
This paper is included in the Proceedings of the 
13th USENIX Conference on 

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the  
13th USENIX Conference on 

File and Storage Technologies 
is sponsored by USENIX

Efficient Intra-Operating System Protection 
Against Harmful DMAs

Moshe Malka, Nadav Amit, and Dan Tsafrir, Technion—Israel Institute of Technology

https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka



USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  29

Efficient Intra-Operating System Protection Against Harmful DMAs

Moshe Malka Nadav Amit Dan Tsafrir
Technion – Israel Institute of Technology

Abstract
Operating systems can defend themselves against mis-

behaving I/O devices and drivers by employing intra-OS
protection. With “strict” intra-OS protection, the OS uses
the IOMMU to map each DMA buffer immediately before
the DMA occurs and to unmap it immediately after. Strict
protection is costly due to IOMMU-related hardware over-
heads, motivating “deferred” intra-OS protection, which
trades off some safety for performance.

We investigate the Linux intra-OS protection mapping
layer and discover that hardware overheads are not exclu-
sively to blame for its high cost. Rather, the cost is am-
plified by the I/O virtual address (IOVA) allocator, which
regularly induces linear complexity. We find that the na-
ture of IOVA allocation requests is inherently simple and
constrained due to the manner by which I/O devices are
used, allowing us to deliver constant time complexity with
a compact, easy-to-implement optimization. Our optimiza-
tion improves the throughput of standard benchmarks by
up to 5.5x. It delivers strict protection with performance
comparable to that of the baseline deferred protection.

To generalize our case that OSes drive the IOMMU
with suboptimal software, we additionally investigate the
FreeBSD mapping layer and obtain similar findings.

1 Introduction

The role that the I/O memory management unit (IOMMU)
plays for I/O devices is similar to the role that the regular
memory management unit (MMU) plays for processes.
Processes typically access the memory using virtual ad-
dresses translated to physical addresses by the MMU.
Likewise, I/O devices commonly access the memory via
direct memory access operations (DMAs) associated with
I/O virtual addresses (IOVAs), which are translated to
physical addresses by the IOMMU. Both hardware units
are implemented similarly with a page table hierarchy that
the operating system (OS) maintains and the hardware
walks upon an (IO)TLB miss.

The IOMMU can provide inter- and intra-OS protec-
tion [4, 44, 54, 57, 59]. Inter protection is applicable in
virtual setups. It allows for “direct I/O”, where the host as-
signs a device directly to a guest virtual machine (VM) for
its exclusive use, largely removing itself from the guest’s
I/O path and thus improving its performance [27, 42]. In

this mode, the VM directly programs device DMAs using
its notion of (guest) “physical” addresses. The host uses
the IOMMU to redirect these accesses to where the VM
memory truly resides, thus protecting its own memory
and the memory of the other VMs. With inter protec-
tion, IOVAs are mapped to physical memory locations
infrequently, only upon such events as VM creation and
migration, and host management operations such as mem-
ory swapping, deduplication, and NUMA migration. Such
mappings are therefore denoted persistent or static [57].

Intra-OS protection allows the OS to defend against er-
rant/malicious devices and buggy drivers, which account
for most OS failures [19, 49]. Drivers/devices can initi-
ate/perform DMAs to arbitrary memory locations, and
IOMMUs allow OSes to protect themselves by restrict-
ing these DMAs to specific physical memory locations.
Intra-OS protection is applicable in: (1) non-virtual setups
where the OS has direct control over the IOMMU, and in
(2) virtual setups where IOMMU functionality is exposed
to VMs via paravirtualization [12, 42, 48, 57], full emula-
tion [4], or, recently, hardware support for nested IOMMU
translation [2, 36]. In this mode, IOVA (un)mappings are
frequent and occur within the I/O critical path. The OS
programs DMAs using IOVAs rather than physical ad-
dresses, such that each DMA is preceded and followed by
the mapping and unmapping of the associated IOVA to
the physical address it represents [38, 46]. For this reason,
such mappings are denoted single-use or dynamic [16].
The context of this paper is intra-OS protection (§2).

To do its job, the intra-OS protection mapping layer
must allocate IOVA values: integer ranges that serve as
page identifiers. IOVA allocation is similar to regular
memory allocation. But it is different enough to merit
its own allocator (§3). One key difference is that regular
allocators dedicate much effort to preserving locality and
to combating fragmentation, whereas the IOVA allocator
disallows locality and enjoys a naturally “unfragmented”
workload. This difference makes the IOVA allocator 1–2
orders of magnitude smaller in terms of lines of code.

Another difference is that, by default, the IOVA subsys-
tem trades off some safety for performance. It delays the
completion of IOVA deallocations while letting the OS
believe that the deallocations have been processed. Specif-
ically, freeing an IOVA implies purging it from the IOTLB
such that the associated physical buffer is no longer acces-
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sible to the I/O device. But invalidating IOTLB entries is
a costly, slow operation. So the IOVA subsystem opts for
batching the invalidations until enough accumulate and
then invalidating all the IOTLB en masse, thus reducing
the amortized price. This default mode is called deferred
protection. Users can turn it off at boot time by instructing
the kernel to use strict protection.

The activity that stresses the IOVA mapping layer is
associated with I/O devices that employ ring buffers in
order to communicate with their OS drivers in a producer-
consumer manner. A ring is a cyclic array whose entries
correspond to DMA requests that the driver initiates and
the device fulfills. Ring entries contain IOVAs that the
mapping layer allocates/frees before/after the associated
DMAs are processed by the device. We carefully analyze
the performance of the IOVA mapping layer and find that
its allocation scheme is efficient despite its simplicity, but
only if the device is associated with a single ring (§4).

Devices, however, often employ more rings, in which
case our analysis indicates that the IOVA allocator se-
riously degrades the performance (§5). We study this
deficiency and find that its root cause is a pathology we
call long-lasting ring interference. The pathology occurs
when I/O asynchrony prompts an event that causes the
allocator to migrate an IOVA from one ring to another,
henceforth repetitively destroying the contiguity of the
ring’s I/O space upon which the allocator relies for effi-
ciency. We conjecture that this harmful effect remained
hidden thus far because of the well-known slowness asso-
ciated with manipulating the IOMMU. The hardware took
most of the blame for the high price of intra-OS protection
even though software is equally guilty, as it turns out, in
both OSes that we checked (Linux and FreeBSD).

We address the problem by adding the Efficient IOVA
allocatoR (EIOVAR) optimization to the kernel’s mapping
subsystem (§6). EIOVAR exploits the fact that its workload
is (1) exclusively comprised of power-of-two allocations,
and is (2) ring-induced, so the difference D between the
cumulative number of allocation and deallocation requests
at any given time is proportional to the ring size, which
is relatively small. EIOVAR is accordingly a simple, thin
layer on top of the baseline IOVA allocator that proxies all
(de)allocations. It caches all freed ranges and reuses them
to quickly satisfy subsequent allocations. It is successful
because the requests are similar. It is frugal with memory
because D is small. And it is compact (implementation-
wise) because it consists of an array of freelists with a bit
of minimal logic. EIOVAR entirely eliminates the baseline
allocator’s aforementioned reliance on I/O space contigu-
ity, ensuring all (de)allocations are efficient.

We evaluate the performance of EIOVAR using dif-
ferent I/O devices (§7). On average, EIOVAR satisfies
(de)allocations in about 100 cycles. It improves the
throughput of Netperf, Apache, and Memcached bench-

marks by up to 5.50x and 1.71x for strict and deferred
protection, respectively, and it reduces the CPU consump-
tion by up to 0.53x. Interestingly, EIOVAR delivers strict
protection with performance that is similar to that of the
baseline system when employing deferred protection.

Accelerating allocation (of IOVAs in our case) using
freelists is a well-known technique commonly utilized by
memory allocators [13, 14, 15, 29, 40, 53, 55] (§8). Our
additional contributions are: identifying that the perfor-
mance of the IOMMU mapping layer can be dramatically
improved by employing this technique across the OSes we
tested and thus refuting the common wisdom that the poor
performance is largely due to the hardware slowness; care-
fully studying the IOMMU mapping layer workload; find-
ing that it is very “well behaved”; which ensures that even
our simplistic EIOVAR freelist provides fast, constant-time
IOVA allocation while remaining compact in size (§9).

2 Intra-OS Protection

DMA refers to the ability of I/O devices to read from
or write to the main memory without CPU involvement.
It is a heavily used mechanism, as it frees the CPU to
continue to do work between the time it programs the
DMA until the time the associated data is sent or received.
As noted, drivers of devices that stress the IOVA mapping
layer initiate DMA operations via a ring buffer, which is
a circular array in main memory that constitutes a shared
data structure between the driver and its device. Each
entry in the ring contains a DMA descriptor, specifying
the address(es) and size(s) of the corresponding target
buffer(s); the I/O device will write/read the data to/from
the latter, at which point it will trigger an interrupt to let
the OS know that the DMA has completed. (Interrupts are
coalesced if their rate is high.) I/O device are commonly
associated with more than one ring, e.g., a receive ring
denoted Rx for DMA read operations, and a transmit ring
denoted Tx for DMA write operations.

In the past, I/O devices used physical addresses in order
to access main memory, namely, each DMA descriptor
contained a physical address of its target buffer. Such
unmediated DMA activity directed at the memory makes
the system vulnerable to rogue devices performing errant
or malicious DMAs [9, 17, 38, 58], or to buggy drivers
that might program their devices to overwrite any part of
the system memory [8, 30, 42, 49, 56]. Subsequently, all
major chip vendors introduced IOMMUs [2, 7, 34, 36],
alleviating the problem as follows.

The OS associates each DMA target buffer with some
IOVA, used instead of the physical address when filling
out the associated ring descriptor. The I/O device is obliv-
ious to the change, processing the DMA as if the IOVA
was a physical memory address. The IOMMU then trans-
lates the IOVA, routing the operation to the appropriate
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Figure 1: IOVA translation using the Intel IOMMU.

memory location. Figure 1 depicts the translation pro-
cess of the Intel IOMMU used in this paper. The PCI
protocol dictates that each DMA operation is associated
with a 16 bit request identifier comprised of a bus-device-
function triplet unique to the corresponding I/O device.
The IOMMU uses the 8 bit bus number to index the root
table, retrieving the physical address of the context ta-
ble. It then indexes the latter using the device-function
8 bit concatenation, yielding the physical location of the
root of the page table hierarchy that houses the device’s
IOVA translations. Similarly to the MMU, the IOMMU
accelerates translations using an IOTLB.

The functionality of the IOMMU is equivalent to that
of the regular MMU. It permits IOVA memory accesses
to go through only if the OS previously inserted matching
translations. The OS can thus protect itself by allowing
a device to access a target buffer just before the corre-
sponding DMA occurs (add mapping), and by revoking
access just after (remove mapping), exerting fine-grained
control over what portions of memory may be used in
I/O transactions at any given time. This state-of-the-art
strategy of IOMMU-based protection was termed intra-
OS protection by Willmann et al. [57].It is recommended
by hardware vendors [31, 38], and it is used by operating
systems [6, 16, 35, 45]. For example, the DMA API of
Linux—which we use in this study—notes that “DMA
addresses should be mapped only for the time they are
actually used and unmapped after the DMA transfer” [46].

3 IOVA vs. Memory Allocation

The task of generating IOVAs—namely, the actual inte-
ger numbers that the OS assigns to descriptors and the
devices then use—is similar to regular memory allocation.
But it is sufficiently different to merit its own allocator,
because it optimizes for different objectives, and because
it is required to make different tradeoffs, as follows.

Locality Memory allocators spend much effort in trying
to (re)allocate memory chunks in a way that maximizes
reuse of TLB entries and cached content. The IOVA map-

ping layer of the OS does the opposite. The numbers it
allocates correspond to whole pages, and they are not
allowed to stay warm in hardware caches in between al-
locations. Rather, they must be purged from the IOTLB
and from the page table hierarchy immediately after the
DMA completes. Moreover, while purging an IOVA, the
mapping layer must flush each cache line that it modifies
in the hierarchy, as the IOMMU and CPU do not reside
in the same coherence domain.1

Fragmentation Memory allocators invest much effort
in combating fragmentation, attempting to eliminate un-
used memory “holes” and utilize the memory they have
before requesting the system for more. As we further dis-
cuss in §5–§6, it is trivial for the IOVA mapping layer to
avoid fragmentation due to the simple workload that it ser-
vices, which exclusively consists of requests whose size
is a power of two number of pages. The IOMMU driver
rounds up all IOVA range requests to 2 j for two reasons.
First, because IOTLB invalidation of 2 j ranges is faster
[36, 39]. And second, because the allocated IOVA range
does not correspond to 2 j pages of real memory. Rather
it merely corresponds to to a pair of integers marking the
beginning and end of the range. Namely, the IOMMU
driver maps only the physical pages it was given, but it re-
serves a bigger IOVA range so as to make the subsequent
associated IOTLB invalidation speedier. It can thus afford
to be “wasteful”. (In our experiments, the value of j was
overwhelmingly 0. Namely, the allocated IOVA ranges
almost always consist of one page only.)

Complexity Simplicity and compactness matter and
are valued within the kernel. Not having to worry about
locality and fragmentation while enjoying a simple work-
load, the mapping layer allocation scheme is significantly
simpler than regular memory allocators. In Linux, it is
comprised of only a few hundred lines of codes instead
of thousands [40, 41] or tens of thousands [13, 32].

Safety & Performance Assume a thread T0 frees a
memory chunk M, and then another thread T1 allocates
memory. A memory allocator may give M to T1, but only
after it processes the free of T0. Namely, it would never
allow T0 and T1 to use M together. Conversely, the IOVA
mapping layer purposely allows T0 (the device) and T1
(the OS) to access M simultaneously for a short period of
time. The reason: invalidation of IOTLB entries is costly
[4, 57]. Therefore, by default, the mapping layer trades off
safety for performance by (1) accumulating up to W un-
processed ’free’ operations and only then (2) freeing those
W IOVAs and (3) invalidating the entire IOTLB en masse.
Consequently, target buffers are actively being used by
the OS while the device might still access them through

1Intel IOMMU specification documents a capability bit that indicates
whether the IOMMU and CPU coherence could be turned on [36], but
we do not own such hardware and believe it is not yet common.
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stale IOTLB entries. This weakened safety mode is called
deferred protection. Users can instead employ strict pro-
tection—which processes invalidations immediately—by
setting a kernel command line parameter.

Metadata Memory allocators typically use the memory
that their clients (de)allocate to store their metadata. For
example, by inlining the size of an allocated area just
before the pointer that is returned to the client. Or by
using linked lists of free objects whose “next” pointers
are kept within the areas the comprise the lists. The IOVA
mapping layer cannot do that, because the IOVAs that
it invents are pointers to memory that is used by some
other entity (the device or the OS). An IOVA is just an
additional identifier for a page, which the mapping layer
does not own.

Pointer Values Memory allocators running on 64-bit
machines typically use native 64-bit pointers. The IOVA
mapping layer prefers to use 32-bit IOVAs, as utilizing 64-
bit addresses for DMA would force a slower, dual address
cycle on the PCI bus [16].

4 Supposed O(1) Complexity of Baseline

In accordance to §3, the allocation scheme employed by
the Linux/x86 IOVA mapping layer is different than, and
independent of, the regular kernel memory allocation sub-
system. The underlying data structure of the IOVA al-
locator is the generic Linux kernel red-black tree. The
elements of the tree are ranges. A range is a pair of inte-
ger numbers [L,H] that represent a sequence of currently
allocated I/O virtual page numbers L,L+1, ...,H −1,H,
such that L ≤ H stand for “low” and “high”, respectively.
Ranges are pairwise disjoint, namely, given two ranges
[L1,H1] �= [L2,H2], then either H1 < L2 or H2 < L1.

Newly requested IOVA integers are allocated by scan-
ning the tree right-to-left from the highest possible value
downwards towards zero in search for a gap that can
accommodate the requested range size. The allocation
scheme attempts and—as we will later see—ordinarily
succeeds to allocate the new range from within the highest
gap available in the tree.

The allocator begins to scan the tree from a cache node
that it maintains, denoted C. The allocator iterates from C
through the ranges in a descending manner until a suitable
gap is found. C is maintained such that it usually points
to a range that is higher than (to the right of) the highest
free gap, as follows. When (1) a range R is freed and C
currently points to a range lower than R, then C is updated
to point to R’s successor. And (2) when a new range Q is
allocated, then C is updated to point to Q; if Q was the
highest free gap prior to its allocation, then C still points
higher than the highest free gap after this allocation.

Figure 2 lists the pseudo code of the IOVA allocation

struct range_t {int lo, hi;};

range_t alloc_iova(rbtree_t t, int rngsiz) {

range_t new_range;
rbnode_t right = t.cache;
rbnode_t left = rb_prev( right );

while(right.range.lo - left.range.hi <= rngsiz)
right = left;
left = rb_prev( left );

new_range.hi = right.lo - 1;
new_range.lo = right.lo - rngsiz;
t.cache = rb_insert( t, new_range );

return new_range;
}

void free_iova(rbtree_t t, rbnode_t d) {
if( d.range.lo >= t.cache.range.lo )

t.cache = rb_next( d );
rb_erase( t, d );

}

Figure 2: Pseudo code of the baseline IOVA allocation scheme.
The functions rb_next and rb_prev return the successor and
predecessor of the node they receive, respectively.

scheme as was just described. Clearly, the algorithm’s
worst case complexity is linear due to the ’while’ loop
that scans previously allocated ranges beginning at the
cache node C. But when factoring in the actual workload
that this algorithm services, the situation is not so bleak:
the complexity turns out to actually be constant rather
than linear (at least conceptually).

Recall that the workload is commonly induced by a cir-
cular ring buffer, whereby IOVAs of DMA target buffers
are allocated and freed in a repeated, cyclic manner. Con-
sider, for example, an Ethernet NIC with a Rx ring of
size n, ready to receive packets. Assume the NIC initially
allocates n target buffers, each big enough to hold one
packet (1500 bytes). The NIC then maps the buffers to
n newly allocated, consecutive IOVAs with which it pop-
ulates the ring descriptors. Assume that the IOVAs are
n,n− 1, ...,2,1. (The series is descending as IOVAs are
allocated from highest to lowest.) The first mapped IOVA
is n, so the NIC stores the first received packet in the
memory pointed to by n, and it triggers an interrupt to let
the OS know that it needs to handle the packet.

Upon handling the interrupt, the OS first unmaps the
corresponding IOVA, purging it from the IOTLB and
IOMMU page table to prevent the device from accessing
the associated target buffer (assuming strict protection).
The unmap frees IOVA=n, thus updating C to point to
n’s successor in the red-black tree (free_iova in Figure 2).
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The OS then immediately re-arms the ring descriptor for
future packets, allocating a new target buffer and associat-
ing it with a newly allocated IOVA. The latter will be n,
and it will be allocated in constant time, as C points to n’s
immediate successor (alloc_iova in Figure 2). The same
scenario will cyclically repeat itself for n−1,n−2, ...,1
and then again n, ...,1 and so on as long as the NIC is
operational.

Our soon to be described experiments across multiple
devices and workloads indicate that the above description
is fairly accurate. IOVA allocations requests are over-
whelmingly for one page ranges (H = L), and the freed
IOVAs are indeed re-allocated shortly after being freed,
enabling, in principle, the allocator in Figure 2 to operate
in constant time as described. But the algorithm succeeds
to operate in this ideal manner only for some bounded
time. We find that, inevitably, an event occurs and ruins
this ideality thereafter.

5 Long-Lasting Ring Interference

The above O(1) algorithm description assumes there ex-
ists only one ring in the I/O virtual address space. In
reality, however, there are often two or more, for example,
the Rx and Tx receive and transmit rings. Nonetheless,
even when servicing multiple rings, the IOVA allocator
provides constant time allocation in many cases, so long
as each ring’s free_iova is immediately followed by a
matching alloc_iova for the same ring (the common case).
Allocating for one ring and then another indeed causes
linear IOVA searches due to how the cache node C is
maintained. But large bursts of I/O activity flowing in one
direction still enjoy constant allocation time.

The aforementioned event that forever eliminates the
allocator’s ability to accommodate large I/O bursts with
constant time occurs when a free-allocate pair of one
ring is interleaved with that of another. Then, an IOVA
from one ring is mapped to another, ruining the contigu-
ity of the ring’s I/O virtual address. Henceforth, every
cycle of n allocations would involve one linear search
prompted whenever the noncontiguous IOVA is freed and
reallocated. We call this pathology long-lasting ring in-
terference and note that its harmful effect increases as
additional inter-ring free-allocate interleavings occur.

Table 1 illustrates the pathology. Assume that a server
mostly receives data and occasionally transmits. Sup-
pose that Rx activity triggers a Rx.free_iova(L) of ad-
dress L (1). Typically, this action would be followed by
Rx.alloc_iova, which would then return L (2). But some-
times a Tx operation sneaks in between. If this Tx op-
eration is Tx.free_iova(H) such that H > L (3), then the
allocator would update the cache node C to point to H’s
successor (4). The next Rx.alloc_iova would be satisfied by
H (5), but then the subsequent Rx.alloc_iova would have

operation without Tx with Tx
return C C return C C
value before after value before after

Rx.free(L=151) (1) 152 152 152 152
Tx.free(H=300) (3) 152 (4) 301
Rx.alloc (2) 151 152 151 (5) 300 301 300
Rx.free(150) 151 151 300 (6) 300
Rx.alloc 150 151 150 (7) 151 300 151

Table 1: Illustrating why Rx-Tx interferences cause linearity,
following the baseline allocation algorithm detailed in Figure 2.
(Assume that all addresses are initially allocated.)
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Figure 3: The length of each alloc_iova search loop in a 40K
(sub)sequence of alloc_iova calls performed by one Netperf run.
One Rx-Tx interference leads to regular linearity.

to iterate through the tree from H (6) to L (7), inducing a
linear overhead. Notably, once H is mapped for Rx, the
pathology is repeated every time H is (de)allocated. This
repetitiveness is experimentally demonstrated in Figure
3, showing the per-allocation number of rb_prev invoca-
tions. The calls are invoked in the loop in alloc_iova while
searching for a free IOVA.

We show below that the implications of long-lasting
ring interference can be dreadful in terms of performance.
How, then, is it possible that such a deficiency is over-
looked? We contend that the reason is twofold. The first is
that commodity I/O devices were slow enough in the past
such that IOVA allocation linearity did not matter. The
second reason is the fact that using the IOMMU hardware
is slow and incurs a high price, motivating the deferred
protection safety/performance tradeoff. Being that slow,
the hardware served as a scapegoat, wrongfully held ac-
countable for most of the overhead penalty and masking
the fact that software is equally to blame.

6 The EIOVAR Optimization

Suffering from frequent linear allocations, the baseline
IOVA allocator is ill-suited for high-throughput I/O de-
vices that are capable of performing millions of I/O trans-
actions per second. It is too slow. One could proclaim
that this is just another case of a special-purpose allo-
cator proved inferior to a general-purpose allocator and
argue that the latter should be favored over the former
despite the notable differences between the two as listed
in §4. We contend, however, that the simple, repetitive,
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and inherently ring-induced nature of the workload can
be adequately served by the existing simplistic allocator—
with only a small, minor change—such that the modified
version is able to consistently support fast (de)allocations.

We propose the EIOVAR optimization (Efficient IOVA
allocatoR), which rests of the following observation. I/O
devices that stress the intra-OS protection mapping layer
are not like processes, in that the size of their virtual
address spaces is relatively small, inherently bounded
by the size of their rings. A typical ring size n is a few
hundreds or a few thousands of entries. The number of
per-device virtual page addresses that the IOVA alloca-
tor must simultaneously support is proportional to the
ring size, which means it is likewise bounded and rel-
atively small. Moreover, unlike “regular” memory allo-
cators, the IOVA mapping layer does not allocate real
memory pages. Rather, it allocates integer identifiers for
those pages. Thus, it is reasonable to keep O(n) of these
identifiers alive under the hood for quick (de)allocation,
without really (de)allocating them (in the traditional, mal-
loc sense of (de)allocation).

In numerous experiments with multiple devices and
workloads, the maximal number of per-device different
IOVAs we have observed is 12K. More relevant is that,
across all experiments, the maximal number of previously-
allocated-but-now-free IOVAs has never exceeded 668
(and was 155 on average). Additionally, as noted ear-
lier, the allocated IOVA ranges have a power of two
size H −L+1 = 2 j, where j is overwhelmingly 0. EIO-
VAR leverages these workload characteristic to efficiently
cache freed IOVAs so as to satisfy future allocations
quickly, similarly to what regular memory allocators do
when allocating real memory [13, 14, 15, 29, 40, 53, 55].

EIOVAR is a thin layer that masks the red-black tree, re-
sorting to using it only when EIOVAR cannot fulfill IOVA
allocation on its own using previously freed elements.
When configured to have enough capacity, all tree alloca-
tions that EIOVAR is unable to mask are assured to be fast
and occur in constant time.

EIOVAR’s main data structure is a one-dimensional ar-
ray called “the freelist”, or f for short. The array consists
of M linked lists of IOVA ranges. Lists are empty upon
initialization. When an IOVA range [L,H] whose size
is H −L+1 = 2 j is freed, instead of actually freeing it,
EIOVAR adds it to the head of the linked list of the corre-
sponding exponent, namely, to f [ j]. Because most ranges
are comprised of one page (H = L), most ranges end up
in the f [0] list after they are freed. The upper bound on
the size of the ranges supported by EIOVAR is 2M+12 bytes
(assuming 212 = 4KB pages), as EIOVAR allocates page
numbers. Thus, M = 28 is enough, allowing for up to a
terabyte range.

EIOVAR allocation performs the reverse operation of
freeing. When a range whose exponent is j is being al-

located, EIOVAR removes the head of the f [ j] linked list
in order to satisfy the allocation request. EIOVAR resorts
to utilizing the baseline red-black tree only if a suitable
range is not found in the freelist.

When no limit is imposed on the freelist, after a very
short while, all EIOVAR (de)allocation operations are sat-
isfied by f due to the inherently limited size of the ring-
induced workload. All freelist (de)allocations are per-
formed in constant time, taking 50-150 cycles per opera-
tion. Initial allocations that EIOVAR satisfies by resorting
to the baseline tree are likewise done in constant time,
because the freelist is limitless and so the tree never ob-
serves deallocations, which means its cache node C al-
ways points to its smallest, leftmost node (Figure 2).

We would like to make sure that the freelist is compact
and is not effectively leaking memory. To bound the size
of the freelist, EIOVAR has a parameter k that serves as f ’s
maximal capacity of freed IOVAs. We use the EIOVARk
notation to express this limit, with k = ∞ indicating no up-
per bound. We demonstrate that setting k to be a relatively
small number is equivalent to setting it to ∞, because the
number of previously-allocated-but-now-free IOVAs is
constrained by the size of the corresponding ring. Con-
sequently, we can be certain that the freelist of EIOVAR∞

is a compact. At the same time, k = ∞ guarantees that
(de)allocations are always satisfied in constant time.

6.1 EIOVAR with Strict Protection

To understand the behavior and effect of EIOVAR, we
begin by analyzing five EIOVARk variants as compared
to the baseline under strict protection, where IOVAs are
(de)allocated immediately before and after the associated
DMAs. We use the standard Netperf stream benchmark
that maximizes throughput on one TCP connection. We
initially restart the NIC interface for each allocation vari-
ant (thus clearing IOVA structures), and then we execute
the benchmark iteratively. The exact experimental setup
is described in §7. The results are shown in Figure 4.

Figure 4a shows that the throughput of all EIOVAR vari-
ants is similar and is 20%–60% better than the baseline.
The baseline gradually decreases except for the last itera-
tion. Figure 4b highlights why even EIOVAR1 is sufficient
to provide the observed benefit. It plots the rate of IOVA
allocations that are satisfied by the freelist, showing that
k = 1 is enough to satisfy nearly all allocations. This re-
sult indicates that each call to free_iova is followed by
alloc_iova, such that the IOVA freed by the former is re-
turned by the latter, coinciding with the ideal scenario
outlined in §4. Figure 4c supports this observation by
depicting the average size of the freelist. The average of
EIOVAR1 is inevitably 0.5, as every allocation and deal-
location contributes to the average 1 and 0 respectively.
Larger k values are similar, with an average of 2.5 be-
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Figure 4: Netperf TCP stream iteratively executed under strict protection. The x axis shows the iteration number.

basline

m
a
p
 [
c
y
c
le

s
]

iterationalloc_iova
all the rest

 0

1k

2k

3k

4k

 1  2  3  4  5  6  7  8  9

eiovar

 0

1k

2k

3k

4k

 1  2  3  4  5  6  7  8  9

Figure 5: Cycles breakdown of map with Netperf/strict.
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Figure 6: Cycles breakdown of unmap with Netperf/strict.

cause of two additional (de)allocation that are performed
when Netperf starts running and that remain in the freel-
ist thereafter. Figure 4d shows the average length of the
’while’ loop from Figure 2, which searches for the next
free IOVA. It depicts a rough mirror image of Figure 4a,
indicating throughput is tightly negatively correlated with
the traversal length.

Figure 5 (left) shows the time it takes the baseline
to map an IOVA, separating allocation from the other
activities. Whereas the latter remains constant, the former
exhibits a trend identical to Figure 4d. Conversely, the
alloc_iova time of EIOVAR (Figure 5, right) is negligible
across the board. EIOVAR is immune to long-lasting ring
interface, as interfering transactions are absorbed by the
freelist and reused in constant time.

6.2 EIOVAR with Deferred Protection

Figure 6 is similar to Figure 5, but it pertains to the unmap
operation rather than to map. It shows that the duration of

free_iova remains stable across iterations with both EIO-
VAR and the baseline. EIOVAR deallocation is still faster
as it is performed in constant time whereas the baseline
is logarithmic. But most of the overhead is not due to
free_iova. Rather, it is due to the costly invalidation that
purges the IOVA from the IOTLB to protect the corre-
sponding target buffer. This is the aforementioned hard-
ware overhead that motivated deferred protection, which
amortizes the cost by delaying invalidations until enough
IOVAs are accumulated and then processing all of them
together. As noted, deferring the invalidations trades off
safety for performance, because the relevant memory is
accessible by the device even though it is already used by
the kernel for other purposes.

Figure 7 compares between the baseline and the EIO-
VAR variants under deferred protection. Interestingly, the
resulting throughput divides the variants into two, with
EIOVAR512 and EIOVAR∞ above 6Gbps and all the rest at
around 4Gbps (Figure 7a). We again observe a strong neg-
ative correlation between the throughput and the length of
the search to find the next free IOVA (Figure 7a vs. 7d).

In contrast to the strict setup (Figure 4), here we see that
EIOVAR variants with smaller k values roughly perform as
bad as the baseline. This finding is somewhat surprising,
because, e.g., 25% of the allocations of EIOVAR64 are satis-
fied by the freelist (Figure 7b), which should presumably
improve its performance over the baseline. A finding that
helps explain this result is noticing that the average size
of the EIOVAR64 freelist is 32 (Figure 7c), even though
it is allowed to hold up to k = 64 elements. Notice that
EIOVAR∞ holds around 128 elements on average, so we
know there are enough deallocations to fully populate the
EIOVAR64 freelist. One might therefore expect that the
latter would be fully utilized, but it is not.

The average size of the EIOVAR64 freelist is 50% of its
capacity due to the following reason. Deferred invalida-
tions are aggregated until a high-water mark W (kernel
parameter) is reached, and then all the W addresses are
deallocated in bulk.2 When k <W , the freelist fills up to

2They cannot be freed before they are purged from the IOTLB, or
else they could be re-allocated, which would be a bug since their stale
mappings might reside in the IOTLB and point to somewhere else.
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Figure 7: Netperf TCP stream iteratively executed under deferred protection. The x axis shows the iteration number.

Figure 8: Under deferred protection, EIOVARk eliminates
costly linear searches when k exceeds the high-water mark W .

hold k elements, which become k−1 after the subsequent
allocation, and then k− 2 after the next allocation, and
so on until zero is reached, yielding an average size of

1
k+1 Σk

j=0 j ≈ k/2 as our measurements show.
Importantly, when k <W , EIOVARk is unable to absorb

all the W consecutive deallocations. The remaining W −k
deallocations are thus freed by the baseline free_iova.
Thus, only k of the W subsequent allocation are satisfied
by the freelist, and the remaining W −k are serviced by the
baseline alloc_iova. The baseline free_iova and alloc_iova
are therefore regularly invoked in an uncoordinated way
despite the freelist. As described in §5, the interplay be-
tween these two routines eventually causes long-lasting
ring interference that induces repeated linear searches. In
contrast, when k is big enough (≥W ), the freelist has suf-
ficient capacity to absorb all W deallocations, which are
then used to satisfy the subsequent W allocations and thus
secure the conditions for preventing the harmful effect.

Figure 8 demonstrates this threshold behavior, depict-
ing the throughput as a function of the maximal freel-
ist size k. Increasingly bigger k slowly improves perfor-
mance, as more—but not yet all—allocations are served
by the freelist. When k reaches W = 250, the freelist is
finally big enough, and the throughput suddenly increases
by 26%. Figure 9 provides further insight into this result.
It shows the per-allocation length of the loop within al-
loc_iova that iterates through the red-black tree in search
for the next free IOVA (similarly to Figure 3). The sub-
graphs correspond to 3 points from Figure 8 with k values
64, 240, and 250. We see that the smaller k (left) yields
longer searches relative to the bigger k (middle), and that
the length of the search becomes zero when k =W (right).
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Figure 9: Length of the alloc_iova search loop under the
EIOVARk deferred protection regime for three k values when
running Netperf TCP Stream. Bigger capacity implies that
the searches become shorter on average. Big enough capacity
(k ≥W = 250) eliminates the searches altogether.

7 Evaluation

Experimental Setup We implement EIOVAR in the
Linux kernel, and we experimentally compare its perfor-
mance against the baseline IOVA allocation. In an effort
to attain more general results, we conducted the evalua-
tion using two setups involving two different NICs with
two corresponding different device drivers that generate
different workloads for the IOVA allocation layer.

The Mellanox setup consists of two identical Dell Pow-
erEdge R210 II Rack Servers that communicate through
Mellanox ConnectX3 40Gbps NICs. The NICs are con-
nected back to back configured to use Ethernet. One ma-
chine is the server and the other is a workload generator
client. Each machine has 8GB 1333MHz memory and a
single-socket 4-core Intel Xeon E3-1220 CPU running at
3.10GHz. The chipset is Intel C202, which supports VT-d,
Intel’s Virtualization Technology that provides IOMMU
functionality. We configure the server to utilize one core
only, and we turn off all power optimizations—sleep states
(C-states) and dynamic voltage and frequency scaling
(DVFS)—to avoid reporting artifacts caused by nondeter-
ministic events. The two machines run Ubuntu 12.04 and
utilize the Linux 3.4.64 kernel.

The Broadcom setup is similar, with the difference that:
the two R210 machines communicate through Broadcom
NetXtreme II BCM57810 10GbE NICs (connected via a
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CAT7 10GBASE-T cable for fast Ethernet); have 16GB
memory; and run the Linux 3.11.0 kernel.

The drivers of the Mellanox and Broadcom NICs dif-
fer in many respects. Notably, the Mellanox driver uses
more ring buffers and allocates more IOVAs (we observed
around 12K addresses for Mellanox and 3K for Broad-
com). In particular, the Mellanox driver uses two buffers
per packet and hence two IOVAs, whereas the Broadcom
driver allocates only one buffer and thus only one IOVA.

Benchmarks We use the following benchmarks to drive
our experiments. Netperf TCP stream [37] is a standard
tool to measure networking throughput. It attempts to
maximize the amount of data sent over one TCP connec-
tion, simulating an I/O-intensive workload. This is the
benchmark used when studying long-lasting ring interfer-
ence (§5) and the impact of k on EIOVARk (§6). We use
the default 16KB message size unless otherwise stated.

Netperf UDP RR (request-response) is the second
canonical configuration of Netperf. It models a latency
sensitive workload by repeatedly sending a single byte
and waiting for a matching single byte response. The la-
tency is then calculated as the inverse of the observed
number of transactions per second.

Apache [23, 24] is a HTTP web server. We drive it
with ApacheBench [5] (a.k.a. “ab”), a workload generator
distributed with Apache. ApacheBench assess the num-
ber of concurrent requests per second that the server is
capable of handling by requesting a static page of a given
size from within several concurrent threads. We run it on
the client machine configured to generate 100 concurrent
requests. We use two instances of the benchmark to re-
quest a smaller (1KB) and a bigger (1MB) file. Logging
is disabled to avoid disk write overheads.

Memcached [25] is an in-memory key-value storage
server. It is used, e.g., by websites for caching results of
slow database queries, thus improving the sites’ overall
performance. We run Memslap [1] (part of the libmem-
cached client library) on the client machine, generating
requests and measuring the completion rate. By default,
Memslap generates a random workload comprised of 90%
get and 10% set operations. Unless otherwise stated, Mem-
slap is set to use 16 concurrent requests.

Methodology Before running each benchmark, we shut
down and bring up the interface of the NIC using the
ifconfig utility, such that the IOVA allocation is redone
from scratch using a clean tree, clearing the impact of
previous harmful long-lasting ring interferences. We then
iteratively run the benchmark 150 times, such that indi-
vidual runs are configured to take about 20 seconds. We
present the corresponding results, on average.

Results Figure 10 shows the resulting average perfor-
mance for the Mellanox (top) and Broadcom (bottom)
setups. Higher numbers indicate better throughput in all

cases but for Netperf RR, which depicts latency (inverse
of throughput). The corresponding normalized values—
specifying relative improvement—are shown in the first
part of Table 2. Here, for consistency, the normalized
throughput is shown for all benchmarks including RR.

Mellanox Setup We first examine the results of the
Mellanox setup (left of Table 2). In the topmost part, we
see that EIOVAR yields throughput 1.07–4.58x better than
the baseline, and that improvements are more pronounced
under strict protection. The second part of the table shows
that the improved performance of EIOVAR is due to re-
ducing the average IOVA allocation time by 1–2 orders
of magnitude, from up to 50K cycles to around 100–200.
EIOVAR further reduces the average IOVA deallocation
time by about 75%–85%, from around 250–550 cycles to
around 65–85 (4th part of the table).

As expected, the duration of the IOVA allocation rou-
tine is tightly correlated to the length of the search loop
within this routine, such that a longer loop implies a longer
duration (3rd part of Table 2). Notice, however, that there
is not necessarily such a direct correspondence between
EIOVAR’s throughput improvement (1st part of table) and
the associated IOVA allocation overhead (2nd part). The
reason: latency sensitive applications are less affected by
the allocation overhead, because other components in their
I/O paths have higher relative weights. For example, un-
der strict protection, the latency sensitive Netperf RR has
higher allocation overhead as compared to the throughput
sensitive Netperf Stream (10,269 cycles vs. 7,656, respec-
tively), yet the throughput improvement of RR is smaller
(1.27x vs. 2.37x). Similarly, the IOVA allocation over-
head of Apache/1KB is higher than that of Apache/1MB
(49,981 cycles vs. 17,776), yet its throughput improve-
ment is lower (2.35x vs. 3.65x).

While there is not necessarily a direct connection be-
tween throughput and allocation overheads when exam-
ining strict safety only, the connection becomes apparent
when comparing strict to deferred protection. Clearly, the
benefit of EIOVAR in terms of throughput is greater under
strict protection because the associated baseline alloca-
tion overheads are higher than that of deferred protection
(7K–50K cycles for strict vs. 2K–3K for deferred).

Broadcom Setup Let us now examine the results of the
Broadcom setup (right of Table 2). Strict EIOVAR yields
throughput that is 1.07–2.35x better than the baseline.
Deferred EIOVAR, on the other hand, only improves the
throughput by up to 10%, and, in the case of Netperf
Stream and Apache/1MB, it offers no improvement. Thus,
while still significant, throughput improvements in this
setup are less pronounced. The reason for this difference is
twofold. First, as noted above, the driver of the Mellanox
NIC utilizes more rings and more IOVAs, increasing the
load on the IOVA allocation layer relative to the Broad-
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Figure 10: The performance of baseline vs. EIOVAR allocation, under strict and deferred protection regimes for the Mellanox (top)
and Broadcom (bottom) setups. Except for in the case of Netperf RR, higher values indicated better performance. Error bars depict
the standard deviation (sometimes too small to be seen).

com driver and generating more opportunities for ring
interference. This difference is evident when comparing
the duration of alloc_iova in the two setups, which is sig-
nificantly lower in the Broadcom case. In particular, the
average allocation time in the Mellanox setup across all
benchmarks and protection regimes is about 15K cycles,
whereas it is only about 3K cycles in the Broadcom setup.

The second reason for the less pronounced improve-
ments in the Broadcom setup is that the Broadcom
NIC imposes a 10 Gbps upper bound on the bandwidth,
which is reached in some of the benchmarks. Specifically,
the aforementioned Netperf Stream and Apache/1MB—
which exhibit no throughput improvement under deferred
EIOVAR—hit this limit. These benchmarks are already
capable of obtaining line rate (maximal throughput) in the
baseline/deferred configuration, so the lack of throughput
improvement in their case should come as no surprise.
Importantly, when evaluating I/O performance in a set-
ting whereby the I/O channel is saturated, the interesting
evaluation metric ceases to be throughput and becomes
CPU usage. Namely, the question becomes which system
is capable of achieving line rate using fewer CPU cycles.
The bottom/right part of Table 2 shows that EIOVAR is
indeed the more performant alternative, using 21% less
CPU cycles in the case of the said Netperf Stream and
Apache/1MB under deferred protection. (In the Mellanox
setup, it is the CPU which is saturated in all cases but the
latency sensitive Netperf RR.)

Deferred Baseline vs. Strict EIOVAR We explained
above that deferred protection trades off safety to get
better performance. We now note that, by Figure 10, the
performance attained by EIOVAR when strict protection
is employed is similar to the performance of the baseline
configuration that uses deferred protection (the default in
Linux). Specifically, in the Mellanox setup, on average,
strict EIOVAR achieves 5% higher throughput than the

deferred baseline, and in the Broadcom setup EIOVAR
achieves 3% lower throughput. Namely, if strict EIOVAR
is made the default, it will simultaneously deliver similar
performance and better protection as compared to the
current default configuration.

Different Message Sizes The default configuration
of Netperf Stream utilizes a 16KB message size, which
is big enough to optimize throughput. Our next experi-
ment systematically explores the performance tradeoffs
when utilizing smaller message sizes. Such messages can
overwhelm the CPU and thus reduce the throughput. An-
other issue that might negatively affect the throughput of
small packets is the maximal number of packets per sec-
ond (PPS), which NICs commonly impose in conjunction
with an upper bound on the throughput. (For example,
the specification of our Broadcom NIC lists a maximal
rate of 5.7 million PPS [33], and a rigorous experimental
evaluation of this NIC reports that a single port in it is
capable of delivering less than half that much [21].)

Figure 11 shows the throughput (top) and consumed
CPU (bottom) as a function of message size for strict
(left) and deferred safety (right) using the Netperf Stream
benchmark in the Broadcom setup. With a 64B message
size, the PPS limit dominates the throughput in all four
configurations. Strict/baseline saturates the CPU with a
message size as small as 256B; from that point on it
achieves the same throughput (4Gbps), because the CPU
remains its bottleneck. The other three configurations
enjoy a gradually increasing throughput until line rate is
reached. However, to achieve the same level of throughput,
strict/EIOVAR requires more CPU than deferred/baseline,
which in turn requires more CPU than deferred/EIOVAR.

Concurrency We next experiment concurrent I/O
streams, as concurrency amplifies the harmful long-lasting
ring interference. Figure 12 depicts the results of running

10



USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  39

Mellanox protect benchmark baseline EiovaR diff
throughput strict Netperf stream 1.00 2.37 +137%
(normalized) Netperf RR 1.00 1.27 +27%

Apache 1MB 1.00 3.65 +265%
Apache 1KB 1.00 2.35 +135%
Memcached 1.00 4.58 +358%

defer Netperf stream 1.00 1.71 +71%
Netperf RR 1.00 1.07 +7%
Apache 1MB 1.00 1.21 +21%
Apache 1KB 1.00 1.11 +11%
Memcached 1.00 1.25 +25%

alloc strict Netperf stream 7656 88 -99%
(cycles) Netperf RR 10269 175 -98%

Apache 1MB 17776 128 -99%
Apache 1KB 49981 204 -100%
Memcached 50606 151 -100%

defer Netperf stream 2202 103 -95%
Netperf RR 2360 183 -92%
Apache 1MB 2085 130 -94%
Apache 1KB 2642 206 -92%
Memcached 3040 171 -94%

search strict Netperf stream 153 0 -100%
(length) Netperf RR 206 0 -100%

Apache 1MB 381 0 -100%
Apache 1KB 1078 0 -100%
Memcached 893 0 -100%

defer Netperf stream 32 0 -100%
Netperf RR 32 0 -100%
Apache 1MB 30 0 -100%
Apache 1KB 33 0 -100%
Memcached 33 0 -100%

dealloc / free strict Netperf stream 289 66 -77%
(cycles) Netperf RR 446 87 -81%

Apache 1MB 360 70 -81%
Apache 1KB 565 85 -85%
Memcached 525 73 -86%

defer Netperf stream 273 65 -76%
Netperf RR 242 66 -73%
Apache 1MB 278 65 -76%
Apache 1KB 300 66 -78%
Memcached 334 65 -80%

cpu strict Netperf stream 100 100 +0%
(%) Netperf RR 32 29 -8%

Apache 1MB 100 99 -0%
Apache 1KB 99 98 -1%
Memcached 100 100 +0%

defer Netperf stream 100 100 +0%
Netperf RR 30 29 -5%
Apache 1MB 99 99 -0%
Apache 1KB 98 98 -0%
Memcached 100 100 +0%

Broadcom protect benchmark baseline EiovaR diff
throughput strict Netperf stream 1.00 2.35 +135%
(normalized) Netperf RR 1.00 1.07 +7%

Apache 1MB 1.00 1.22 +22%
Apache 1KB 1.00 1.16 +16%
Memcached 1.00 1.40 +40%

defer Netperf stream 1.00 1.00 +0%
Netperf RR 1.00 1.02 +2%
Apache 1MB 1.00 1.00 +0%
Apache 1KB 1.00 1.10 +10%
Memcached 1.00 1.05 +5%

alloc strict Netperf stream 14878 70 -100%
(cycles) Netperf RR 3359 100 -97%

Apache 1MB 1469 74 -95%
Apache 1KB 2527 116 -95%
Memcached 5797 110 -98%

defer Netperf stream 1108 96 -91%
Netperf RR 1029 118 -89%
Apache 1MB 833 88 -89%
Apache 1KB 1104 133 -88%
Memcached 1021 130 -87%

search strict Netperf stream 345 0 -100%
(length) Netperf RR 68 0 -100%

Apache 1MB 27 0 -100%
Apache 1KB 39 0 -100%
Memcached 128 0 -100%

defer Netperf stream 13 0 -100%
Netperf RR 9 0 -100%
Apache 1MB 9 0 -100%
Apache 1KB 9 0 -100%
Memcached 9 0 -100%

dealloc / free strict Netperf stream 294 47 -84%
(cycles) Netperf RR 282 48 -83%

Apache 1MB 250 50 -80%
Apache 1KB 425 52 -88%
Memcached 342 47 -86%

defer Netperf stream 268 47 -82%
Netperf RR 273 47 -83%
Apache 1MB 234 47 -80%
Apache 1KB 279 47 -83%
Memcached 276 47 -83%

cpu strict Netperf stream 100 53 -49%
(%) Netperf RR 13 12 -12%

Apache 1MB 99 99 -0%
Apache 1KB 98 98 -0%
Memcached 99 95 -4%

defer Netperf stream 55 44 -21%
Netperf RR 12 11 -7%
Apache 1MB 91 72 -21%
Apache 1KB 98 98 -0%
Memcached 93 92 -2%

Table 2: Summary of the results obtained with the Mellanox setup (left) and the Broadcom setup (right).

Memcached in the Mellanox setup with an increasing
number of clients. The left sub-graph reveals that the
baseline allocation hampers scalability, whereas EIOVAR
allows the benchmark to scale such that it is up to 5.5x
more performant than the baseline (with 32 clients). The
right sub-graphs highlights why, showing that the baseline
IOVA allocation becomes costlier proportionally to the
number of clients, whereas EIOVAR allocation remains
negligible across the board.

FreeBSD We hypothesize that, like Linux, other OSes
drive the IOMMU with suboptimal software, likely due
to the perception that the IOMMU hardware is slow, pos-
sibly combined with the fact that I/O devices that are fast
enough to significantly suffer from the consequences have
become prevalent fairly recently. We test this hypothesis
by studying the IOMMU mapping layer of FreeBSD. Our
hypothesis coincides with the announcement of IOMMU
support being added to FreeBSD, which says that “it
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Figure 11: Netperf Stream throughput (top) and used CPU
(bottom) for different message sizes in the Broadcom setup.
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Figure 12: Impact of increased concurrency on Memcached in
the Mellanox setup. EIOVAR allows the performance to scale.

is known that IOMMU adds overhead due to the map-
ping and unmapping for each I/O [and therefore it is] not
plan[ned] to enable [the] IOMMU by default” [10].

We find that, similarly to Linux, FreeBSD uses a red-
black tree for IOVA space management. Although it does
not employ the problematic cached node optimization, the
relevant source code can call fall back to a linear iteration
through the tree nodes upon allocation. The comment
preceding the linear iteration acknowledges that “this falls
back to linear iteration over the free space in the high
region”; however, the comment further notes that the said
“high regions are almost unused” [26].

Using DTrace, the dynamic tracing tool [28], we pro-
filed the IOVA mapping layer of FreeBSD while running
the Netperf TCP stream benchmark. We measured each
function along the call stack in a separate run, because
multiple probe points affected the perceived results. Ta-
ble 3 show the outcome, indicating that the FreeBSD
IOMMU mapping layer overheads are larger than those of
baseline Linux (compare with left of Figures 5–6). Specif-
ically, whereas FreeBSD IOVA allocation is comparable

map unmap
iova 1,103 2,178
all the rest 8,557 13,825
total 9,660 16,003

Table 3: FreeBSD IOMMU mapping layer overheads in cycles.
(Compare with Linux’s overheads in Figures 5–6.)

to that of Linux, IOVA freeing takes an order of magnitude
longer, and the (un)mapping is 4–5x slower altogether.

Our profiling reveals some of the root causes for these
overheads. The aforementioned linear iteration remained
inactive, as promised. But IOVA allocation turned out
to nevertheless require the traversal of 11 red-black tree
nodes on average. And the tree was rebalanced in almost
every deallocation, introducing an overhead that is con-
siderably higher than that of baseline Linux.

In addition to its inefficient IOVA (de)allocation,
FreeBSD makes several suboptimal implementation
choices that significantly slow down its mapping layer as
compared to Linux. For instance, when a page within the
IOMMU page table hierarchy is no longer in use, Linux
usually does not reclaim it, rightfully assuming that it is
likely to get reused soon. Conversely, FreeBSD does re-
claim such pages, thereby reducing the memory footprint
somewhat at the cost of increased CPU overheads.

The most wasteful unoptimized FreeBSD code we ob-
served relates to synchronizing the I/O page table hier-
archy between the IOMMU and the CPU. Upon every
unmapping (ctx_unmap_buf_locked), FreeBSD flushes all
the cachelines of the corresponding page table, although
merely flushing the affected page table entries (PTEs)
would have been enough. We applied the latter optimiza-
tion to the FreeBSD unmap code and thus shortened it by
∼10K cycles on average, which improved the throughput
of Netperf from 530 to 935 Mbps (1.76x higher).3

Consequently, in according to our hypothesis, we find
that the FreeBSD mapping layer consists of suboptimal
code that allows for easy optimizations that dramatically
boost performance, possibly due to the perception that
IOMMU hardware overheads are inherently high.

8 Related Work

Several studies recognized the poor performance associ-
ated with using the IOMMU [4, 12, 18, 44, 50, 57, 59].
Willmann et al. suggested to alleviate IOMMU overheads
somewhat via “shared mappings”, creating only one map-
ping for buffers that happen to reside on the same page
instead of associating each of them with a different IOVA
[57]. Amit et al. proposed to use “optimistic teardown”,

3We confirmed this optimization with the relevant FreeBSD main-
tainer [11] and committed a patch that will be included in the next
FreeBSD release [3].
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whereby unmappings are delayed for a few milliseconds
in the hope they will get immediately reused, creating a
riskier policy than deferred protection that is more per-
formant [4]. They also proposed to transparently offload
the (un)mapping activity to computational cores differ-
ent than the ones that perform the I/O. These approaches
leave the original, unoptimized code intact and therefore
EIOVAR is complementary to them.

Tomonori suggested to manage the IOVA space us-
ing bitmaps instead of trees, reporting an improvement
in performance of 9% [50, 51]. Cascardo showed that
performance is greatly improved if the driver of the
I/O device can be modified to perform much fewer
(un)mappings [18]. In a followup work, we proposed
to redesign the IOMMU hardware to directly support
the ring-induced workload and thus provide strict safety
within 0.77–1.00x the throughput, 1.00–1.04x the latency,
and 1.00–1.22x the CPU consumption of a system without
an IOMMU [44].

Using freelists to speed up object allocation—as in EIO-
VAR—is a standard technique among memory allocators
[13, 14, 15, 29, 40, 53, 55]. We discuss the contributes of
this paper relative to such allocators in the next section.

9 Discussion, Conclusions, Future Work

Clements et al. made the case that implementations of OS
kernels can be made scalable if they are designed before-
hand such that their system calls commute, contending
that “this rule aids developers in building more scalable
software” [20]. Conversely, Linus Torvalds proclaimed
that “Linux is evolution, not intelligent design” [22], likely
more accurately reflecting the manner by which OSes are
built, typically using the simplest implementation until
experience proves that this is the wrong way to go.

When implementing new kernel functionality, a linear
algorithm is often favored as being the simplest. For ex-
ample, such was the case with the original linear Linux
scheduler, which survived a decade [47]. And such is still
the case with vmalloc, which is the internal Linux ker-
nel function that is responsible for allocating virtually
contiguous memory [52] (as opposed to kmalloc, which
allocates physically contiguous memory). The pro of fa-
voring linearity is simplicity. The con is that it might
hinder performance when assumptions change.

The Intel/Linux IOVA allocation algorithm admittedly
models the vmalloc algorithm [43]. From examining the
source code, we see that both use a red-black tree for
storing address ranges; both cache the location of the last
freed range; and both use the cache as the starting point
for subsequent allocations, traversing the tree elements in
search for a large enough hole. We are not aware of work-
loads that utilize vmalloc whose performance noticeably
degrades as a consequence. We demonstrate, however, that

I/O intensive workloads suffer greatly form the linearity
of IOVA allocation, which is induced by the “long-term
ring interference” pathology that we characterize.

We conjecture that this deficiency exists because the
IOMMU has been falsely perceived as the main respon-
sible party for the significant overheads of intra-OS pro-
tection, and possibly because I/O devices fast enough to
be noticeably affected have become widespread only in
the last few years. We support our conjecture with experi-
mental data from both Linux and FreeBSD.

We employ the compact EIOVAR optimization that prox-
ies IOVA (de)allocations, resorting to the underlying red-
black tree only if EIOVAR is unable to satisfy requests with
its freelist. EIOVAR makes the baseline allocator orders of
magnitude faster, improving the performance of common
benchmarks by up to 5.5x.

Using freed object caches for fast allocation similarly to
EIOVAR’s freelist is not new. It is a standard technique em-
ployed by memory allocators [13, 14, 15, 29, 40, 53, 55].
Our contribution lies not in inventing the technique but
rather: in (1) noticing it is applicable to, and substantially
improves the performance of, the IOMMU mapping layer,
which goes against the common wisdom that the slow-
ness of this layer is due to the slowness of the hardware;
in (2) carefully characterizing the workload experienced
by the mapping layer; and in (3) finding that the work-
load characteristics allow for even the most basic/minimal
freelist mechanism to deliver high performance, since
(3.1) allocation requests exclusively consist of rounded up
power-of-two areas that accelerate IOTLB invalidations
without wasting real memory, and since (3.2) the freelist
population size is inherently constrained by the relatively
small size of the associated ring, so it can be used without
worrying that the population of the previously-allocated-
but-now-free IOVAs would explode.

EIOVAR eliminates one serious bottleneck of the
IOMMU mapping layer. But we suspect that other bot-
tlenecks exist, notably in relation to its locking regime,
which affects subsystems different than the IOVA alloca-
tor and might hinder scalability. In the future, we therefore
intend to study how the mapping layer scales as core-
count increases. Another interesting question we intend
to study is whether it is possible, and how hard is it, to
exploit the window of vulnerability inherent to deferred
protection as compared to strict protection.
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