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Abstract—Computer architects frequently use cycle-accurate
simulations, which incur heavy overheads. Recently, virtual mem-
ory studies increasingly employ a lighter-weight methodology
that utilizes partial simulations—of only the memory subsystem—
whose output is fed into a mathematical linear model that predicts
execution runtimes. The latter methodology is much faster, but
its accuracy is only assumed, never rigorously validated.

We question the assumption and put it to the test by developing
Mosalloc, the Mosaic Memory Allocator. Mosalloc backs the
virtual memory of applications with arbitrary combinations of
4KB, 2MB, and 1GB pages (each combination forms a “mosaic”
of pages). Previous studies used a single page size per execution
(either 4KB or 2MB) to generate exactly two execution samples,
which defined the aforementioned linear model. In contrast,
Mosalloc can generate numerous samples, allowing us to test
instead of assume the model’s accuracy. We find that prediction
errors of existing models can be as high as 25%–192%. We
propose a new model that bounds the maximal error below 3%,
making it more reliable and useful for exploring new ideas.

“The phenomena surrounding computers are deep
and obscure, requiring much experimentation to
assess their nature.” (A. Newell and H. A. Simon)

I. INTRODUCTION

In recent years, more and more virtual memory studies

abandon the traditional methodology of simulating the entire

CPU and instead use partial simulations of only the virtual

memory subsystem. The main reason for this trend is the

increasing sizes of modern workloads in terms of instruction

count and memory footprint. Evaluating the performance

of such workloads with full (“cycle-accurate”) simulations

might take weeks, if not months, and thus might not be

feasible [4], [5], [8], [9], [23], [31], [32], [34], [42], [53],

[65], [66], [74]. Partial simulations are 100x–1000x faster than

full simulations, but they have an inherent drawback: they do

not report application runtime, the metric that ultimately reflects

the processor’s performance. Instead, they output performance

metrics specific to the virtual memory subsystem, notably, the

number of TLB misses or the latency of walking the page table

(“walk cycles”). Section II further motivates the use of partial

simulations in virtual memory research.

To overcome this limitation, the aforementioned studies

developed simplistic linear models that predict the runtime

based on the partial simulations output, as outlined in Figure 1.

Importantly, the models are tied to a given workload executing

on a given processor. Namely, if workload W executes on

∗ Both authors contributed equally to this work.
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Figure 1: Partial vs. full (cycle-accurate) simulation.

processor P while experiencing a TLB miss rate of M (where

M can be the output of a partial simulation), then the runtime of

workload W on processor P is assumed to be a linear function:

RP
W (M) = α ·M+β . Notably, P is some specific commercial

CPU (e.g., Intel Xeon E5-2420), and the parameters α and β
are fitted against one or two real (R,M) pairs that are measured

using P’s performance counters when W executes. Relying on

a specific, real processor P in this way allows researchers to

entirely refrain from running any full simulation.

Although virtual memory studies often rely on the above run-

time models, they assume—rather than validate—the accuracy

of their models. Some studies additionally neglect to clearly

document their models, thereby hampering reproducibility. We

spent many hours discussing the models with the authors of

previous studies, uncovering the exact specifications and miss-

ing details. Our first contribution is therefore a comprehensive,

detailed survey of all existing runtime models (Section III) and

their limitations (Section IV).

We find that it was impossible for previous studies to validate

their models, as their data was seemingly limited: at most

two (R,M) execution points measured when the memory of

W is backed by either 4KB or 2MB pages. Because these

two points are used for fitting, no additional data remains

for validation. Our second contribution is observing that such

additional data can be obtained by mixing pages of different

sizes. To this end, we design and implement Mosalloc, the

“mosaic memory allocator”, which mosaicks pages of different

sizes into one contiguous virtual address space (Section V).

Mosalloc is publicly available as an open-source library [2].

We apply Mosalloc on a set of memory-intensive workloads

running on different Intel microarchitectures and obtain mul-

tiple new data points. Using this data, we show the previous

models might deviate from true runtimes considerably, by up
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Figure 2: Preexisting models produce errors as high as 25%–192%.
Mosmodel bounds the maximal error below 3%.

to 25%–192% (as summarized in Figure 2a and discussed in

detail in Section VI).

Our third contribution is developing a new runtime model,

Mosmodel, which is 1–2 orders of magnitude more accurate

than preexisting models (Section VII). Mosmodel improves

upon its predecessors in three respects. First, it models

many more execution points than just two with the help

of Mosalloc. Second, it accommodates a new empirical

observation—intuitive in retrospect—that arises from systemati-

cally using Mosalloc: CPUs may become increasingly effective

in alleviating TLB misses when miss frequency drops and

approaches zero (Figure 3). Polynomials of degree 1 (linear

lines) and 2 (parabolic) are not flexible enough to model this

observed behavior (Figure 2b), so we define Mosmodel to be

a polynomial of degree 3.

The third difference between Mosmodel and its predecessors

is accommodating another new empirical observation exposed

by Mosalloc: runtimes of different workloads are predicted

better by different performance metrics, either TLB misses,

or TLB hits, or the aggregated amount of cycles spent on

walking the page tables. Mosmodel consequently utilizes the

three corresponding variables, selecting the most suitable on

a per workload basis. As Mosmodel succeeds to bound the

maximal relative error below 3%, it allows researchers to more

reliably enjoy the benefits of partial simulations.

Architects are usually primarily interested in their partial

simulators (which, e.g., test some new design), whereas we

exclusively focus on the complementary runtime models and

completely ignore the partial simulators. Here is why. Recall

that, by definition, the models RP
W that we study are tied

to some specific, real processor P. The goal of this study
is to address a single key question: how accurate is RP

W
in predicting the runtime of its own P? This question is

independent of any partial simulator—it can only be answered

by executing workloads (W ) on P and measuring their runtime.

Crucially, it makes sense for researchers to use the model RP
W

for exploring new architectural designs (as in Figure 1) only

if the answer to our key question (“how accurate is RP
W in

predicting P”) is “reasonably accurate.” If RP
W fails to predict

even its own original P, then it is clearly wrong to assume

that RP
W can predict a modified P whose (modified) virtual

memory subsystem is being simulated. Thankfully, Mosmodel

is reasonably accurate.
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Figure 3: While the linear model is not able to predict the performance
of spec06/mcf on our SandyBridge platform, Mosmodel is accurate
enough (maximum error < 2%).

II. MOTIVATION

A. Why Trust Partial Simulation Predictions?

The premise underlying the partial simulation methodology

is the following. Based on empirical measurements of the

system, it is possible to devise a mathematical model capable

of predicting the behavior of the full system, from the behavior

of only a subset of the system’s components. The validity of

all the virtual memory papers that employed partial simulations

[4], [5], [8], [9], [23], [31], [32], [34], [42], [53], [65], [66],

[74] explicitly resets on this premise—if it is invalid, then their

outcome is invalid as well. A question that sometimes arises

when discussing the issue of utilizing partial simulations in

the context of virtual memory research is: Why should we

believe the predictions of some runtime model (which we do

not typically “understand”), whose input is representative of

only a part of the system, given that surely there are nontrivial

interactions between this part and the other parts? Because

this question arises, we believe that it is worth considering the

partial simulation methodology in general—beyond the context

of computer architecture—and point out that it is in fact a

standard scientific methodology, routinely used by scientists to

predict the behavior of complex systems fast.

A recent high-profile example of scientists relying on this

premise is the particle physicists at the ATLAS detector in

CERN, who proved the existence of the Higgs boson. These

physicists regularly employ the full and partial simulation

methodology to explore physical theories [1]. The full ATLAS

simulator is slow, limiting its applicability. Partially simulating

it yields faster results but only outputs a limited set of metrics.

The ATLAS physicists therefore introduced mathematical

models that extrapolate the full simulation output. In particular,

they developed ATLFAST-I, a parameterized detector model

that makes use of (is fitted against) measured data. Fitting

against empirical measurements does not reflect any qualitative

understanding. Yet empirically, the ATLFAST-I model works:

it serves as a fast replacement for the full ATLAS simulator,

predicting the full detector readout with 10%–20% accuracy.

As highlighted in Table 1, the partial simulation methodology

employed by computer architects is quite similar to the one
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methodology aspect virtual memory research ATLAS experiment
full simulation models all CPU components, cycle by cycle collisions, their products, and their interaction with the detector

outputs application runtime detector readout
partial simulation models parts of virtual memory subsystem, e.g., TLB particle collisions only

outputs virtual memory performance metrics, e.g., TLB misses type, momenta, and energy of particles generated in collisions
requires runtime model (thus far: linear) parameterized detector model
validated no yes

Table 1: Using partial simulations to model a full system is standard in scientific experiments. The partial simulation methodologies used in
virtual memory research and in the ATLAS experiment are analogous. But only the latter has been validated.

employed by partial physicists, with one important difference:

thus far, our community did not assess the accuracy of the

runtime models it employs.

B. Pros and Cons of Partial Simulations of Virtual Memory

Computer architects regularly use full (cycle-accurate) simu-

lators to estimate the performance of new CPU designs without

having to build costly hardware prototypes [22], [27]. Full

simulations run at rates of several kilo instructions per second,

possibly millions of times slower than executing the application

on a physical CPU. As contemporary workloads may run for

several minutes to hours, fully simulating them will take weeks,

if not months and thus might not be feasible. These high

overheads severely limit the size of workloads and number

of hardware configurations that, realistically, can be simulated

to explore the design space. Others have also observed that

overreliance on full (cycle-accurate) simulators may result in

overfitting to a particular design point [59]. Another weakness

of full simulation is the high development effort it requires

from researchers. For example, the popular gem5 simulator

contains 1.5 million lines of code [18], [19], so understanding

and modifying the code of this complex full simulator might

be challenging.

Full simulations are slow to execute because they capture the

entire system with great detail. Recent virtual memory studies

therefore opted for partial simulations, which reproduce only

the virtual memory subsystem, e.g., the TLB and hardware page

walker [4], [5], [8], [9], [23], [31], [32], [34], [42], [53], [65],

[66], [74]. For example, several recent studies developed partial

simulators based on BadgerTrap, a Linux kernel instrumentation

tool for tracing TLB misses [4], [9], [30], [31], [32], [42].

BadgerTrap slows down workloads by 2x–40x, so it allows

much faster simulation than gem5.

Partial simulators typically output the TLB hit and miss

rates but they can also report the TLB miss latency if they

simulate the memory hierarchy. In the x86-64 architecture,

TLB misses are served by four consecutive reads from the

hierarchical page table [6], [39]. These four memory references

are non-overlapping because each page table entry is accessed

after reading the entry in the previous level. Calculating the

page walk latency thus requires simulating the four references

to the memory hierarchy (L1, L2, L3 caches, and DRAM)

and summing their latencies. Page walk caches accelerate

the page walk by caching parts of the page table, so partial

simulators should also incorporate them to accurately calculate

the number of walk cycles [8], [14], [15], [74]. Simulating the

memory hierarchy and page walk caches (PWCs) is indeed

more complicated than simulating the TLB alone, but is still

faster and simpler than simulating the entire CPU.

Partial simulators are faster and easier to develop, but they

have an inherent drawback—they cannot report the application

runtime, which is the metric computer architects typically use

to determine the processor performance. To overcome this

limitation, most partial simulation studies introduced linear

models that predict the runtime based on the number of TLB

misses, as illustrated in Figure 1. All existing models are

surveyed in Section III.

Considering the wide adoption of linear models for predicting

runtime, we initially ask: are the linear models accurate enough?

Previous studies neither addressed nor acknowledged this

question. In this study, our first contribution is developing

a new methodology that allows us to answer this question.

We find that the somewhat disappointing answer is that the

models might deviate considerably by up to 25%–192% from

real runtimes, as shown in Figure 2a. Arguably, such errors

are unacceptable nowadays, when the average performance

improvement rate of processors is around 10% per year (page

3 in [35]). Runtime prediction should be, say, an order of

magnitude more accurate, within 1%, to allow for a more

reliable computer architecture research.

C. No Simulation Methodology is a Silver Bullet

The aforementioned high errors of existing runtime models

seemingly indicate that the partial simulation methodology is

unreliable, which implies that the full simulation methodology

is preferable for computer architecture research, despite its

high cost. We contend that this is not the case for two reasons.

First, because in this paper we develop a runtime model

that is significantly more accurate (Figure 2b). The second

reason is that the full simulation methodology, as commonly

practiced, suffers from notable drawbacks too, as outlined next.

As these drawbacks might cast a shadow on the reliability

of full simulations, it is not that one methodology is strictly

preferable to the other.

One drawback, as previously noted, is that full simulations

of real-world workloads are often too lengthy to be feasible.

Researchers therefore usually resort to sampling the instruction

stream input to reduce simulation time. In particular, the

common practice in virtual memory studies from the last

decade is to use “blind sampling”, namely, to fast-forward a few

billions of instructions of the workload and then to simulate

another few billions [3], [13], [16], [17], [21], [26], [51],

[52], [60], [61], [62], [63], [64], [68], [70]. (For comparison,

typical workloads execute hundreds to thousands of billions
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of instructions.) A main weakness of blind sampling is that it

might be nonrepresentative, because it ignores the time varying

behavior of real workloads. Indeed, the seminal SimPoint work

measured an average simulation error of 80% for when blind

sampling was applied [67].

Another drawback pointed out by the SimPoint study is

that sampling is inherently ineffective for capturing relatively

rare events, like L2 cache misses, even if using SimPoint’s

phase-aware sampling. Therefore, arguably, it is possible that

applying sampling in virtual memory studies, whose focus is

workloads that experience relatively infrequent events like TLB

misses, might lead to unreliable full simulation results. Future

research may perhaps develop reliable sampling methods in

the context of virtual memory research. But as things currently

stand, both the full and the partial simulation methodologies

require validation in this context, and it is possible that both

yield results that are not representative of real (rather than

simulated, sampled) systems.

While sampling is typically necessitated for conducting full

simulations in a reasonable time, the sampling component is

in fact orthogonal to the type of simulation. Partial simula-

tions can work on sampled application traces just like full

simulations do. And indeed, several virtual memory studies

that employed partial simulations also sampled their input to

speed up the simulation [4], [23], [65], [74]. Validating the

sampling technique for full simulations is thus an opportunity

for accelerating partial simulations as well. Importantly, by

definition, partial simulations can be much shorter than full

simulations, and so they will continue to be a valuable tool

for researchers to explore wider spaces of parameters and

configurations, assuming they are validated.

D. Validating Runtime Models

Enhancing partial simulations with runtime models is a

compelling idea, because it combines the speed of partial

simulations with the ability to estimate the bottom-line per-

formance. Alas, to our knowledge, no study has proven that

the previously proposed linear models are indeed capable of

accurately predicting the runtime. Validating runtime models,

just like validating any scientific model, requires experimental

data to compare against the model predictions. The problem is

that current research has very little data: two points, measured

when the application uses either 4KB or 2MB pages. Since

these two points are used to fit the linear models, we cannot

use them to validate the models.

Proper validation of the linear models requires more data

than the two points collected for 4KB and 2MB pages. The

problem is that x86-64 processors support only three page

sizes, which might suggest that it is possible to obtain only

one more experimental data point. We speculate that this could

be the reason previous studies never attempted to validate the

models they used. Our main insight is that multiple empirical

points are possible to obtain by mixing pages of various sizes,

in a controlled manner, when backing the memory address

space of the application at hand. There are no allocators that

support such a functionality. We thus designed and implemented

notation description
R runtime: num. of unhalted application execution cycles
H num. of translations that missed on L1 TLB but hit on L2 TLB
M num. of translations that missed on both L1 TLB and L2 TLB
C walk cycles, spent on walking the page table upon TLB misses

Table 2: Performance metrics utilized by previous studies to define
their (linear) models, which they employed to complement their partial
simulations. The metrics were collected on real CPUs on a per-
benchmark basis.

Mosalloc, a new memory allocator, which allows users: (i) to

back the address space of applications with an arbitrary mix of

pages of different sizes, and (ii) to control and systematically

vary the number and placement of these pages. Mosalloc stands

for “Mosaic Memory Allocator”. We use the term “mosaic”

because the allocator is mosaicking pages of different sizes

into one contiguous virtual address space. Section V describes

the design and implementation of Mosalloc.

We used Mosalloc to run several benchmark workloads

under dozens of mixed memory layouts that were not possible

thus far. We collected the performance statistics of these

runs on three different x86-64 platforms to obtain dozens

of experimental samples for each workload on each processor.

Unlike previous studies, our datasets contain many more than

just two experimental samples. This new data obtained via

Mosalloc enables us to validate the linear runtime models [4],

[5], [8], [9], [23], [31], [32], [34], [42], [53], [65], [66], [74],

as reported in Section VI.

We emphasize that the scope of this study is validating run-

time models and not simulators. Simulators and runtime models

are of course connected, as the input for the runtime model

is obtained through partial simulation (see Figure 1), and so

accurate simulations are a prerequisite for accurate predictions.

Still, runtime models stand in their own right regardless of

simulations, and the model accuracy is independent of the

simulator accuracy.

III. EXISTING RUNTIME MODELS

The runtime models proposed in prior virtual memory

research are all linear. Namely, the models assume that runtime

is a linear function of the virtual memory metrics as listed in

Table 2: the TLB hit rate, the TLB miss rate, or the number of

walk cycles (that is, the number of CPU cycles spent during

page table walks). We name these models after their authors: the

Basu, Pham, Gandhi, Yaniv, and Alam models. We spent many

hours discussing the models with their authors and making sure

we represented their work accurately. Each model assumes a

somewhat different linear form but all are defined by one or

two data points collected via the performance monitoring unit

(PMU) of the processor. The PMU consists of a set of hardware

performance counters: special-purpose registers that are able to

store the counts of processor events, e.g., the number of TLB

misses or the number of branch mispredictions. All previous

work collected data on Intel platforms, as only Intel PMUs

provide the ability to measure the walk cycles (e.g., events

0x0408, 0x0449 in the SandyBridge microarchitecture [40]).
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The Basu Model [9], [66] was the first model for estimating

runtimes. The model assumes that an application runtime R is

a linear function of M, the number of TLB misses while the

application is running (M is the output of a partial simulation):

R = α ·M+β .

The model parameters α,β are fitted to empirical data measured

when the application runs on a real machine. That is, if M4K ,

C4K , and R4K are the measured number of TLB misses, cycles

spent on page table walks, and the total execution cycles when

using 4KB pages, respectively, then:

α =
C4K

M4K
, β = R4K−C4K .

Basu model is thus the linear curve that passes through the

following two points in the two-dimensional (M,R) space:

(0,R4K−C4K) , (M4K ,R4K).

The Basu model is based on two simplistic assumptions. The

first assumption is that the ideal runtime, i.e., the execution

time when the L2 TLB never misses, is β = Rideal = R4K−C4K .

The mathematical interpretation is that servicing TLB misses

stall the application from progressing, so eliminating all TLB

misses shortens the runtime R4K by the cycles spent on page

walks, as counted by C4K . The second assumption is that

the latency of servicing a TLB miss (in units of cycles) is

constant and equal to the average latency α =Caverage =
C4K
M4K

.

Unfortunately, these two assumptions do not hold in practice,

and the maximum relative error of the Basu model is 192%,

as reported in Section VI.

While Basu et al. considered the runtime overestimation

favorably, we argue that it is a serious weakness of their model.

Overestimating the runtime can be considered as conservative

approach when assessing the benefits of a new architectural

design. For example, Basu et al. used their model to bound

the runtime gains from their proposed direct segments design,

promising that the true runtimes are lower than those predicted

by their model. But a model that sometimes overestimate

runtimes is problematic when comparing several new archi-

tectural designs. Computer architects, who are required to

choose between direct segments and another competing design,

should know the accurate runtime benefits–rather than lower

bounds–of these designs.

The Gandhi Model [5], [31], [32], [42] also assumes:

R = α ·M+β ,

like the Basu model, but defines the parameters differently:

α =
C4K

M4K
, β = R2M−C2M .

Gandhi et al. recognized that subtracting the page walk cycles

from the total execution cycles may be inaccurate when the

page table walks overlap with other processor stalls. They

believed that calculating the ideal runtime β from the 2MB

pages configuration will minimize this inaccuracy and fix the

shortcomings of the Basu model. Unfortunately, the results

in Section VI demonstrate that the Gandhi model is still not

accurate enough, with prediction errors as high as 115%.

The Pham Model [23], [65] assumes that every cycle spent

on address translation, either when the CPU misses in the L1

TLB and searches the L2 TLB or when the CPU misses in

the L2 TLB and walks the page table, is directly added to the

overall runtime:

R = 7 ·H +C+β .

The number of L2 TLB hits H is multiplied by 7 because this

is the L2 TLB access latency reported by Intel [41]. Similarly

to the Basu model, the parameter β is the “execution time if

virtual memory was completely free,” i.e., if C = 0 and H = 0.

β is calculated by:

β = R4K−C4K−7 ·H4K .

The primary flaw of the Pham model lies in its naive assump-

tion that the CPU stalls when it translates virtual addresses. In

practice, however, modern CPUs are able to execute multiple

independent instructions simultaneously (superscalar and out-

of-order) without waiting for the page walk to be completed,

thereby hiding a large amount of the address translation latency.

This problem was also recognized by other researchers as

well [52] This unrealistic assumption underlying the Pham

model may lead to optimistic (that is, lower) predicted runtimes

for some workloads. Our full numbers (not given in this paper

due to space constraints) confirm that the Pham model predicts

optimistic runtimes for all tested workloads and machines.

Section VI shows that the relative error of the Pham model

may be as high as 179%.

The Alam Model [4], [73] takes the number of table walk

cycles C as an input:

R =C+β ,

and defines the single parameter β similar to Gandhi:

β = R2M−C2M .

Alam et al. used this model to estimate the performance of

their newly-proposed DVMT (Do-It-Yourself Virtual Memory

Translation) design. The runtime of the DVMT configuration

is calculated according to:

RDV MT =CDV MT +β .

Since the number of walk cycles CDV MT cannot be measured

directly but only simulated, Alam et al. proposed to estimate

it through:

CDV MT =Csim
DV MT ·

C4K

Csim
4K

.

In other words, Alam et al. compensated for the simulator

inaccuracy by scaling the simulation output by some factor.

We evaluated the Alam model on real data measured on our

three experimental platforms, so we did not need to apply this

scale factor. We found that the maximum relative error of the

Alam model is 111%.
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The Yaniv Model [34], [53], [74] assumes that the address

translation overhead is the walk cycles multiplied by some

factor α:

R = α ·C+β ,

The parameter α is the page-walk slowdown factor. For

example, α = 0.7 means that every cycle spent on page table

walks slows the application by 0.7 cycles. Note that the Alam

model is a equivalent to the Yaniv model where α = 1. The

latter is thus more flexible than the first as it introduces a

second parameter for the slope, α , in addition to β , which, as

before, is the ideal runtime when virtual memory incurs no

overhead. This flexibility relaxes the unrealistic assumption

underlying the Pham model that page table walks completely

halt the progress of the application. The model parameters

α, β correspond to the linear curve that passes through two

points, (C2M,R2M), (C4K ,R4K), which are measured when the

application uses 4KB and 2MB pages, respectively. Section VI

shows that the Yaniv model predictions deviate from true

runtimes by up to 25%.

IV. MODELING ASSUMPTIONS AND LIMITATIONS

Recall that the preexisting models surveyed in the previous

section are tied to a given workload W executing on a given

processor P. (We denoted R rather than RP
W only for brevity.)

Executing the same workload W on different processors P1,P2

typically produces different performance counter values of

R,H,M,C. The resulting model RP1
W would thus be different

than RP2
W because the model parameters are fitted to the

performance counter data. Similarly, two workloads W1,W2

running on the same processor P typically yield different

performance counter values and hence different models. The

conclusion is that modifying the workload source code or

even linking the compiled object files in a different order [56]

require running the new workload to collect the performance

counters (whose values typically change) and then recomputing

the model parameters based on the new values.

Considering that all runtime models (past and new) are

processor-specific, our study asks: can these models actually

serve the purpose for which they were invented, that is, pre-

dicting the performance of newly-proposed processor designs?

Namely, is it reasonable to estimate the performance of a new

processor P̄ with a model RP
W built for another processor P?

Importantly, all the relevant previous studies assumed that the

answer is positive [4], [5], [8], [9], [23], [31], [32], [34], [42],

[53], [65], [66], [74]. We contend that a necessary condition

for this assumption to hold is that RP
W accurately predicts the

runtime of P, the original processor for which the model was

built. Conversely, if RP
W is not accurate enough for describing

P, then we should not expect the model to predict the runtime

of P̄ accurately. A main goal of this study is to assert this

necessary condition by measuring the accuracy of preexisting

models with respect to their associated processors.

Another assumption underlying the partial simulation

methodology is that P and P̄ differ in their virtual memory

subsystem only while the other processor subsystems of P and

P̄ are identical. By definition, a runtime model whose inputs

are virtual memory related metrics (H,M,C) accounts for part

of the overall performance. The model abstracts from the

potentially nontrivial interactions between the virtual memory

subsystem and other system components. For example, increas-

ing the size of the processor data caches may not affect TLB

miss rate but will frequently affect the runtime. Similarly, more

sophisticated out-of-order execution could be more effective

in hiding TLB miss latency. It is probably safe to assume that

it is impossible to capture such architectural differences via a

model that merely factors virtual memory related performance

metrics. (Conceivably, it may perhaps be possible to develop

a mathematical formula that predicts runtime in a manner

that is not application- or architecture-specific, by having it

utilize many more variables that correspond to many more

architectural events; this is outside our scope of work.)
As noted, the partial simulation methodology is common in

other scientific fields; Section II-A gives the ATLAS experiment

as an equivalent example.

V. MOSALLOC: DESIGN AND IMPLEMENTATION

We created Mosalloc, a memory allocator that serves memory

requests with a user-defined mixture of standard pages and

hugepages. Mosalloc is implemented as a dynamic library

that is loaded before glibc and hooks all memory requests

made by an application. First, Mosalloc intercepts malloc [47]

requests by hooking the morecore function, which malloc calls

when it needs to extend the heap. Second, Mosalloc intercepts

direct invocations of brk [45], mmap [49] and munmap [50],

the primary memory system calls in Linux, by overriding

their glibc wrapper functions. To apply Mosalloc, the user

should link the library to the application at run-time using the

LD PRELOAD [46] environment variable. Note that Mosalloc

is an independent library so it does not require modifying the

existing source code or rebuilding the application. Additionally,

Mosalloc is implemented in user-space and does not require

kernel modification.
Mosalloc allows the user to back the address space of

applications with arbitrary combinations of page sizes. To

accomplish this, Mosalloc manages three pools that serve

the three types of memory requests in Linux: (1) brk calls,

(2) anonymous mmap calls, and (3) file-backed mmap calls. The

user should specify the layout of the brk pool and the layout

of the anonymous mmap pool through a set of environment

variables, which Mosalloc takes as an input. The brk and

anonymous mmap pools can mix pages of different sizes, as

outlined in Figure 4. Mosalloc allocates these pools via the

mmap system call with the relevant flags (MAP HUGETLB,

MAP HUGE 2MB, and MAP HUGE 1GB). The file-backed

pool is backed only with 4KB pages because Linux does not

support file-backed mmap calls with hugepages; these mmap

calls are served from the page cache, which Linux manages

only with 4KB pages [49], [58].

The Heap Pool serves morecore requests and direct calls to

the brk and sbrk system calls. This pool effectively replaces the

original heap allocated by the operating system. When glibc
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heap (brk) pool

anonymous pool

file pool

4KB 2MB 1GB

Figure 4: Mosalloc forwards user memory requests to 3 separate
memory pools. The heap and anonymous mapping pools are backed
by user-specified combinations of 4KB, 2MB, and 1GB pages. The file
mapping pool is backed by 4KB pages only.

malloc needs to extend the heap, it calls morecore, which in

turn calls sbrk. The sbrk and brk system calls allocate and

deallocate memory by changing the location of the heap top

(the “program break”). When glibc is loaded, it first calls

sbrk(0) to get the current address of the heap top. Mosalloc

intercepts this call and returns the current address of its heap

pool. Further brk and sbrk calls by the program will refer to

this returned address, so they will automatically allocate and

deallocate memory on the heap pool.

The Anonymous Mapping Pool serves mmap calls that

specify the MAP ANONYMOUS flag [49]. Memory allo-

cations in this pool are served according to the “first fit”

algorithm. We chose this algorithm because it performs better

than the alternatives of “best fit” and “worst fit” in terms of

runtime complexity and memory utilization [69]. Similarly to

the heap pool, Mosalloc frees memory only from the top of the

anonymous mapping pool. While this design simplifies the pool

management, it may lead to memory fragmentation compared

to glibc munmap, which immediately reclaims memory regions.

We measured the additional memory consumption to be less

than 1% for our tested workloads. We leave the development

of better, more efficient memory management algorithms for

future work.

A. Work Related to Hugepages

Explicit Hugepage Support was the first mechanism Linux

offered for user code that wishes to back its memory with

hugepages. This mechanism relied on the hugetlbfs virtual

file system—a pool of hugepages [24], which the root user

can reserve at boot-time or at run-time (if there is enough

contiguous memory). User code can explicitly request to

use these reserved hugepages by invoking the mmap system

call with the MAP HUGETLB flag along with either the

MAP HUGE 2MB or MAP HUGE 1GB flags [49]. Mosalloc

differs in that it serves memory allocation requests with

hugepages transparently, without modifying the user code.

Transparent Hugepages (THP) was introduced in Linux

2.6.38 [25], [57]. As its name suggests, this feature provides

transparent allocation of hugepages to user applications. “Trans-

parent” means that the user does not have to modify and rebuild

the application code. In fact, THP does not even require to

link the binary with some library at runtime, as required with

Mosalloc. THP is limited compared to Mosalloc because it:

(1) does not allow the user to specify the exact placement

of hugepages in the application address space, (2) supports

only 2MB pages and not 1GB pages, and (3) interferes with

the application execution by dynamically promoting/demoting

hugepages, which might cause significant overheads [44].

Libhugetlbfs is a user-space library that allows applications to

back their memory with a single size of hugepages [54]. Similar

to Mosalloc, applications that wish to use libhugetlbfs are not

required to modify their code, but instead load this library at run-

time by setting the LD PRELOAD environment variable [46].

Additionally, the user should specify the requested hugepage

size, either 2MB or 1GB, in the HUGETLB MORECORE

environment variable. Libhugetlbfs works by hooking the

morecore function, which malloc calls when it needs to extend

the heap. Libhugetlbfs implements morecore by allocating a

hugepage-backed block at the heap top.
Libhugetlbfs has several limitations that motivated us to

develop Mosalloc. First, libhugetlbfs backs the address space

of applications uniformly, using either 2MB or 1GB pages, and

does not allow mixing pages of different sizes in a controlled

manner. Second, libhugetlbfs intercepts only malloc calls, so

it does not support workloads that allocate their memory with

the mmap or brk system calls, e.g., the graph500 benchmark.

Third, workloads that use allocators different from glibc, e.g.,

Hoard [11], [12] or TCMalloc [33], cannot use libhugetlbfs

to alter their memory allocations because these allocators do

not provide the morecore hook. Finally, libhugetlbfs fails to

intercept all allocation requests because malloc sometimes gets

more memory without using morecore, as we explain later in

Section V-C.

B. Mosalloc Contributions
Mosalloc is the first tool that allows user applications to back

their memory with a predefined combination of hugepages. As a

user-space library, Mosalloc has the advantage that it is portable

across Linux kernel versions. Similar to libhugetlbfs [54],

Mosalloc can be loaded dynamically with existing binaries

to transparently back their memory with hugepages. Unlike

libhugetlbfs, Mosalloc is not based only on glibc morecore

hook and is able to support applications and libraries that

manage their memory with mmap and brk. In other words,

Mosalloc is more portable than libhugetlbfs because it intercepts

all POSIX system calls that allocate memory (rather than

just malloc), so it can work in principle on any POSIX-

compliant operating system and/or libc implementation, e.g.,

musl libc [28] (although we tested it only on Linux with

glibc). Additionally, Mosalloc fixes a bug in libhugetlbfs, which

does not intercept malloc requests that call mmap directly, as

explained in the next section. Finally, Mosalloc is somewhat

simpler to use than libhugetlbfs because it does not require

mounting the hugetlbfs file system.
Mosalloc may have broader use cases beyond performance

prediction for computer architects. For example, high-end users

may optimize the performance of their Linux applications by

using Mosalloc to back memory regions that suffer from TLB
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misses with hugepages. We released Mosalloc publicly, hoping

that other researchers and engineers will find it useful [2].

C. Implementation Challenges

The main technical challenge in implementing Mosalloc

was guaranteeing that it hooks all memory allocation requests

made by the application. Naively preloading a library that

overrides the memory allocation functions malloc, brk, mmap,

and munmap does not work, because these functions are

implemented in the same library — glibc. Consequently, mmap

calls from malloc are statically linked to the mmap address at

compile-time. Mosalloc needs to eliminate such mmap calls

completely because it cannot hook them at run-time. A possible

solution would be modifying glibc malloc to call Mosalloc

instead of mmap. Unfortunately, modifying glibc is non-trivial

because glibc auto-generates large parts of its source code. We

therefore used two “tricks” to disable mmap calls from malloc.

First, malloc calls mmap directly when the requested block

is larger than MMAP THRESHOLD (defaults to 128KB) and

bypasses the morecore function, which serves memory requests

smaller than MMAP THRESHOLD. Since these direct calls

to mmap cannot be hooked, Mosalloc disables them by setting

the M MMAP MAX parameter to 0 through mallopt [48].

Libhugetlbfs uses the same technique to force malloc not to

allocate memory with mmap.

Second, malloc calls mmap directly when it detects a lock

contention by concurrent memory allocations from multiple

threads. In that case, malloc allocates new memory regions,

called “arenas”, that will serve the contending memory requests

concurrently and reduce the allocation latency. The new arenas

are allocated with mmap rather than morecore, which means

they cannot be hooked. Mosalloc limits glibc to use only one

arena through the M ARENA MAX parameter of mallopt.

Libhugetlbfs does not use the same technique so it does not

allocate all application memory with hugepages. We consider

this behavior a bug of libhugetlbfs.

VI. EXISTING MODELS ARE INACCURATE

A. Benchmarks and Platforms

We tested Mosalloc on three Intel platforms, described in

Table 3, to examine processors with different virtual memory

designs. Table 4 displays the TLB parameters of five recent Intel

processor generations. The TLB of SandyBridge and IvyBridge

contained 512 entries, which then doubled in Haswell and

tripled in Broadwell [41]. The number of TLB entries for 2MB

pages has also increased substantially, from 32 in SandyBridge

to 1536 in Skylake. Furthermore, starting at Broadwell, Intel

processors are equipped with a second page table walker

to handle TLB misses parallel with the primary one. We

disabled hyper-threading to tune our machines for maximum

performance; Intel splits the L1 and L2 TLB entries between

logical cores when hyper-threading is enabled. Similarly to

previous studies, we did not test AMD or ARM processors

because they cannot measure “walk cycles” with their PMU.

We tested Mosalloc on a set of workloads from several

benchmark suites, which are listed in Table 5. We examined

generation processor (cores x sockets) main memory L3
SandyBridge 1.9GHz Xeon E5-2420 (6Cx2) 96GB/1.6GHz 15MB
Haswell 2.1GHz Xeon E7-4830 v3 (12Cx2) 128GB/1.6GHz 30MB
Broadwell 2.2GHz Xeon E7-8890 v4 (24Cx4) 512GB/2.4GHz 60MB

Table 3: All the machines we use run Ubuntu 18.04.3 LTS (Linux 4.15)
and are tuned for maximum performance (TurboBoost on and hyper-
threading off in BIOS). All CPUs have 32 KB L1d, 32 KB L1i, and
256 KB L2 caches per core.

L1 TLB entries L2 TLB entries page
generation year 4KB 2MB 1GB 4KB 2MB 1GB walkers
SandyBridge 2011 64 32 4 512 0 0 1
IvyBridge 2012 64 32 4 512 0 0 1
Haswell 2013 64 32 4 1024 shared 0 1
Broadwell 2014 64 32 4 1536 shared 16 2
Skylake 2015 64 32 4 1536 shared 16 2

Table 4: TLBs have grown in recent Intel microarchitectures.

only TLB-sensitive workloads, whose performance varies by

at least 5% when backed with 1GB pages. (Mosalloc can

be applied to any Linux x86-64 executable, but there is no

point in testing workloads whose performance is independent

of the memory layout.) We also limit our investigation to

short benchmarks, running for less than 10 minutes on our

Broadwell machine, to allow us to measure each benchmark

under dozens of virtual memory layouts. Each workload is run

for several repetitions until the variation in runtime (the ratio

of the standard deviation to the mean runtime) is less than 5%.

The error bars are not shown in all figures to avoid cluttering.

Each run is bound to the cores and memory of a single socket

to minimize NUMA effects. Multi-threaded workloads were

given all cores of the processor to which they are bound.

B. Selecting Memory Layouts

Mosalloc allows users to back address spaces with arbitrary

combinations of regular pages and hugepages. But it does not

find combinations that yield helpful data. As our goal is to

validate runtime models over a wide range of inputs, we require

memory layouts that produce distinct data points spread across

the (H,M,C) space (regardless of if they are “realistic” layouts,

which is irrelevant). We thus develop an algorithm that finds

such points using three layout-exploration heuristics: growing

window, random window, and sliding window. A window is a

contiguous memory region covered with 2MB hugepages. A

heuristic generates N+1 layouts for a given N.

Growing Window This heuristic backs a growing part of the

address space with hugepages. Let S be the address space size.

For i=0,1,...,N, the i-th layout window starts at 0 and covers

suite cites suite description & benchmark selection
SPEC CPU2006 [36], [37] single-threaded compute: mcf, omnetpp
SPEC CPU2017 [20], [38] likewise: xalancbmk s, omnetpp s
Graph500 [7], [55] compress+BFS graphs of size: 2/4/8 GB
GUPS [43] random read from array of size: 8/16/32 GB
XSBench [71] multithreaded Monte Carlo simul.: 4/8/16 GB
GAPBS [10] multithreaded kernels: BC, PR, BFS, SSSP

on real-world graphs: twitter, road, web

Table 5: In each suite, we use all TLB-sensitive benchmarks.
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i ·S/N of the space. Thus, the first layout uses 4KB pages only,

and the last layout backs the entire space with 2MB pages.

Random Window This heuristic generates each layout with

a window that has a random length and start address.

Sliding Window This heuristic is more sophisticated. It

(1) collects the workload’s TLB miss trace with PEBS [40];

(2) identifies the smallest “hot region”, namely, a contiguous

segment that accounts for X percent of all TLB misses (when

using 4KB pages) for a given X ; (3) defines the hot region as

the window of the first layout; and (4) slides this window in

steps of 1/N of the hot region size, thus gradually backing a

smaller part of the region with hugepages. Sliding is towards

the low or high addresses depending on if the hot region is at

the top or bottom of the address space, respectively.

We construct 54 layouts for each workload: 9 layouts with

Growing Window (N=8), 9 with Random Window, and 9×4=36

with Sliding Window using four values of X (20%, 40%, 60%,

and 80%). Sliding Window yields the most diverse outcome,

because (1) it utilizes additional information to detect and

focus on the hot region (the TLB miss trace), and because,

(2) empirically, for most workloads, TLB misses are mostly

concentrated in a relatively small memory region. For example,

80% of the TLB misses of graph500/2GB originate from its

heap’s highest 80MB. Thus, in this case, a random layout

would typically either entirely back or entirely miss this region,

performing similarly to either “all 2MB” or “all 4KB” layouts,

respectively. For this reason, random sampling is less effective.

C. Fitting Models and Measuring Prediction Errors

We run each workload W on each processor P with each of

the i=1,2,...,54 memory layouts. We measure the runtime Ri
and metrics (Hi,Mi,Ci) and thus acquire many more samples

than just the two used by previous models. We can now assess

the accuracy of the existing models (surveyed in Section III)

by calculating the maximal absolute relative error:

maxErr(W,P) = max
1≤i≤54

∣∣∣∣Ri− R̂i(Hi,Mi,Ci)

Ri

∣∣∣∣ , (1)

and the associated geometric mean:

geoMeanErr(W,P) = ∏
1≤i≤54

(∣∣∣∣Ri− R̂i(Hi,Mi,Ci)

Ri

∣∣∣∣
) 1

54

, (2)

where Ri and R̂i are the measured and predicted runtimes,

respectively. The minimal absolute error is zero for all models,

as all pass through at least one experimental data point.

To build and test our newly proposed models (defined in

Section VII), we employ two methods. The first fits and tests

the models against all available data. Namely, for each W and

P pair, we use all 54 samples to build the corresponding model

and to measure its accuracy with Equations 1–2. We select

the number of samples (54) to be big enough to adhere to

the one-in-ten rule, which statisticians employ to keep the risk

of overfitting low when conducting regression analysis [72].

Whereas our most complex model has 19 coefficients (third-

degree polynomial with three variables; see Section VII-C), it

model poly1 poly2 poly3 Mosmodel
maximal error 36.4% 19.1% 20.0% 4.3%

Table 6: Maximal cross validation errors (compare to Figure 2b).

utilizes Lasso regression that leaves only 5 nonzero coefficients

or less, which is indeed ≥10x smaller than 54.

The second method we use to build and test our models is

K-fold cross validation [29]. This method combats overfitting

by splitting the data into K disjoint equal-sized subsets, called

“folds”, such that K-1 folds serve as a training set (to fit the

model parameters) and the remaining fold serves as the test

set (to compare against the model’s predictions and compute

the errors). This procedure is conducted K times, such that

each individual fold serves as the test set. We then compute

the maximal error across all K test folds.

All results shown in this paper relate to the first method,

which fits/tests against all the data. The exception is Table 6,

which summarizes the maximal cross validation errors of our

new models across all machines and workloads.

When comparing this table to Figure 2b, we see that cross

validation errors are worse, but that Mosmodel still clearly

outperforms the rest and yields a relatively low maximal error.

(Cross validation is irrelevant to the preexisting models shown

in Figure 2a, as they are entirely determined by one or two

specific points and therefore cannot be trained.)

We favor fitting/testing against all data points over cross

validation (while adhering to the one-in-ten rule to reduce the

risk of overfitting), because our experience suggests that the

former is more compatible with the highly-sensitive maximal

error metric, in that it converges faster. In particular, when

using cross validation, 54 samples were sometimes not enough,

requiring us to use up to 100 points to achieve a low (≤5%)

maximal error for Mosmodel.

D. Results and Discussion

Figures 5 and 6 present the maximal and geometric mean

of the prediction errors, respectively, for all tested workloads

and platforms. Our analysis henceforth focuses on maximal

(rather than mean) errors, as we want to highlight the worst

case and also refreain from bias caused by taking into account

the 4KB and 2MB points, for which the linear model errors

are zero. We find that all previously proposed models yield

significant prediction errors when tested against experimental

data produced with Mosalloc, indicating that the existing

models might not be accurate enough for virtual memory

research. The gapbs/bfs-road benchmark is missing from the

Broadwell chart of Figures 5 and 6 because it is not TLB-

sensitive according to our definition (its performance improves

by less than 5% when backed with 1GB pages). The same

workload is TLB-sensitive on older platforms like SandyBridge

and Haswell, which have smaller TLBs.

Figure 7 exemplifies how we calculated the Basu model

error for the gapbs/sssp-twitter workload on our SandyBridge

platform. We initially executed this benchmark with 4KB pages

and measured the runtime, walk cycles, and TLB misses in
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Figure 5: Per-benchmark maximal absolute prediction errors of all models; Mosmodel is typically below 2%.
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Figure 6: Per-benchmark geomean absolute prediction errors of all models; Mosmodel is typically below 0.5%.

this configuration to define the Basu model. We then used

Mosalloc to measure the same workload under 54 different

memory layouts that mix 2MB and 1GB pages. Basu et al.

believed that their model is pessimistic, predicting runtimes

that are always higher than the true values, because it does not

consider the gains from eliminating L1 TLB misses that hit

in L2 TLB. However, the measured data reveals that the Basu

model is optimistic for this workload, predicting runtimes that

are 42% lower than the true runtimes. These errors are the

result of the underlying assumptions of the Basu model, as

explained in Section III.

We note that the significant prediction error of the Basu

model at low TLB misses configurations is alarming because

these configurations are associated with (nearly) zero virtual

memory overhead, which is the operational point of several

recent studies. For example, the direct segment studies [9], [31]

proposed hardware designs that nearly eliminate the address

translation overhead. Arguably, the experimental data obtained

with Mosalloc is relevant and indicative to these studies because

direct segments have an affect similar to backing an application

with hugepages, like is done by Mosalloc. Figure 7 suggests

that these studies reported overly optimistic, unrealistically

Figure 7: Runtime predicted by the linear model may be 42% lower
than the real runtime for gapbs/sssp-twitter.

high performance improvements, relying on a linear model,

which we now see might be inaccurate.

Several studies proposed virtual memory designs whose

performance falls somewhere between 4KB and 2MB pages.
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Existing linear models do not reach the maximum prediction

errors (> 100%) in this region because they were calibrated

to pass through the 4KB,2MB points. For example, the Basu

model errors in the 4KB–2MB range lower than the maximum

error achieved near the zero page walk overhead point, as

demonstrated in Figure 7. These relatively-low errors might

suggest that linear models are adequate for evaluating newly

proposed hardware designs that operate in this range. But

hardware designs that operate in this range likewise promise

proportionally smaller performance gains, so those “relatively-

low errors” are big enough, relatively speaking, to raise doubt

regarding the validity of the evaluation results. For example,

the MICRO’15 work by Pham et al. [65] operates in the 4KB–

2MB range, where the Pham model indeed suffers from errors

of “only” a few tens of percents. But Pham et al. reported

that “on average, runtime is improved by 14%”, so the error

is comparable to the claimed improvement. Namely, when the

performance gains are around 10%, errors of 10% are too high.

Figure 5 shows that the prediction errors on our Broadwell

platform are higher compared to the SandyBridge and Haswell

platforms, sometimes exceeding 100%. We analyzed these

high errors and discovered that they are caused by negative
runtime predictions of the Basu model. As mentioned in Table 4,

Broadwell processors have two page table walkers that can

work simultaneously. Accordingly, the hardware event C counts

two “walk cycles” when these two page table walkers are active

at the same cycle. The overall number of walk cycles may

thus exceed the total execution cycles, as happens in the gups

benchmarks. In these cases, the ideal runtime β predicted by

Basu is negative.

VII. CONSTRUCTING AN ACCURATE RUNTIME MODEL

Having demonstrated that the existing runtime models are

inaccurate, we develop a series of more accurate models, by

analyzing the muliple data points obtained with Mosalloc and

by learning how real-world applications behave when their

memory layout changes. We first evaluate a simple linear

regression model, which achieves 26% accuracy in the worst

case. Observing that the runtime is not always linear in the

number of walk cycles, we evaluate higher-order polynomial

models (with degree 2 and 3), which achieve up to 6% accuracy.

We then utilize more inputs for the model (in addition to walk

cycles) and employ Lasso regression—a statistical method to

select the most relevant inputs. This new multi-input, third-order

polynomial model, denoted Mosmodel, bounds the prediction

errors below 3%.

A. Linear Regression Model

We first define a linear model, R=α ·C+β , which considers

the entire dataset obtained with Mosalloc (54 samples). This

model differs from prior models, because they were defined by

using just one or two samples. The model fits its parameters

through linear regression [29], minimizing the sum of the

squared errors on all measured data points and thus making it

the best linear model possible for this purpose. In particular, this

model is more accurate than the five linear models discussed in

Figure 8: Linear regression describes spec06/omnetpp well.

Figure 9: The slope of the spec17/xalancbmk model is > 1.

Section III. Figure 5 shows that the maximal prediction error

of the linear regressor (“poly1”) is 26% over all workloads

and machines. For some workloads, e.g., spec06/omnetpp, the

linear regression model is suitable, as shown in Figure 8.

Interestingly, we find that for some workloads α > 1, which

means that TLB misses might increase the runtime by more than

just the table walk cycles they cause. This finding contradicts

the common assumption of previous studies that TLB misses

may stall the processor completely but superscalar and out-of-

order processors can hide some of this overhead. Figure 9

presents the linear regression model of spec17/xalancbmk

running on our Broadwell machine as an example where the

slope α > 1. While this finding is somewhat surprising at first

sight, we now explain it by carefully analyzing the performance

statistics of this workload.

Table 7 shows the performance counters collected from two

runs of spec17/xalancbmk, one with all 4KB pages and another

with all 2MB pages. The Broadwell machine L2 TLB contains

1536 shared entries for 4KB and 2MB page translations. Given

that spec17/xalancbmk memory footprint is 475MB, the L2

TLB is large enough to eliminate all TLB misses for this

workload when 2MB pages are used. Indeed, our measurements

show that there are almost no TLB misses when the application

used 2MB pages. In contrast, this workload suffers from

a significant number of TLB misses when 4KB pages are
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performance counter program walker
(in billions) 4KB 2MB 4KB 2MB
runtime cycles 1320 1155
walk cycles 76 0
TLB misses 2 0
L1d loads 317.1 317.1 2.0 0.0
L2 loads 64.3 64.3 1.6 0.0
L3 loads 22.4 20.0 1.0 0.0

Table 7: Runtime statistics of spec17/xalancbmk; when comparing
cache loads, surprisingly, we see a difference in L3.

used. When the CPU handles these TLB misses, it inserts the

page table entries to its L1/L2/L3 caches, which might cause

warm application data to be evicted from the caches. Table 7

shows that the 4KB pages configuration experiences more L3

cache references than the 2MB pages configuration: 22.4 ·109

compared to 20 ·109. Some of the extra references (2.4 ·109)

are induced by the page walker itself (1 ·109 compared to 0),

and the remainder are, probably, caused by interference with

the application data.

B. Polynomial Models

The linear regression model addresses the main flaw of

previously-proposed linear models by accounting for more

than just two experimental data points. Still, this model is not

flexible enough to describe runtime accurately for all workloads,

as demonstrated in Figure 3. The gups/16GB runtime does

not follow a linear trend and the linear regression error may

be as high as 13%. Based on this empirical observation, we

suggest to favor polynomial models of degree two or three

over the linear regression model. Figure 10 shows that a

polynomial of degree two (poly2) is flexible enough to describe

gups/16GB, predicting the measured data with a maximum

error of 2%. Looking at all workloads and machines, the

maximum prediction error of a third-degree polynomial model

(poly3) is 6%, as shown in Figure 5. The empirical observation

that application runtime sometimes behaves like a polynomial

function demonstrates that the processor pipeline is able to

hide the table walk cycles better when their number is lower.

Conversely, when the number of walk cycles is high, the page

table entries and the application working set contend for cache

resources, and so the performance degrades by more than just

the table walk cycles.

C. Mosmodel: Multi-Input Polynomial Models

There are multiple performance metrics associated with the

virtual memory subsystem, and there is no reason to expect

that one specific metric would consistently outperform the rest

as a runtime predictor across all workloads. We thus suggest

to extend the model input to a vector �X = (H,M,C) rather

than just the walk cycles C. The new multi-input, third-degree

polynomial model is called Mosmodel:

R(H,M,C) = β +α0 ·C+α1 ·M+α2 ·H+

+α3 ·C2 +α4 ·CM+α5 ·CH + ...
(3)

Models that take more inputs should, in principle, perform

at least as well as models that take only walk cycles, because

Figure 10: Linear regression is unable to accurately predict the perfor-
mance of gups/16GB on SandyBridge, but the third-order polynomial
is accurate enough (maximum error < 2%).

the former can always ignore the additional inputs and base

their prediction on the walk cycles. However, Figure 5 shows

that the Mosmodel error is sometimes higher than the errors

of poly1, for instance, for the spec17/xalancbmk s benchmark.

The reason is that both Mosmodel and poly1/2/3 are trained

through least-squares linear regression, which minimizes the

average squared error. Our evaluation, on the other hand,

measures the maximal absolute error. In practice, the maximum

error is correlated to the average squared error, so this issue

does not change the big picture: Mosmodel performs better

than poly1/2/3 and bounds the prediction error below 3% across

all workloads and machines.

Mathematically speaking, extending the input vector to three

variables makes the predictive model more flexible because a

third-order polynomial in three variables has 20 parameters,

compared to 4 parameters with a single input variable. But

excessively flexible models tend to suffer from overfitting: the

models will fit accurately to known data but will poorly perform

when predicting the output for new, unseen inputs. To tackle

the overfitting problem, we employ the Lasso regularization

method for linear models [29], which basically limits the model

flexibility by examining only a subset of the entire space of

linear models. Lasso regression also has another advantage:

it sets some of the linear coefficients to zero and effectively

“selects” the relevant input variables for the model.

The newly-proposed Mosmodel raises interesting questions,

e.g., which of the three inputs (H,M,C) are most useful for

predicting the runtime of different workloads and why. To

estimate the relative importance of these inputs, we fitted a

single-variable, first-order linear regressor for C, M, and H.

We then calculated the coefficient of determination, denoted

R2, which provides a measure of how well the model output

(runtime in our case) are explained by the model. Table 8

reports the R2 values of each individual input for all workloads

on all machines. We see that the most useful predictors of

runtime are C (the number of walk cycles) and M (the number

of TLB misses). For most workloads, C and M are highly

correlated, so using both of them is somewhat redundant, but

for some workloads one of them is more important than the
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SandyBridge Haswell Broadwell
workload C M H C M H C M H

gups/32GB 1 1 .96 1 1 .98 .99 .99 .94
gups/16GB 1 .99 .95 1 .99 .95 .99 .99 .39
gups/8GB .99 .99 .95 .99 .98 .82 .99 .99 .72
spec06/mcf .99 .96 .33 .95 .90 .82 .91 .94 .91
spec06/omnetpp 1 .99 .93 .97 .95 .85 .98 .97 .90
spec17/omnetpp s .95 .68 .90 .97 .95 .83 .95 .93 .81
spec17/xalancbmk s 1 .99 .93 .99 .99 .91 .96 .96 .96
graph500/2GB .96 .94 .93 .99 .99 .90 .94 .93 .89
graph500/4GB .95 .84 .91 .99 .99 .14 .99 .99 0
graph500/8GB .95 .72 .91 .99 .99 .76 .98 .98 .65
xsbench/4GB .98 .98 .87 .98 .98 .01 .98 .97 .08
xsbench/8GB .98 .97 .96 .98 .98 0 .98 .97 .02
xsbench/16GB .99 .83 .99 .97 .96 0 .97 .96 0
gapbs/bc-twitter .88 .79 .88 .83 .73 .68 .50 .37 .38
gapbs/bfs-road .95 .95 .84 .90 .92 .29
gapbs/bfs-twitter .99 .97 .94 .94 .90 .77 .89 .86 .61
gapbs/pr-twitter .99 .99 .85 .98 .99 .11 .99 .99 .01
gapbs/sssp-twitter .99 .96 .76 .99 .96 0 .94 .87 .05
gapbs/sssp-web .98 .71 .53 .96 .72 0 .94 .72 0

Table 8: The R2 values of linear regression as a function of C (walk
cycles), M (L2 TLB misses), and H (L2 TLB hits).

other. We see that H is the least valuable input because linear

regression in H yields low R2, sometimes reaching 0, which

indicates that the optimal regressor is a constant function – the

mean of all observations.

D. Validating Mosmodel: a Case Study

We now validate Mosmodel by applying it to predict the

performance of an existing virtual memory feature: 1GB pages.

In practice, computer architects should use Mosmodel to

evaluate new virtual memory designs that do not exist yet,

e.g., direct segments as proposed by Basu et al. [9] But since

we want to validate Mosmodel, we must be able to compare

its predictions against real hardware. We thus demonstrate the

usefulness of Mosmodel in predicting the performance benefits

from 1GB pages, which exist in all Intel microarchitectures

since Westmere.

For each workload, on each machine, the training set consists

the 54 Mosalloc layouts that use 4KB and 2MB pages (as

described in Section VI) while the test set is the single

Mosalloc layout that uses only 1GB pages. The validation

procedure goes as follows: (1) measure dozens of Mosalloc

layouts that use only 4KB and 2MB pages on real hardware,

(2) build Mosmodel from this data, (3) measure the 1GB pages

layout on real hardware (which is equivalent to simulating

this configuration under a perfectly accurate partial simulator

of the virtual memory subsystem), (4) apply Mosmodel to

predict the runtime with 1GB pages from the “simulated”

virtual memory numbers (H,M,C), (5) calculate how much the

Mosmodel prediction deviates from the measured runtime of a

Mosalloc layout that uses only 1GB pages, and (6) compare

the Mosmodel error with the errors of past linear models.

We found that both Mosmodel and past linear models predict

the 1GB pages layout accurately for most workloads and

machines. For the vast majority of workloads, the runtime

Figure 11: While the Yaniv model error is 10%, Mosmodel is accurate
enough (maximum error 1%) for gapbs/pr-twitter on our SandyBridge
platform.

with 1GB pages is similar to the runtime with 2MB pages,

since both configurations effectively eliminate all TLB misses.

Linear models that pass through the 2MB point, e.g., the Yaniv

model, are thus able to predict the runtime with 1GB pages

accurately. However, in several cases the existing linear models

are inadequate while Mosmodel accurately predicts the runtime

with 1GB pages. Figure 11 presents such example.

Evidently, the runtime of gapbs/pr-twitter on our Sandy-

Bridge platform follows a polynomial trend as a function of

the page walk cycles C. It is thus not surprising the Yaniv model

does not describe this workload well. Figure 11 shows that

the Yaniv prediction deviates from the true runtime when 1GB

pages are used by 10%. Mosmodel, on the other hand, is more

flexible than the linear model, predicting the runtime accurately.

Note that the spec06/mcf benchmark on SandyBridge is another

example where Mosmodel outperforms preexisting models, as

shown in Figure 3.

VIII. CONCLUSIONS

Runtime models are routinely used for estimating the perfor-

mance of new virtual memory designs. But no previous study

has ever assessed their accuracy. We validate the preexisting

models using Mosalloc, a new memory allocator we develop

that combines regular pages and hugepages when backing the

address space of applications. Mosalloc allows us to acquire

experimental data that was unavailable until now. With this

data, we find that the prediction errors of preexisting models are

sometimes high enough to cast doubt on previously published

results, as they might deviate from real runtime by up to 25%–

192%. We propose a more accurate alternative, Mosmodel,

which bounds the maximal error below 3%.
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