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Abstract
IOMMUs provided by modern hardware allow the OS to
enforce memory protection controls on the DMA opera-
tions of its I/O devices. An IOMMU translation manage-
ment design must scalably handle frequent concurrent
updates of IOMMU translations made by multiple cores,
which occur in high throughput I/O workloads such as
multi-Gb/s networking. Today, however, OSes experi-
ence performance meltdowns when using the IOMMU
in such workloads.

This paper explores scalable IOMMU management
designs and addresses the two main bottlenecks we find
in current OSes: (1) assignment of I/O virtual addresses
(IOVAs), and (2) management of the IOMMU’s TLB.

We propose three approaches for scalable IOVA as-
signment: (1) dynamic identity mappings, which eschew
IOVA allocation altogether, (2) allocating IOVAs using
the kernel’s kmalloc, and (3) per-core caching of IO-
VAs allocated by a globally-locked IOVA allocator. We
further describe a scalable IOMMU TLB management
scheme that is compatible with all these approaches.

Evaluation of our designs under Linux shows that (1)
they achieve 88.5%–100% of the performance obtained
without an IOMMU, (2) they achieve similar latency to
that obtained without an IOMMU, (3) scalable IOVA al-
location and dynamic identity mappings perform compa-
rably, and (4) kmalloc provides a simple solution with
high performance, but can suffer from unbounded page
table blowup.

1 Introduction
Modern hardware provides an I/O memory management
unit (IOMMU) [2, 6, 24, 27] that mediates direct mem-
ory accesses (DMAs) by I/O devices in the same way
that a processor’s MMU mediates memory accesses by
instructions. The IOMMU interprets the target address
of a DMA as an I/O virtual address (IOVA) [32] and at-
tempts to translate it to a physical address, blocking the
DMA if no translation (installed by the OS) exists.

IOMMUs thus enable the OS to restrict a device’s
DMAs to specific physical memory locations, and
thereby protect the system from errant devices [18, 29],
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Figure 1. Parallel netperf throughput (Linux): Performance
meltdown due to dynamic IOMMU mapping updates.

malicious devices [8, 13, 46], and buggy drivers [7, 15,
22, 31, 41, 44], which may misconfigure a device to over-
write system memory. This intra-OS protection [45] is
recommended by hardware vendors [23, 29] and imple-
mented in existing OSes [5, 12, 25, 36]. OSes can employ
intra-OS protection both in non-virtual setups, having di-
rect access to the physical IOMMU, and in virtual setups,
by exposing the IOMMU to the VM through hardware-
supported nested IOMMU translation [2, 27], by paravir-
tualization [9, 31, 40, 45], or by full emulation of the
IOMMU interface [3].

Intra-OS protection requires each DMA operation to
be translated with a transient IOMMU mapping [12] ded-
icated to the DMA, which is destroyed once it com-
pletes so that the device cannot access the memory fur-
ther [29, 37]. For example, a network interface card
(NIC) driver maps the buffers it inserts into the NIC’s
receive (RX) rings to receive packets. Once a packet ar-
rives (via DMA), the driver unmaps the packet’s buffer.

These transient dynamic IOMMU mappings pose a
performance challenge for driving high-throughput I/O
workloads. Such workloads require dynamic mappings
to be created and destroyed millions of times a second
by multiple cores concurrently, since a single core of-
ten cannot sustain high enough throughput [30]. This
paper specifically targets multi-Gb/s networking—NICs
providing 10–40 Gb/s (and soon 100 Gb/s)—as a repre-
sentative demanding case.

Current OSes melt down under load when the
IOMMU is enabled in such a workload. Figure 1 demon-
strates the problem on Linux. It shows the combined
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throughput of 270 netperf instances running a request-
response workload (described in § 6) on a 16-core x86
server with a 10 Gb/s NIC, which we use as a running
example throughout the paper. Mediating DMAs by the
IOMMU imposes only negligible overhead by itself, as
evidenced by the throughput obtained when the IOMMU
is configured with static identity mappings that pass
DMA requests through the IOMMU unchanged. In con-
trast, when IOMMU management is enabled, through-
put drops significantly and ceases to increase with the
number of cores. This occurs with both Linux’s stock
IOMMU subsystem or the recent EiovaR [35] optimiza-
tion, which targets the sequential performance of Linux’s
IOMMU subsystem (see § 3.1). Other OSes suffer from
similar scalability problems (§ 3).

This paper thus considers the IOMMU manage-
ment problem of designing a subsystem supporting high-
throughput concurrent updates of IOMMU mappings.
We analyze the bottlenecks in current IOMMU manage-
ment designs (§ 3) and explore the trade-offs in the de-
sign space of their solutions (§§ 4–5). Our designs ad-
dress the two main bottlenecks we find in current OSes:
IOVA assignment and IOTLB invalidation.

IOVA assignment Creating an IOMMU mapping for a
physical memory location requires the OS to designate
a range of IOVAs that will map to the physical loca-
tion. The driver will later configure the device to DMA
to/from the IOVAs. OSes presently use a dedicated, cen-
tralized (lock-protected) IOVA allocator that becomes a
bottleneck when accessed concurrently.

We propose three designs for scalable IOVA assign-
ment (§ 4), listed in decreasingly radical order: First, dy-
namic identity mapping eliminates IOVA allocation alto-
gether by using a buffer’s physical address for its IOVA.
Consequently, however, maintaining the IOMMU page
tables requires more synchronization than in the other
designs. Second, IOVA-kmalloc eliminates only the spe-
cialized IOVA allocator by allocating IOVAs using the
kernel’s optimized kmalloc subsystem. This simple and
efficient design is based on the observation that we can
treat the addresses that kmalloc returns as IOVA page
numbers. Finally, per-core IOVA caching keeps the IOVA
allocator, but prevents it from becoming a bottleneck by
using magazines [11] to implement per-core caches of
free IOVAs, thereby satisfying allocations without ac-
cessing the IOVA allocator.

IOTLB invalidation Destroying an IOMMU mapping
requires invalidating relevant entries in the IOTLB, a
TLB that caches IOMMU mappings. The Linux IOMMU
subsystem amortizes the invalidation cost by batching
multiple invalidation requests and then performing a sin-
gle global invalidation of the IOTLB instead. The batch-
ing data structure is lock-protected and quickly becomes

a bottleneck. We design a compatible scalable batching
data structure as a replacement (§ 5).

Design space exploration We evaluate the perfor-
mance, page table memory consumption and implemen-
tation complexity of our designs (§ 6). We find that (1)
our designs achieve 88.5%–100% of the throughput ob-
tained without an IOMMU, (2) our designs achieve sim-
ilar latency to that obtained without an IOMMU, (3) the
savings dynamic identity mapping obtains from not allo-
cating IOVAs are negated by its more expensive IOMMU
page table management, making it perform comparably
to scalable IOVA allocation, and (4) IOVA-kmalloc pro-
vides a simple solution with high performance, but it can
suffer from unbounded page table blowup if empty page
tables are not reclaimed (as in Linux).

Contributions This paper makes four contributions:
• Identifying IOVA allocation and IOTLB invalida-

tion as the bottlenecks in the IOMMU management
subsystems of current OSes.

• Three designs for scalable IOVA allocation: (1) dy-
namic identity mappings, (2) IOVA-kmalloc, and
(3) per-core caching of IOVAs, as well as a scalable
IOTLB invalidation scheme.

• Evaluation of the new and existing designs on sev-
eral high throughput I/O workloads.

• Design space exploration: we compare the perfor-
mance, page table memory consumption and imple-
mentation complexity of the proposed designs.

2 Background: IOMMUs
The IOMMU mediates accesses to main memory by I/O
devices, much like the MMU mediates the memory ac-
cesses performed by instructions. IOMMUs impose a
translation process on each device DMA. The IOMMU
interprets the target address of the DMA as an I/O vir-
tual address (IOVA) [32], and attempts to translate it to
a physical address using per-device address translations
(or mappings) previously installed by the OS. If a trans-
lation exists, the DMA is routed to the correct physical
address; otherwise, it is blocked.

In the following, we provide a high-level description
of Intel’s x86 IOMMU operation [27]. Other architec-
tures are conceptually similar [2, 6, 24].

IOMMU translations The OS maintains a page table
hierarchy for each device, implemented as a 4-level radix
tree (as with MMUs). Each radix tree node is a 4 KB
page. An inner node (page directory) contains 512 point-
ers (page directory entries, or PDEs) to child radix-tree
nodes. A leaf node (page table) contains 512 pointers
(page table entries, or PTEs) to physical addresses. PTEs
also encode the type of access rights provided through
this translation, i.e., read, write or both.

The virtual I/O address space is 48-bit addressable.
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The 36 most significant bits of an IOVA are its page
frame number (PFN), which the IOMMU uses (when it
receives a DMA request) to walk the radix tree (9 bits
per level) and look up the physical address and access
rights associated with the IOVA. If no translation exists,
the IOMMU blocks the DMA and interrupts the proces-
sor. Unlike the analogous case in virtual memory, this
is not a page fault that lets the OS install a new map-
ping and transparently resume operation of the faulting
access. Instead, the DMA is simply dropped. The I/O de-
vice observes this and may not be able to recover. 1

IOTLB translation caching The IOMMU maintains
an IOTLB that caches IOVA translations. If the OS mod-
ifies a translation, it must invalidate (or flush) any TLB
entries associated with the translation. The IOMMU sup-
ports individual invalidations as well as global ones,
which flush all cached translations. The OS requests
IOTLB invalidations using the IOMMU’s invalidation
queue, a cyclic buffer in memory into which the OS adds
invalidation requests and the IOMMU processes them
asynchronously. The OS can request to be notified when
an invalidation has been processed.

2.1 IOMMU protection
IOMMUs can be used to provide inter- and intra-OS
protection [3, 43, 45, 47]. IOMMUs are used for inter-
OS protection in virtualized setups, when the host as-
signs a device for the exclusive use of some guest. The
host creates a static IOMMU translation [45] that maps
guest physical pages to the host physical pages backing
them, allowing the guest VM to directly program de-
vice DMAs. This mode of operation does not stress the
IOMMU management code and is not the focus of this
work.

We focus on intra-OS protection, in which the OS uses
the IOMMU to restrict a device’s DMAs to specific phys-
ical memory locations. This protects the system from er-
rant devices [18, 29], malicious devices [8, 13, 46], and
buggy drivers [7, 15, 22, 31, 41, 44].

Intra-OS protection is implemented via the DMA
API [12, 32, 37] that a device driver uses when program-
ming the DMAs. To program a device DMA to a physical
buffer, the driver must pass the buffer to the DMA API’s
map operation. The map operation responds with a DMA
address, and it is the DMA address that the driver must
program the device to access.

Internally, the map operation (1) allocates an IOVA
range the same size as the buffer, (2) maps the IOVA
range to the buffer in the IOMMU, and (3) returns the
IOVA to the driver. Once the DMA completes, the driver

1I/O page fault standardization exists, but since it requires support
from the device, it is not widely implemented or compatible with legacy
devices [2, 38, 39].

must unmap the DMA address, at which point the map-
ping is destroyed and the IOVA range deallocated.

High throughput I/O workloads can create and destroy
such dynamic IOMMU mappings [12] millions of times
a second, on multiple cores concurrently, and thereby put
severe pressure on the IOMMU management subsystem
implementing the DMA API.

3 Performance Analysis of Present Designs
Here we analyze the performance of current IOMMU
management designs under I/O workloads with high
throughput and concurrency. We use Linux/Intel-x86 as
a representative study vehicle; other OSes have similar
designs (§ 3.4). Our test workload is a highly parallel RR
benchmark, in which a netperf [28] server is handling
270 concurrent TCP RR requests arriving on a 10 Gb/s
NIC. § 6 fully details the workload and test setup.

To analyze the overhead created by IOMMU manage-
ment (shown in Figure 1), we break down the execution
time of the parallel RR workload on 16 cores (maximum
concurrency on our system) into the times spent on the
subtasks required to create and destroy IOMMU map-
pings. Figure 2 shows this breakdown. For comparison,
the last 3 bars show the breakdown of our scalable de-
signs (§§ 4–5).

We note that this parallel workload provokes patholog-
ical behavior of the stock Linux IOVA allocator. This be-
havior, which does not exist in other OSes, causes IOVA
allocation to hog ≈ 60% of the execution time. The re-
cent EiovaR optimization [35] addresses this issue, and
we therefore use Linux with EiovaR as our baseline. We
discuss this further in § 3.1.

In the following, we analyze each IOMMU man-
agement subtask and its associated overhead in the
Linux design: IOVA allocation (§ 3.1), IOTLB in-
validations (§ 3.2), and IOMMU page table manage-
ment (§ 3.3).

3.1 Linux IOVA Allocation
In Linux, each device is associated with an IOVA allo-
cator that is protected by a coarse-grained lock. Each
IOVA allocation and deallocation for the device acquires
its allocator’s lock, which thus becomes a sequential bot-
tleneck for frequent concurrent IOVA allocate/deallocate
operations. Figure 2 shows that IOVA allocation lock
acquisition time in the baseline accounts for 31.9% of
the cycles. In fact, this is only because IOVA alloca-
tions are throttled by a different bottleneck, IOTLB inval-
idations (§ 3.2). Once we address the invalidations bot-
tleneck, the IOVA allocation bottleneck becomes much
more severe, accounting for nearly 70% of the cycles.

This kind of design—acquiring a global lock for each
operation—would turn IOVA allocation into a sequential
bottleneck no matter which allocation algorithm is used
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Figure 2. Throughput and cycle breakdown of time spent in IOMMU management on a 16-core parallel netperf RR workload.
Stock Linux is shown for reference. Our baseline is Linux with EiovaR [35], which addresses a performance pathology in the
stock Linux IOVA allocation algorithm (see § 3.1). In this baseline, the IOTLB invalidation bottleneck masks the IOVA allocation
bottleneck, as evidenced by the third bar, which shows the breakdown after applying scalable IOTLB invalidations (§ 5) to the
EiovaR baseline. Our designs are represented by the last three bars, nearly eliminating lock overhead.

once the lock is acquired. We nevertheless discuss the
Linux IOVA allocation algorithm itself, since it has im-
plications for IOMMU page table management.

The IOVA allocator packs allocated IOVAs as tightly
as possible towards the end of the virtual I/O address
space. This minimizes the number of page tables re-
quired to map allocated IOVAs—an important feature,
because Linux rarely reclaims a physical page that gets
used as an IOMMU page table (§ 3.3).

To achieve this, the IOVA allocator uses a red-black
tree that holds pairwise-disjoint ranges of allocated vir-
tual I/O page numbers. This allows a new IOVA range
to be allocated by scanning the virtual I/O address space
from highest range to lowest range (with a right-to-left
traversal of the tree) until finding an unallocated gap that
can hold the desired range. Linux attempts to minimize
such costly linear traversals through a heuristic in which
the scan starts from some previously cached tree node.
This often finds a desired gap in constant time [35]. 2

Unfortunately, the IOVA allocation patterns occurring
with modern NICs can cause the heuristic to fail, result-
ing in frequent long linear traversals during IOVA alloca-
tions [35]. The EiovaR optimization avoids this problem
by adding a cache of recently freed IOVA ranges that can
satisfy most allocations without accessing the tree [35].
IOVA allocation time in Linux/EiovaR is thus compara-
ble, if not superior, to other OSes. However, IOVA al-
location remains a sequential bottleneck with EiovaR as
well (Figure 2), since the EiovaR cache is accessed under

2We refer the reader to [35] for the exact details of the heuristic,
which are irrelevant for our purpose.

the IOVA allocator lock.

3.2 Linux IOTLB Invalidation
Destroying an IOMMU mapping requires invalidating
the IOTLB entry caching the mapping, both for correct-
ness and for security. For correctness, if the unmapped
IOVA gets subsequently remapped to a different physi-
cal address, the IOMMU will keep using the old trans-
lation and misdirect any DMAs to this IOVA. Security-
wise, destroying a mapping indicates the device should
no longer have access to the associated physical mem-
ory. If the translation remains present in the IOTLB, the
device can still access the memory.

Unfortunately, waiting for the invalidation to complete
prior to returning control from IOVA unmapping code is
prohibitively expensive (§ 6). In addition to the added
latency of waiting for the invalidation to complete, is-
suing the invalidation command requires writing to the
IOMMU invalidation queue—an operation that must be
serialized and thus quickly becomes a bottleneck.

As a result, Linux does not implement this strict in-
validation policy by default. Instead, it implements a
deferred invalidation policy that amortizes the cost of
IOTLB invalidation across multiple unmappings. Here,
an unmap operation buffers an invalidation request for its
IOVA in a global flush queue data structure and returns
without waiting for the invalidation to complete. Peri-
odically (every 10 ms) or after batching 250 invalidation
requests, Linux performs a single global IOTLB invali-
dation that empties the entire IOTLB (possibly flushing
valid entries as well). Once the global invalidation com-
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pletes, the IOVA allocator is invoked to deallocate each
IOVA range buffered in the flush queue.

Thus, deferred invalidation maintains correctness, but
trades off some security—creating a window of time in
which a device can access unmapped IOVAs—in ex-
change for performance. In practice, unmapped phys-
ical pages rarely get reused immediately upon return-
ing from the unmap function. For example, a driver
may unmap multiple pages—possibly triggering a global
invalidation—before returning control to the system.
Thus, deferred invalidation appears to be a pragmatic
trade-off, and other OSes use similar mechanisms (§ 3.4).

While deferred invalidation amortizes the latency of
waiting for invalidations to complete, the flush queue is
protected by a single (per IOMMU) invalidation lock. As
with the IOVA allocation lock, this is a non-scalable de-
sign that creates a bottleneck—21.7% of the cycles are
spent waiting for the invalidation lock in our experiment.

Masking the IOVA allocator bottleneck Interest-
ingly, the IOTLB invalidation bottleneck throttles the rate
of IOVA allocation/deallocation operations, and thereby
masks the severity of the IOVA allocator bottleneck.
Deallocations are throttled because they occur while
processing the flush queue—i.e., under the invalidation
lock—and are therefore serialized. Allocations (map-
pings) are throttled because they are interleaved with
unmappings. Since unmapping is slow because of the
IOTLB bottleneck, the interval between mappings in-
creases and their frequency decreases.

Once we eliminate the IOTLB invalidation bottleneck,
however, pressure on the IOVA allocation lock increases
and with it the severity of its performance impact. In-
deed, as Figure 2 shows, adding scalable deferred IOTLB
invalidation (§ 5) to Linux/EiovaR increases IOVA lock
waiting time by 2.1×.

3.3 Linux Page Table Management
IOMMU page table management involves two tasks: up-
dating the page tables when creating/destroying map-
pings, and reclaiming physical pages that are used as
page tables when they become empty.

3.3.1 Updating Page Tables

We distinguish between updates to last-level page ta-
bles (leafs in the page table tree) and page directories (in-
ner nodes).

For last-level page tables, the Linux IOVA alloca-
tor enables synchronization-free updates. Because each
mapping is associated with a unique IOVA page range,
updates of distinct mappings involve distinct page table
entries. Further, the OS does not allow concurrent map-
ping/unmapping of the same IOVA range. Consequently,
it is safe to update entries in last-level page tables without
locking or atomic operations.

Updating page directories is more complex, since each
page directory entry (PDE) may map multiple IOVA
ranges (any range potentially mapped by a child page
table), and multiple cores may be concurrently map-
ping/unmapping these ranges. A new child page table is
allocated by updating an empty PDE to point to a new
page table. To synchronize this action in a parallel sce-
nario, we allocate a physical page P and then attempt to
point the PDE to P using an atomic operation. This at-
tempt may fail if another core has pointed the PDE to its
own page table in the mean time, but in this case we sim-
ply free P and use the page table installed by the other
core. Deallocation of page tables is more complex, and
is discussed in the following section.

The bottom line, however, is that updating page ta-
bles is relatively cheap. Page directories are updated in-
frequently and these updates rarely experience conflicts.
Similarly, last-level page table updates are cheap and
conflict free. As a result, page table updates account for
about 2.8% of the cycles in the system (Figure 2).

3.3.2 Page Table Reclamation

To reclaim a page table, we must first be able to remove
any reference (PDE) to it. This requires some kind of
synchronization to atomically (1) determine that the page
table is empty, (2) remove the pointer from the parent
PDE to it, (3) prevent other cores from creating new en-
tries in the page table in the mean time. In addition, be-
cause the IOTLB could cache PDEs [27], we can only
reclaim the physical page that served as the now-empty
page table after invalidating the IOTLB. Before that, it
is not safe to reclaim this memory or to map any other
IOVA in the range controlled by it.

Due to this complexity, the Linux design sidesteps this
issue and does not reclaim page table memory, unless the
entire region covered by a PDE is freed in one unmap ac-
tion. Thus, once a PDE is set to point to some page P, it is
unlikely to ever change, which in turn reduces the num-
ber of updates that need to be performed for PDEs. This
simple implementation choice is largely enabled by the
IOVA allocation policy of packing IOVA ranges close to
the top of the address space. This policy results in re-
quiring a minimal number of page tables to map the allo-
cated IOVA ranges, which makes memory consumption
by IOMMU page tables tolerable.

3.4 IOMMU Management in Other OSes
This section compares the Linux/Intel-x86 IOMMU
management design to the designs used in the FreeBSD,
Solaris3, and Mac OS X systems. Table 1 summarizes
our findings, which are detailed below. In a nutshell, we
find that (1) all OSes have scalability bottlenecks sim-

3Our source code references are to illumos, a fork of OpenSolaris.
However, the code in question dates back to OpenSolaris.
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IOVA allocation IOTLB invalidation PT management
Allocator Scales? Strict? Scales? Scales? Free mem?

Linux/Intel-
x86 (§§ 3.1–
3.3)

Red-black tree: linear time (made
constant by EiovaR).

� � � � Rarely

FreeBSD [20] Red-black tree: logarithmic time � � � � Yes
Solaris [21] Vmem [11]: constant time � � � � No
Mac OS X [4] Buddy allocator/red-black tree

(size dependent): logarithmic time
� � � � No

Table 1. Comparison of IOMMU management designs in current OSes

ilar to—or worse than—Linux, (2) none of the OSes
other than FreeBSD reclaim IOMMU page tables, (3)
FreeBSD is the only OS to implement strict IOTLB in-
validation. The other OSes loosen their intra-OS protec-
tion guarantees for increased performance. The last ob-
servation supports our choice of optimizing the Linux
deferred invalidation design in this work. Our scal-
able IOMMU management designs (or simple variants
thereof) are thus applicable to these OSes as well.

IOVA allocation All systems use a central globally-
locked allocator, which is invoked by each IOVA alloca-
tion/deallocation operation, and is thus a bottleneck. The
underlying allocator in FreeBSD is a red-black tree of
allocated ranges, similarly to Linux. However, FreeBSD
uses a different traversal policy, which usually finds a
range in logarithmic time [35]. Solaris uses the Vmem
resource allocator [11], which allocates in constant time.
Mac OS X uses two allocators, both logarithmic—a
buddy allocator for small (≤ 512 MB) ranges and a
red/black tree allocator for larger ranges.

IOTLB invalidation FreeBSD is the only OS that im-
plements strict IOTLB invalidations, i.e., waits until the
IOTLB is invalidated before completing an IOVA un-
map operation. The other OSes defer invalidations, al-
though differently than Linux: Solaris does not invalidate
the IOTLB when unmapping. Instead, it invalidates the
IOTLB when mapping an IOVA range, to flush any previ-
ous stale mapping. This creates an unbounded window of
time in which a device can still access unmapped mem-
ory. An unmap on Mac OS X buffers an IOTLB invali-
dation request in the cyclic IOMMU invalidation queue
and returns without waiting for the invalidation to com-
plete. All these designs acquire the lock protecting the
IOMMU invalidation queue for each operation, and thus
do not scale.

Page table management Linux has the most scalable
IOMMU page table management scheme—exploiting
IOVA range disjointness to update last-level PTEs with-
out locks and inner PDEs with atomic operations. In con-
trast, FreeBSD performs page table manipulations under

a global lock. Solaris uses a more fine-grained technique,
protecting each page table with a read/write lock. How-
ever, the root page table lock is acquired by every oper-
ation and thus becomes a bottleneck, since even acquisi-
tions of a read/write lock in read mode create contention
on the lock’s shared cache line [33]. Finally, Mac OS
X updates page tables under a global lock when using
the buddy allocator, but outside of the lock—similarly to
Linux—when allocating from the red-black tree.

Page table reclamation Similarly to Linux, Solaris
does not detect when a page table becomes empty and
thus does not attempt to reclaim physical pages that serve
as page tables. Mac OS X bounds the number of IOMMU
page tables (and therefore the size of I/O virtual memory
supported) and allocates them on first use while hold-
ing the IOVA allocator lock. Mac OS X does not re-
claim page tables as well. Only FreeBSD actively man-
ages IOMMU page table memory; it maintains a count
of used PTEs in each page table, and frees the page table
when it becomes empty.

4 Scalable IOVA Allocation
Here we describe three designs for scalable IOVA assign-
ment, exploring several points in this design space: (1)
dynamic identity mapping (§ 4.1), which does away with
IOVA allocation altogether, (2) IOVA-kmalloc (§ 4.2)
which implements IOVA allocation but does away with
its dedicated allocator, and (3) scalable IOVA alloca-
tion (§ 4.3), which uses magazines [11] to alleviate con-
tention on the IOVA allocator using per-core caching of
freed IOVA ranges.

4.1 Dynamic Identity Mapping
The fastest code is code that never runs. Our dynamic
identity mapping design applies this principle to IOVA
allocation. We observe that ordinarily, the buffers that
a driver wishes to map are already physically contigu-
ous. We thus propose to use such a physically contigu-
ous buffer’s physical address as its IOVA when map-
ping it, resulting in an identity (1-to-1) mapping in the
IOMMU. Due to intra-OS protection reasons, when the
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driver unmaps a buffer we must destroy its identity map-
ping. We therefore refer to this scheme as dynamic iden-
tity mappings—while the same buffer will always use the
same mapping, this mapping is dynamically created and
destroyed to enforce protection of the buffer’s memory.

Dynamic identity mapping eliminates the work and
locking involved in managing a distinct space of IOVAs,
replacing it with the work of translating a buffer’s ker-
nel virtual address to a physical address. In most OSes,
this is an efficient and scalable operation—e.g., adding a
constant to the kernel virtual address. However, while dy-
namic identity mapping completely eliminates the IOVA
allocation bottleneck, it turns out to have broader impli-
cations for other parts of the IOMMU management sub-
system, which we now discuss.

Page table entry reuse Standard IOVA allocation as-
sociates each mapping with a distinct IOVA. As a re-
sult, multiple mappings of the same page (e.g., for dif-
ferent buffers on the same page) involve different page
table entries (§ 3.3). Dynamic identity mapping breaks
this property: a driver—or concurrent cores—mapping a
previously mapped page will need to update exactly the
same page table entries (PTEs).

While repeated mapping operations will always write
the same value (i.e., the physical address of the mapped
page), unmapping operations pose a challenge. We need
to detect when the last unmapping occurs, so we can
clear the PTE. This requires maintaining a reference
count for each PTE. We use 10 of the OS-reserved bits
in the last-level PTE structure [27] to maintain this refer-
ence count. When the reference count hits zero, we clear
the PTE and request an IOTLB invalidation.

Because multiple cores may concurrently update the
same PTE, all PTE updates—including reference count
maintenance—require atomic operations. In other words,
we need to (1) read the PTE, (2) compute the new PTE
value, (3) update it with an atomic operation that verifies
the PTE has not changed in the mean time, and (4) repeat
this process if the atomic operation fails.

Conflicting access permissions A second problem
posed by not having unique PTEs for each mapping is
how to handle mappings of the same physical page with
conflicting access permission (read, write, or both). For
example, two buffers may get allocated by the network
stack on the same page—one for RX use, which the NIC
should write to, and one for TX, which the NIC should
only read. To maintain intra-OS protection, we must sep-
arately track mappings with different permissions, e.g.,
so that once all writable mappings of a page are de-
stroyed, no PTE with write permissions remains. Further-
more, even when a mapping with write permissions ex-
ists, we want to avoid promoting PTEs that should only
be used to read (and vice-versa), as this kind of access

should not happen during the normal course operation
for a properly functioning device and should be detected
and blocked.

To solve this problem, we exploit the fact that current
x86 processors support 48-bit I/O virtual memory ad-
dresses, but only 46-bits of physical memory addresses.
The two most significant bits in each IOVA are thus
“spare” bits, which we can use to differentiate mappings
with conflicting access permissions. Effectively, we par-
tition the identity mapping space into regions: three re-
gions, for read, write and read/write mappings, and a
fourth fallback region that contains addresses that cannot
be mapped with identity mappings—as discussed next.

Non-contiguous buffers Some mapping operations
are for physically non-contiguous buffers. For exam-
ple, Linux’s scatter/gather mapping functions map non-
consecutive physical memory into contiguous virtual I/O
memory. Since identity mappings do not address this use
case, we fall back to using the IOVA allocator in such
cases. To avoid conflicts with the identity mappings, IO-
VAs returned by the IOVA allocator are used in the fourth
fallback region.

PTE reference count overflow We fall back to stan-
dard IOVA allocation for mappings in which the 10-bit
reference count overflows. That is, if we encounter a PTE
whose reference count cannot be incremented while cre-
ating a dynamic identity mapping, we abort (decrement-
ing the references of any PTEs previously incremented
in the mapping process) and create the mapping using an
IOVA obtained from the IOVA allocator.

Page table memory Because physical addresses
mapped by drivers are basically arbitrary, we lose the
property that IOVAs are densely packed. Consequently,
more memory may be required to hold page tables. For
example, if the first 512 map operations are each for a
single page, IOVA allocation will map them all through
the same last-level page table. With physical addresses,
we may need at least a page table per map operation. Un-
fortunately, the physical pages used to hold these page
tables will not get reclaimed (§ 3.3). In the worst case,
page table memory consumption may keep increasing as
the system remains active.

4.2 IOVA-kmalloc
Our IOVA-kmalloc design explores the implications of
treating IOVA allocation as a general allocation prob-
lem. Essentially, to allocate an IOVA range of size R, we
can allocate a block of R bytes in physical memory using
the system’s kmalloc allocator, and use the block’s ad-
dress as an IOVA (our actual design is much less waste-
ful, as discussed below). The addresses kmalloc returns
are unique per allocation, and thus IOVA-kmalloc main-
tains the efficient conflict-free updates of IOMMU page
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tables enabled by the original IOVA allocator.
One crucial difference between kmalloc and IOVA al-

location is that IOVAs are abstract—essentially, opaque
integers—whereas kmalloc allocates physically con-
tiguous memory. It might therefore seem that the IOVA-
kmalloc approach unacceptably wastes memory, since
allocating R bytes to obtain an R-byte IOVA range dou-
bles the system’s memory consumption. Fortunately, we
observe that the IOVA allocator need only allocate vir-
tual I/O page frame numbers (PFNs), and not arbitrary
ranges. That is, given a physical buffer to map, we need
to find a range of pages that contains this buffer. This
makes the problem tractable: we can treat the physi-
cal addresses that kmalloc returns as PFNs. That is,
to map a range of R bytes, we kmalloc �R/4096�
bytes and interpret the address of the returned block B
as a range of PFNs (i.e., covering the IOVA range of
[4096B,4096(B+ �R/4096�)].

While this still wastes physical memory, the overhead
is only 1 byte per virtual I/O page, rounded up to 8 bytes
(the smallest unit kmalloc allocates internally). By com-
parison, the last-level PTE required to map a page is itself
8 bytes, so the memory blowup caused by IOVA-kmalloc
allocating actual physical memory is never greater than
the memory overhead incurred by stock Linux for page
table management.

In fact, being a full-blown memory allocator that man-
ages actual memory (not abstract integers) might actually
turn out to be advantageous for kmalloc, as this prop-
erty enables it to use the many techniques and optimiza-
tions in the memory allocation literature. In particular,
kmalloc implements a version of slab allocation [10],
a fast and space-efficient allocation scheme. One aspect
of this technique is that kmalloc stores the slab that con-
tains metadata associated with an allocated address in the
page structure of the address. This allows kmalloc to
look up metadata in constant time when an address gets
freed. In contrast, the Linux IOVA allocator has to main-
tain metadata externally, in the red-black tree, because
there is no physical memory backing an IOVA. It must
thus access the globally-locked tree on each deallocation.

Page table memory blowup The main downside of
IOVA-kmalloc is that we have no control over the allo-
cated addresses. Since kmalloc makes no effort to pack
allocations densely, the number of page tables required
to hold all the mappings will be larger than with the
Linux IOVA allocator. Moreover, if the same physical
address is mapped, unmapped, and then mapped again,
IOVA-kmalloc may use a different IOVA when remap-
ping. Because Linux does not reclaim page table mem-
ory, the amount of memory dedicated to page tables can
grow without bound. In contrast, dynamic identity map-
ping always allocates the same IOVA to a given physical
buffer. However, in an OS that manages page table mem-

ory, unbounded blowup cannot occur.
To summarize, IOVA-kmalloc represents a classic

time/space trade-off—we relinquish memory in ex-
change for the efficiency and scalability of kmalloc,
which is highly optimized due to its pervasive use
throughout the kernel. Notably, these advantages come
for free, in terms of implementation complexity, debug-
ging and maintenance, since kmalloc is already there,
performs well, and is trivial to use.

Handling IOVA collisions IOVAs are presently 48
bits wide [27]. x86 hardware presently supports 46-bits
of physical address space [26]. Thus, because we treat
kmalloc addresses as virtual I/O PFNs, IOVA-kmalloc
may allocate two addresses that collide when interpreted
as PFNs in the 48-bit I/O virtual address space. That is,
we have 236 possible IOVA PFNs since pages are 4 KB,
but kmalloc allocates from a pool of up to 246 bytes of
physical memory.

Such collisions are mathematically impossible on sys-
tems with at most 64 GB of physical memory (whose
physical addresses are 36-bit). To avoid these collisions
on larger systems, IOVA allocations can invoke kmalloc
with the GFP DMA flag. This flag instructs kmalloc to sat-
isfy the allocation from a low memory zone whose size
we can configure to be at most 64 GB.4

Why allocate addresses? We could simply use a
mapped buffer’s kernel virtual address as its IOVA PFN.
However, we then lose the guarantee that different map-
pings obtain different IOVA PFNs (e.g., as the same
buffer can be mapped twice). This is exactly the problem
dynamic identity mapping tackles, only here we do not
have “spare” bits to distinguish mappings with different
access rights as the virtual address space is 48 bits.

4.3 Scalable IOVA Allocation with Maga-
zines

Our final design addresses the IOVA allocator bottleneck
head-on, turning it into a scalable allocator. The basic
idea is to add a per-core cache of previously deallocated
IOVA ranges. If most allocations can be satisfied from
the per-core cache, the actual allocator—with its lock—
will be invoked rarely.

Per-core caching poses several requirements. First, the
per-core caches should be bounded. Second, they should
efficiently handle producer/consumer scenarios observed
in practice, in which one core continuously allocates IO-
VAs, which are later freed by another core. In a trivial de-
sign, only the core freeing IOVAs will build up a cache,
while the allocating core will always invoke the under-

4In theory, the GFP DMA memory zone must be accessible to legacy
devices for DMA and thus addressable with 24 bits. But as we have
an IOMMU, we only need to ensure that the IOVA ranges mapped to
legacy devices fall into the 24-bit zone.
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lying non-scalable allocator. We require that both cores
avoid interacting with the IOVA allocator.

Magazines [11] provide a suitable solution. A maga-
zine is an M-element per-core cache of objects—IOVA
ranges, in our case—maintained as a stack of objects.
Conceptually, a core trying to allocate from an empty
magazine (or deallocate into a full magazine) can re-
turn its magazine to a globally-locked depot in exchange
for a full (or empty) magazine. Magazines actually em-
ploy a more sophisticated replenishment policy which
guarantees that a core can satisfy at least M allocations
and at least M deallocations from its per-core cache be-
fore it must access the depot. Thus, a core’s miss rate is
bounded by 1/M.

We implement magazines on top of the original Linux
IOVA allocator, maintaining separate magazines and de-
pots for different allocation sizes. Thus, this design still
controls page table blowup, as the underlying allocator
densely packs allocated IOVAs.

5 Scalable IOTLB Invalidation
This section describes a scalable implementation of de-
ferred IOTLB invalidations. Recall that Linux maintains
a flush queue containing a globally ordered list of all
IOVA ranges pending invalidation. We observe, how-
ever, that a global flush queue—with its associated lock
contention—is overkill. There is no real dependency be-
tween the invalidation process of distinct IOVA ranges.
Our only requirements are that until an entire IOVA range
mapping is invalidated in the IOTLB:

1. The IOVA range will not be released back to the
IOVA allocator, to avoid having it allocated again
before the old mapping is invalidated.

2. The page tables that were mapping the IOVA range
will not be reclaimed. Since page directory entries
are also cached in the IOTLB, such a reclaimed page
table might get reused and data that appears as a
valid page table entry be written to it, and this data
might then be used by the IOMMU.

Our approach We satisfy these requirements in a
much more scalable manner by batching invalidation re-
quests locally on each core instead of globally. Imple-
menting this approach simply requires replicating the
current flush queue algorithm on a per-core basis. With
this design, the lock on a core’s flush queue is almost al-
ways acquired by the owning core. The only exception is
when the queue’s global invalidation timeout expires—
the resulting callback, which acquires the lock, may be
scheduled on a different core. However, not only does
such an event occur rarely (at most once every 10 ms),
but it suggests that the IOMMU management subsystem
is not heavily used in the first place.

The remaining source of contention in this design is
the serialization of writes to the cyclic IOMMU invali-
dation queue—which is protected by a lock—in order to
buffer global IOTLB invalidation requests. Fortunately,
accesses to the invalidation queue are infrequent, with at
most one invalidation every 250 invalidations or 10 ms,
and short, as an invalidation request is added to the buffer
and the lock is released; the core waits for the IOMMU to
process its queued invalidation without holding the lock.

Security-wise, while we now might batch 250 invali-
dation requests per core, a destroyed IOVA range map-
ping will usually be invalidated in the IOTLB just as
quickly as before. The reason is that some core per-
forms a global IOTLB invalidation, on average, every
250 global invalidation requests. Thus, we do not sub-
stantially increase the window of time in which a device
can access an unmapped physical page. Unmapped IOVA
ranges may, however, remain in a core’s flush queue and
will not be returned to the IOVA allocator for a longer
time than the baseline design—they will be freed only
when the core itself processes its local flush queue. We
did not observe this to be a problem in practice, espe-
cially when the system experiences high IOMMU man-
agement load.

6 Evaluation
Here we evaluate our designs (§§ 4–5) and explore the
trade-offs they involve. We study two metrics: the per-
formance obtained (§ 6.1), and the complexity of imple-
menting the designs (§ 6.2).

6.1 Performance
Experimental setup We implement the designs in
Linux 3.17.2. Our test setup consists of a client and a
server, both Dell PowerEdge R430 rack machines. Each
machine has dual 2.4 GHz Intel Xeon E5-2630 v3 8-core
processors, for a total of 16 cores per machine (hyper-
threading is disabled). Both machines are equipped with
32 GB 2133 MHz memory. The server is equipped with
a Broadcom NetXtreme II BCM57810 10 Gb/s NIC.
The client is equipped with an Intel 82599 10 Gb/s NIC
and runs an unmodified Ubuntu 3.13.0-45 Linux kernel.
The client’s IOMMU is disabled for all evaluations. The
client and the server NICs are cross-connected to avoid
network interference.

Methodology To obtain the best scalability, we (1)
configure the NIC on the server to use 15 rings, which is
the maximum number supported by the Broadcom NIC,
allowing cores to interact with the NIC with minimal
lock contention (no ring contention with < 16 cores),
and (2) distribute delivery of interrupts associated with
different rings across different cores.5 Benchmarks are

5Default delivery is to core #0, which overloads this core.
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executed in a round-robin fashion, with each benchmark
running once for 10 seconds for each possible number of
cores, followed by all benchmarks repeating. The cycle
is run five times and the reported results are the medians
of the five runs.

Benchmarks In our benchmarks, we aim to use con-
current workloads that stress the IOMMU management
subsystem.

Our first few benchmarks are based on netperf [28],
a prominent network analysis tool. In our highly parallel
RR (request-response) benchmark, we run 270 instances
of the netperf TCP RR test on the client, and limit the
server side of netperf to the number of cores we wish to
test on. Each TCP RR instance sends a TCP packet with
1 byte of payload to the server and waits for a 1 byte
response before sending the next one. In all, our bench-
mark has 270 ongoing requests to the netperf server
at any given time, which bring the server close to 100%
CPU utilization even with IOMMU disabled. We report
the total number of such request-response transactions
the server responds to during the testing period.

The second benchmark we use netperf for is a paral-
lel latency test. To achieve that, we run the netperf TCP
RR test with as many instances as we allow server cores.
This allows each netperf request-response connection
to run on its own dedicated core on both the client and
the server.

Our third benchmark is memcached [19], a key-value
store service used by web applications to speed up
read operations on slow resources such as databases
and remote API calls. To avoid lock contention within
memcached, we run multiple instances, each pinned to
run on a specific core. We measure memcached through-
put using memslap [1], which distributes requests among
the memcached instances. We configure memslap to run
on the client with 16 threads and 256 concurrent requests
(16 per thread). We use memslap’s default configuration
of a 64-byte key, 1024-byte value and a ratio of 10%/90%
SET/GET operations.

We note that network bandwidth benchmarks would
be less relevant here, as a single core can saturate the
network on our machines. As an example, netperf TCP
STREAM, which makes use of the NIC’s offloading fea-
tures, is able to saturate the network using 22% CPU time
on a single core even running under EiovaR-Linux.

Results Figure 3 depicts the throughput achieved by
our highly parallel RR benchmark. Without an IOMMU,
Linux scales nicely and obtains 14.4× TPS with 16 cores
than with a single core. Because of the IOMMU manage-
ment bottlenecks, EiovaR-Linux does not scale as well,
obtaining only a 3.8× speedup. In particular, while Eio-
vaR obtains 86% of the No-IOMMU throughput with 1
core (due to the single-threaded overheads of IOMMU
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 0
 20
 40
 60
 80

 100
 120
 140
 160

 2  4  6  8  10  12  14  16

av
er

ag
e 

la
te

nc
y 

(µ
s)

cores

no iommu
dynamic identity
iova-kmalloc
magazines
eiovar
stock linux

Figure 4. 1 netperf TCP RR instance per core latency test

management), it only achieves 23% of the No-IOMMU
throughput at 16 cores.

Our designs all perform at 93%–95% of No-IOMMU
on a single core and scale far better than EiovaR, with
16-core throughput being 93% (magazines and dynamic
identity mapping) and 94% (IOVA-kmalloc) of the No-
IOMMU results. Because of the overhead dynamic iden-
tity mapping adds to page table updates, it does not out-
perform the IOVA allocating designs—despite not per-
forming IOVA allocation at all.

To summarize, in our designs IOMMU overhead is
essentially constant and does not get worse with more
concurrency. Most of this overhead consists of page ta-
bles updates, which are essential when managing the
IOMMU in a transient manner.

In our parallel latency test, shown in Figure 4, we see
that Linux’s latency increases with multiple cores, even
without IOMMU, from 29µs with one instance to 41µs
with 16 instances, each with its own core. While Eio-
vaR starts within 1.2µs of Linux’s latency on one core,
the contention caused by its locks causes a 10µs gap at
16 cores. For the most part, our designs are on par with
Linux’s performance, actually achieving slightly shorter
latency than No-IOMMU Linux on 16 cores.

The evaluation of memcached in Figure 5 paints a sim-
ilar picture to Figure 3 with up to 12 cores. The IOMMU
subsystem is indifferent to the different packet size in this
workload (1052 bytes here, 1 byte in TCP RR) as the
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mappings are done per page and no data copying takes
place. Starting at 12 cores, all of our designs achieve
line rate and therefore close the gap with No-IOMMU
performance. Here, too, IOVA-kmalloc demonstrates the
best performance out of our designs by a small mar-
gin (in all but 2 cores and > 12 cores, where they all
achieve line rate), as it is the most highly optimized of
the three. With a single core, all of our designs are be-
tween 89% (dynamic identity) and 91% (IOVA-kmalloc)
of No-IOMMU performance. At 9 cores, after which
No-IOMMU Linux throughput begins to near line rate,
our designs’ relative throughput is between 89.5% (dy-
namic identity) and 91.5% (IOVA-kmalloc). EiovaR also
stops scaling well before 16 cores, but as opposed to our
designs, it does not do that due to achieving line rate,
plateauing at 40% of it, starting with 9 cores.

Page table memory consumption Linux rarely re-
claims a page used as an IOMMU page table (§ 3.3).
Figure 6 illustrates the memory consumption dynamics
this policy creates. We run 100 iterations of our parallel
RR benchmark and plot the number of IOMMU page ta-
bles (in all levels) that exist in the system before the tests
start (but after system and NIC initialization) and after
each iteration.

Both EiovaR and our magazine-based design, which
are based on Linux’s current IOVA allocator, minimize
page table memory consumption by packing allocated
IOVAs at the top of the address space. As Figure 6 shows,
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Figure 7. Highly parallel netperf txns/sec with strict IOTLB
invalidation

both of them, as well as stock Linux, allocate most page
tables at NIC initialization, when all RX rings are allo-
cated and mapped, as well as all TX/RX descriptors and
other metadata.

Our magazine-based design consumes 1.2× more
page table memory than stock Linux, because the cores
cache freed IOVAs in their per-core caches instead of re-
turning them to the global allocator, requiring other cores
to allocate new IOVAs from the allocator and thus in-
creasing page table use.

While dynamic identity mapping does not guarantee
an upper bound on the number of IOVAs it utilizes over
time, it turns out that the APIs used by the driver to
allocate buffers use caching themselves. Consequently,
mapped addresses repeat across the iterations and the
number of page tables does not explode. Still, 3.4× more
page tables than stock Linux are allocated, since the ad-
dresses are not packed.

In contrast to the other schemes, IOVA-kmalloc ex-
hibits a blowup of page table memory use. Since the ad-
dresses IOVA-kmalloc receives from kmalloc are influ-
enced by system-wide allocation activity, IOVA-kmalloc
uses a much wider and constantly changing set of IOVAs.
This causes its page table memory consumption to grow
in an almost linear fashion. We conclude that while
IOVA-kmalloc is the best performing design, by a slight
margin, its use must be accompanied by memory recla-
mation of unused page tables. This underscores the need
for managing the IOMMU page table memory in a scal-
able manner—§ 3.3 describes the challenges involved.

Strict invalidation Figure 7 shows the parallel RR
benchmark throughput with strict IOTLB invalidation,
i.e., full intra-OS protection. As invalidations are not de-
ferred, our scalable IOTLB invalidation optimization is
irrelevant for this case. While we observe very minor
throughput difference between the IOVA allocation de-
signs when using a small number of cores, even this dif-
ference is no longer evident when more than 6 cores
are used, with all designs obtaining about 1/6 the TPS
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Design Lines Files Impl.
add del time

Dynamic identity
mapping (§ 4.1)

+397 -92 1 Weeks

IOVA-kmalloc (§ 4.2) +56 -44 1 Hours
IOVA allocation with
magazines (§ 4.3)

+362 -79 3 Days

Scalable IOTLB in-
validation (§ 5)

+97 -37 1 Hours

Table 2. Implementation complexity of our designs

of No-IOMMU Linux by 16 cores. In all designs, the
contention over the invalidation queue lock becomes the
dominating factor (§ 3.2). Thus, strict IOTLB invalida-
tion appears incompatible with a scalable implementa-
tion.

6.2 Implementation Complexity
Table 2 reports the source code changes required to im-
plement our designs in Linux 3.17.2. The table also es-
timates the time it would take us to re-implement each
approach from scratch. IOVA-kmalloc is the simplest
design to implement, essentially replacing calls to the
IOVA allocator with a kmalloc() call. Most of the line
changes reported for IOVA-kmalloc are due to techni-
cal changes, replacing the struct representing an IOVA
with an integer type. Implementation of the magazines
design is a bit more complex, requiring an implementa-
tion of a magazine-based caching layer on top of the ex-
isting IOVA allocator, as well as optimizing its locking
strategy. Dynamic identity mapping is the most compli-
cated and intrusive of our IOVA assignment designs, as
it calls for a surgical modification of page table manage-
ment itself, maintaining mapping book-keeping within
the table itself and synchronizing updates to the same
mapping from multiple cores in parallel.

7 Related Work
Most work addressing the poor performance associ-
ated with using IOMMUs tackles only sequential per-
formance [3, 9, 14, 34, 42, 45, 47, 35], for example by
reducing the number of mapping operations [45], defer-
ring or offloading IOTLB invalidation work [3], and im-
proving the IOVA allocator algorithm [14, 35, 42]. Cas-
cardo [14] does consider multicore workloads, but his
proposal improves only the sequential part of the IOVA
allocator. In contrast, our work identifies and attacks the
scalability bottlenecks in current IOMMU management
designs. In addition, our scalable IOVA allocation is or-
thogonal to sequential improvements in the IOVA alloca-
tor, since it treats it as a black box.

Clements et al. propose designs for scalable manage-
ment of process virtual address spaces [16, 17]. I/O vir-

tual memory has simpler semantics than standard vir-
tual memory, which allows us to explore simpler de-
signs. In particular, (1) IOVA ranges cannot be partially
unmapped, unlike standard mmap()ed ranges, and (2)
IOVA mappings can exploit the preexisting address of the
mapped buffers (as in dynamic identity mapping), while
creation of a virtual memory region can occur before the
allocation of the physical memory backing it.

Bonwick introduced magazines to improve scalability
in the Vmem resource allocator [11]. Since Vmem is a
general allocator, however, it does not minimize page ta-
ble memory consumption of allocated IOVAs, in contrast
to the specialized Linux allocator. Our IOVA-kmalloc
design additionally shows that a dedicated resource allo-
cator may not be required in the first place. Finally, part
of our contribution is the re-evaluation of magazines on
modern machines and workloads.

8 Conclusion
Today, IOMMU-based intra-OS protection faces a per-
formance challenge in high throughput and highly con-
current I/O workloads. In current OSes, the IOMMU
management subsystem is not scalable and creates a pro-
hibitive bottleneck.

Towards addressing this problem, we have explored
the design space of scalable IOMMU management
approaches. We proposed three designs for scalable
IOVA assignment—dynamic identity mapping, IOVA-
kmalloc, and per-core IOVA caching—as well as a scal-
able IOTLB invalidation scheme. Our designs achieve
88.5%–100% of the performance obtained without an
IOMMU.

Our evaluation demonstrates the trade-offs of the dif-
ferent designs. Namely, (1) the savings dynamic identity
mapping obtains from not allocating IOVAs are negated
by its more expensive IOMMU page table management,
making it perform comparably to scalable IOVA alloca-
tion, and (2) IOVA-kmalloc provides a simple solution
with high performance, but suffers from unbounded page
table blowup. This emphasizes the importance of manag-
ing the IOMMU page table memory in a scalable manner
as well, which is interesting future work.
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modified device driver reuse and improved system dependability
via virtual machines. In USENIX Symposium on Operating Sys-
tem Design and Implementation (OSDI) (2004), pp. 17–30.

[32] Documentation/intel-iommu.txt, Linux 3.18 documentation
file. https://www.kernel.org/doc/Documentation/

Intel-IOMMU.txt. (Accessed: Jan 2015).

[33] LIU, R., ZHANG, H., AND CHEN, H. Scalable Read-mostly
Synchronization Using Passive Reader-Writer Locks. In USENIX
Annual Technical Conference (ATC) (2014), pp. 219–230.

[34] MALKA, M., AMIT, N., BEN-YEHUDA, M., AND TSAFRIR, D.
rIOMMU: Efficient IOMMU for I/O devices that employ ring
buffers. In ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASP-
LOS) (2015), pp. 355–368.

[35] MALKA, M., AMIT, N., AND TSAFRIR, D. Efficient Intra-
Operating System Protection Against Harmful DMAs. In
USENIX Conference on File and Storage Technologies (FAST)
(2015), pp. 29–44.

[36] MAMTANI, V. DMA directions and Windows.
http://download.microsoft.com/download/a/f/d/

afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_

wh07.pptx, 2007. (Accessed: May 2014).

[37] MILLER, D. S., HENDERSON, R., AND JELINEK, J. Dy-
namic DMA mapping guide. https://www.kernel.org/doc/
Documentation/DMA-API-HOWTO.txt. Linux kernel docu-
mentation.



562  2015 USENIX Annual Technical Conference	 USENIX Association

[38] PCI-SIG. Address translation services revision 1.1. https:

//www.pcisig.com/specifications/iov/ats, Jan 2009.

[39] ROEDEL, J. IOMMU Page Faulting and MM Integra-
tion. http://www.linuxplumbersconf.org/2014/ocw/

system/presentations/2253/original/iommuv2.pdf.
Linux Plumbers Conference 2014.

[40] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVi-
sor: A tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In ACM Symposium on Operating Systems
Principles (SOSP) (2007), pp. 335–350.

[41] SWIFT, M., BERSHAD, B., AND LEVY, H. Improving the reli-
ability of commodity operating systems. ACM Transactions on
Computer Systems (TOCS) 23, 1 (Feb 2005), 77–110.

[42] TOMONORI, F. DMA representations sg table vs. sg ring IOM-
MUs and LLD’s restrictions. In USENIX Linux Storage and
Filesystem Workshop (LSF) (2008). https://www.usenix.

org/legacy/events/lsf08/tech/IO_tomonori.pdf.

[43] WALDSPURGER, C., AND ROSENBLUM, M. I/O virtualization.
Communications of the ACM (CACM) 55, 1 (Jan 2012), 66–73.

[44] WILLIAMS, D., REYNOLDS, P., WALSH, K., SIRER, E. G.,
AND SCHNEIDER, F. B. Device driver safety through a reference
validation mechanism. In USENIX Symposium on Operating Sys-
tem Design and Implementation (OSDI) (2008), pp. 241–254.

[45] WILLMANN, P., RIXNER, S., AND COX, A. L. Protection strate-
gies for direct access to virtualized I/O devices. In USENIX An-
nual Technical Conference (ATC) (2008), pp. 15–28.

[46] WOJTCZUK, R. Subverting the Xen hypervisor. In Black
Hat (2008). http://www.blackhat.com/presentations/

bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_

the_Xen_Hypervisor.pdf. (Accessed: May 2014).

[47] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O.
On the DMA mapping problem in direct device assignment. In
ACM International Systems and Storage Conference (SYSTOR)
(2010), pp. 18:1–18:12.




