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ABSTRACT
CPUs routinely offload to NICs network-related processing tasks
like packet segmentation and checksum. NIC offloads are advanta-
geous because they free valuable CPU cycles. But their applicability
is typically limited to layer≤4 protocols (TCP and lower), and they
are inapplicable to layer-5 protocols (L5Ps) that are built on top of
TCP. This limitation is caused by a misfeature we call “offload de-
pendence,” which dictates that L5P offloading additionally requires
offloading the underlying layer≤4 protocols and related functional-
ity: TCP, IP, firewall, etc. The dependence of L5P offloading hinders
innovation, because it implies hard-wiring the complicated, ever-
changing implementation of the lower-level protocols.

We propose “autonomous NIC offloads,” which eliminate offload
dependence. Autonomous offloads provide a lightweight software-
device architecture that accelerates L5Ps without having to migrate
the entire layer≤4 TCP/IP stack into the NIC. A main challenge that
autonomous offloads address is coping with out-of-sequence pack-
ets. We implement autonomous offloads for two L5Ps: (i) NVMe-
over-TCP zero-copy and CRC computation, and (ii) https authentica-
tion, encryption, and decryption. Our autonomous offloads increase
throughput by up to 3.3x, and they deliver CPU consumption and
latency that are as low as 0.4x and 0.7x, respectively. Their imple-
mentation is already upstreamed in the Linux kernel, and they will
be supported in the next-generation of Mellanox NICs.
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1 INTRODUCTION
Layer-5 networking protocols (L5Ps) built on top of TCP are com-
monplace and widely used. Examples include: (1) the transport layer
security (TLS) cryptographic protocol [17, 107], which provides se-
cure communications for, e.g., browsers via https [106]; (2) storage
protocols like NVMe-TCP [92], which allow systems to use remote
disk drives as local block devices; (3) remote procedure call (RPC)
protocols, such as Thrift [116] and gRPC [32]; and (4) key-value
store protocols, such as Memcached [24] and MongoDB [52].

L5Ps are frequently data-intensive, as it is in their nature to move
bytes of network streams to/frommemorywhile possibly transform-
ing or computing some useful function over them. Such processing
tends to be computationally heavy and therefore might adversely
affect the performance of the applications that utilize and depend
on the L5Ps. In most cases [55], the data-intensive processing con-
sists of: encryption/decryption, copying, hashing, (de)serialization,
and/or (de)compression. It is consequently beneficial to acceler-
ate these operations and thereby improve the performance of the
corresponding applications, which is our goal in this paper.

We classify prior approaches to accelerate L5P processing into
three categories (§2). The first is software-based. It includes in-
kernel L5P implementations, such as that of NVMe-TCP [35, 41]
and TLS [16]. It also includes specialized software stacks that bypass
the kernel and leverage direct hardware access [70, 71]. These type
of techniques are good for reducing the cost of system software
abstractions. But they are largely irrelevant for accelerating the
actual data-intensive operations.

The second category consists of on-CPU acceleration. It encom-
passes specialized data-processing CPU instructions, such as those
supporting the advanced encryption standard (AES) [15, 36], secure
hash algorithms (SHA) [1, 37], and cyclic redundancy check (CRC)
error detection [33, 113]. These instructions can be effective in ac-
celerating L5Ps. But then they themselves become responsible for
most of the L5P processing cycles, motivating the use of off-CPU
accelerators, which comprise the third category, and which we fur-
ther subdivide into two subcategories: accelerators that are off and
on the networking path.

Off-path computational accelerators include various devices that
may encrypt, decrypt, (de)compress, digest, and pattern-match the
data [31, 40]. Their goal is to allow the CPU to offload much of
the data-intensive computation onto them to make the code run
faster. The problem is: (1) that the CPU must still spend valuable
cycles on feeding the accelerators and on retrieving the results;
(2) that developers might need to rewrite applications in nontrivial
ways to effectively exploit the accelerators; and (3) that, regardless,
the accelerators consume memory bandwidth and increase latency
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because the CPU must communicate with them via mechanisms
such as direct memory access (DMA). Therefore, the outcome of
using off-path accelerators might be suboptimal [4].

NICs are on-path accelerators, and they do not suffer from the
above problems. Because L5Ps are, in fact, network protocols, they
necessarily operate NICs in any case, and so driving them (as accel-
erators) does not incur any additional overhead costs. Moreover,
NICs are ideally situated for L5P acceleration, as they process the
data while it flows through them, avoiding the aforementioned
latency increase and additional memory bandwidth consumption
associated with off-path accelerators. NICs already routinely seam-
lessly handle offloaded computation for the underlying layer≤4
protocols, such as packet segmentation, aggregation, and checksum
computation and verification [14, 21, 83].

Despite their seemingly ideal suitability, L5P NIC offloads are
not pervasive. The reason: existing designs assign NICs with the
role of handling the L5P, which in turn necessitates that the NICs
also handle layer≤4 functionality upon which the L5P depends,
most notably that of TCP/IP [11, 22, 47, 48]. Such offload depen-
dence is undesirable, as implementing TCP in hardware encumbers
innovation in the network stack [86], and it slows down fixes when
robustness [99] or security issues [53, 102] arise. For these reasons,
Linux does not support TCP offloads [25, 69], andWindows recently
deprecated such support [84].

We propose autonomous NIC offloads to address the above short-
comings and eliminate the aforementioned undesirable dependence.
Autonomous offloads facilitate a hardware-software collaboration
for moving data between L5P memory and TCP packets, optionally
transforming or computing some function over the transmitted
bytes. Autonomous offloads allow L5P software to outsource its
data-intensive operations to the NIC, while leveraging the existing
TCP/IP stack rather than subsuming it, and thus ridding NIC de-
signers form the need to migrate the entire TCP/IP stack into the
NIC. Autonomous offloads are applicable to setups where the L5P
and NIC driver can communicate directly, as is the case with, for
example, in-kernel L5P implementations or when userspace TCP/IP
stacks are utilized.

The idea underlying autonomous offloads is for the L5P and NIC
to jointly process L5P messages (which may consist of multiple TCP
segments) in a manner that is transparent to the intermediating
TCP/IP stack. When sending a message, the L5P code “skips” per-
forming the offloaded operation, thereby passing the “wrong” bytes
down the stack to the NIC. The NIC then performs the said skipped
operation, resulting in a correct message being sent on the wire.
In the reverse direction, under normal conditions, the NIC parses
incoming messages and likewise performs the offloaded operation
instead of the L5P while keeping the TCP/IP stack unaware.

A major challenge that we tackle when designing autonomous
offloads is handling out-of-sequence traffic, which occurs when
TCP packets are lost, duplicated, retransmitted, or reordered. We
use the following three principles to address this challenge: (1) we
optimize for the common case by maintaining a small context at
the NIC to process the next in-order TCP packet; (2) we fall back on
L5P software processing upon out-of-sequence packets; in which
case (3) we employ a minimalist NIC-L5P interface that allows the
L5P software to help the NIC hardware and driver to resynchronize
and reconstruct the aforementioned context.

L5P over 
TCP acc-
eleration

hardware

software
(§2.1)

off-CPU

CPU
(§2.2)

NIC

other
(§2.3)

autonomous
offloads 

(§3)

dependent
offloads 

(§2.4)

newexisting

Figure 1: Categorizes of L5P acceleration. Autonomous NIC
offloads (this paper) do not require offloading the entire net-
work stack.

Context reconstruction for incoming traffic (which is harder
than that of outgoing traffic) is driven by the NIC hardware and
consists of: (1) speculatively identifying an L5P message header
in the incoming data using some “magic pattern” characteristic of
the L5P; (2) asking the L5P software to confirm this speculation
using the aforementioned interface; (3) tracking the speculated
L5P messages while waiting for confirmation; and (4) seamlessly
resuming offloading activity once confirmation arrives.

Not all common L5Ps can be autonomously offloaded. In §3,
we highlight the main ideas underlying autonomous offloads, and,
importantly, we identify the properties that L5Ps should have to be
autonomously offloadable. Then, in §4, we describe the software
and hardware design of autonomous offloads in general, and, in §5,
we present our concrete implementation for two L5Ps: NVMe-TCP
and TLS, as well as their combination.

Our TLS autonomous offload is already implemented in the lat-
est generation of Mellanox ConnectX ASIC NICs [79]; it offloads
TLS authentication, encryption, and decryption functionalities. Our
NVMe-TCP autonomous offload implementation will become avail-
able in a subsequent model; it offloads data placement at the receiv-
ing end (which thus becomes zero-copy) and also CRC computation
and verification at both ends. Linux kernel support for the former
has been upstreamed, while the latter is currently under review.

We experimentally evaluate the two offloads and their combi-
nation in §6, and we find that they provide throughput that is up
to 3.3x higher and latency that is as low as 0.7x. When I/O de-
vices become saturated, we show that our autonomous offloads
provide CPU consumption that is as low as 0.4x. We further show
that our offloads are resilient to loss, reordering, and performance
cliffs when scaling to thousands of flows that far exceed NIC cache
capacities. Finally, in §7 and §8, we respectively expand on the
applicability of autonomous offloads and conclude.

2 BACKGROUND AND MOTIVATION
Considerable effort went into L5P acceleration. Here, we make
the case for autonomous NIC offloads by categorizing existing ap-
proaches and showing that our proposal fills an important missing
piece in the L5P acceleration design space.

Figure 1 depicts the categories. L5P acceleration has two flavors:
software- (§2.1) and hardware-based. The latter occurs on- (§2.2)
or off-CPU via specialized accelerators (§2.3) or NICs. Existing NIC
acceleration requires implementing TCP and lower protocols on
the NIC, which we thus call dependent NIC offloading (§2.4). In
contrast, our NIC provides autonomous offloading, which keeps
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Figure 2: L5P overheads. NVMe-TCP and TLS use 256K and
16K messages, respectively. Labels show how many cycles
out of the total are compute-bound and offloadable; see §6
for more details.

all protocols in software, and which strictly improves performance
per dollar (§2.5).

2.1 Software Acceleration
Software acceleration reduces overheads imposed on L5Ps by OS
abstractions. It does not accelerate actual L5P computations, such
as encryption, compression, and error detection.

In-kernel L5P implementations work around OS overheads. Ex-
amples include DRBD [105], SMB [28], NBD [10], iSCSI [2], and
more recently TLS [16] and NVMe-TCP [35]. They reside along-
side the OS’s TCP/IP and improve performance through cross-layer
data batching [41], fusing data manipulations [13], controlling flow
group scheduling [12] and CPU scheduling. Notably, they eliminate
system call overheads [101].

Instead of moving the entire L5P into the kernel, specialized soft-
ware stacks bypass certain kernel overheads by: utilizing hardware
queues exposed to userspace [46, 109]; implementing the TCP/IP
stack in userspace [51, 57, 75, 95, 100]; replacing the POSIX API
abstractions [7, 39, 95]; and exploiting knowledge of L5P work-
loads [70, 71].

In contrast to software, hardware acceleration targets data-intensive
compute-bound processing, which accounts for much of the L5P
cycles. Figure 2 measures these cycles in four in-kernel L5P work-
loads: (1) NVMe-TCP client write (compute: CRC of outgoing L5P
message𝑚); (2) NVMe-TCP client read (verify CRC of incoming𝑚
and copy its content to OS block layer); (3) TLS transmit (encrypt
𝑚); and (4) TLS receive (decrypt𝑚). We see that the CPU spends
46%–74% of its cycles on the compute-bound part, even though
these L5Ps are in-kernel. Such overhead can only be reduced via
hardware acceleration. Thus, software and hardware accelerations
are symbiotic, and L5Ps may benefit independently from both.

2.2 On-CPU Acceleration
On-CPU acceleration occurs via an in-core hardware implementa-
tion invoked by dedicated instructions. In the context of our above
examples, it is available in commercial CPUs for AES encryption
and decryption [36], and SHA and CRC32 digests [33, 37, 68, 119].
Dedicated instructions yield 2x–30x speedups [34, 126] but might
still account for a significant fraction of L5P processing cycles. For
instance, the results in Figure 2 are obtained with on-CPU accelera-
tors, and yet the accelerated computations take up to 49% and 74%
of NVMe-TCP and TLS message processing cycles, respectively.

Table 1: Encryption bandwidth (MB/s) of AES-NI (on-CPU)
vs. QAT (off-CPU) accelerators. Results for 16KB blocks
with 1 or 128 threads using a single core (2.40GHz Intel Xeon
E5-2620 v3 CPU).

cipher QAT 1 QAT 128 AES-NI 1
AES-128-CBC-HMAC-SHA1 249 3144 695
AES-128-GCM 249 3109 3150

2.3 Dedicated Off-CPU Accelerators
Off-CPU acceleration offloads part of the L5P computation from the
CPU to another device accessible via PCIe or the on-chip intercon-
nect. Offloading aims at freeing CPU cycles that would otherwise
be devoted to the computation, allowing the CPU to do other work
instead. We distinguish dedicated accelerators, discussed here, from
on-NIC offloads (§2.4).

Dedicated off-CPU accelerators exist for various computational
operations, such as: (de)compression, (a)symmetric encryption, di-
gest computation, and pattern matching [27, 31, 44, 112]. Such
off-CPU acceleration still requires some CPU work for each com-
putation, to invoke the accelerator and retrieve the results. This
work incurs latency and overhead that depend on the amount of
data moved, the interface of the accelerator, and its location in
the non-uniform DMA topology [4, 40, 117]. As a result, off-CPU
accelerators can struggle to outperform on-CPU accelerators [125].
Realizing benefits from off-CPU acceleration thus frequently re-
quires re-engineering applications to eliminate blocking operations
and/or using multiple threads, all so as to keep the CPU busy while
waiting for the accelerator [40].

To illustrate, Table 1 compares the throughput (single core Open-
SSL speed test) of Intel off-CPU QuickAssist Technology (QAT) [44]
accelerated cryptographic operations to on-CPU AES-NI acceler-
ation [36]. For QAT, we show single- and multi-threaded clients,
where the latter uses threads to overlap waiting for QAT with
useful work. When running AES128-CBC-HMAC-SHA1 (AES in
cipher block chaining mode, authenticated by SHA1 hash-based
message authentication code), AES-NI does not accelerate the SHA1
computation. Thus, single-threaded QAT throughput is 2.7x lower
than AES-NI, but 128-thread QAT outperforms AES-NI by 4.5x. In
contrast, for AES128-GCM (AES in Galois/counter mode), single-
threaded QAT throughput is 12.5x lower than AES-NI, and 128
QAT threads sharing the core only yield comparable throughput
to single-threaded AES-NI. An actual application might require
substantial re-engineering to support this level of threading.

2.4 Dependent NIC Offloads
As opposed to dedicated off-CPU accelerators, NIC offloads impose
neither additional data transfers, nor more CPUwork. CPUs operate
NICs in any case, and data flows through them in any case, making
them ideally positioned for data offloading. The problem is that
all existing L5P NIC offloads [11, 22, 48] are dependent. Namely,
they require the NIC to handle the L5P, which then requires the
NIC to also implement the underlying layer≤4 functionality in
hardware, including TCP/IP and related subsystems like firewalls
and tunneling.
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Figure 3: Per-year Linux kernel LoC of TCP/IP processing
code.

Dependent offloading is thus undesirable. Whereas data func-
tions (like CRC) are relatively simple and well-suited for hardware,
TCP/IP stacks are complex, evolving, interact with many OS sub-
systems, and incur considerable maintenance costs. To illustrate,
Figure 3 shows the yearly number of lines of code (LoC) in Linux’s
TCP/IP stack: modified and in total. The code is constantly chang-
ing, with 5–25% LoCmodification in each component, each year, for
the past decade. Having to additionally support NIC-based TCP/IP
stacks would further increase this maintenance burden.

For these reasons, Linux kernel engineers resist supporting exist-
ing NIC TCP offload engines (TOEs) [25, 69]. Microsoft has depre-
cated TOE support for similar reasons [84]. And several operators
recommend disabling TOEs due to performance issues and incom-
patibilities with OS interfaces [88, 89, 122].

Importantly, TOEs hinder innovation and are ill-suited for users
who develop their network stack [115]. For instance, Netflix has
made the following statement regarding TOEs [29]:

“TOEs are not a preferred solution for Netflix content delivery because
we innovate in the protocol space [to improve] our customers’ quality of
experience (QOE). We have a team of people working on improvements
to [the OS’s] TCP and they have achieved significant QOE gains [...].
With the TCP stack sealed up in an ASIC, the opportunities for inno-
vation [...] are quite limited. We also have concerns around potential
security issues with TOE NICs.”

The security concerns arise as TCP/IP stacks are complex and
might have security bugs [53, 102], which can be easily and quickly
fixed/hot-patched in software, but not in hardware.

We remark that we focus on TCP, as it is the most widely used
protocol, and it handles reordering and loss in byte streams, which is
the challenge for autonomous offloads. But simpler level-4 protocols
are also in scope. For example, FlexNIC [56] dependently offloads
with DCCP [60], implementing, e.g., DCCP’s acks logic in the NIC;
an autonomous offload would utilize the OS logic instead.

2.5 Price Considerations
When considering to offload some protocol functionality, it makes
sense to evaluate the cost of the relevant alternatives and see which
is preferable in terms of price, with the overall goal of maximizing
performance per dollar [22, 23, 38, 64, 87].

The focus of this study is exploiting NIC offloads that are imple-
mented with application-specific integrated circuit (ASIC). We find
that such offloads are cost-effective for clients relative to any po-
tential alternative, because commercial NIC pricing data indicates
that clients get ASIC NIC offloads essentially for free.

To back the above claim, Figure 4 shows the prices of different
Mellanox NIC generations in the last decade, as specified in the

Table 2: Generations of theMellanoxConnectXNIC over the
last decade, and some of the offload capabilities they intro-
duced.

gen. year added offloads
3 [74] 2011 stateless checksum [14], Large Segmentation Offload

(LSO) for TCP over VXLAN and NVGRE [21]
4 [76] 2014 Large Receive Offload (LRO) [83], Receive Side Scaling

(RSS) [82], VLAN insertion/stripping [18], accelerated
receive flow steering (ARFS) [124], on-demand paging
(ODP) [66], T10-DIF signature offload (T10-DIF) [93]

5 [77] 2016 header rewrite [72], adaptive routing for RDMA [85],
NVMe over fabric [67], host chaining support [59], MPI
tag matching and rendezvous [73], UDP Segmentation
Offload (USO) [9]

6 [78] 2019 block-level AES-XTS 256/512 bit [42]

 0

 200

 400

 600

 800

 1000
p
ri
c
e
 [
U

S
D

]

1port

 0

 200

 400

 600

 800

 1000
p
ri
c
e
 [
U

S
D

]

1port

10Gbps

2port

10Gbps

2port 1port

25Gbps

2port 1port1port

40Gbps

2port 1port1port

50Gbps

2port

50Gbps

2port 1port1port

100Gbps

2port

100Gbps

2port

3EN
3VPI

4LX
4VPI

5EN
5VPI

6VPI

Figure 4: Prices of standard ConnectX NICs available via
Mellanox’s pricing list onMarch 2020 [81]. The legend num-
bers (3–6) indicate the ConnectX NIC generation. EN and
LX models support Ethernet. VPI models support Ethernet
and InfiniBand. Prices of older NICs are typically similar to
prices of newer NICs that agree on throughput and number
of ports (ellipses), even though the latter provide additional
offload capabilities.

Mellanox website [80]. Each NIC generation features additional of-
floads, listed in Table 2. The figure uses different colors for different
NIC generations. It reveals that prices are typically determined by
the NIC’s throughput and number of ports, such that NICs from
different generations usually have a similar price if they agree on
these two properties. Price similarity exists despite the fact that
offload capabilities substantially improve across generations, so
customers do not have to pay more to enjoy additional offload
capabilities.

We note that, for readability, we omit prices of (1) NIC bundles
that add some hardware component to the basic NIC, (2) NICs
suitable for the Open Compute Project board [26], and (3) NICs that
have PCIe connectivity far exceeding their throughput. Including
these does not change the conclusion.
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Table 3: Autonomous offload properties and associated limi-
tations. (We are unaware of any non-constant size state com-
putation or protocol.)

property limits the offload of (example)
size-preserving on transmit encapsulation and compression
incrementally computable cipher block chaining (CBC)
constant size state none
plaintext magic pattern SSH’s encrypted headers

3 AUTONOMOUS OFFLOADS
Autonomous offloads consist of a software/NIC architecture for
moving data between L5P memory and TCP packets, optionally
transforming or computing over the data. This architecture offloads
data-intensive processing to the NIC, without having to migrate
the entire TCP/IP stack into the NIC. Specific offload capabilities
are cast into NIC silicon and are available for relevant L5P software
as a NIC feature.

Autonomous offloads target L5P software that can communicate
directlywith the NIC driver, e.g., in-kernel L5Ps or userspace TCP/IP
stacks. High-performance L5P software already adopts this design
(§2.1). The main idea of the L5P-NIC collaboration is to process L5P
messages in the NIC transparently to the intermediating TCP/IP
stack. The NIC performs the offload on in-sequence packets, with
some help from L5P software on out-of-sequence packets.

Offloading is possible for operations and L5Ps that satisfy certain
preconditions (summarized in Table 3). Offloadable operations must
be size-preserving for seamless interoperation with software TCP/IP
on transmit, while on receive we can work around this precondition
in some cases (§3.1). Offloadable operations must be incrementally
computable over any byte range of an L5P message, given only some
constant-size state and access to packet data (§3.2). In particular,
the offload cannot assume L5P message alignment to TCP packets.
Offloadable L5P messages must contain plaintext magic pattern and
length fields to identify and track messages speculatively on the
wire. The offload will rely on these fields to recover after loss and
reordering on receive (§3.3).

These preconditions are satisfied by most of the common data-
intensive operations [55]: (1) copying, (2) encryption and decryp-
tion, (3) digesting and checksumming, and some (4) deserialization
and (5) decompression methods. Most L5Ps meet our requirements
as well. Examples include (1) HTTP/2 [106] (encryption/deserial-
ization/decompression); (2) gRPC [32] and Thrift [116] (copy/de-
serialization); (3) iSCSI [2], NBD [10], and SMB [28] (copy/encryp-
tion/digest); (4) Memcached [24] and MongoDB [52] (copy).

The following presents the high-level ideas of autonomous of-
floading and its preconditions. We detail the design in §4.

3.1 Data Manipulation
An operation can be offloaded on one or both of the send/receive
paths. To offload an operation when sending, L5P software “skips”
performing the offloaded operation, thereby passing the “wrong”
bytes down the stack to the NIC. The NIC performs the opera-
tion, resulting in a correct message being sent on the wire. For
TCP-transparency, we require the offloaded operation to be size-
preserving: it must never add or remove bytes from the stream.

loss

Host A – transmit offload inflates the message Host B – no offload
TCP

NIC offload 
inflates the 

payload

Problem:
At this point TCP 

thinks that all 
data is acked, but 
the NIC’s data is 

lost

TCPNIC + offload

Figure 5: The problem with non-size-preserving offloads.

Were the operation to add/remove bytes from the stream, the NIC
would have to handle these bytes’ retransmission, acknowledgment,
congestion control, etc., as the OS TCP stack is unaware of these
bytes (Figure 5).

When receive offloading, the NIC parses incoming L5P messages
within TCP packets, performs the offloaded operation, and passes
packets pointing to partially processed L5P messages up the stack
to L5P software. For TCP-transparency, we must preserve packet
sizes observed by TCP, which is simple for size-preserving offloads.
But, in contrast to the send side, receivers can offload non-size-
preserving operations by DMAing offload results to pre-allocated
L5P destination buffers while also DMAing the original unmodified
data to the NIC driver receive ring. Consequently, receive-offload
can be non-size-preserving, provided that L5P software can predict
its output’s size and prepare buffers for it.

3.2 In-Sequence Packet Processing
We require that the offloaded operation can be performed over any
byte range of an L5P message (i.e., in-order TCP packets of any
size), given only some constant-size state. The state is composed of
dynamic and static components. The dynamic state is a function of
(1) the previous bytes in the current message and (2) the number of
previous messages. It is (conceptually) updated after each packet
(byte) is processed. The static state is fixed per-request or per-
connection, e.g., TLS session keys or NVMe-TCP host read response
destination buffers.

The above properties allow the NIC to perform the offload with-
out having to buffer packets until obtaining a full L5P message,
which is impractical (e.g., because messages can be big, potentially
exceeding the TCP receive window). Specifically, the NIC maintains
per-flow contexts (for both outgoing and incoming flows) holding
the state required to perform the operation on the next in-sequence
TCP packet. Once that packet is handled, the NIC updates the flow’s
(dynamic) state.

Our requirements are satisfied by most L5P data-intensive oper-
ations, which typically process the current L5P message indepen-
dently of the payload of previous messages [17, 32, 92, 107, 111, 116].
The requirements mainly preclude offloading of operations such as
AES cipher block chaining (CBC), which operate on fixed blocks
and not an arbitrary range. However, modern ciphers, such as AES-
GCM and ChaCha20-Poly1305, satisfy our requirements.
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3.3 Out-of-Sequence Packet Processing
Receive: The NIC cannot perform the offloaded operation on an
out-of-sequence packet. It also cannot buffer it until the in-sequence
packet arrives. Instead, we fall back on L5P software to perform the
operation: an out-of-sequence packet is passed to the OS, and L5P
software performs the operation on its bytes when it receives the
message containing the packet. Such messages, in which the oper-
ation was offloaded on some/none of the bytes, are called partial-
ly/fully un-offloaded. To resume offloading, the NIC resynchronizes
itself into knowing the next expected TCP packet and its associated
operation state, as explained next.

Resync: We require that L5P message headers contain (1) at least
onemagic pattern plaintext field that identifies a message header on
the wire and (2) a length field. Combined, these properties enable a
hardware-driven NIC context resynchronization process, which be-
gins when the NIC receives out-of-sequence data and loses track of
the flow’s state. To resynchronize, the NIC speculatively identifies
an L5P message in the incoming byte stream by the magic pattern,
and confirms this identification with the L5P software. While wait-
ing for the L5P’s reply, the NIC keeps track of incoming messages
by using the L5P header length field to derive the TCP sequence
number of the next expected message (where another magic pattern
should appear). Once the L5P confirms the speculation, the NIC can
resume offloading from the next L5P message, since the dynamic
state at message boundary depends only on the number of previous
messages, which is included in the L5P’s confirmation (see §4.3).

Transmit: To perform the offloaded operation on a retransmitted
outgoing packet, the NIC’s dynamic state is recovered to the correct
state for that packet by the NIC driver with the help of the L5P
software. To this end, the L5P software must store the state for an
L5P message until the TCP acknowledgment of all of its packets.

4 DESIGN
This section describes the software and hardware designs that to-
gether form the autonomous NIC offloads architecture. We first
describe the software and hardware interfaces (§4.1), followed by
handling of transmitted (§4.2) and received (§4.3) packets, for both
in-sequence and out-of-sequence (OoS) data.

4.1 Interfaces
The NIC maintains a per-flow HW context, which holds the state
required to perform the offloaded computation for a specific packet
of the flow (typically, the next in-sequence packet). Each HW con-
text contains: (1) 𝑡𝑐𝑝𝑠𝑛, the TCP sequence number that this context
can offload; (2) the L5P message type, length, and offset within the
message at 𝑡𝑐𝑝𝑠𝑛; and (3) L5P state required to perform the offload,
such as cipher keys. A context also stores a flow identifier, e.g., a
TCP/IP 5-tuple.

L5P–NIC driver interface The NIC driver provides an interface
to the L5P software for context creation, destruction, and recov-
ery (Listing 1). After the L5 handshake is complete, the L5P calls
𝑙5𝑜_𝑐𝑟𝑒𝑎𝑡𝑒 with the inputs required to process the next message
in the stream (𝑙5_𝑠𝑡𝑎𝑡𝑒), and the TCP sequence number of the first
byte in that message (𝑡𝑐𝑝𝑠𝑛). To stop the offload, the L5P calls the

l5o* l5o_create(sock*, l5_state*, u32 tcpsn)
void l5o_destroy(l5o*)
rr_state_id l5o_add_rr_state(l5o*, rr_state*)
void l5o_del_rr_state(l5o*, rr_state_id)
void l5o_resync_rx_resp(l5o*, u32 tcpsn, bool res)

Listing 1: Operations the NIC driver provides to the L5P.
l5_msg_state* l5o_get_tx_msgstate(sock*, u32 tcpsn)
void l5o_resync_rx_req(sock*, u32 tcpsn)

Listing 2: Operations the L5P provides to the NIC driver.

𝑙5𝑜_𝑑𝑒𝑠𝑡𝑟𝑜𝑦 method. Offloading is typically terminated when the
socket is destroyed.

In Request-Response (RR) protocols, offloading the computation
for an incoming message (a response) requires the NIC to associate
the message with the request that triggered it. For example, an
offload copying the response payload directly to an application
buffer needs to know the buffer’s address. To this end, the NIC
can internally map incoming messages to the required offloading
state, which is configured using the 𝑙5𝑜_𝑎𝑑𝑑_𝑟𝑟_𝑠𝑡𝑎𝑡𝑒 method. The
L5P provides this state to the NIC before sending the request, and
deletes it after the response is received using the 𝑙5𝑜_𝑑𝑒𝑙_𝑟𝑟_𝑠𝑡𝑎𝑡𝑒
method.

The 𝑙5𝑜_𝑟𝑒𝑠𝑦𝑛𝑐_𝑟𝑥_𝑟𝑒𝑠𝑝 method is used for receive-side context
recovery fromOoS packets (§4.3). The L5P also provides an interface
to the driver (Listing 2) for context recovery, which we discuss
in §4.2 and §4.3.

Driver–NIC interface Offload-related commands are passed to
the NIC via special descriptors, which are placed into the flow’s
usual send ring to ensure ordering. The NIC passes information to
the driver through descriptors in the flow’s receive ring. Both rings
are accessed through DMA.

4.2 Transmitted Packet Processing
To send application data, the L5P encapsulates it into L5P messages,
preserving all fields of the message that appear on the wire, includ-
ing fields that are filled by the offload (e.g., CRC). The L5P then
hands the data for transmission to the next layer protocol. Typically,
this protocol is TCP, but it can also be an L5P (e.g., TLS), as our
offloads compose (§5.3).

When the NIC driver is handed a TCP packet for transmission, it
must figure out if the packet is in- or out-of-sequence with respect
to the NIC’s flow context. To this end, it extracts the context ID
from the packet’s metadata; this ID is passed down from the L5P,
which obtained it on context creation. The driver shadows the
NIC’s context in software, and so it can check the packet’s TCP
sequence against the context’s expected TCP sequence to identify
OoS packets. If the packet is OoS, the driver recovers the NIC’s
context, as described below. Next, the packet is posted to the NIC’s
send ring, tagged with the HW context ID (which saves the NIC
from looking up the HW context based on the packet fields). Finally,
the NIC performs the offloaded operation and sends the packet.

Context recovery for OoS data To enable offloading of trans-
mitted OoS data, the driver recovers the NIC’s context to match the
packet. As noted in §3, we assume that the state required to perform
the offload can be obtained from the packet’s L5Pmessage (Figure 6).

23



Autonomous NIC Offloads ASPLOS ’21, April 19–23, 2021, Virtual, USA

TCP
pkt 1

TCP
pkt 2

TCP
pkt 3

TCP
pkt 4

TCP
pkt 5

TCP
pkt 6

TCP
pkt 7

TCP
pkt 8

TCP
pkt 9

TCP
pkt 10

message 1 message 2 message 3 message 4

Figure 6: Packet 5 is retransmitted; the data required to of-
fload it is marked with a diagonal pattern.

c

message

host software

NIC hardware

offloading speculative
searching

tracking

layer-5 protocol

ba
d1

d2

NIC driver
c

b

state transitionc

Figure 7: State-machine for L5P offload recovery from re-
ordering.

The driver obtains this state using the 𝑙5𝑜_𝑔𝑒𝑡_𝑡𝑥_𝑚𝑠𝑔𝑠𝑡𝑎𝑡𝑒 upcall
to the L5P, and then passes it to the NIC via a special descriptor.
The driver also updates the context’s expected TCP sequence (in
both HW and its shadow) to match the packet’s TCP sequence.

To answer 𝑙5𝑜_𝑔𝑒𝑡_𝑡𝑥_𝑚𝑠𝑔𝑠𝑡𝑎𝑡𝑒 calls, the L5P software must
maintain a map from TCP sequence numbers to their correspond-
ing L5P messages (in our experience, this takes ≈ 200 LoC). The
L5P holds a reference to the buffers which contain transmitted L5P
message data, similarly to how TCP holds a reference to all unac-
knowledged data. The L5P releases its reference when the entire
message is acknowledged.

4.3 Received Packet Processing
The NIC only performs the offload for in-sequence packets. OoS
packets are handled by software.When a packet with a valid TCP/IP
checksum arrives, the NIC looks up its flow’s context.1 If a context
is found, the NIC performs the offloaded operation if the TCP se-
quence numbers of the context and the packet match. Both offloaded
and un-offloaded packets are passed to the driver, with an indica-
tion (in their descriptors) of whether offloading was performed.
The driver passes the packet and the offload result as metadata
up to the network stack, which takes care not to coalesce packets
with different offload results. The L5P software reads L5P messages
handed to it by TCP packet-by-packet and skips computing the
offloaded function if all packets are offloaded. Otherwise, the L5P
must perform the relevant data manipulation itself.

Out-of-sequence packets The NIC never performs the offload
on an OoS packet, but it processes such packets in an attempt to
get back in sync with the TCP stream. The NIC cannot wait for the
packet 𝑄 with the sequence number it expects to arrive, because
that would require buffering all the flow’s packets that arrive in
the meantime. (Without such buffering, packets with sequence
numbers higher than 𝑄 may reach the OS TCP stack while the
NIC waits for 𝑄 , leaving it unaware of the next expected sequence
number on the wire.) We thus need to resync without waiting for
𝑄 to arrive.

1Similar hardware functionality already exists for LRO and ARFS.

It follows from our requirement that offload state depend only
on the previous bytes of a message and on the number of previ-
ous messages (§3.2) that the NIC can resync itself once it sees the
next L5P message. Thus, when an OoS packet 𝑃 arrives, the NIC
computes the TCP sequence number of the next L5P message 𝑀
by using the length of the current message (which is stored in the
context). If the TCP sequence number of 𝑃 , 𝑃 .𝑠𝑒𝑞, is before𝑀 ’s se-
quence number,𝑀.𝑠𝑒𝑞, then 𝑃 is ignored. If 𝑃 contains𝑀 ’s header,
the context is updated to𝑀 , so that the offloading can resume for
the packet following 𝑃 . Otherwise (𝑃 .𝑠𝑒𝑞 is after 𝑀.𝑠𝑒𝑞), the NIC
cannot resync, as it does not know which (if any) L5P messages
appeared after𝑀 . In this case, the NIC begins a context recovery
process in collaboration with the L5P software.

Context recovery A naive software-driven approach for context
recovery is for L5P software to inform the NIC about the TCP
sequences numbers of the messages it receives, thereby allowing
the NIC to resync. However, such a scheme is inherently racy: by
the time the NIC hears about a message, it may have already started
receiving packets of subsequent messages. As a result, the NIC
may never be able to successfully recover its context. To avoid this
problem, our design employs a hardware-driven recovery process,
in which the NIC speculatively identifies arriving messages and
relies on software to confirm its speculation.

The recovery algorithm is depicted in Figure 7. Initially (transi-
tion a ), the NIC enters a speculative searching state. In this state,
whenever a valid TCP packet arrives, the NIC searches for the pro-
tocol’s header magic pattern (§3) in the TCP payload. When found,
the NIC requests the software L5P to acknowledge the detected
message header TCP sequence number (𝑡𝑐𝑝𝑠𝑛) via the NIC driver,
which calls 𝑙5𝑜_𝑟𝑒𝑠𝑦𝑛𝑐_𝑟𝑥_𝑟𝑒𝑞 to register the request with the L5P.
The NIC also transitions to the tracking state ( b ). The L5P stores
𝑡𝑐𝑝𝑠𝑛 and waits until the corresponding message is received from
the OS TCP stack. The L5P then notifies the NIC whether the mes-
sage’s TCP sequence number matches the NIC’s “guess,” using the
𝑙5𝑜_𝑟𝑒𝑠𝑦𝑛𝑐_𝑟𝑥_𝑟𝑒𝑠𝑝 method ( c ).

Meanwhile, the NIC tracks received messages using the message
header’s length field, verifying that each subsequentmessage begins
with the magic pattern. If an unexpected pattern is encountered or
the L5P response indicates that the NIC misidentified a message
header, then the NIC moves back to the speculative searching state
( d1 ). If the L5P response indicates success while the NIC is in the
tracking state, then the NIC can resume offloading from the next
message ( d2 ).

Example Figure 8 depicts the various cases of receive packet
processing. If packets arrive in-sequence then all are offloaded. Oth-
erwise, we have the following cases: (a) retransmitted packets (P2)
bypass offload and do not affect NIC state; (b) L5P data reordering
within the current message (P2). The NIC identifies the next L5P
message header (P3), updates its context to expect P4 and contin-
ues processing from there. The packet containing the L5P header
is not offloaded as it does not match the expected TCP sequence
number, but the following packet (P4) does match it; (c) L5P header
reordering (P3) causes the NIC to cease offloading. Then, it searches
and finds an L5P message header magic pattern (P5) and it requests
software to confirm its speculation. We note that it can identify pat-
terns split between packets if they arrive in-sequence. Meanwhile,
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HW⇒SW: is this an L5P header? SW⇒HW: yes it is

(a) Second arrival (retransmission) of P2 belongs to the "past", so the offload 
bypasses it.
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(b) Because P2 is missing (lost), the offload stops at P3; after, while scanning P3, 
the NIC identifies a subsequent L5P header, allowing it to update offload contexts 
and resume offloading at P4.

(c) According to P1.header.size, the NIC expects to find the subsequent L5P header 
in P3, which is missing (reordered), so the NIC must trigger context recovery. It 
therefore searches for a magic pattern, identifies P6.header, asks the L5P software 
if the identification is correct, and speculatively tracks the stream assuming that it 
is, until software confirmation arrives at P9, allowing the offload to resume at P10.
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Figure 8: NIC processing of various OoS packets received
from the wire: (a) retransmission, (b) L5P data reordering,
and (c) L5P header reordering which triggers OoS recovery.
ccc

NIC HW tracks subsequent L5P headers (P8) using header length
fields, and verifies their magic pattern. Eventually, L5P software
receives the NIC HW request and the corresponding packet after
TCP processing, and then L5P software confirms NIC hardware
speculation. Finally, offload resumes on the next packet boundary.

5 IMPLEMENTATION
Here, we describe case studies of autonomous offloads targeting
in-kernel L5Ps in Linux: NVMe-TCP (§5.1), TLS (§5.2), and their
composition (§5.3). The offloads described in this section are (or
will be) available in Mellanox ASIC NICs.

5.1 NVMe-Over-TCP Offload
NVMe-TCP [92] is a pipelined L5P which abstracts remote access
to a storage controller, providing the host with the illusion of a
local block device. In NVMe-TCP, each NVMe [91] submission and
completion queue pair maps to a TCP socket. Read/write IO opera-
tions use request/response messages called capsules, whose header
contains a (1) capsule type, (2) data offset, (3) data length, and (4)
capsule identifier (CID). The CID field is crucial to correlate between
requests and responses, as the controller can service requests in
any order. Also, capsules can be protected by a trailing CRC.

Offloaded data manipulation We offload the two dominant
data manipulation operations of the protocol: CRC32C [113] data
digest computation/verification (on transmit/receive) and capsule
data copy from TCP packets to block layer buffers (on receive).
Note that this copy cannot be avoided with standard zero-copy
techniques, as (1) the OS cannot make the NIC DMA directly into
application or page cache buffers, since the OS does not know ahead
of time which receive ring entry corresponds to which NVMe-TCP
response; and (2) even if that were possible, packets contain capsule
headers, which do not belong in block layer buffers.
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Figure 9: NVMe-TCP receive offload. The data is written di-
rectly to the block layer according to the CID, instead of to
the receive ring.

Copy offload The NIC stores a map from CIDs to the correspond-
ing block layer buffers. The map is updated by the NVMe-TCP
before it sends a read request. When a response arrives, the NIC
DMA writes the capsule payload to the block layer buffers for each
offloaded packet, while placing the packet and capsule headers/-
trailers in the NIC’s receive ring (see Figure 9). These receive packet
descriptors provide all the information necessary to construct a
socket buffer (SKB) that points to the received data, including the
block layer buffer. When this SKB reaches the NVMe-TCP code
responsible for copying capsule payload data to the block layer
buffer, the copy is skipped, as the relevant memcpy source and des-
tination addresses turn out to be equal. This means that partially- or
un-offloaded capsules are handled transparently, with the memcpy
performed as usual for the remaining un-offloaded parts.

CRC offload On transmit, NVMe-TCP prepares capsules with
dummy CRC fields, which the offload fills based on the digest of
capsule data of previous in-sequence packets. OoS packets are han-
dled as described in §4.2. On receive, the NIC checks the CRC of
all capsules in the TCP payload of in-sequence packets. It reports a
single bit to the driver (along with the packet descriptor), which is
set if and only if all capsules with the packet pass the CRC check.
The driver sets a 𝑐𝑟𝑐_𝑜𝑘 bit in the SKB of the received packet2
according to the NIC’s indication, and hands the SKB to the net-
work stack. When NVMe-TCP receives a complete capsule, it skips
CRC verification if the 𝑐𝑟𝑐_𝑜𝑘 bits of all SKBs in the capsule are set.
Otherwise, it falls back to software CRC verification. Partially- or
un-offloaded capsules are thus handled easily.

Magic pattern For speculative searching, we rely on a number
of fields from the NVMe-TCP capsule header and trailer to form the
pattern and verify it: (1) PDU type: one of only eight valid values
(1 byte); (2) header length: well known constant for each PDU type
(1 byte); (3) header digest: optional CRC32 digest of the header (4
bytes); and (4) data digest: optional CRC32 digest of the data (4
bytes).

Implementation effort Our patchesmodifying Linux to support
the NVMe-TCP offload are under review by the relevantmaintainers.
The changes in NVMe-TCP are 418 LoC, and another 1755 LoC in
the Mellanox NIC driver.

2This requires adding a new bit to the SKB.
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5.2 TLS Offload
The Transport Layer Security (TLS) protocol is an L5P that protects
the confidentiality and integrity of TCP session data [17, 107]. A
TLS session starts by exchanging keys via a handshake protocol,
after which all data sent/received is protected with a symmetric
cipher, such as AES-GCM [50].

Application typically use a library that implements TLS. We
modify the popular OpenSSL library to use the Linux kernel’s TLS
(KTLS) data path, which can leverage our offload. OpenSSL’s TLS
handshake code remains unmodified.

TLS messages are called records and are at most 16 KiB in size.
A TLS record consists of a header, data and a trailer. The header
holds four fields of interest: (1) record type, (2) version, (3) record
length, and (4) initialization vector (IV), used by the cipher. The
trailer holds the integrity check value (ICV) of the entire record.
For each socket send (receive), KTLS encapsulates (decapsulates)
the data into records.

Our offload is motivated by TLS 1.3 [107], which support two
symmetric ciphers: AES-GCM and Chacha20/Poly1305. We offload
AES-GCM [50], as it is the most common TLS cipher [58, 62, 63,
120, 121].

Crypto offload On transmit, KTLS prepares plaintext records
with dummy ICV fields, and the NIC replaces plaintext with ci-
phertext and fills the ICV. OoS packets are handled as described
in §4.2. On receive, the NIC decrypts the payload of each offloaded
received packet, and it checks all ICV values within the packet.
It reports the result in a single bit to the driver (along with the
packet descriptor). The driver sets a 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 bit in the received
packet’s SKB according to the NIC’s indication, and hands the SKB
to the network stack. When a complete record is received by KTLS,
it skips decryption and authentication if the 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑 bits of all
SKBs in the record are set. Otherwise, KTLS falls back to software
decryption and authentication.

Zero-copy sendfile support KTLS supports thesendfile sys-
tem call. While sendfile is typically implemented without copy-
ing, KTLS cannot encrypt transmitted page cache buffers in-place,
as that would corrupt their content. Instead, standard KTLS send-
file encrypts sent data in a separate buffer, allocated for this
operation. Our offload enables skipping this costly allocation, as
KTLS can hand the page cache buffers to the NIC, which encrypts
them to the wire instead of in-place. As a result, KTLS with our
offload can achieve performance comparable to plain TCP send-
file (see §6.3). However, the user becomes responsible for not
changing files while they are transmitted.

Partial offload Conceptually, the software fallback for partially-
offloaded records is to decrypt the non-offloaded packets and au-
thenticate the record while reusing offload results. However, AES-
GCM authentication is computed on the ciphertext data, and so
performing authentication in software requires re-encrypting the
packets decrypted by the NIC. Consequently, handling partial de-
cryption is costlier than full decryption (see §6.4).

Magic pattern For speculative searching, we rely on a number
of fields from the TLS record header to form the pattern and verify

it: (1) record type (1 byte): one of only six valid values3; (2) record
version (2 bytes): the version is constant after the TLS handshake;
and (3) record length (2 bytes): this field must be less than 16 KiB.

Software implementation Our OpenSSL changes adding KTLS
support consist of 1381 LoC. Offload support in KTLS is 2223
LoC. Offload support in the Mellanox NIC includes 2095 LoC. Our
changes have been accepted for inclusion in OpenSSL [96–98] and
Linux [8, 43], indicating the relevance of the offload. Others have
added KTLS offload support to FreeBSD [6].

5.3 NVMe-TLS Offload
Combining NVMe-TCP and TLS offloads is simple, as the layering
determines their ordering. NIC HW parsing starts from Ethernet,
and proceeds to parse TLS then NVMe-TCP on transmit and re-
ceive. In-sequence packet processing remains the same, where each
offload is processed independently: on transmit we do NVMe-TCP
then TLS; and on receive vice versa. Transmit and receive OoS
context recovery are performed independently for each protocol.

6 EVALUATION
Using microbenchmarks, we measure the overhead of the data-
intensive operations that our NIC autonomously offloads (§6.1). We
then evaluate actual offload performance with macrobenchmarks
(§6.3), and we quantify the effect of out-of-sequence TCP pack-
ets (§6.4). Finally, we examine the performance of autonomous NIC
offload at scale (§6.5).

TLS results are obtained using real Mellanox ConnectX6-Dx
ASIC NICs. NVMe-TCP results are obtained via emulation, as this
offload will only become available in Mellanox’s next-generation
ConnectX-7NICs.We validate the accuracy of our emulationmethod-
ology by comparing the performance of real and emulated TLS
offloading (§6.2).

Our setup consists of a Dell PowerEdge R730 server and an R640
workload generator. The server has two 14-core 2.0 GHz Xeon E5-
2660 v4 CPUs, and the generator has two 12-core 2.1 GHz Xeon
Silver 4116 CPUs. Both have 128GB (=4x16GB) memory, and they
run Ubuntu 16.04 (Linux 5.6.0) with hyperthreading and Turbo
Boost off to avoid nondeterministic effects. For storage, the server
utilizes an Optane DC P4800X NVMe SSD that resides remotely, on
the generator.

The machines are connected back-to-back via 100Gbps Mellanox
ConnectX6-Dx NICs that implement our TLS AES128-GCM crypto
autonomous offload.

All the results presented in this section are trimmed means of ten
runs; the minimum and maximum are discarded, and the standard
deviation is below 3% unless specified otherwise.

6.1 Cycle Breakdown
NVMe-TCP When NVMe-TCP reads from a remote drive, recall
that it accesses the received bytes twice: (1) when copying them
from the network buffers to their designated memory locations; and
(2) when computing the incoming capsule’s CRC. Figure 10 shows
how long these two operations take out of the total of an individual
I/O request. We use fio [5] to generate random read requests of

3HW can store an extensible list of these values.
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Figure 10: NVMe-TCP/fio cycles per random read on the
server (drive resides on the generator); “%” shows copy+crc
out of the total.

different sizes (title of subfigures) and to vary the number of out-
standing requests (I/O depth along the x axis). The left and right
y axis labels show per-request duration in cycles and the relative
cost of the copy+CRC overheads out of the total, respectively. The
system is limited to using a single core for all of its activity.

We can see that smaller requests have a potential improvement
of 2%–8%, and bigger requests have a potential improvement of 25%
(lower parallelism, up to depth=64) to 55% (higher parallelism, as
of depth=128). In the latter case, the 32MiB LLC becomes too small
to hold the working set (128 requests times 256 KiB per request =
32MiB). From this point onward, copying becomes the dominant
overhead, as every memory access is served by DRAM.

TLS We similarly measure TLS’s offloadable overheads: encryp-
tion, decryption, and authentication, which we collectively denote
as “crypto” operations. For this purpose, we use iperf [123], which
measures the maximal TCP bandwidth between two machines, and
which we modified to support OpenSSL. We use 256 KiB messages
at the sender and ensure that the server’s core always operates at
100% CPU. Recall that each message consists of a sequence of TLS
records, which can be as big as 16 KiB.

Figure 11 shows the results. Unsurprisingly, bigger TLS records
reduce the weight of network stack processing relative to the crypto
operations, making the potential offload benefit more pronounced
at the right. This outcome is consistent with the fio results. Typically,
network stacks operate more efficiently when sending than when
receiving, because batching is easier; the receive side has to work
harder. Consequently, the potential benefit of offloading is higher
for transmitting (≤74%) than for receiving (≤60%).

With real TLS offloading, we find that iperf’s single core through-
put improves by 3.3x and 2.2x upon transmit and receive, respec-
tively, relative to the non-offloaded baseline. When saturating the
NIC with multiple iperf instances, CPU utilization respectively
improves by up to 2.4x and 1.7x.

6.2 NVMe-TCP Offload Emulation
We hypothesize that commenting out the software functionalities to
be offloaded (without really implementing them in the NIC) yields
similar performance to real offloading. We verify this hypothesis
with TLS offloading. We find that the “other” component in Fig-
ure 11 is an accurate performance predictor for our new TLS offload
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Figure 11: Kernel-TLS/iperf per-record cycles when using
AES-GCM crypto operations (encryption, decryption, and
authentication usingAES-NI); standard deviation is between
0%–8.2%.

capability: at most 7% difference between the real and predicted
improvements in all cases.

We use this finding to emulate NVMe-TCP offloading by: (1) set-
ting the value of all stored data to be a repetitive sequence of an
8-byte “magic” word (0xCC...CC); (2) modifying NVMe-TCP receive-
side to refrain from copying incoming “magic capsules” (that start
with the magic word) to their target buffers, and also; (3) skipping
CRC computation and verification for magic capsules. Clearly, a
block device driver that fails to copy device content to the desig-
nated target buffers seems problematic. We next describe how the
integrity of our experiments is preserved despite this problematic
behavior.

Nginx The subsequent evaluation uses two macrobenchmarks.
The first is the nginx http web server [104], configured to serve
files from an ext4 filesystem mounted on our NVMe-TCP block
device. (Recall that the drive resides remotely, on the workload
generator machine.) We pre-populate ext4 with “magic files”, which
exclusively contain magic word sequences. We set the size of magic
files to be an integral multiple of 4 KiB, and we configure nginx
clients to only request these files. We also set ext4 read-ahead to
the file size, such that there are no block requests that exceed this
size.

Neither the kernel of the server machine, nor nginx and its clients
care about the content of the files that they send/receive. Ext4 does
not collocate metadata within the 4KiB blocks of magic files, so it is
indifferent to whether their content is copied to the server’s page
cache; nginx, which sends this page cache content to its clients, is
likewise indifferent to the content; and the clients do not actually
use the content either.

Redis-on-Flash The second macrobenchmark we use is Redis-
on-Flash (RoF), a key-value store [45, 114] that uses RocksDB [110]
as storage backend. RocksDB is incompatible with our emulation. It
runs with RoF on the server and uses the NVMe-TCP block device
to read and write its internal data structures, which interleave
metadata and data in nontrivial ways. Consequently, magic capsules
do not exist in this setup, even if the values we store exclusively
consist of magic words.
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Figure 12: Nginx improvements with the NVMe-TCP of-
fload. None of the files reside in the server’s page cache (con-
figuration 𝐶1), so the throughput is bounded by the drive’s
maximal bandwidth. Bar labels show offload improvement
over the baseline.
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Figure 14: Nginx improvements obtained with the NVMe-
TLS combined offload.
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Figure 15: Redis-on-Flash improvements obtained with the
NVMe-TLS combined offload.

To overcome this problem, with some help from Redis Labs [103]
engineers, we implemented OffloadDB, a simple alternative stor-
age backend for RoF, which does separate between keys, values,
and metadata (568 LoC). Coupling RoF with an OffloadDB storage
backend makes our emulation approach applicable to RoF as well.

6.3 Macrobenchmarks
As noted in §6.2, we use the nginx and RoF macrobenchmarks to
evaluate the performance of our two autonomous NVMe-TCP and
TLS offloads, individually and together. We begin with nginx and
drive it with the wrk [30] http benchmarking tool. Wrk connects
to nginx using 16 threads, which together maintain 1024 open
connections that repeatedly request files of a specified size and
then wait for a response. We utilize two configurations: 𝐶1 and 𝐶2.
In𝐶1, none of the drive’s relevant data is found in the server’s page
cache. 𝐶1 stresses NVMe-TCP offloading, with a maximal possible
rate of the drive’s optimal read bandwidth: 2.67 GB/s (≈21.38 Gbps).
In 𝐶2, all of the drive’s relevant data already resides in the server’s
page cache, and so it is not read from the remote drive while nginx
is operational. 𝐶2 stresses TLS offloading, with a maximal possible
rate of 100Gbps, our NIC’s line rate.

Individual Offloads Figure 12a shows the http throughput of
nginx in 𝐶1, with and without the NVMe-TCP offload. We repli-
cate the microbenchmark methodology and limit system activity
at the server to one core (which becomes 100% busy as a result).

The outcome turns out qualitatively similar: throughput improve-
ments range between 4%–44% and are correlated with the size of
the requested files. In Figure 12b and Figure 12c, we allow server
activity to utilize up to eight cores, which is enough computational
power for nginx to be able to fully utilize the remote drive’s band-
width. When maximal bandwidth is reached, NVMe-TCP offload
improvements manifest in up to 27% reduced CPU consumption.

We repeat the above experiment in𝐶2 (data in page cache) using
four different setups: (1) “https” employs the baseline, KTLS sendfile
with AES-NI crypto operations without any offloads; (2) “offload”
improves the baseline by adding TLS offload; (3) “offload+zc” further
improves it by instructing TLS to refrain from making copies and
instead send files directly from the page cache in a zero-copy (“zc”)
manner (making it the responsibility of users to avoid changing
files while transmitted); and (4) “http” sends unencrypted text and
thus serves as an upper bound on improvements.

Figure 13 shows the results. With one core, offload and offload+zc
deliver 7%–70% and 11%–2.7x higher throughput as compared to
https, respectively. With eight cores, they reduce CPU consump-
tion by 0%–2% and 0%–23%, respectively. Offload+zc delivers 88%
higher throughput when reaching the NIC line rate. Offload+zc
throughput is within 25%–28% of http throughput with one core,
and it consumes 23% more CPU cycles with eight cores when using
256KiB files. Interestingly, for smaller files, offload+zc consumes
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Table 4: Average latency in 𝜇sec for a single, synchronous
request when cumulatively adding our L5P autonomous of-
floads. Values in parentheses show relative latency as com-
pared to the baseline. Values to the right of the ± sign show
standard deviation in percentages.

size base +TLS +copy +CRC
4K 169 ±0.6 167 ±0.4 (0.99) 165 ±0.3 (0.98) 165 ±0.5 (0.98)
16K 221 ±0.5 210 ±0.5 (0.95) 204 ±0.3 (0.92) 200 ±0.4 (0.90)
64K 466 ±0.5 396 ±0.5 (0.85) 376 ±0.3 (0.81) 365 ±0.2 (0.78)
256K 1321 ±5.1 1056 ±0.5 (0.80) 980 ±0.0 (0.74) 941 ±0.4 (0.71)

3% less CPU than http. This happens due to TCP batching effects,
which cause http to utilize more, smaller packets for sending.

Overall, offloading eliminates the per-byte cost of the data ma-
nipulation, leaving only per-packet costs. This can be seen in the
smaller files (size between 128B–1024B), where per-byte costs are
small and so offloading yields only a small improvement of 0%–10%
and 0%–4% in throughput and CPU consumption, respectively.

Combined Offloads To combine the NVMe-TCP and TLS of-
floads (together denoted “NVMe-TLS”), we add TLS support in
NVMe-TCP Linux subsystem (210 LoC, not yet upstreamed). We
evaluate nginx and RoF in the 𝐶1 configuration. In the RoF experi-
ment, we run one RoF instance per core and use the memtier [65]
“get” workload to drive the instances with 8 concurrent request-
response connections per instance.

Figure 14 shows the outcome for nginx. It is qualitatively con-
sistent with the previous results that were bounded by the drive’s
bandwidth (Figure 12, which was dedicated to the NVMe-TCP of-
fload). But the quantitative improvement of the offload combination
is more substantial. For example, with a single core and an I/O size
of 256 KiB, the improvement provided by the NVMe-TLS offload is
4.0x bigger than that of the NVMe-TCP offload (44% vs. 180%≡2.0x).

Figure 15 shows the benefit of NVMe-TLS offloading for RoF.
When comparing it to the corresponding single-offload RoF experi-
ment (not shown), we find that the improvement is 4.6x bigger (28%
vs. 130%≡2.3x), similarly to the aforementioned nginx ratio.

So far, our workloads have been throughput-oriented. In Table 4,
we show the average latency of a single http GET request (single
connection) for multiple offload combinations. In particular, we
cumulatively add to the baseline configuration the TLS offload,
then the NVMe-TCP copy offload, and then the NVMe-TCP CRC
offload. TLS symmetric crypto is much costlier than copying and
CRC-ing, so the corresponding offload unsurprisingly achieves the
majority of the benefit: a 1%–19% latency reduction. The NVMe-
TCP offloads then reduces the latency further by 1%–9% percentage
points. As before, bigger requests benefit more.

6.4 Reordering and Loss
Out-of-sequence TCP packets (caused by reordering and loss) make
our autonomous offloads less effective and imply that NICs and/or
CPUs must work harder. Figure 16a depicts the effect of gradually
increasing packet loss rate on a single sender core transmitting
through 128 iperf streams at 100% CPU utilization. We use loss
rates between 0%–5% because on the internet, loss rate is typically
≤2% [20] and reordering is likewise ≤2% [94]. (In datacenters, loss
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Figure 16: Loss effect at sender (top and bottom labels show
how offload relates to no encryption and software TLS, re-
spectively). Throughput standard deviation is below 1.6%.
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spectively). Throughput standard deviation is below 2.61%.

can largely be avoided with DCTCP [3]). On transmit, we can see
that TLS offload performance is close to regular TCP performance,
delivering throughput that is within 8%–11% of plain TCP. The
benefit of offloading compared to software TLS becomes smaller as
loss increases, but it nevertheless remains non-negligible, with a
minimal 33% improvement at 5% loss. Figure 16b reports the internal
interconnect bandwidth that the NIC consumes when reading data
from memory to reconstruct its contexts (in percents out of the
total gen3 x16 PCIe available bandwidth). The figure shows that
even with 5% loss, context recovery costs no more than 2.5% of total
PCIe bandwidth.

Figure 17a and Figure 18a show the results of conducting the
same experiment but with a receiver using loss and reordering,
respectively. Loss and reordering are much costlier at the receiv-
ing end when offloading, which is why the corresponding curves
rapidly get closer to the software TLS curve. Recall that each out-
of-sequence (reordered or retransmitted) packet implies that the
encapsulating TLS record will not be offloaded. Figure 17b and
Figure 18b classify TLS records into three: offloaded (no packet in
the record was out-of-sequence), partially offloaded (some were
out-of-sequence), and not offloaded. Even with 5% loss, we see that
more than half of the records are fully offloaded, which highlights
the effectiveness of the NIC’s context recovery. Figure 17a indeed
shows that offloading still yields a non-negligible throughput im-
provement of 19% with the highest packet loss rate. With reordering
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Figure 18: Reordering effect at receiver (top and bottom la-
bels show how offload relates to no encryption and software
TLS, respectively).

of even 2% , unlike loss, we see that only 24% of the records are fully
offloaded, and with 5% almost no TLS record is offloaded(≤ 2%).
Nevertheless, Figure 18a shows that offloading yields a 9% improve-
ment in throughput with 2% of packet reordering, and in the worst
case (5%), performance is still as good as software tls.

6.5 Scalability
Autonomous NIC offloads use per-flow state stored in NIC caches
to perform well. But NIC caches are inherently limited. They can be
exhausted when serving a few thousands of flows, triggering flow
state eviction into main memory, which later incurs costly DMA
operations over PCIe upon state reuse. For this reason, previous
studies indicated that RDMA (which also uses per-flow state) does
not scale well [19, 54]. The question is: do autonomous offloads
suffer from the same problem as the number of connections exceeds
the capacity of the NIC caches?

To answer this question, we add another generator machine
and connect it to the server using its ConnectX6-Dx second port.
(As it happens, using two ports allows the throughput to exceed
100Gbps somewhat.) We repeat the nginx experiment involving
TLS offloading with eight cores and 256KiB files in 𝐶2 (data in
page cache). But this time, we increase the number of connections,
exponentially, from 64 to 128 K. With 4MiB of on-NIC memory and
208 B per-flow state, the NIC can store at most 20 K flows, ignoring
memory used for other resources such as packet queues.

Figure 19 shows the results. As the number of connections in-
creases, CPU utilization likewise increases until the CPU becomes
the bottleneck. Contributing to the increased utilization is the fact
that TCP packet batching becomes less effective with more connec-
tions: from 48 packets per batch with 128 connections, to only 8
packets per batch with 128 K connections.

Observe that for low connection counts, https and offload per-
formance is not visibly bottlenecked on neither the CPU nor the
NIC. This anomaly happens due to imbalanced request spreading
that results in some underutilized cores.

In all measurements, offload+zc throughput is within 10% of http
throughput, and it consumes at most 1.25x more CPU; offload and
offload+zc deliver 32%–63% and 53%–94% higher throughput as
compared to https, respectively.
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Overall, our workload scales reasonably despite the inherent
cache contention problem at the NIC caused by the growing ag-
gregated size of per-flow state. These scalability results disagree
with that of certain previous studies [19, 54]. We find that the rea-
son for this disagreement is packet batching, which is dominant in
our workloads (at least 8 packets per batch), as they involve big-
ger message sizes. In contract, the cited previous studies focus on
smaller messages. More specifically, as the flow state size exceeds
the NIC’s cache capacity, each newly serviced packet might in prin-
ciple trigger a cache miss and a costly memory access. But only
the first packet in the batch incurs this cost, whereas subsequent
packets do enjoy temporal locality. (We remark that batching might
not be dominant if nginx is made to serve only small files. In this
case, however, the workload ceases to be data-intensive and is thus
outside the scope of our work.)

When comparing our work to the aforementioned previous stud-
ies [19, 54], it should also be noted that we use more recent NICs
and thus benefit from their improved cache management and in-
creased parallelism, which, similarly to batching, help hide cache
miss latencies as demonstrated by a more recent NIC scalability
study [90].

7 APPLICABILITY
Next, we further discuss the applicability of autonomous offloads
to additional computations and protocols.

Decompression and deserialization As discussed in §3.1, non-
size-preserving operations preclude offloading when sending, but
not when receiving. A non-sized-preserving operation can be per-
formed on receive by having the NICwrite the offloaded operation’s
results to pre-allocated buffers (set up by the L5P) while also writing
the original packet data as-is to the driver’s receive ring. The driver
will pass packets with offload results as metadata up to the network
stack. Later, L5P software will skip performing the offloaded opera-
tion if all the packets in the message were offloaded; otherwise, it
will fall back to software using the original packet data.

As mentioned above, we require pre-allocated buffers to offload
non-size-preserving computation. To pre-allocate these buffers, we
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need to have either (1) predetermined response sizes, as in the
NVMe-TCP protocol, or (2) maximum message size limits enforced
by the implementations, such as in HTTP servers that limit request
headers to 16 KB.

We note that in contrast to copy, encryption, and digest offloads,
which pass packet data through PCIe and memory only once, non-
size-preserving offloads will pass packet data through PCIe and
memory twice: (1) offload results and (2) original packet data that
is needed only for software fallback processing. Nevertheless, this
is still better than off-CPU accelerators that pass data three times:
(1) from the network; (2) to the off-CPU accelerator; and (3) from
the off-CPU accelerator.

Pattern matching Deep packet inspection (DPI) software looks
for known patterns in packet payloads using either fixed-length
string pattern matching or regular expression matching. Patterns
are matched only within L5P messages and never across messages.
Thus, these computations fit our offload properties and we can
autonomously offloaded them as follows: for each packet, check if
some pattern match completes within it using the per-flow context
to track pattern matches across packets. If yes, report the match
with metadata to indicate the pattern; otherwise, report that the
packet contains no match. Later, DPI software inspects packets
in-order and if all packets of an L5P message are marked by the
NIC, then report results according to offload metadata. Otherwise,
if some packet bypassed NIC offload, perform DPI in software.

Not restricted to TCP This paper focuses on L5Ps built on top
of TCP. But autonomous offloading is, in fact, orthogonal to the
specific layer-4 protocol that is being used. Namely, an L5P is au-
tonomously offloadable if it has the properties defined in §4, re-
gardless of the specific underlying layer-4 that it is built upon. The
reason we have chosen to focus on TCP (in addition to its popu-
larity) is because its properties make it the most challenging to
autonomously offload. All the other layer-4 protocols that we are
aware of can be either similarly offloaded or are easier to offload.

Consider, e.g., a simple L5P that is built on top of UDP and di-
rectly mirrors its properties. A message of this L5P is therefore
a datagram that is entirely contained in a UDP packet; the mes-
sage might get lost or be handed to the receiving end out-of-order.
For example, DTLS (Datagram Transport Layer Security [108]) is
such an L5P, as it only encrypts and decrypts UDP packets. Au-
tonomously offloading this type of L5Ps is trivial and does not
merit an academic publication (we indeed do not consider it part
of our contribution). Because the NIC operates on individual, self-
contained datagrams, it never has to worry about such issues as
losing and having to reconstruct its position in the sequence due to
packet reordering and loss. Falling back on L5P software processing
is likewise never needed: the NIC always knows what to do next,
since all the information required for acceleration is encapsulated
inside the currently-processed incoming or outgoing datagram.

The main contribution of this work is coming up with a way to
autonomously offload a more sophisticated type of protocols—those
that provide some stream abstraction for their users. The challeng-
ing aspect in autonomously offloading such protocols is that an
L5P message can be spread across multiple packets in the stream
with no alignment between L5P messages and packets, making it

challenging for the NIC to identify L5P message boundaries in the
face of packet reordering and loss.

SCTP (StreamControl Transmission Protocol [118]) can be viewed
as an L5P that uses UDP to provide reliable, in-sequence delivery of
a stream of messages with congestion control. SCTP divides mes-
sages into “chunks,” such that each chunk is entirely contained in a
UDP packet along with its own header. A chunk header indicates, in
particular, whether the associated data starts a new SCTP message.
Therefore, autonomously offloading SCTP is similar to, but easier
than TCP-based offloads, because the NIC can identify message
beginnings within packets in a deterministic manner, ridding it
from the need to speculate using magic patterns.

QUIC [49] is an emerging protocol that provides a stream abstrac-
tion. It is capable of multiplexing multiple byte streams on top of
encrypted UDP packets. Each packet contains one or more “frames”
that corresponds to some byte stream. A QUIC autonomous offload
must be able to encrypt and decrypt the packets. (Simpler than TLS
offloading, as it is done per UDP packet.) Then, given access to the
frames’ content, all autonomously offloadable operations become
relevant: copy to avoid L5P message reassembly, decompression
(e.g., QPACK [61]), pattern matching, etc.

8 CONCLUSIONS
Autonomous NIC offloading is a new way to accelerate layer-5
protocols. The approach is appealing because it is nonintrusive,
allowing system designers to keep the existing TCP/IP stack intact.
We speculate that the non-intrusiveness of the design would give
rise to additional layer-5 offloads in the future and perhaps even
influence protocol design.
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A ARTIFACT APPENDIX
A.1 Abstract
Our artifact provides modified Linux kernel sources and configu-
rations along with modified nginx, fio, and iperf benchmarks, and
with further scripts to use these to reproduce the experiments and
plot the graphs in the paper. This will allow evaluation of the cycle
breakdown results and NVMe-TCP result on any x86 system. Re-
sults involving TLS offload require Mellanox ConnectX6-Dx crypto
enabled NICs. We also provide the raw data we collected to plot
the figures in the paper.

A.2 Artifact Check-List (Meta-information)
• Algorithm: Autonomous inline offload for TLS and NVMe-TCP.
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• Program: Linux kernel, nginx, fio, iperf. All sources included.
• Compilation: gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1 16.04)
• Transformations: Linux kernel: (1) support for kernel TLS offload
in mlx5_core.ko; (2) support for NVMe-TCP offload emulation in
tcp.ko; (3) support for measuring TLS AES-GCM crypto cycles in
tls.ko; and (4) support for measuring NVMe-TCP copy and CRC
cycles in tcp.ko.
Nginx: Support for using sendfile with kernel TLS.
Iperf: Support for using kernel TLS.
We note that some of the modifications are already upstream and
open-source, for instance, we havemodifiedOpenSSL and our patches
are available in the official OpenSSL Github page.

• Run-time environment: Tested on Ubuntu 16.04.
• Hardware: ConnectX6-Dx crypto enabled NICs.
• Experiments: As described in the evaluation section.
• Howmuch time is needed to prepareworkflow (approximately)?:
About an hour or two; installing the Linux kernel is probably most
time consuming.

• Howmuch time is needed to complete experiments (approx-
imately)?: About 15 hours for 5 repetitions of all tests = 1h for TLS
iperf, 10 hours for fio, and 4 hours for nginx TLS. You can reduce
this significantly by running less repetitions (replace REPEAT=5
with the desired number).

• Publicly available?: https://github.com/BorisPis/autonomous-asplos21-
artifact.git

• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.4319415

A.3 Description
A.3.1 Hardware Dependencies. All experiments depend on a pair
of machines connected back-to-back: device under test (DUT) and
load generator machines. Only the experiment in Figure 13 requires
access to Mellanox ConnectX6-Dx crypto enabled NICs. NVMe-
TCP experiments require the load generator to expose a disk over
NVMe-TCP to the DUT. If no disk is available, then scripts are
provided to setup a null device or a ramdisk instead.

A.3.2 Software Dependencies. See Github link above.

A.4 Installation
Obtain the code and sub-modules from github and run make to
compile all. Follow instructions in the “Setup configuration” section
in the Github repository to configure your machine parameters
(IPs/MACs/CPU cores and their affinity/etc.) for example configu-
rations, see TestSuite/Conf/config_*.sh.

A.5 ExperimentWorkflow and Expected Result
Use shell scripts (scripts/run_*.sh) to reproduce results and
plot them using gnuplot scripts (scripts/plot_*.sh) that gen-
erate Figure 10, Figure 11, and Figure 13 as in the paper.
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