid Workloads Archive [losup et al. 2008], file
grid5000_clean_trace.swf.

4Graciously provided by Curt Canada, via the Parallel workload archive, file LANL-CM5-1994-3.1-cln.swf.

5@Graciously provided by Reagan Moore and Allen Downey, via the Parallel workload archive, file SDSC-Par-
1995-2.1-cln.swf.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:13

1F T
0.8}
>
=
— 06
e
©
o
g 0.4} v Jan 2010 - Jul 2010 T
ofr == Jul 2010 - Feb 2011
o2t 71 - = =Feb 2011 - April 2011 (present day) |
!
14
0 Vi 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

step length: time between price changes [h]

Fig. 10. CDF of time interval between price changes for different versions of the price change scheduling
algorithm. Input: us-east.linux.m1.small.

to gain free computation power with a probability of about 25%, by submitting an
instance with a bid of the current spot price 31 minutes after a price change. The
instance would then have a 50% possibility of undergoing another price change within
30-60 minutes. If that change is a price increase, the instance would be terminated,
and the client would gain, on average, 45 minutes of free computation. Clients do not
exploit this loophole in our simulation.

Figure 10 also presents the evolution of the timing of price changes for the us-east
region. The next algorithm (in place from July 2010 until 8 Feb 2011) allowed for
a quiet hour after a price change. The following one (starting 9 Feb 2011) matches
an exponential distribution with a 1.5-hour rate parameter, with five quiet minutes.
This almost memory-less algorithm prevents abuse of the timing algorithm. A similar
evolution of the algorithm took place in other regions on different dates. On Linux
instances in regions other than us-east, an interim algorithm was used between the
second and third algorithms, such that the quiet hour was abolished before the transfer
to the algorithm of 2011.

6.5. Simulation Results

Simulation results in terms of price-availability graphs are presented in Figure 11, for
different input traces, bid models and price setting mechanisms. The functions of simu-
lations with the AR(1) reserve price feature a linear segment and a knee in high avail-
ability, as do the availability functions of EC2 during the third epoch, which are shown
in Figures 1, 2, and 3. The constant reserve price functions do not exhibit this behav-
ior. Rather, they are jittery, like the high price regime of the us-east.windows.m1.small
graph in Figure 3, and the second epoch graph in Figure 12. These results are not
sensitive to our of choices of bidding model and workload.

Furthermore, the availability of the reserve price in the constant reserve price sim-
ulations is high (0.2-0.9), as it is in the second epoch (0.63 in Figure 12). In contrast,
the availability of the minimal price in the AR(1) reserve price simulations and in the
third epoch tends to zero as the number of discrete prices within the band grows.

These macro-economic qualitative differences can be better understood by focusing
on three classes of availability graphs that resemble one another and do not present

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:14 O. Agmon Ben-Yehuda et al.

— ——Const. reserve price, Pareto dist.
— +— AR(1) band of reserve price, Pareto dist.

091 - — - Const. reserve price, Linear by task length dist.
- — -~ AR(1) band of reserve price, Linear by task length dist. Prg
0.8 o8 Const. reserve price, Normal dist. 7
—+— AR(1) band of reserve price, Normal dist. 7~
07 07

o
@

o
=
e
ES

availability fraction
availability fraction

— — — Const. reserve price, Pareto dist.

— « — AR(1) band of reserve price, Pareto dist.

=== =+ Const. reserve price, Linear by task length dist.
- — =+ AR(1) reserve price, Linear by task length dist.

e
@
L
o
w

0.2 A 0.2
Const. reserve price, Normal dist.
04 77 —+— AR(1) band of reserve price, Normal dist. B 04
o o
04 045 05 055 06 065 07 075 08 08 09 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 08 085 0.9
declared price as fraction of on-demand price declared price as fraction of on-demand price
(a) LPC-EGEE (b) Cloud 1
1
09
08
07
c c
S 2 s
- O 0.
o
8 £
205 1 2o0s Const. reserve price, Pareto dist.
3 el AR(1) reserve price, Pareto dist.
% 0l L Const. reserve price, Pareto dist | % 04 Const. reserve price, Linear by task length dist.
H — + —AR(1) band of reserve price, Pareto dist. 3 AR(1) reserve price, Linear by task length dist.
03 = = = =Const. reserve price, Linear by task length dist. i 03 Const. reserve price, Normal dist.
= == = =AR(1) band of reserve price, Linear by task length dist. AR(1) reserve price, Normal dist.
Const. reserve price, Normal dist. 02
02 —+—AR(1) band of reserve price, Normal dist. 7 i
0.1 4 0.1
04 045 05 055 06 065 07 075 08 085 09 04 045 05 055 06 065 07 075 08 08 09
declared price as fraction of on-demand price declared price as fraction of on-demand price
(c) Cloud 2 (d) Cloud 3

Fig. 11. Simulation results for various bidding models, with constant and AR (1) reserve price, on the basis
of a grid trace (LPC-EGEE) and three cloud traces.

straight lines: (1) the constant minimal reserve price simulations, (2) the second epoch,
and (3) the high regime of the third epoch (in particular us-east.windows.m1.small).
Since the graphs of the first class reflect client bids, the qualitative resemblance sug-
gests that the last two also reflect client bids: during the second epoch, a constant
reserve price algorithm is used, and the demand for us-east.windows.m1.small exceeds
the supply so much that excess demand is no longer masked by the dynamic reserve
price.

To investigate the effect of truncating long running instances from the traces (mainly
from the cloud traces), we ran the AR(1) simulations with different maximal run-time
truncations (1 day, 2 days and 100 days). As can be seen from the price-availability
graphs (Figure 13), raising the upper truncation point of the trace lowers the avail-
ability at the knee. The truncation does not affect the important features discussed
earlier (the straight line and the existence of the knee). From the EC2 traces, we
learn that the knee is usually high (above 0.9, with the exception of some m1.small
instances). Thus, we conclude that the workload of Amazon’s EC2 spot instances is
consistent with relatively short instances, and that our choice of truncating the traces
at 24 hours is reasonable.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:15

o
© ©
© o

T T

0.85

0.75

o
]
T

0.65

availability fraction

041 042 043 044 045 046 047 048 0.49 0.5 0.51
declared price as fraction of on—demand price

Fig. 12. Availability as a function of the declared price during the second epoch for us-west.linux.m1.xlarge.

09
0.8
[
o 07F
=
(&)
© 0.6[
¢=
2 05F
o
) 041 —+— - Pareto dist., up to 100 days
g 0.3 —%— Normal dist., up to 100 days | |
© —A— - Pareto dist., up to 2 days
0.2 —O— Normal dist., up to 2 days 7
01 — - — - Pareto dist., up to 1 day i
Normal dist., up to 1 day
| | | | |

0 | T T T T
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
declared price [fraction of on demand price]

Fig. 138. Impact of running time truncation of the cloud 2 trace on price-availability graphs for simulations
with Pareto and normally distributed bids and AR(1) reserve price.

We consider these simulation results a constructive indication that most prices in
the EC2 traces during the third epoch are set using an AR(1) reserve price, which is
not market driven. The simulation results also suggest that Amazon set prices via a
market-driven auction with a constant reserve price during the second epoch (Decem-
ber, 2009 until January, 2010), and that prices above the band are market-driven. (In
the traces we studied, prices are above the band only 2% of the time on average.)

7. DYNAMIC RESERVE PRICE BENEFITS

The dynamic AR(1) reserve price mechanism has several long-term, wide-range ben-
efits that may justify its use. Like a constant minimal or reserve price, it guarantees
that on-demand instances are not completely cannibalized by spot instances. Yet it
also allows the provider to sell instances on machines which would otherwise run idle,
to provide elasticity for the fixed price instances. Spot instances, which can be quickly

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:16 O. Agmon Ben-Yehuda et al.

evacuated, still reduce the costs associated with idle servers, with no real harm to the
main offering of on-demand instances.

Using a hidden reserve price allows the provider to change the reserve price with
no obligation to inform the clients, an obligation which cannot be avoided when using
a minimal price. A dynamic reserve price is better than a constant minimal price,
because it maintains an impression of constant change, thus preventing clients from
becoming complacent. It forces them to either bid higher than the band or tolerate
sudden unavailability. It also serves to occasionally clear queues of low bids within
the band, a purpose that is not served by a constant reserve price that is equal to the
ceiling price. Furthermore, Vincent [1995] argues that in common value English and
second price auctions, a random reserve price encourages participation, and thus the
exchange of more information about the value of the goods.

A random reserve price might also serve other goals, if the public is unaware of
its use. By creating an impression of false activity (demand and supply changes), the
random reserve price can mask times of low demand and price inactivity, thus possibly
driving up the provider’s stock. A large enough band covering the spectrum of probable
prices could also mask high demand and low supply, and thus help to maintain the
illusion of an infinitely elastic cloud. However, if the artificial band is relatively small,
as in the case of Amazon EC2 spot prices, the provider’s use of an AR(1) process for
setting the price within the band is a strong indication of low demand.

8. RELATED WORK

We will now review the literature on pay-as-you-go IaaS cloud workload traces (and
spot prices in particular), reexamining past conclusions in light of our results. We will
also review literature on computation markets and on reserve prices, examining the
implications of these works on our results.

Cloud Traces. 1aaS pay-as-you-go cloud workload traces and models are so hard to
come by that researchers like Toosi et al. [2011] resorted to a grid and parallel systems
model [Lublin and Feitelson 2003] with adapted runtime parameters to describe cloud
workloads. Google [Hellerstein et al. 2011] released two backend workload traces, the
longest of which lasts 29 days. Liu [2011] measured week-long traces of CPU utiliza-
tion of EC2 machines, showing a strong daily pattern of the guest machines on the
measured host. This pattern indicates that clients prefer to keep instances running
idle rather than shut them off for the night. Such client behavior weakens the daily
cycle of demand for EC2 machines in general (not necessarily spot instances).

Reserve Prices. Li and Tan [2000] showed that a (hidden) reserve price improves rev-
enues of first price, sealed bid auctions for risk-averse clients. Li and Perrigne [2003]
showed that, for first-price sealed-bid auctions, an optimal announced minimal price
increases the seller’s revenue compared with an arbitrary reserve price. They used
data of timber sales in Canada. Katkar and Reiley [2006] found that for low-priced
eBay sales of up to $20, (hidden) reserve prices deter good clients and yield lower
revenues than minimal (published) prices. However, none of these works relate to an
(N +1)th auction with a random reserve price. Ramberg [2002] says that “the existence
of a hidden reserve price is to a great extent similar to the situation where the invitor
is bidding.” She recommends that when the auction is run by the invitor (as is the case
with Amazon’s spot instances), “...it should not be a second price auction, or otherwise
there should be some assurance that the invitor/operator will not submit bids.”

Analyzing Spot Price Traces. Concurrently with this work, Wee [2011] also analyzed
price-availability graphs of early EC2 traces, noted the knees and the different be-
havior of m1.small, and that the average price does not change over time. Wee only

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:17

analyzed epochs in which the timing of price changes always included a quiet hour
and assumed that Amazon does not have an incentive to change prices more often
than once an hour. However, as we show in Section 6.4, Amazon’s early price change
timing was a vulnerability, incentivizing it to change prices more frequently than once
an hour, as it later did. Wee [2011] and Javadi and Buyya [2011] also checked EC2
price traces for cycles. Javadi and Buyya, who computed various price trace statis-
tics, claimed spot prices have daily and weekly cycles, but Wee found that cycles are
statistically insignificant. Our findings for the ap-southeast region agree with Wee’s.

Using Spot Price Traces for Client Strategy Evaluation. Most studies that use price
traces use them to evaluate client strategies. The relevance of such work to future de-
ployment of instances needs to be re-evaluated when the nature of the traces changes
(i.e., when a new epoch starts). Andrzejak, Kondo, and Yi used spot price histories to
advise the client how to minimize monetary costs while meeting an SLA [Andrzejak
et al. 2010], and to schedule checkpoints [Yi et al. 2010] and migrations [Yi et al. 2011].
The first two works used data from the transition period between the second and third
epoch for their evaluation. They focused on eu-west, which suffered most from this
transition. The last interchangeably used data from before and after the change in the
price change algorithm on July 25, 2010, as did Voorsluys et al. [2011].

Mattess et al. [2010] examined client strategies for using spot instances to manage
peak loads on scientific workloads. They evaluated the strategies using an EC2 spot
instance trace of the third epoch only, attributing the different trace behavior prior to
January 18th, 2010 to Christmas and to the recent introduction of spot instances. They
identified the price band, noted that bidding just above the band is almost as good as
bidding very high, and recommended bidding right under the on-demand price.

Chohan et al. [2010] processed price histories to answer the question, What is the
probability that an instance with a certain bid price would last a certain time? They
analyzed price histories from the third epoch only, because of the pricing bug that
was fixed in mid-January 2010 [Amazon 2010]. The bug allowed instances with prices
higher than the regional spot price to be terminated due to congestion in their avail-
ability zone (which is a part of the region), while keeping the regional price low. The
authors attributed the qualitative change of prices between the second and third epoch
to the bug fix. However, this bug fix is unlikely to have caused the qualitative price
changes we observe during January 2010, namely, the appearance of the pricing band.
The authors also noted the cost-effectiveness of bidding at the top of the band.

Wieder et al. [2010] described a model for optimizing map-reduce on clouds using a
utility function that depends on execution time, data transfer costs, and computation
costs, which they assumed can be predicted for spot instances.

Brebner and Liu [2011] assessed cost and performance of various clouds, including
spot instances. They represented the cost of spot instances as a constant, which equals
the average of several months of the price trace, but did not state the duration or
length of the history they used. It is thus impossible to determine which epochs they
used, and what the given average values represent.

Vermeersch [2011] analyzed spot price histories with the goal of optimizing the
client’s choice of deals on EC2.

Zhao et al. [2012] and Mazzucco and Dumas [2011] assumed spot instance prices are
market-driven, and modeled some of them to be used as a client decision aid. These
models are no longer relevant once a drastic policy change is made.

Using Spot Price Traces to Learn about the Market. Zhang et al. [2011] assumed
Amazon uses a market-driven auction, which led them to conclude that spot price
histories reflect actual client bids. On this basis they sought resource allocations to
instance types which optimized the provider’s revenue. Chen et al. [2011], who tested

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:18 O. Agmon Ben-Yehuda et al.

I I
us—east-1.suse.m1 .Iarge]

Paper rejected,
Tech report published,
Tweeted and re-Tweeted

End of data to thaousands of people 4

0.9 used for the paper

First paper
0.8 submitted T
Paper accepted

Spot instance price (normalized)

0 1 2 3 4 5 6 7 8 9
Time (Months of 2011)

Fig. 14. The history of this paper and the price trace of suse.m1.large on us-east during 2011.

provider scheduling algorithms, likewise assumed EC2 price traces represent market
clearing prices. We consider these assumptions doubtful, in light of our findings that
98% of the time, on average, EC2 price traces are the reserve prices, and as such do
not provide a lot of information about real client bids, nor are necessarily clearing
prices.

Free Spot and Futures Markets. While Amazon is currently the only provider offering
“spot instances,” free computing resource markets have already been analyzed. Ortuno
and Harder [2010] modeled a free market for computing power. Altmann et al. [2008]
described GridEcon, a foundation for a free spot and futures market. Vanmechelen
et al. [2011] modeled a free market for computing power using spot and futures deals.
Price traces of such free markets [Ortuno and Harder 2010; Vanmechelen et al. 2011]
differ from EC2 spot price traces: they do not have a hard minimal price and are not
anchored in the bottom of the price range. Rahman et al. [2011] evaluated free spot
market options using EC2 traces, and noted that the “data does not show enough fluc-
tuations as expected in a free market.”

9. CONCLUSIONS

Amazon EC2 spot price traces provide more information about Amazon than about its
clients. We have shown that during the examined period Amazon probably set spot
prices using a random AR(1) (hidden) reserve price. This price might have been the
basis of a market-driven mechanism, in which high prices might have reflected market
changes, but most low prices, within a band of prices, were usually indicative only of
the dynamic reserve price.

Understanding how Amazon prices its spare capacity is useful for clients, who can
decide how much to bid for instances; for providers, who can learn how to build more
profitable systems; and for researchers, who can differentiate between prices set by an
artificial process and prices likely to have been set by real client bids. We have shown
that many price trace characteristics (e.g., minimal value, band width, change timing)
are artificial and might change according to Amazon’s decisions. Thus, researchers
should be aware of the epochs present in their traces when using those traces to model
future price behavior or to evaluate client algorithm performance. We have shown that
indiscriminately using Amazon’s current traces to model client behavior is unfounded
on average 98% of the time for the examined period.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

Deconstructing Amazon EC2 Spot Instance Pricing 16:19

10. EPILOGUE

Amazon’s EC2 spot instance pricing mechanism underwent a radical change between
the first submission of this paper and its first acceptance. Several days after its ac-
ceptance, the spot instance prices underwent another extreme change, and the pric-
ing band disappeared from the traces altogether. For example, in the trace shown in
Figure 14, the spot price is constant throughout October 2011, except for a change in
the minimal price. While these radical qualitative changes are further evidence of the
former prices being artificially set, the October prices are consistent with a constant
minimal price auction, and are no longer consistent with an AR(1) hidden reserve
price.

ACKNOWLEDGMENTS

We gratefully acknowledge the generous assistance and valuable information provided to us by Mariusz
Sabath and Yaron Wolfsthal of IBM Research.

REFERENCES

Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., and Tsafrir, D. 2011. Deconstructing Amazon EC2
spot instance pricing. In Proceedings of the IEEE 3rd International Conference on Cloud Computing
Technology and Science (CloudCom).

Altmann, J., Courcoubetis, C., Stamoulis, G., Dramitinos, M., Rayna, T., Risch, M., and Bannink, C. 2008.
GridEcon: A market place for computing resources. In Grid Economics and Business Models, Lecture
Notes in Computer Science Series, vol. 5206, Springer Berlin, 185-196.

Amazon. 2009. Amazon EC2 spot instances. http://aws.amazon.com/ec2/spot-instances/. (Accessed
8/11).

Amazon. 2010. Spot instance termination conditions? http://tinyurl.com/2dzp734. Online AWS Developer
Forums discussion. (Accessed 4/11).

Andrzejak, A., Kondo, D., and Yi, S. 2010. Decision model for cloud computing under SLA constraints. In
Proceedings of the IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS).

Brebner, P. and Liu, A. 2011. Performance and cost assessment of cloud services. In Service-Oriented Com-
puting, Lecture Notes in Computer Science Series, vol. 6568, 39-50.

Chen, J., Wang, C., Zhou, B. B, Sun, L., Lee, Y. C., and Zomaya, A. Y. 2011. Tradeoffs between profit and
customer satisfaction for service provisioning in the cloud. In Proceedings of HPDC.

Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A., and Krintz, C. 2010. See Spot run: Using
spot instances for mapreduce workflows. In Proceedings of the USENIX Conference on Hot Topics in
Cloud Computing (HotCloud).

Feitelson, D. Parallel workloads archive. http://www.cs.huji.ac.il/labs/parallel/workload/index.html.

Hellerstein, J. L., Cirne, W., and Wilkes, J. 2011. Google cluster data.
http://code.google.com/p/googleclusterdata/.

Tosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., and Epema, D. H. J. 2008. The grid work-
loads archive. Future Generation Comp. Syst. 24, 1, 672—686.

Tosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., and Epema, D. 2011. Performance analysis
of cloud computing services for many-tasks scientific computing. IEEE Trans. Paral. Distrib. Syst. 22, 6,
931-945.

Javadi, B. and Buyya, R. 2011. Comprehensive statistical analysis and modeling of spot instances in public
cloud environments. Tech. rep. CLOUDS-TR-2011-1, Cloud Computing and Distributed Systems Labo-
ratory, The University of Melbourne.

Katkar, R. and Reiley, D. H. 2006. Public versus secret reserve prices in ebay auctions: Results from a
pokémon field experiment. B.E. J. Advances Economic Anal. Policy 5, 2.
http://wuw.degruyter.com/view/j/bejeap.2006.5.2/bejeap.2006.6.2.1442/bejeap.2006.6.2
.1442 . xml.

Levy, M. and Solomon, S. 1997. New evidence for the power-law distribution of wealth. Physica A 242, 90-94.

Li, H. and Tan, G. 2000. Hidden reserve prices with risk-averse bidders. Tech. rep., University of British
Columbia.

Li, T. and Perrigne, 1. 2003. Timber sale auctions with random reserve prices. Rev. Econom. Statist. 85, 1,
189-200.

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

16:20 O. Agmon Ben-Yehuda et al.

Liu, H. 2011. A measurement study of server utilization in public clouds. In Proceedings of the International
Conference on Cloud and Green Computing (CGC).

Lossen, T. 2010. Cloud exchange. http://cloudexchange.org/. (Accessed 4/11). The dataset is available
from http://files.evercu.be/cloudexchange.tgz].

Lublin, U. and Feitelson, D. G. 2003. The workload on parallel supercomputers: modeling the characteristics
of rigid jobs. J. Parall. Distrib. Comput. 63, 1105-1122.

Mattess, M., Vecchiola, C., and Buyya, R. 2010. Managing peak loads by leasing cloud infrastructure ser-
vices from a spot market. In Proceedings of the IEEE International Conference on High Performance
Computing and Communications (HPCC).

Mazzucco, M. and Dumas, M. 2011. Achieving performance and availability guarantees with spot instances.
In Proceedings of the IEEE International Conference on High Performance Computing and Communica-
tions (HPCC).

Medernach, E. 2005. Workload analysis of a cluster in a grid environment. In Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing.

Ortuno, F. M. and Harder, U. 2010. Stochastic calculus model for the spot price of computing power. In
Proceedings of the Annual UK Performance Engineering Workshop (UKPEW).

Rahman, M. R., Lu, Y., and Gupta, I. 2011. Risk aware resource allocation for clouds. Tech. rep., University
of Illinois at Urbana-Champaign.

Ramberg, C. 2002. Internet Marketplaces: The Law of Auctions and Exchanges Online. Oxford University
Press.

Ryu, K. D., Zhang, X., Ammons, G., Bala, V., Berger, S., Da Silva, D. M., Doran, J., Franco, F., Karve, A., Lee,
H., Lindeman, J. A., Mohindra, A., Oesterlin, B., Pacifici, G., Pendarakis, D., Reimer, D., and Sabath, M.
2011. RC2—living lab for cloud computing. In Proceedings of the USENIX Large Installation Systems
Administration Conference (LISA).

Samovskiy, D. 2011. Amazon EC2 spot instances - a flop? http://tinyurl.com/somic11. (Accessed 9/11).

Souma, W. 2002. Physics of personal income. http://arxiv.org/pdf/cond-mat/0202388.

Toosi, A. N., Calheiros, R. N., Thulasiram, R. K., and Buyya, R. 2011. Resource provisioning policies to in-
crease iaas provider s profit in a federated cloud environment. In Proceedings of the IEEE International
Conference on High Performance Computing and Communications (HPCC).

Vanmechelen, K., Depoorter, W., and Broeckhove, J. 2011. Combining futures and spot markets: A hybrid
market approach to economic grid resource management. J. Grid Comput. 9, 81-94.

Vermeersch, K. 2010. Spot watch. http://spotwatch.eu/input/. [Accessed Apr. 2011. The dataset and
website code are available from https://s3-eu-west-1.amazonaws.com/ruben.ruben/SpotWatch.tar].

Vermeersch, K. 2011. A broker for cost-efficient QoS aware resource allocation in EC2. M.S. thesis,
Universiteit Antwerpen.

Vincent, D. R. 1995. Bidding off the wall: Why reserve prices may be kept secret. J. Econ. Theory 65, 2,
575-584.

Voorsluys, W., Garg, S. K., and Buyya, R. 2011. Provisioning spot market cloud resources to create
cost-effective virtual clusters. In Proceedings of ICA3PP.

Wee, S. 2011. Debunking real-time pricing in cloud computing. In Proceedings of IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid).

Wieder, A., Bhatotia, P., Post, A., and Rodrigues, R. 2010. Brief announcement: modelling mapreduce for
optimal execution in the cloud. In Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC).

Yi, S., Kondo, D., and Andrzejak, A. 2010. Reducing costs of spot instances via checkpointing in the Amazon
Elastic Compute Cloud. In Proceedings of the IEEE International Conference on Cloud Computing
(CLOUD).

Yi, S., Andrzejak, A., and Kondo, D. 2011. Monetary cost-aware checkpointing and migration on Amazon
cloud spot instances. IEEE Trans. Serv. Comput.

Zhang, Q., Gurses, E., Boutaba, R., and Xiao, J. 2011. Dynamic resource allocation for spot markets in
clouds. In Proceedings of the Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE).

Zhao, H., Pan, M., Liu, X., Li, X., and Fang, Y. 2012. Optimal resource rental planning for elastic appli-
cations in cloud market. In Proceedings of the IEEE International Parallel & Distributed Processing
Symposium (IPDPS).

Received November 2011; accepted March 2012

ACM Transactions on Economics and Computation, Vol. 1, No. 3, Article 16, Publication date: September 2013.

