The nom Profit-Maximizing Operating System

Muli Ben-Yehuda

LightBits Labs
mulix@mulix.org

Abstract

In the near future, cloud providers will sell their users
virtual machines with CPU, memory, network, and stor-
age resources whose prices constantly change according to
market-driven supply and demand conditions. Running tra-
ditional operating systems in these virtual machines is a poor
fit: traditional operating systems are not aware of changing
resource prices and their sole aim is to maximize perfor-
mance with no consideration of costs. Consequently, they
yield low profits.

We present nom, a profit-maximizing operating system
designed for cloud computing platforms with dynamic re-
source prices. Applications running on nom aim to maximize
profits by optimizing simultaneously for performance and
resource costs. The nom kernel provides them with direct
access to the underlying hardware and full control over their
private software stacks. Since nom applications know there
is no single “best” software stack, they adapt their stacks’ be-
havior on the fly according to the current price of available
resources and their private utility from them, which differs
between applications. We show that in addition to achieving
up to 3.9x better throughput and up to 9.1x better latency,
nom applications yield up to 11.1x higher profits when com-
pared with the same applications running on Linux and OSv.

“And in this too profit begets profit.” (Aeschylus)

1.

More and more of the world’s computing workloads run
in virtual machines on Infrastructure-as-a-Service (IaaS)
clouds. Often these workloads are network-intensive appli-
cations, such as web servers or key-value stores, that serve
their own third-party users. Each application owner charges
the application’s users for the service the application pro-
vides, thereby generating revenue. The application owner

Introduction

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

VEE 16 April 2-3, 2016, Atlanta, GA, USA

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3947-6/16/04. ... $15.00

DOI: http://dx.doi.org/10.1145/2892242.2892250

Orna Agmon Ben-Yehuda

Technion
ladypine@cs.technion.ac.il

145

Dan Tsafrir

Technion
dan@cs.technion.ac.il

also pays her cloud provider for the resources used by the
virtual machine in which the application runs, thereby in-
curring expenses. The difference between the application
owner’s revenue and her expenses—and the focus of this
work—is the application owner’s profit, which she would
naturally like to maximize. We depict this cloud economic
model in Fig. 1.

The application owner’s revenue depends on her appli-
cation’s performance. For example, the more simultaneous
users the application can serve, the higher the revenue it
generates. The application owner’s expenses, on the other
hand, depend on how much she pays the cloud provider. To-
day’s IaaS cloud providers usually charge application own-
ers a fixed sum per virtual machine that does not depend
on market conditions. In previous work, we showed that
the economic trends and market forces acting on today’s
IaaS clouds will cause them to evolve into Resource-as-a-
Service (RaaS) clouds, where CPU, memory, network, and
storage resources have constantly changing market-driven
prices [7, 9, 10]. In RaaS clouds, the cloud providers will
charge the application owners the current dynamic market
prices of the resources they use.

IaaS clouds, and to a larger extent, RaaS clouds, represent
a fundamentally new way of buying, selling, and using com-
puting resources. Nevertheless, nearly all virtual machines
running in today’s clouds run the same legacy operating sys-
tems that previously ran on bare-metal servers. These op-

Cloud Provider

Application

Figure 1: Cloud economic model: Applications run in the cloud.
Users pay the application owner for the service the application
provides. The application owner in turn pays the cloud provider for
the cloud resources the application uses (e.g., network bandwidth).

erating systems were designed for the hardware available
decades ago. They abstract away the underlying hardware
from their applications and assume that every resource is at
their disposal at no cost. Most importantly, they were de-
signed solely for maximizing performance with no regard for
costs. They neither know nor care that the resources they use
in the cloud cost money, and that their prices might change,
e.g., due to changes in supply and demand.

We argue that in clouds with dynamic pricing, where
costs can be substantial and resource prices constantly
change, running operating systems designed solely for maxi-
mal performance is counterproductive and may lead to lower
profits and even net losses. Such clouds call instead for a
profit-maximizing operating system, designed to yield maxi-
mal profit by optimizing for both performance and cost, by
changing the amount of used resources and the way they are
used. Maximal profit is reached not when revenue (perfor-
mance) is highest but rather when the difference between
revenue (performance) and expenses (cost) is highest. As
such, profit-maximizing operating systems enable their ap-
plications to pick the right level of performance to operate
at given current market conditions and resource prices. We
show that applications running on a profit-maximizing oper-
ating system can yield an order of magnitude higher profit
when compared with the same applications running on op-
erating systems that optimize for performance exclusively.

We begin by presenting in greater depth the motivation
for a profit-maximizing operating system. In Section 2, we
present two ongoing trends that we believe will cause to-
day’s IaaS clouds to evolve into RaaS clouds with dynamic
resource pricing. They are the increasingly finer spatial gran-
ularity and the increasingly finer temporal granularity of re-
sources that can be allocated to guest virtual machines. We
then present the changes that such clouds mandate in the sys-
tem software stack.

In Section 3, we present nom, a profit-maximizing oper-
ating system we designed for clouds with dynamic pricing.
Applications running on nom aim to maximize their prof-
its from the resources available to them. We describe how
nom’s cost-aware design contributes to its flexibility, which
allows each application to maximize its profit regardless of
other applications’ choices. Since applications know best
about their SLA and valuation of the resources and config-
uration, nom applications are not forced to stick with good-
for-all-but-optimal-for-none choices.

We showcase and evaluate nom’s capabilities using network-

intensive applications. We present three main applications,
the memcached in-memory key-value store [26], the nhttpd
web server, and the Net PIPE networking benchmark [66].
The performance of a network-intensive application is usu-
ally expressed through its throughput, latency, and jitter.
The expenses the application incurs depend on the amount
of bandwidth it uses (i.e., its throughput) and the current
price of network bandwidth. Since the price of bandwidth

146

is beyond the application’s control, the application can only
maximize its profits by controlling its throughput, which af-
fects both revenue and expenses, and the latency and jitter
its users experience, which affect its revenue.

In Section 4, we use utility functions to formalize the rela-
tionship between application throughput, latency, jitter, and
the cost of network bandwidth. An application’s utility func-
tion provides the application’s expected profit from a cer-
tain mix of throughput, latency, and jitter, given the current
price of network bandwidth and the load the application is
under. For example, the simplified utility function below is
a formalization of the scenario where the application owner
benefits from increased throughput (T, measured for exam-
ple in in Gigabits per second (Gbps)), but only as long as
the application’s users’ average latency is below a certain
latency service level objective (SLO) and the price the appli-
cation owner pays her cloud provider per bandwidth unit (P,

in %}JS) is lower than her benefit from that bandwidth unit

(a, also in

$
Gbps)

latency < latency SLO

profit =

=

latency > latency SLO

We consider three potential utility functions that differ in
how the application’s users pay for the service the applica-
tion provides to them. We acknowledge that building utility
functions is hard, but we believe it is worthwhile to do so in
light of the substantially higher profits it yields.

Our profit-maximizing applications re-evaluate their util-
ity functions at runtime whenever the price of bandwidth or
the load they are under change, picking each time the mix
of throughput, latency, and jitter that maximizes their utility
function at that point in time. To enable each nom appli-
cation to have fine-grained control over its throughput, la-
tency, and jitter, nom provides each application with direct
access to the virtual or physical NICs the application uses
and with a private TCP/IP stack and network device drivers,
linked into the application’s address space. Each application
can control its private stack’s throughput, latency, and jit-
ter, by modifying the stack’s batching delay: the amount of
time the stack delays incoming or outgoing packets in or-
der to batch them together. Larger batching delays increase
throughput (up to a limit) while also increasing latency and
jitter. Smaller batching delays reduce latency and jitter but
also reduce throughput. In nom, there is no “best” TCP/IP
stack or “best” NIC device driver as in other operating sys-
tems, because there is no single stack or driver that will al-
ways provide the right mix of throughput, latency, and jitter,
to every application at any given time.

We discuss the implementation of our nom prototype in
Section 5 and evaluate it in Section 6. We show that nom’s
memcached, nhttpd, and NetPIPE outearn as well as
outperform the same applications running on Linux and on
the OSv cloud operating system [43]. When running on nom,

our benchmark applications yield up to 11.1x higher profits
from their resources while also achieving up to 3.9x better
throughput and up to 9.1x better latency.

In Section 7 we discuss the pros and cons of writing a
new profit-maximizing operating system from scratch vs.
constructing it based on an existing operating system such as
Linux. We survey related work in Section § and summarize
the lessons we have learned building nom and the challenges
that remain in Section 9.

2. Motivation
2.1 Dynamic resource pricing is coming

We have identified in previous work [7, 9] two important
trends that we believe will lead to RaaS clouds, where differ-
ent resources have constantly changing prices. These trends
are already apparent in current IaaS clouds and their un-
derlying hardware. They are the increasingly finer spatial
granularity of resources that can be allocated to guest virtual
machines and the increasingly finer temporal granularity in
which resources can be allocated.

Both trends can be seen all the way down to the hard-
ware. Intel Resource Director Technology, for example, en-
ables cloud providers to monitor each virtual machine’s CPU
cache utilization and allocate specific cache ways to selected
virtual machines [3]. Mellanox Connect-X2 and later NICs
enable cloud providers to allocate adapter network band-
width to up to 16 virtual machines and adapt the allocation
in microsecond granularity.

Although most IaaS cloud providers today do not (yet)
take advantage of such capabilities, they already provide
limited dynamic pricing and are moving towards fully dy-
namic resource pricing. VMTurbo, for example, manufac-
tures a private-cloud management layer that relies on re-
source pricing and an economic engine to control ongoing
resource consumption. CloudSigma’s pricing algorithm al-
lows pay-as-you-go burst pricing that changes over time de-
pending on how busy their cloud is; this algorithm prices
CPU, RAM, and outgoing network bandwidth separately.
Perhaps most notably, Amazon’s EC2 spot instances have
a dynamic market-driven price [6] that changes every few
minutes.

Why are cloud providers going in this direction? Is it
not simpler for everyone to just keep the price fixed? By
frequently changing the price of different resources based
on available supply and demand, cloud providers can com-
municate resource pressure to their clients (the applica-
tions/application owners) and influence their demand for
these resources. By conveying resource pressure to clients,
cloud providers incentivize their clients to economize when
needed and consume less of the high-demand resources. By
causing clients to economize, the cloud provider can im-
prove machine density and run more client virtual machines
on the same hardware and with the same power budget.
Higher machine density means lower expenses, increased

147

profits, and better competitiveness. Improving profit mar-
gins by doing more work with the same hardware is espe-
cially important given the cloud price wars that have been
ongoing since 2012 [9].

2.2 Dynamic pricing mandates change

A cloud with market-driven per-resource pricing differs
from the traditional bare-metal platform in several important
areas: resource ownership, economic model, and architec-
tural support. These differences motivate changing the sys-
tem software stack, and in particular, the operating systems
and applications.

Resource ownership and control. On a traditional bare-
metal server, the operating system is the sole owner of every
resource. If the operating system does not use a resource,
nobody else will. In a dynamic pricing cloud, the operating
system (running in a virtual machine) unwittingly shares
a physical server with other operating systems running in
other virtual machines; it neither owns nor controls physical
resources.

Economic model. In the cloud, each operating system
owner (cloud user) and cloud provider constitute a sepa-
rate, selfish economic entity. Every resource that the cloud
provider makes available to users has an associated price.
Each user may have a different incentive, different metrics
she may want to optimize, and different valuations for avail-
able resources. The cloud provider may want to price its
resources to maximize the provider’s revenue or the users’
aggregate satisfaction (social welfare) [10]; one cloud user
may want to pay as little as possible for a given amount of
work carried out by its virtual machines; another cloud user
may want to maximize the work carried out, sparing no ex-
pense. But in all cases, in the cloud, the user pays the current
going rate for the resources her operating system uses. On a
traditional server, resources are there to be used at no cost.

Resource granularity. On a traditional server, the op-
erating system manages entire resources: all cores, all of
RAM, all available devices. In the cloud, the operating sys-
tem will manage resources in an increasingly finer-grained
granularity. This is a consequence of the economic model:
once resources have prices attached to them, it is more effi-
cient for both cloud provider and cloud users to be able to
buy, sell, or rent resources on increasingly finer scales [7].

Architectural support. Operating systems running on
traditional servers usually strive to support both the ancient
and the modern. Linux, for example, only recently dropped
support for the original Intel 386. Modern x86 cloud servers
have extensive support for machine virtualization at the
CPU, MMU, chipset, and I/O device level [67]. Modern
I/O devices are natively sharable [58]. Furthermore, cloud
servers usually present the operating systems running in vir-
tual machines with a small subset of virtual devices. We con-
tend that any new operating system designed for the cloud
should eschew legacy support and take full advantage of the
virtual and physical hardware available on modern servers.

In particular, the hypervisor can rely on hardware virtualiza-
tion [67] and natively sharable I/O devices [58] for security,
and give the guest operating system direct device assignment
(in contrast with older exokernels, which had to protect their
guests from one another).

3.

3.1 Requirements

nom Operating System Design

Given the fundamental differences between the traditional
bare-metal and the cloud run time platforms, we now ask:
What requirements should be imposed on an operating sys-
tem designed for running in virtual machines on cloud
servers with dynamic pricing?

Maximize profit. The first requirement is to enable ap-
plications to maximize their profit. When resources are free,
applications only have an incentive to optimize for perfor-
mance. Performance is usually measured in some applica-
tion specific metric, e.g., in cache hits per second for an in-
memory cache or in transactions per second for a database.
In the cloud, where any work carried out requires paying
for resources and every resource has a price that changes
over time, applications would still like to optimize for per-
formance but now they are also incentivized to optimize for
cost. Why pay the cloud provider more when you could pay
less for the same performance? Thus the operating system
should enable its applications to maximize their profits by
enabling them to optimize for both performance and cost.

Expose resources. On a traditional server, the operating
system’s kernel serves multiple roles: it abstracts and mul-
tiplexes the underlying hardware, it serves as a library of
useful functionality (e.g., file systems, network stacks), and
it isolates applications from one another while letting them
share resources. This comes at a price: applications must ac-
cess their resources through the kernel, incurring run-time
overhead; the kernel manages their resources in a one-size-
fits-all manner; and the functionality the kernel provides,
“good enough” for many applications, is far from optimal
for any specific application.

In clouds with dynamic pricing, the kernel should get out
of the way and let applications manage their resources di-
rectly. Moving the kernel out of the way has several impor-
tant advantages: first, applications become elastic. They can
decide when and how much of each resource to use depend-
ing on its current price, thereby trading off cost with per-
formance, or trading off the use of a momentarily expensive
resource with a momentarily cheap one. For example, when
memory is expensive, one application might use less mem-
ory but more bandwidth while another might use less mem-
ory but more CPU cycles. Second, applications know best
how to use the resources they have [24, 28, 35]. The ker-
nel, which has to serve all applications equally, cannot be
designed and optimized for any one application. Exposing
physical resources directly to applications means that nearly
all of the functionality of traditional kernels can be moved to

148

application level and tailored to each application’s specific
needs.

Isolate applications. When running in a virtual machine
on a modern server, the operating system’s kernel can rely
on the underlying hardware and on the hypervisor for many
aspects of safe sharing and isolation for which it was pre-
viously responsible. For example, using an IOMMU [36],
the kernel can give each application direct and secure ac-
cess to its own I/O device “instances” instead of multi-
plexing in software a few I/O devices between many ap-
plications. Those instances may be SRIOV Virtual Func-
tions (VFs) [29, 58] or they may be paravirtual I/O de-
vices [15, 30, 33, 62].

3.2 Principles

The primary distinguishing feature of nom is that it enables
applications to maximize their profits by (1) optimizing their
entire software stack’s behavior for both performance and
cost; and (2) changing their behavior on the fly according
to the current price of resources. Traditional operating sys-
tems have a kernel that sits between applications and their
I/O devices. The nom kernel, on the other hand, provides
every application with safe direct access to its resources, in-
cluding in particular its I/O devices. Recently proposed op-
erating systems such as the cloud-targeted OSv [43] and Mi-
rage [52, 53], or the bare-metal operating systems IX [18]
and Arrakis [59], all of which can be considered to provide
direct access of some sort, use it purely for performance. In
nom, direct access enables each application to have its own
private I/O stacks and private device drivers that are special-
ized for that application. In particular, IX’s adaptive batching
acts automatically for the whole operating system. It does
not allow for individual optimization points, which are cru-
cial for profit optimization.

The nom kernel itself is minimal. It performs three main
functions: (1) it initializes the hardware and boots; (2) it
enumerates available resources such as CPU cores, memory,
network devices, and storage devices (and acts as a clearing
house for available resources); and (3) it runs applications.
Once an application is launched, it queries the kernel for
available resources, acquires those resources, and from then
on uses them directly with minimal kernel involvement.

3.3 CPU and scheduling

On startup, a nom application acquires one or more cores
from the kernel. From then on until it relinquishes the core
or cores, the application performs its own scheduling using
user threads. The rationale behind user threading is that only
the application knows what task will be profitable to run at
any given moment on its CPU cores. Applications relinquish
cores when they decide to do so, e.g., because CPU cycles
have grown too expensive, in comparison with the benefit
that the application draws from the core. This can happen
because of resource pressure (CPU cycles become expensive
because there is a shortage) or because the application’s

utility from CPU cycles momentarily dropped, for example
because the application is waiting for I/O. Note that the
application only hires a certain CPU cycle rate, it is still the
responsibility of the nom scheduler to preempt applications
if there are more applications than virtual CPUs.

The nom design minimizes the kernel’s involvement in
application data paths. Applications can make system calls
for control-plane setup/teardown operations, e.g., to acquire
and release resources, but high performance nom applica-
tions are unlikely to make any system calls in their data
paths, since their software stacks and device drivers run en-
tirely in user space.

34

Each nom application runs in its own kernel-provided ad-
dress space, unlike unikernel operating systems such as
OSv [43] and Mirage [52, 53], where there is a single global
address space. Each nom application manages its own page
mappings, unlike applications in traditional operating sys-
tems. The kernel handles an application’s page fault by
calling the application’s page fault handler from the kernel
trampoline and passing it the fault for handling. The applica-
tion would typically handle page faults by asking the kernel
to allocate physical memory and map pages on its behalf.
This userspace-centric page fault approach provides appli-
cations with full control over their page mappings, cache
coloring [41], and the amount of memory they use at any
given time. There is no kernel-based paging; applications
that desire paging-like functionality implement it on their
own [32]. The kernel itself is not pageable but its memory
footprint is negligible.

Memory management

3.5 1/0 devices

The nom kernel enumerates all available physical devices
on start-up and handles device hot-plug and hot-unplug. The
kernel publishes resources such as I/O devices to applica-
tions using the bulletin board, an in-memory representation
of currently available resources that is mapped into each ap-
plication’s address space. The bulletin board was inspired by
MOSIX’s [14] distributed bulletin board [11]. When an ap-
plication acquires a device resource, the kernel maps the de-
vice’s memory-mapped I[/O (MMIO) regions in the applica-
tion’s address space and enables the application to perform
programmed I/O (PIO) to the device. The application then
initializes the device and uses it.

Most modern devices, whether virtual devices such as
virtio [62] and Xen’s frontend and backend devices [15], or
natively-sharable SRIOV devices [58], expect to read and
write memory directly via direct memory access (DMA).
Since nom’s model is that applications bypass the kernel
and program their devices directly, devices driven by nom
applications should be able to access the memory pages
of the applications driving them. At the same time, these
devices should not be able to access the memory pages of
other applications and of the kernel.

149

The way nom handles DMA-capable devices depends on
whether the virtual machine has an IOMMU for intra-guest
protection [71]. Providing virtual machines with IOMMUs
for intra-guest protection requires either an emulated 10-
MMU [12] or a two-level IOMMU such as ARM’s sSMMU or
Intel’s VI-d2. When an IOMMU is available for the virtual
machine’s use, the nom kernel maps the application’s mem-
ory in the IOMMU address space of that device and sub-
sequently keeps the MMU’s page tables and the IOMMU’s
page tables in sync.

As far as we know, no cloud provider today exposes an
IOMMU to virtual machines. To enable nom applications to
drive DMA capable devices until such IOMMUSs are present,
the nom kernel can also run applications in trusted mode. In
this mode the kernel exposes guest-virtual to guest-physical
mappings to applications and applications program their de-
vices with these mappings. This means that in trusted mode,
each nom instance should only contain applications that are
trusted not to take over the virtual machine by programming
a device to write to memory they do not own. Untrusted ap-
plications should be sandboxed in separate nom instances.

When a device owned by a nom application raises an
interrupt, the kernel receives it and the kernel trampoline
calls a userspace device handler registered by the application
driving that device. It is the application’s responsibility to
handle device interrupts correctly: acknowledge the interrupt
at the device and interrupt controller level and mask/unmask
device interrupts as needed.

Polling may lead to better performance than interrupts but
interrupts can reduce CPU utilization [22, 37, 46, 54, 64].
Since nom applications have full control over their software
stacks and their devices, they decide when to wait for inter-
rupts and when to poll devices directly, thereby trading off
CPU cycles for performance.

3.6 Networking

The nom operating system provides a default userspace net-
work stack, based on the IwIP network stack [23], and de-
fault network device drivers, including a driver for the vir-
tio [62] virtnet network device. They are provided as a con-
venience and as a basis for modifications. Applications that
wish to yield even higher profits are encouraged to run with
their own customized network stack and network device
drivers.

The default network stack and virtnet device driver al-
ready enable applications which use them to adapt their be-
havior on the fly, by tuning the batching delay. The batching
delay controls the stack’s and driver’s behavior when send-
ing and receiving packets. Applications can use the batching
delay to trade-off throughput, latency, and jitter. Setting the
batching delay to Opsec means no delay: each incoming and
outgoing packet is run to completion. Each packet the appli-
cation transmits (tx packet) traverses the entire TCP/IP stack
and the device driver and is sent on the wire immediately.
Each packet the application receives (rx packet) is passed

from the wire to the driver, to the stack, and to the applica-
tion, before the next packet is handled.

Setting the batching delay to Wusec means delaying
packets by batching them together at various stages in the
stack and in the driver such that no packet is delayed for
more than Wusec. Tx packets are batched together by the
stack and then passed on to the driver as a batch. The driver
batches all of the small batches of packets passed to it by the
stack together into one large batch. When either the transmit
ring buffer is close to overflowing or the first packet in the
large batch has waited Wusec, the driver transmits the large
batch to the device.

The timing of arrival of rx packets is not controlled by
the stack or driver but rather by the device. When W > 0,
the driver receives incoming packets from the wire but does
not pass them on to the stack for processing. The batch is
kept at the driver level until at least one of the following
happens: (1) Wusec have passed; (2) the batch grows beyond
a predefined maximum and threatens to overflow the receive
ring buffer; or (3) there are no additional packets to receive,
e.g., because the connection has been closed. The driver then
passes all of the incoming packets together to the TCP/IP
stack for processing.

Network-intensive applications usually optimize for through-

put, latency, and jitter. Throughput is defined as the number
of bytes they can send or receive in a given time period
or the number of operations they can carry out. Latency is
broadly defined as how long it takes to transfer or receive a
single packet or carry out a single operation. Applications
are usually concerned with either average latency or with
tail latency, defined as the latency of the 99" percentile of
packets or operations. Jitter has many possible definitions.
For simplicity, we define jitter as the standard deviation of
the latency distribution.

A larger batching delay, up to a limit, usually provides
better (higher) throughput but worse (higher) latency and jit-
ter. A smaller batching delay usually provides better (lower)
latency and jitter but worse (lower) throughput. In Section 4
we discuss how applications can use utility functions to pick
the right mix of throughput, latency, and jitter, given the
current price of network bandwidth. After picking the op-
timal mix for current conditions, applications that use the
default network stack and virtnet device driver can modify
the stack’s batching delay to achieve the desired throughput,
latency, and jitter.

3.7 Price-awareness

Optimizing for cost requires that applications be aware of
the current price of resources. The priced daemon queries
the cloud provider via provider-specific means (e.g., the
provider’s REST API) for the current price of resources.
It then publishes those prices to all applications through
the bulletin board. To avoid the need for applications to
continuously poll the bulletin board, yet enable them to react
quickly to price changes, priced also notifies applications

150

of any change in the price of their resources, using a generic
high-performance IPC mechanism that uses shared memory
for bulk data transfer and cross-core IPIs for notifications.

4. Economic model and utility of bandwidth

To maximize profit, nom applications attempt to extract the
maximal benefit from the network resources they have avail-
able to them. This requires that the application be able to for-
mulate and quantify its benefit from network resources given
their current prices. The standard game-theoretic tool for do-
ing this is a utility function: a function that is private to each
application and assigns numerical values—utilities”, or in
our case, profit—to different outcomes.

We consider an application acting as a server, e.g., a web
server or a key-value store. The application generates rev-
enue when it gets paid by its users for the service it pro-
vides. We assume that the amount it gets paid is a function
of its throughput, latency, and jitter. The application benefits
from increased throughput because higher throughput means
serving more users or providing them with more content. We
assume that the amount the application gets paid increases
linearly with its throughput.

The application benefits from reduced latency and jitter
because it can provide its users with better quality of ser-
vice. Better quality of service means improved user satis-
faction. To quantify user satisfaction, we adopt an existing
cloud provider compensation model. Cloud providers such
as GoGrid [2], NTT [4], and Verizon [5] assume that their
users are satisfied as long as their service level objectives
(SLOs) are met; when the provider fails to meet a user’s
SLO, most providers will offer their users compensation in
proportion to the users’ payment for periods in which the
service did not meet the SLO. For example, Gogrid’s Ser-
vice Level Agreement (SLA) reads as follows: “A "10,000%
Service Credit’ is a credit equivalent to one hundred times
Customer’s fees for the impacted Service feature for the du-
ration of the Failure. (For example, where applicable: a Fail-
ure lasting seven hours would result in credit of seven hun-
dred hours of free service [...]).”

We assume that an SLA using equivalent terms ex-
ists between the application and its users. Although cloud
providers list minimal throughput, maximal latency, and
maximal jitter as their SLA goals, we simplify the function
by only considering latency.

We assume that the cloud provider charges the applica-
tion in proportion to the outbound bandwidth it consumes.
Charging by used bandwidth is reasonable for several rea-
sons. First, it is easy for the cloud provider to monitor. Sec-
ond, bandwidth consumption by one application can directly
affect the quality of service for other applications running on
the same cloud when there is resource pressure (limited out-
going bandwidth). Third and most important, this method of
charging is commonly used in today’s clouds. Amazon, for
example, charges for outbound traffic per GB after the first

GB, which is free. CloudSigma charges for outbound traffic
after the first STB/month.

The application does not necessarily know why the price
of bandwidth rises or falls. The cloud provider may set prices
to shape traffic, as CloudSigma started doing in 2010, or the
price may be set according to supply and demand, as Ama-
zon does for its spot instances [6]. The price may even be set
randomly, as Amazon used to do [6]. In Kelly’s [40] terms,
the application is a price taker: it assumes it cannot affect
the prices. It neither knows nor cares how the provider sets
them. This assumption is reasonable when the application’s
bandwidth consumption is relatively small compared with
the cloud’s overall network bandwidth. The application does
know that it will pay for the bandwidth it uses according to
its current price.

The utility functions that we use in this work formalize
the application’s profit from different mixes of throughput,
latency, and jitter, given the current price of bandwidth. Any
such function must satisfy the utility function axiom: it must
weakly monotonically increase as throughput increases and
weakly monotonically decrease as bandwidth cost, latency,
and jitter increase. In other words, the more throughput the
application achieves for the same total cost, latency, and
jitter, the more it profits. As latency and jitter increase, the
application gets paid less or compensates its users more, SO
profit goes down. The higher the price of bandwidth, the
higher the application’s costs, so again profit goes down.

Putting all of the above together, we present three ex-
ample utility functions which are consistent with the utility
function axiom. We begin with the penalty utility function, a
generalization of the simple utility function presented in the
introduction (Eq. (1)). In the simple utility function, the ap-
plication owner benefits from increased throughput (T), but
only as long as the application’s users’ average latency is be-
low a certain latency service level objective (SLO) and the
price the application owner pays her cloud provider (P) per
bandwidth unit is lower than her benefit from that bandwidth
unit («.) In other words, in the simple utility function, users
either pay or they don’t. In the penalty utility function, the
application pays its users a penalty (i.e, the users pay less)
if samples of the latency distribution violate the SLO. The
size of the penalty depends on the probability of violating
the SLO. We define the penalty utility function in Eq. (2) as
follows:

Upenay = T+ (- (1 —min(1, X - N (Lo, L,0))) — P), (2)
where T denotes throughput in €2 or application opera-
tions/second, v denotes the application owner’s valuation of
useful bandwidth in $/Gbit or $/operation, and X denotes the
penalty factor from not meeting the user’s SLO (e.g., 100 in
the GoGrid SLA). L denotes the mean latency (in usecs), Lg
denotes the maximal latency allowed by the SLA, and o de-
notes the latency’s standard deviation (jitter). N'(Lg, L, o)

151

denotes the probability that a normally distributed variable
with mean L and standard deviation o will be higher than
L. In other words, it is the probability that a latency sample
will not meet the latency SLO, and thus trigger compensa-
tion to the application’s user. P denotes the price that the
cloud provider charges the application for outgoing network
bandwidth. The provider’s price is set in $/Gbit, but the ap-
plication may translate it internally to $/operation.

In the case where the sampled latency is always within
the SLO and thus N' — 0, Eq. (2) is reduced to T+ (o —
P), motivating the application to use as much bandwidth
as possible, provided the value it gets from sending data
(c) is higher than the price it pays for sending that data
(P). Conversely, when every latency sample falls outside the
SLO, Eq. (2) is reduced to —7 - P, giving negative utility,
since the penalties for violating the SLA far outweigh any
benefit. It is better in this case to send nothing at all, to at
least avoid paying for bandwidth.

In addition to the penalty utility function, we also con-
sider two additional, simpler, function forms that fit the ax-
ioms and represent other business models. These functions
are inspired by Lee and Snavely [47], who showed that user
valuation functions for delay are usually monotonically de-
creasing, with various shapes, which are not necessarily lin-
ear. Hence, we consider both a linear refund utility function
(which is common in the literature because it is easy to rep-
resent) and a reciprocal bonus utility function, which cap-
tures the diminishing marginal return, characteristic of some
of the functions that Lee and Snavely found.

In the refund utility function in Eq. (3), the application
compensates its user by giving it a progressively larger re-
fund as the mean latency rises, capped at a refund of 100% of
the user’s payment. As in the penalty utility function, @ de-
notes the application owner’s valuation of useful bandwidth.
The 3 parameter is the extent of the refund.

Urefunda = T'- (maX(O, a—p3- L) - P)> 3)

In the bonus utility function in Eq. (4), the application gets
a bonus from its users for small latency values. The bonus
decays to zero as latency grows and cannot exceed some pre-
negotiated threshold, 4. 7y is the extent of the bonus.

Usonss = T+ (a + min(2, §) — P),

i “)

The parameters «, (3, v, J, and X, are application-
specific: they characterize its business arrangements with
its users. Price (P) is dictated by the cloud provider and
changes over time.

We note that the application does not “choose” any func-
tion or parameters that it desires: the utility function is sim-
ply a formalization of the application owner’s business re-
lations and agreements with its users and with its cloud
provider. These relations and agreements include how much
the application owner pays its cloud provider for bandwidth,

how much the application’s users pay the application owner,
how the application owner compensates its users for violat-
ing their SLAs, etc. Having said that, by understanding the
behavior of the utility function, the application owner may
try to strike more beneficial deals with its cloud providers
and its users. Furthermore, the application can adapt its be-
havior on the fly, trading off throughput, latency, and jitter
S0 as to maximize its profit given current bandwidth price.

5. Implementation

We implemented a prototype of nom, including both ring 0
kernel and representative ring 3 applications. The prototype
runs in x86-64 SMP virtual machines with multiple vCPUs
on top of the KVM [42] hypervisor. It can run multiple
applications with direct access to their I/O devices. It can
also run on bare-metal x86-64 servers with SRIOV devices,
without an underlying hypervisor, but that is not its primary
use-case.

We implemented three representative applications that
use the penalty, refund, and bonus utility functions to adapt
their behavior on the fly: memcached, a popular key-value
storage [26], nhttpd, a web server, and NetPIPE [66],
a network ping-pong benchmark. All three applications run
with private copies of the default nom IwIP-based network
stack and the virtnet virtio NIC device driver. All three ap-
plications optimize for both performance and cost by adapt-
ing their stack and driver’s behavior on the fly to achieve
the throughput, latency, and jitter that maximize their cur-
rent utility function given the current price of network band-
width.

We implemented nht t pd from scratch and ported Net -
PIPE and memcached from Linux. The ports were rela-
tively straightforward, since nom supports—but does not
mandate—most of the relevant POSIX APIs, including
pthreads (via userspace threading), sockets, and libevent.
The main missing pieces for application porting are limited
support for floating point (SSE) in userspace and missing
support for signals.

The nom kernel is approximately 8,000 lines of code.
The network stack and NIC device drivers are approximately
45,000 lines code. Both are implemented mostly in C, with
a little assembly.

6. Evaluation
6.1 Methodology

The evaluation aims to answer the following questions:
(1) Does optimizing for cost preclude optimizing for perfor-
mance? (2) Does optimizing for both cost and performance
improve application profit? and (3) Is being able to change
behavior at runtime important for maximizing profits?

We evaluate nom applications against the same applica-
tions running on Linux and on OSv [43]. The applications
run in virtual machines on an x86-64 host with four Intel
Core™ {7-3517U CPUs running at 1.90GHz and 4GB of

152

memory. The host runs Linux Mint 17 “Qiana” with kernel
3.13.0-24 and the associated KVM and QEMU versions. The
host does not expose an IOMMU to virtual machines.

OSv and nom applications run in an x86-64 guest virtual
machine with a single vCPU and 128MBs of memory. Linux
applications run in a virtual machine running Linux Mint
17.1 “Rebecca”, which did not boot with 128MB, so we gave
it a single vCPU and 256MB of memory.

We focus on data transfer prices, because they are the
most dominant factor. According to CloudSigma’s pricing[55],
one CPU core/hour costs about twice as much as one
GB/hour of RAM, and about half as much as one GB of out-
bound data transfer. In network intensive applications (the
benchmarks we use consume hundreds of GBs/hour), this
makes the cost of cores and memory negligible compared
with the cost of bandwidth. In particular, we neglect Linux’s
need for twice the amount of memory (compared with OSv
and nom) and the fact that nom and Linux consume excess
CPU cycles in comparison with OSv. Another reason for
our focus on optimizing profit from network is that applica-
tions are usually inherently elastic when network availability
changes drastically. Furthermore, to use CloudSigma’s data
again, the variability in the bandwidth price is much higher
than in the price of RAM or CPU.

Our experimental setup approximates a cloud with dy-
namic bandwidth prices and assumes that the cloud provider
either does not charge or charges a fixed sum for all other
resources. Each application runs for two minutes. During
the first 60 seconds, the price of bandwidth is $1/Gb. Af-
ter 60 seconds, the price rises to $10/Gb. This situation can
occur, for example, when the application starts running on
a relatively idle cloud but then a noisy, network-intensive
application joins it, driving up the price. The price changes
are inspired by price changes made by real cloud providers:
CloudSigma’s burst prices for bandwidth may be tripled dur-
ing the day. Within 15 minutes they may be doubled [56].
Amazon EC2’s prices for full servers have jumped by sev-
eral orders of magnitude in the past, and they still jump by
an order of magnitude [57].

We run memcached, nhttpd, and Net PIPE, on Linux,
OSv, and nom, and evaluate all three applications with all
three utility functions described in Section 4. The utility
functions take into account price, throughput, and latency,
and the penalty utility function also takes into account jit-
ter. Applications running on Linux and OSv use the default
Linux and OSv stacks and device drivers and are not price-
aware.

Applications running on nom use the default IwIP and
virtnet device driver. They know the throughput, latency,
and jitter they expect to achieve for different settings of the
batching delay. The relationship between batching delay and
throughput, latency, and jitter may be generated online and
refined as the application runs or generated offline [10, 35].
We generated it offline. The applications use this information

and the current price of network bandwidth as input to their
utility functions, tuning their stacks at any given moment
to the batching delay that maximizes their profits. When
the price of network bandwidth or the load they are under
changes, they may pick a different batching delay if they
calculate that it will improve their profit.

We vary the load during the experiment. During the first
60 seconds, we generate a load that approximates serv-
ing many small users. During the second 60 seconds, we
generate a load that approximates serving a single impor-
tant user at a time. The memcached load is generated
with the memaslap benchmark application running with a
GET/SET ratio of 90/10 (the default). The nhttpd load is
generated with the wrk benchmark application requesting a
single static file of 175 bytes in a loop. The Net PIPE server
runs on the operating system under test and the NetPIPE
client runs on the Linux host. memcached and nhttpd
run in multiple threads/multiple requests mode, approximat-
ing serving many small users, or in a single thread/single
request mode, approximating serving a single user at a time.
The NetPIPE client either runs in bi-directional streaming
mode (many) or in single request mode (single) with mes-
sage size set to 1024 bytes. In all cases, to minimize physical
networking effects, the load generator runs on the host, com-
municating with the virtual machine under test through the
hypervisor’s virtual networking apparatus. All power saving
features are disabled in the host’s BIOS and the experiments
run in single user mode.

We run each experiment five times and report the aver-
ages of measured values. The average standard deviation of
throughput and latency values between runs with the same
parameters is less than 1% of the mean for memcached
and less than 3% of the mean for Net PIPE. In nhttpd ex-
periments, the single user scenario exhibits average standard
deviation of both throughput and latency that is less than 1%
of the mean. The many users scenario, however, exhibits av-
erage standard deviation of 10% of the mean for throughput
values and 73% of the mean for latency values.

6.2 Performance

We argued that cloud applications should be optimized for
cost. Does this preclude also optimizing them for perfor-
mance? To answer this question, we begin by comparing the
throughput, latency, and jitter achieved by nom applications
with those achieved by their OSv and Linux counterparts.
Throughput and latency results are the average throughput
and latency recorded during each part of each experiment.
We show in Fig. 2, Fig. 3, and Fig. 4 the throughput and
latency achieved by memcached, nhttpd, and Net PIPE,
respectively, during the first 60 seconds, when they serve as
many users as possible, and during the second 60 seconds,
when they only serve the most important users, a single user
at a time. For all three applications and both scenarios, nom
achieves better (higher) throughput and better (lower) la-
tency than both OSv and Linux. Taking memcached as an

153

memcached many memcached single

=
a - 18 — 128x%
S 40 —seseq0.93x.. E-QLX LB
>~ 30 - 12 0.93x
= o
g 227 6
= 10 — 3
=] o -~ T o T
=
==
500 —-) - 120
— 0.93%
§ 400 — 1.01x o6 —- 0.93% e
= 300 - 72 1.29x%
Z 200 as] £33
£ 100 - 24 : RS
- o i y o ; : KX
> > > >
2 & 5 2 2 5
5 5
Figure 2: memcached throughput and latency
= nhttpd many nhttpd single
g 10 - 7 -
S g _ 1.23x 56 — 1.16x
s . .91
= 6 — a.> 0.91x
= a 2.8 —
=3 0.32x
5 2 1.4
S o o
=
5 — . 250 —
g a - 0.27x 2 200 —
O, E
= 3 — = 150 — T.EIX D
2 2 - & 100
B 1 S
= 2.47x + 50
o =l ‘ =5 = 7, ‘ :
= 3 g 5 3 g
5 < = 5 e =

Figure 3: nhttpd throughput and latency

NetPIPE many NetPIPE single

= — —
= _ 1.42x _ 1.37x
= 320 1.11x 320 1.14x
= 240 — 240 —
£ 160 — 160 —
El
2 80 - 80 -
= o o
_. 100 — 50 —
D 80 — 40 —
Kl 1.10x 1.14x
= 60 - 1.42x 30 - 1.37x
S a0 - 20
=z 20 — 10 —
£
o T i o f T T
> =3 = = A =
= S g = S g
£ S = &= S =

Figure 4: NetPIPE throughput and latency

example, we see that nom achieves 1.01x—1.28x the through-
put of Linux, whereas OSv only achieves 0.93x. We also see
that nom achieves average latency that is 1.01x—1.29x bet-
ter than Linux (vs. 0.93x for OSv) with up to 4x better jitter
when compared with Linux and up to 588x better jitter when
compared with OSv. (Jitter is shown in Table 1.) nhttpd
on nom achieves 1.2x—3.9x better throughput and up to 9.1x
better latency than Linux and OSv, and NetPIPE achieves
up to 1.42x better throughput and latency.

6.3 What makes nom fast?

Network applications running on nom achieve up to 3.9x
better throughput and up to 9.1x better latency than their
Linux and OSv counterparts (Fig. 2, Fig. 3, and Fig. 4).

Scenario 0OS Latency (usec) Jitter (usec)
many Linux 402 499
OSv 434 24,148
nom 399 121
single Linux 82 14
OSv 88 7,638
nom 63 13
Table 1: memcached latency and jitter
Metric oS many single
#exits/sec Linux 43,146 90,166
OSv 43,144 51,237
nom 10,834 18,280
#irq injections/sec Linux 20,245 12,194
OSv 21,768 12,368
nom 999 999
CPU utilization Linux 75% 65%
OSv 59% 63%
nom 87% 98%

Table 2: Average exit rate, interrupt injection rate, and CPU uti-
lization running memcached

This improvement is by virtue of nom’s design and through
careful application of several rules of thumb for writing
high-performance virtualized systems. In particular, nom, as
a cloud operating system, tries hard to keep the hypervisor
out of the I/O path.

Table 2 shows the average number of exits per second for
Linux, OSv, and nom when running memcached. We can
see that nom causes 2.8x—4.9x fewer exits than Linux and
OSv. One of the key causes of expensive hypervisor exits is
injecting and acknowledging interrupts [29]. Since each nom
application has its own device driver, it can decide when to
wait for interrupts and when to poll the device directly. We
can see in Table 2 that the hypervisor only injects approx-
imately 1,000 interrupts to nom while memcached is run-
ning. These 1,000 interrupts are all timer interrupts, which
can be avoided by implementing tickless mode in the nom
kernel. There are no device interrupts because all three nom
applications described previously switch to polling mode as
soon as they come under heavy load. Linux and OSv, in con-
trast, take approximately 20K-22K interrupts in the many
users scenario and approximately 12K interrupts in the sin-
gle user scenario. We can also see that nom’s CPU utiliza-
tion is 87%-98%, higher than Linux and OSv’s 59%—-75%.
Since in our evaluation scenario CPU cycles are “free”, the
nom applications make the right choice to trade off CPU cy-
cles for better throughput and latency by polling the network
device. Linux and OSv applications, which do not control
their software stacks and device drivers, cannot make such a
tradeoff.

154

penalty utility refund utility bonus utility

B 1.25 - 1.25 - 15 - 19
E 1 - 1 - 0.93)(1.04)(1.2 — 0.91x%
& 075 - 0.75 0.9
£ 05 - 0.5 0.6
2 o025 - 0.25 0.3
0 =7 0:00x(0 ‘ 0 ‘
X X > E x > E
§d8 it
Figure 5: memcached profit
penalty utility refund utility bonus utility
60 — 1.30x 275 — 325 —
< 48 —1,00x 220 - 1.81x 260 — L22x
3 36 165 - 195
g 24 110 % 130 0.57x
& 12 55 % 0.40x 65
0 I [0 I
5 3 & 3 3 5 & E
£ o 2 £ o 2 £ o 2

Figure 6: nhttpd profit

In addition to being “hypervisor friendly” by avoiding
costly exits, nom’s applications, default TCP/IP stack, and
default virtnet device drivers are tuned to work well together.
We eliminated expensive memory allocations on the I/O path
in the applications, network stacks and device drivers, and
avoided unnecessary copies in favor of zero-copy operations
on the transmit and receive paths. We also used the time
stamp counter (TSC) to track and reduce the frequency and
cycle costs of data path operations.

Despite the 2.8x—4.9x difference in number of exits and
12x-22x difference in number of interrupts, nom’s through-
put and latency for memcached are only up to 1.3x bet-
ter than Linux’s. This disparity is caused by nom’s de-
fault network stack and default virtnet device driver, which
memcached uses, being not nearly as optimized as Linux’s.
We expect to achieve better performance and higher profits
by optimizing and further customizing the stack and the
driver to each application’s needs. For example, instead of
using the socket API, memcached’s internal event handling
logic could call into internal network stack APIs to bypass
the relatively slow socket layer [31, 38, 61]. Further opti-
mizations and customization remain as future work.

6.4 Profit

Next, we investigate whether optimizing for both perfor-
mance and cost does indeed increase profit. Using the
penalty, refund, and bonus utility functions presented in
Section 4, we calculate how much money the applications
running on Linux, OSv, and nom made. Bandwidth prices
fluctuate as described in the methodology section. « is set to
20 %, [is set to 10 $b1t’ v is set to 0. Oleu and ¢ is set
to + inf (i.e., there is no limit on the bonus). The penalty for
violating the latency SLO in the penalty function (X) is 100,

penalty utility refund utility bonus utility
15 - 15 - 35 -
v 12 - Lal 12 - L 28 — 1.72x
— A41x A41x
A 9 —r12x 21 - 1.21x
£ 6 6 14
o
0 I 0 I 0 I
x > IS x > IS x > IS
3 (%) 3 (%)] (%)
c =4 c =4 c =4
£ ©) c £ o c £ o c
Figure 7: NetPIPE profit
penalty utility refund utility bonus utility
1.25 - 1.25 - 1.5 -
s 1- 1 -0.97x 1.2 .92x
5 075 0.82x 0.75 0:69x 0.9
£ 05 0.5 06
o K
s 025 0:14x 0.25 ' ; 0.3
0 A 0 A 0
s 3 B g 3 B & g B
@© © ©

Figure 8: memcached profit: static vs. adaptive behavior

and the maximal latency allowed by the SLA is 750usec. We
show in Fig. 5, Fig. 6, and Fig. 7 memcached’s, nhttpd’s,
and NetPIPE’s profits. We can see that nom makes more
money than either Linux or OSv with every utility function
and every application. To use the penalty utility function and
memcached as an example, for every $1 of profit Linux
makes, nom makes over 11x more profit, $11.14. OSv does
not profit at all due to its average latency of 7,638 usec for the
single case, more than ten times the latency SLO of 750usec.
For other applications and penalty functions the difference
between operating systems is not as large, but nom always
yields the highest profits.

6.5 What makes nom profitable?

The nom operating system has better performance and yields
higher profits than Linux and OSv. Let us now focus on only
nom (rather than Linux and OSv) and answer the question:
To maximize profits, is it enough to run nom applications
with the settings that provide the best performance, or must
applications also change their behavior on the fly when con-
ditions change? To answer this question, we repeated the
profit experiments from the previous section. This time we
compared nom applications with static behavior that lead to
(1) the best throughput or (2) the best latency with applica-
tions that adapt their behavior. We ran each application for
120 seconds, with price and load changing after 60 seconds.
Each 120 second run used a fixed batching delay in the range
of 0—40usec.

Fig. 8, Fig. 9, and Fig. 10 show the resulting profits. For
the nom applications with static behavior and a fixed batch-
ing delay, each setting of the batching delay gave different
throughput, latency, and jitter results. In the tpt column, we
calculated the profit using the throughput and latency re-

155

penalty utility refund utility bonus utility
ig - 0.94x ZZ - 2;2 g 0:90%
Q _ . X
0.73x 1~
% 36 <5 165 0.87x0.78x 165 o
g 24 X2 110 X 110 >>
£ 12 <R 55 >§ 55 5
) 25
0 0 0
s33% §3E 5o
Figure 9: nhttpd profit: static vs. adaptive behavior
penalty utility refund utility bonus utility
15 - 15 - 45 -
< 12 - 12 36 —
= 1.00x1.00x 1.00x1.00 1.00x1.00x
s 9 X2 9 X2 27 %
g 6 Q 6 X 18 <
a N a
£ 3 < 3 Q 9 K5
0 ;/‘\ 0 \‘/ \‘/
s 3 B s 5 B s 5 B
© © ©

Figure 10: NetPIPE profit: static vs. adaptive behavior

sulting from the batching delay that gave the best absolute
throughput. In the lat column, we used the throughput and
latency resulting from running the nom application with the
fixed batching delay that gave the best absolute latency. In
the adp (adaptive) column, the nom application changed the
batching delay when the price or load changed.

As can be seen in Fig. 8 and Fig. 9, for both memcached
and nhttpd, varying the batching delay depending on the
current price and load yields higher profit than running with
any fixed batching delay. Taking the penalty utility function
as an example, we see that running with the throughput-
optimized batching delay would give memcached 82% of
the profit, but running with this setting would only give
nhttpd 73% of the profit. Likewise, running with the
latency-optimized batching delay would give nhttpd 94%
of the profit, but would give memcached only 14% of the
profit. Hence we conclude that there is no single “one size
fits all” batching delay that is optimal for all applications at
all times. Furthermore, there can be no single “best” stack
and single “best” device driver for all applications at all
times. Each application’s ability to change its stack’s behav-
ior, whether through tuning or more aggressive means, is
crucial for maximizing profit.

Unlike memcached and nhttpd, NetPIPE (Fig. 10)
shows no difference between columns. This is because
NetPIPE is a synthetic ping-pong benchmark; its through-
put is the inverse of its latency. When running on nom, Net —
PIPE tunes its stack to always run with batching delay 0,
minimizing latency and maximizing throughput.

6.6 Effect of batching on throughput and latency

To understand the effect of the batching delay on applica-
tion throughput and latency, we ran each application in both
scenarios with a fixed batching delay between 0—40usec.

ao
38
36
34
32
30
28
26
24

110

~——

0
n

OONNO®OOOKRKF
owmowowowoo
ou

latency [use]

I B R |
LI N B B R B
N
n

throughput [1K ops/s]

o)
]

throughput —f—
latency

o 5 is 20 25 30

o 35
batching delay 'w' [usec]

»
0

Figure 11: memcached throughput (in the many scenario) and
latency (in the single scenario) as a function of batching delay

] /\/\/¥

throughput ——f—
latency

N
T T

T T T T 11
R
o
o

v o)
who N oo
1

throughput [1K ops/s]

o]

5 1s 20 25 30

10 35
batchina delav 'w' [usec]

N
0

Figure 12: nht t pd throughput (in the many scenario) and latency
(in the single scenario) as a function of batching delay

50

throughput —

320 o latancy
£ 300 - r 45—
= (=)
= 280 -]
= 260 - F a0 83
S-24a0 4 =
=3 - 35 =
= 220 - =
S =4
= 200 - L -
= 30

180 o

160 25

5 10 15 20 25 30
batchinag delav 'w' [usec]

35 40

¢}

Figure 13: NetPIPE throughput (in the many scenario) and la-
tency (in the single scenario) as a function of batching delay

Fig. 11, Fig. 12, and Fig. 13 show throughput and latency as
a function of the batching delay for memcached, nhttpd,
and NetPIPE, respectively. The throughput value shown
is the throughput achieved in the “many” scenario, which
is higher than the throughput achieved in the “single” sce-
nario. The latency value shown is the latency achieved in the
“single” scenario, which is lower (better) than the latency
achieved in the “many” scenario.

We can see that for memcached throughput achieves
a local optimum at 14pusec, for nhttpd the optimum is
12psec, and for NetPIPE a delay of Ousec (no delay) is
best. Latency for all applications is best (lowest) with no
batching delay, and each microsecond of batching delay adds
approximately another microsecond of latency.

6.7 Throughput/latency Pareto frontier

Varying the batching delay affects both throughput and
latency. Fig. 14, Fig. 15, and Fig. 16 show (throughput,
latency) pairs with selected batching delays noted above
the points representing them for memcached, nhttpd,
and NetPIPE, respectively. For both memcached and
nhttpd there is a clear Pareto frontier, shown in blue: a
set of (throughput, latency) pairs that are not dominated by
any other (throughput, latency) pair. Taking memcached as

156

latency [usec]

6

24
g
26 28 30 32 34 36
throughput [1K ops/s]

]
o
T T T T T T T T

38 40

Figure 14: The memcached throughput and latency Pareto fron-
tier

210

>*
200 w X
__ 190 w -
$ 180 | *
vz e *
S 170 >*
> 160 F
o b3
— 150 -~ > 13
=
® 140 - 1
130 - .
120+~ O * E
110 ke a— " \ .
5.5 6 6.5 7.5 8

7
throughput [1K ops/s]

Figure 15: The nhttpd throughput and latency Pareto frontier

an example, we see that using a batching delay of 10usec
can yield throughput of approximately 38K ops/s with la-
tency of 74usec. Using a batching delay of 32usec (shown
as a black point with *32’ above it), can also yield through-
put of approximately 38K ops/s with latency of approx-
imately 96usec. Therefore, batching delay 10 dominates
32 because it provides the same throughput with lower la-
tency. With a different batching delay, memcached can
also achieve higher throughput: a batching delay of 14usec
provides approximately 40K ops/s, but not without also in-
creasing latency to 77psec. Therefore both point 10 (38K
ops/s, 74psec) and point 14 (40K ops/s, 77usec) are on the
memcached throughput/latency Pareto frontier, but point
32 is not. nhttpd’s Pareto frontier includes batching de-
lays 0 and 6-12. NetPIPE’s Pareto frontier includes a sin-
gle point, 0. The batching delay settings that are on the
Pareto frontier produce better (throughput, latency) pairs
than all other batching delays not on the Pareto frontier,
but no one point on the Pareto frontier can be consid-
ered better than any other point on the frontier. Whereas
a performance-optimized operating system is designed to
find the “best” (throughput, latency) point for all cases, nom
profit-maximizing applications pick the working point on
the Pareto frontier that maximizes their profit at any given
time given current price and load. When the price and/or
load change, they may pick a different working point. Our
experiments with nom show that there is no single “best”
setting for all applications, scenarios and prices.

7. Discussion

There are two ways one could go about building a profit-
maximizing operating system: based on an existing operat-

60

55
— s0 |
§45>‘<)€>’<
=) e x<
= 40 | e
S ¥k
S 35+ o
< e
S 30 |- - o
E
25 - *

20
160

220 240 260 280 300 320
throughput [Mb/s]

180 200

Figure 16: The Net PIPE throughput and latency Pareto frontier

ing system or from scratch. To turn Linux, for example, into
a profit-maximizing operating system, one could have it run
applications in virtual machines using a mechanism such as
Dune [17] and provide applications with direct access using
direct device assignment [72] or VFIO [69]. The applica-
tions themselves would need to be modified to adapt to the
changing prices of resources and would still need userspace
stacks and device drivers. The primary difference between
building a profit-maximizing operating system from scratch
and basing it on an existing operating system is how one
constructs the kernel.

We felt that going the Linux route would have constrained
the design space, so we decided to implement nom from
scratch to allow a wider and deeper investigation of the
design space. Additionally, at its core, the profit-maximizing
kernel is a nonkernel: a kernel that does as little as possible.
Basing it on Linux seemed wasteful.

In addition to maximizing profits and improving perfor-
mance, the nom approach has several advantages when com-
pared with traditional kernels and exokernels. These include
reduced driver complexity, since drivers now run completely
in userspace, each driver instance serving a single appli-
cation; easier debugging, development and verification of
drivers and I/O stacks, for the same reason; a simpler and
easier to verify trusted-computing-base in the form of the
nom kernel itself [44]; and a system that we hope is more
secure overall, for the same reason. The nom approach can
also be useful for systems where operating power is a con-
cern, by letting applications tune their resource requirements
to the current thermal envelope limits.

The main disadvantages of the nom approach are that it
forsakes legacy architectures and applications. It is designed
and implemented for the kind of modern hardware available
on cloud servers and will not run on older bare-metal ma-
chines. Likewise, it is not at its best when running legacy ap-
plications; realizing its benefits to the fullest extent requires
some level of cooperation and effort on the part of the ap-
plication developer. We believe that in the cloud, breaking
away from legacy is no longer unthinkable.

8. Related work

The nom design draws inspiration from several ideas in oper-
ating system and hypervisor construction. In addition to the
original MIT exokernel [24, 25] and single address space op-

157

erating systems [34, 48], nom also borrows from past work
on userspace I/O (e.g., [19, 20, 27, 65, 70]), virtual machine
device assignment (e.g., [49, 50, 72]), multi-core aware and
extensible operating systems (e.g., [16, 45]), and library op-
erating systems (e.g., [13, 60, 68]). It shares the underlying
philosophy of specializing applications for the cloud with
Mirage [52, 53] and the underlying philosophy of a minimal
kernel/hypervisor with NoHype [39]. OSv [43] is a single
application operating system designed for running in cloud
environments. Arrakis [59] and IX [18] both provide ap-
plications with direct access to their I/O devices on bare-
metal servers. All of these operating systems, however, op-
timize for performance. IX uses adaptive batching like nom,
but it batches packets automatically at the operating system
level, unaware of specific application needs that might arise
in light of SLAs. Furthermore, it does not support different
working points for different application: it only regards con-
gestion as its input. As far as we are aware, nom is the first
and only operating system that maximizes profit by optimiz-
ing for both performance and cost.

The case for clouds with dynamic resource pricing (RaaS
clouds) was first made by Agmon Ben-Yehuda et al. [7, 9].
On the basis of existing trends in the current IaaS industry,
they deduced that the cloud business model must change:
resources must be allocated on an economic basis, using
economic mechanisms inside each physical machine. Gin-
seng [10] was the first implementation of a RaaS cloud for
allocating memory. It showed that running elastic memory
applications inside a traditional operating system such as
Linux can be problematic due to the kernel abstracting away
the hardware.

A common theme in cloud research is optimizing for
cost. EXPERT [8] and Cloudyn [1] schedule workloads on
clouds by taking into account both performance and cost.
Optimizing for multiple goals was also previously explored
in the context of power consumption. Lo et al. [51] balanced
power consumption and latency. Ding et al. [21] optimized
the energy-delay product.

9. Conclusions and future work

Clouds with dynamic pricing pose new challenges but also
provide an opportunity to rethink how we build system soft-
ware. We propose the nom profit-maximizing operating sys-
tem, a new kind of operating system that is designed and
optimized for both performance and cost. The current nom
prototype shows that there is no single “best” network stack
or driver. Instead, nom applications maximize their profits
by having private application-specific software stacks and
changing their behavior on the fly in response to changing
resource prices and load conditions.

The current nom prototype focuses specifically on network-
intensive applications in clouds with dynamic bandwidth
pricing. We are continuing to investigate profit-maximizing
operating systems along several dimensions. First, we are

investigating how to extract maximal value from every re-
source: CPU, memory, network, storage, and power. Sec-
ond, we are investigating software and hardware mecha-
nisms that can help applications change their behavior on
the fly, while also achieving high performance. And third,
we are investigating how to construct application-specific
profit-maximizing I/O stacks and device drivers—preferably
through automatic code synthesis [63].

10. Acknowledgments

This research was funded in part by the Prof. A. Pazi Foun-
dation and by the Israeli Ministry of Science and Technology
(grant #3-9779).

References

[1] Cloudyn Use Cases (Online). https://www.cloudyn.com/use-
cases/.

[2] GoGrid Service Level Agreement (Online).
www.gogrid.com/legal/service-level-agreement-sla.

http://

[3] Intel Xeon processor ES v3 family. http://www.intel.com/
content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-manual-325462.pdf.

[4] NTT Service Level Agreement (Online). http://www.us.ntt.net/
support/sla/network.cfm.

[5] Verizon Service Level Agreement (Online).
www.verizonenterprise.com/about/network/latency/.

[6] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. Deconstructing Amazon EC2 spot instance pric-
ing. In IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), 2011.

[7] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. The Resource-as-a-Service (RaaS) cloud. In
USENIX Conference on Hot Topics in Cloud Computing (Hot-
Cloud), 2012.

[8] O. Agmon Ben-Yehuda, A. Schuster, A. Sharov, M. Silber-
stein, and A. Iosup. Expert: Pareto-efficient task replication
on grids and clouds. In IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS), 2012.

[9] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and
D. Tsafrir. The rise of RaaS: The Resource-as-a-Service
cloud. Communications of the ACM (CACM), 57(7):76-84,
July 2014. ISSN 0001-0782. doi: 10.1145/2627422. URL
http://doi.acm.org/10.1145/2627422.

[10] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda,
A. Schuster, and A. Mu’alem. Ginseng: Market-driven
memory allocation. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE *14, 2014.

[11] L. Amar, A. Barak, Z. Drezner, and M. Okun. Random-
ized gossip algorithms for maintaining a distributed bulletin
board with guaranteed age properties. Concurrency and
Computation: Practice and Experience, 21(15):1907-1927,
2009. ISSN 1532-0634. doi: 10.1002/cpe.1418. URL http:
//dx.doi.org/10.1002/cpe.1418.

http://

158

[12] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster.
vIOMMU: efficient IOMMU emulation. In USENIX Annual
Technical Conference (ATC), 2011.

[13] G. Ammons, D. D. Silva, O. Krieger, D. Grove, B. Rosen-
burg, R. W. Wisniewski, M. Butrico, K. Kawachiya, and E. V.
Hensbergen. Libra: A library operating system for aJVM in a
virtualized execution environment. In ACM/USENIX Interna-
tional Conference on Virtual Execution Environments (VEE),

2007.

A. Barak, S. Guday, and R. G. Wheeler. The MOSIX
Distributed Operating System: Load Balancing for UNIX.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1993.
ISBN 0387566635.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield. Xen and the art
of virtualization. In ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[16] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schiipbach, and A. Singhania.
The multikernel: a new OS architecture for scalable mul-
ticore systems. In ACM Symposium on Operating Sys-
tems Principles (SOSP), 2009. doi: http://dx.doi.org/10.1145/
1629575.1629579.

[17] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazieres,
and C. Kozyrakis. Dune: Safe user-level access to privileged
cpu features. In Symposium on Operating Systems Design &
Implementation (OSDI), 2012.

[18] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. Ix: A protected dataplane operating system
for high throughput and low latency. In Symposium on Oper-
ating Systems Design & Implementation (OSDI), 2014.

[19] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn,
and S. Swanson. Providing safe, user space access to fast,
solid state disks. In ACM Architectural Support for Program-
ming Languages & Operating Systems (ASPLOS), 2012.

Y. Chen, A. Bilas, S. N. Damianakis, C. Dubnicki, and
K. Li. UTLB: a mechanism for address translation on net-
work interfaces. SIGPLAN Not., 33:193-204, October 1998.
ISSN 0362-1340. doi: 10.1145/291006.291046. URL http:
//dx.doi.org/10.1145/291006.291046.

Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. A helper
thread based EDP reduction scheme for adapting application
execution in cmps. In IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS), 2008.

[22] C. Dovrolis, B. Thayer, and P. Ramanathan.
interrupt-polling for the network interface. ACM SIGOPS
Operating Systems Review (OSR), 35:50-60, 2001. ISSN
0163-5980. doi: http://doi.acm.org/10.1145/506084.506089.
URL http://doi.acm.org/10.1145/506084.506089.

[23] A. Dunkels. Design and implementation of the lwIP TCP/IP
stack. In Swedish Institute of Computer Science, volume 2,
page 77, 2001.

[24] D. R. Engler and M. F. Kaashoek. Exterminate all operating
system abstractions. In USENIX Workshop on Hot Topics in
Operating Systems (HOTOS), pages 78-83. IEEE Computer
Society, 1995.

(14]

[15]

(20]

(21]

HIP: hybrid

https://www.cloudyn.com/use-cases/
https://www.cloudyn.com/use-cases/
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.us.ntt.net/support/sla/network.cfm
http://www.us.ntt.net/support/sla/network.cfm
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/
http://doi.acm.org/10.1145/2627422
http://dx.doi.org/10.1002/cpe.1418
http://dx.doi.org/10.1002/cpe.1418
http://dx.doi.org/10.1145/291006.291046
http://dx.doi.org/10.1145/291006.291046
http://doi.acm.org/10.1145/506084.506089

[25] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel:
an operating system architecture for application-level resource
management. In ACM Symposium on Operating Systems
Principles (SOSP), 1995.

[26] B. Fitzpatrick. Distributed caching with memcached. Linux
J., 2004(124):5—, Aug. 2004. ISSN 1075-3583. URL http:
//dl.acm.org/citation.cfm?id=1012889.1012894.

[27] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno,
R. Hunt, and T. Pinckney. Fast and flexible application-
level networking on exokernel systems. ACM Transactions
on Computer Systems (TOCS), 20(1):49-83, February 2002.

A. Gordon, M. Hines, D. Da Silva, M. Ben-Yehuda, M. Silva,
and G. Lizarraga. Ginkgo: Automated, application-driven
memory overcommitment for cloud computing. In Runtime
Environments/Systems, Layering, & Virtualized Environments
workshop (ASPLOS RESOLVE), 2011.

A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau,
D. Tsafrir, and A. Schuster. ELI: Bare-metal performance
for 1/O virtualization. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS),
2012.

A. Gordon, N. Har’El, A. Landau, M. Ben-Yehuda, and
A. Traeger. Towards exitless and efficient paravirtual I/O. In
The 5th Annual International Systems and Storage Conference
(SYSTOR), 2012.

[31] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
Megapipe: A new programming interface for scalable net-
work i/o. In Symposium on Operating Systems De-
sign & Implementation (OSDI), pages 135-148, Holly-
wood, CA, 2012. USENIX. ISBN 978-1-931971-96-
6. URL https://www.usenix.org/conference/osdii2/technical-
sessions/presentation/han.

(28]

[29]

(30]

[32] S. M. Hand. Self-paging in the Nemesis operating system. In
Symposium on Operating Systems Design & Implementation
(OSDI), pages 73-86, Berkeley, CA, USA, 1999. USENIX
Association. ISBN 1-880446-39-1. URL http://portal.acm.org/
citation.cfm?id=296812.

[33] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda,
A. Traeger, and R. Ladelsky. Efficient and scalable paravirtual
I/O system. In USENIX Annual Technical Conference (ATC),
2013.

[34] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and
J. Liedtke. The mungi single-address-space operating
system. Software: Practice and Experience, 28(9):901-
928, 1998. ISSN 1097-024X. doi: 10.1002/(SICI)1097-
024X(19980725)28:9(901::AID-SPE181)3.0.CO;2-7. URL
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:
9(901::AID-SPE181)3.0.CO;2-7.

[35] M. Hines, A. Gordon, M. Silva, D. D. Silva, K. D. Ryu, and
M. Ben-Yehuda. Applications know best: Performance-driven
memory overcommit with ginkgo. In IEEE International Con-
ference on Cloud Computing Technology and Science (Cloud-
Com), 2011.

[36] Intel. Intel virtualization technology for directed I/O, ar-
chitecture specification. ftp://download.intel.com/technology/

159

computing/vptech/Intel(r) VT _for_Direct_IO.pdf, Feb 2011. Re-
vision 1.3. Intel Corporation. (Accessed Apr 2011).

[37] A. Itzkovitz and A. Schuster. MultiView and MilliPage—
fine-grain sharing in page-based DSMs. In Symposium on
Operating Systems Design & Implementation (OSDI), 1999.

[38] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mtcp: a highly scalable user-level tcp
stack for multicore systems. pages 489-502, Seattle, WA,
Apr. 2014. USENIX Association. ISBN 978-1-931971-09-
6. URL https://www.usenix.org/conference/nsdil14/technical-
sessions/presentation/jeong.

[39] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. No-
hype: virtualized cloud infrastructure without the virtual-
ization. In ACM/IEEE International Symposium on Com-
puter Architecture (ISCA), New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0053-7. doi: http://doi.acm.org/10.1145/
1815961.1816010.

[40] E. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8, 1997.

[41] R. E. Kessler and M. D. Hill. Page placement algorithms for
large real-indexed caches. ACM Transactions on Computer
Systems (TOCS), 10(4):338-359, Nov. 1992. ISSN 0734-
2071. doi: 10.1145/138873.138876. URL http://doi.acm.org/
10.1145/138873.138876.

[42] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. KVM: the Linux virtual machine mon-
itor. In Ottawa Linux Symposium (OLS), 2007.

http://www.kernel.org/doc/ols/2007/01s2007v1-pages-225-
230.pdf. (Accessed Apr, 2011).

[43] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti,
and V. Zolotarov. Osv—optimizing the operating system for
virtual machines. In USENIX Annual Technical Conference
(ATC), 2014.

[44] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. selL4: formal ver-
ification of an os kernel. In ACM Symposium on Operating
Systems Principles (SOSP), 2009.

[45] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. K42:
building a complete operating system. In ACM SIGOPS Eu-
ropean Conference on Computer Systems (EuroSys), 2006.

[46] A. Landau, M. Ben-Yehuda, and A. Gordon. SplitX: Split
guest/hypervisor execution on multi-core. In USENIX Work-
shop on I/0 Virtualization (WIOV), 2011.

[47] C. B. Lee and A. E. Snavely. Precise and realistic utility
functions for user-centric performance analysis of schedulers.
In International Symposium on High Performance Distributed
Computer (HPDC), 2007.

[48] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Ev-
ers, R. Fairbairns, and E. Hyden. The design and implementa-
tion of an operating system to support distributed multimedia
applications. Selected Areas in Communications, IEEE Jour-
nal on, 14(7):1280-1297, Sep 1996. ISSN 0733-8716. doi:
10.1109/49.536480.

http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/han
http://portal.acm.org/citation.cfm?id=296812
http://portal.acm.org/citation.cfm?id=296812
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<901::AID-SPE181>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-024X(19980725)28:9<901::AID-SPE181>3.0.CO;2-7
ftp://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
ftp://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
http://doi.acm.org/10.1145/138873.138876
http://doi.acm.org/10.1145/138873.138876

[49] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified
device driver reuse and improved system dependability via
virtual machines. In Symposium on Operating Systems Design
& Implementation (OSDI), 2004.

[50] J. Liu, W. Huang, B. Abali, and D. K. Panda. High perfor-
mance VMM-bypass I/O in virtual machines. In USENIX An-
nual Technical Conference (ATC), pages 29-42, 2006.

D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture,
ACM/IEEE International Symposium on Computer Architec-
ture (ISCA), pages 301-312, Piscataway, NJ, USA, 2014.
IEEE Press. ISBN 978-1-4799-4394-4. URL http://dl.acm.org/
citation.cfm?id=2665671.2665718.

A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire,
S. Hand, T. Deegan, D. McAuley, and J. Crowcroft. Turn-
ing down the lamp: software specialisation for the cloud. In
USENIX Conference on Hot Topics in Cloud Computing (Hot-
Cloud), 2010.

[53] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Uniker-
nels: Library operating systems for the cloud. In ACM Archi-
tectural Support for Programming Languages & Operating
Systems (ASPLOS), 2013.

[54] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transactions on
Computer Systems (TOCS), 15:217-252, 1997. ISSN 0734-
2071. doi: http://doi.acm.org/10.1145/263326.263335. URL
http://doi.acm.org/10.1145/263326.263335.

[55] Notel. https://www.cloudsigma.com/pricing/ accessed in Octo-
ber 2015.

[56] Note2. Kovacs, Kristof, “Charting CloudSigma Burst Prices”,
http://kkovacs.eu/cloudsigma-burst-price-chart, July 2012, ac-
cessed October 2015.

[57] Note3. Paavolainen Santeri, http:/santtu.iki.fi/2014/03/20/ec2-
spot-market/, March 2014, accessed October 2015.

[58] PCI SIG. Single root I/O virtualization and sharing 1.0 speci-
fication, 2007.

[59] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The operating
system is the control plane. In Symposium on Operating Sys-
tems Design & Implementation (OSDI), 2014.

[60] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt. Rethinking the library OS from the top down. In
ACM Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2011.

[61] L. Rizzo. Netmap: a novel framework for fast packet I/O. In
USENIX Annual Technical Conference (ATC), 2012.

[62] R. Russell. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review (OSR), 42
(5):95-103, 2008.

[63] L. Ryzhyk, A. Walker, J. Keys, A. Legg, A. Raghunath,
M. Stumm, and M. Vij. User-guided device driver syn-

thesis. In Symposium on Operating Systems Design &
Implementation (OSDI), pages 661-676, Broomfield, CO,

(51]

[52]

160

Oct. 2014. USENIX Association. ISBN 978-1-931971-16-
4. URL https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/ryzhyk.

[64] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond Softnet.
In Anual Linux Showcase & Conference, 2001. URL http:
/Iportal.acm.org/citation.cfm?id=1268488.1268506.

[65] L. Schaelicke and A. L. Davis. Design Trade-Offs for User-
Level I/0 Architectures. IEEE Trans. Comput., 55:962-973,
August 2006. ISSN 0018-9340. URL http://portal.acm.org/
citation.cfm?id=1159194.

[66] Q. O. Snell, A. R. Mikler, and J. L. Gustafson. Netpipe: A net-
work protocol independent performance evaluator. IASTED
International Conference on Intelligent Information Manage-
ment and Systems, 6, 1996.

[67] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Mar-
tins, A. V. Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and
L. Smith. Intel virtualization technology. Computer, 38(5):
48-56, 2005. ISSN 0018-9162. doi: 10.1109/MC.2005.163.
URL http://dx.doi.org/10.1109/MC.2005.163.

[68] E. Van Hensbergen. P.R.O.S.E.: partitioned reliable operating
system environment. SIGOPS Oper. Syst. Rev., 40(2):12-15,
Apr. 2006. ISSN 0163-5980. doi: 10.1145/1131322.1131329.
URL http://doi.acm.org/10.1145/1131322.1131329.

[69] vfio. VFIO driver: non-privileged user level PCI drivers.
http://lwn.net/Articles/391459/, Jun 2010. (Accessed Feb.,
2015).

[70] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a
user-level network interface for parallel and distributed com-
puting. In ACM Symposium on Operating Systems Principles
(SOSP), New York, NY, USA, 1995.

[71] P. Willmann, S. Rixner, and A. L. Cox. Protection strategies
for direct access to virtualized I/0 devices. In USENIX Annual
Technical Conference (ATC), 2008.

[72] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman. Direct

device assignment for untrusted fully-virtualized virtual ma-
chines. Technical Report H-0263, IBM Research, 2008.

http://dl.acm.org/citation.cfm?id=2665671.2665718
http://dl.acm.org/citation.cfm?id=2665671.2665718
http://doi.acm.org/10.1145/263326.263335
https://www.cloudsigma.com/pricing/
http://kkovacs.eu/cloudsigma-burst-price-chart
http://santtu.iki.fi/2014/03/20/ec2-spot-market/
http://santtu.iki.fi/2014/03/20/ec2-spot-market/
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/ryzhyk
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/ryzhyk
http://portal.acm.org/citation.cfm?id=1268488.1268506
http://portal.acm.org/citation.cfm?id=1268488.1268506
http://portal.acm.org/citation.cfm?id=1159194
http://portal.acm.org/citation.cfm?id=1159194
http://dx.doi.org/10.1109/MC.2005.163
http://doi.acm.org/10.1145/1131322.1131329

	Introduction
	Motivation
	Dynamic resource pricing is coming
	Dynamic pricing mandates change

	nom Operating System Design
	Requirements
	Principles
	CPU and scheduling
	Memory management
	I/O devices
	Networking
	Price-awareness

	Economic model and utility of bandwidth
	Implementation
	Evaluation
	Methodology
	Performance
	What makes nom fast?
	Profit
	What makes nom profitable?
	Effect of batching on throughput and latency
	Throughput/latency Pareto frontier

	Discussion
	Related work
	Conclusions and future work
	Acknowledgments

