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Abstract

The most popular scheduling policy for parallel systemsG&8 with backfilling (a.k.a. “EASY”
scheduling), where short jobs are allowed to run ahead af tinge provided they do not delay
previously queued jobs (or at least the first queued job)s Mandates users to provide estimates
of how long jobs will run, and jobs that violate these estiesadre killed so as not to violate sub-
sequent commitments. The de-facto standard of evaludimg@rpact of inaccurate estimates on
performance has been to use a “badness fagtor’ 0, such that given a runtime, the associ-
ated estimate is uniformly distributed jnr - (f + 1)], or is simplyr - (f + 1). The underlying
assumption was that biggés imply worse information.

Surprisingly, inaccurate estimates £ 0) yield better performance than accurate onfes-(0),
a fact that has repeatedly produced statements like “imatzestimates actually improve perfor-
mance” or “what the scheduler doesn’t know won't hurt it"nrany independent studies. This has
promoted the perception that estimates are “unimportait'the same time, other studies noted
that real user estimates are inaccurate, and that systearajed predictions based on history can
do better. But predictions were never incorporated intapotion schedulers, partially due the
aforementioned perception that inaccuracy actually helpgially because suggested predictors
were too complex, and partially because underpredictitecisnically unacceptable, as users will
not tolerate jobs being killed just because system prexfistivere too short. All attempts to solve
the latter technicality yielded algorithms that are inaygpiate for many supercomputing settings
(e.g. using preemption, assuming all jobs are restartetietera).

This work has four major contributiongirst, we show that the “inaccuracy helps” common
wisdom is merely an unwarranted artifact of the erroneousrmaain which inaccurate estimates
have been modeled, and that increased accuracy actuallpveg performance. Specifically,
previously observed improvements turn out to be due to al“aeé toe” dynamics that, with
f > 0, cause backfilling to approximate shortest-job first schedu We show that multiplying
estimates by a factor translates to trading off fairnesgpformance, and that this reasoning
works regardless of whether the values being multipliedaataal runtimes (“perfect estimates”)
or the flawed estimates that are supplied by users. We fusti@w that the more accurate the
values we multiply, the better the resulting performancleusl better estimates actually improve
performance, and multiplying is in fact a schedulpaicy that exercises the fairness/performance
tradeoff. Regardless, multiplying is anything but repréagve of real inaccuracy, as outlined next.

Our secondcontribution is developing a more representative modelstifreates that, from
now on, will allow for a valid evaluation of the effect of inawrate estimates. It is largely based
on noting that human users repeatedly use the same “rouhgés/éten minutes, one hour etc.)
and on the invariant that 90% of the jobs use the same 20 ds8maportantly, the most popular
estimate is typically the maximal allowed. As a result, thiesjassociated with this estimate cannot
be backfilled, and indeed, the more this value is used, the lB&SY resembles plain FCFS.
Thus, to artificially increase the inaccuracy one shouldasgociate more jobs with the maximum
(a realistic manipulationjjot multiply by a greater factor (a bogus boost of performance).

Ourthird contribution exploits the above understandings to devisanascheduler that is able
to automatically improve the quality of estimates and pid ithto productive use in the context of
EASY, while preserving its attractive simple batch essamw@ refraining from any unacceptable
assumptions. Specifically, the problem of underpredicisosolved by divorcing kill-time from
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the runtime prediction, and correcting predictions adagbyi at runtime as needed, if they are
proved wrong. The result is a surprisingly simple scheduwigich requires minimal deviations
from current practices, and behaves exactly like EASY aadarsers are concerned. Nevertheless,
it achieves significant improvements in performance, mtadility, and accuracy. Notably, this
is based on a very simple runtime predictor that just avexraige runtimes of the last two jobs
by the same user; counterintuitively, our results indi¢hs using recent data is more important
than saving and mining the history for similar jobs, as wasedby previous work. For further
performance enhancements, we propose to exploit the “mektae” understanding: explicitly
using a shortest jobackfilledfirst (SIBF) backfilling order. This directly leads to a peniance
improvements similar to those previously attributed ta&guike multiplying estimates. By still
preserving FCFS as the basis, we maintain EASY’s appeal@og both worlds: a fair scheduler
that nevertheless backfills effectively.

Finally, ourfourth contribution has broader applicability, that transcemssupercomputing
domain. All of the above results are based on the standardadelogy of modeling and simulat-
ing real activity logs of production systems, which is roety practiced in system-related research.
The overwhelmingly accepted assumption underlying thigwosology is that such real workloads
are representative and reliable. We show, however, thitvmrloads may also contain anomalies
that make them non-representative and unreliable. Thisjeaial case of multi-class workloads,
where one class is the “real” workload which we wish to usénedvaluation, and the other class
contaminates the log with “bogus” data. We provide sevetrah®les of this situation, including
an anomaly we call “workload flurries”: surges of activitytvia repetitive nature, caused by a
single user, that dominate the workload for a relativelyrsperiod. Using a workload with such
anomalies in effect emphasizes rare and unique eventso@ygrring for a few days out of two
years of logged data), and risks optimizing the design aeti®r the anomalous workload at the
expense of the normal workload. Thus, we claim that such afiemishould be removed from
the workload before it is used in evaluations, and that iongothem is actually an unjustifiable
approach.
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Preface

The research projects | have been involved in are relategdtems of varying scale, ranging
from small personal desktops, through modest SMPs, to krgle supercomputers, and deal with
several different aspects of the studied systems (seecptibh list above). Aggregating all the
projects into a single document would have violated theespaanstraints of a PhD dissertation, and
therefore we have chosen to focus on only a few closely rapers that can enjoy a higher-level
collective presentation. The chosen theme concentratégedarger systems, and in particular, on
how to improve the performance of schedulers of supercoenput



Chapter 1

Introduction

The most commonly used scheduling algorithm for supercaenpus FCFS (First-Come First-
Served) with backfilling, which requires users to providetime estimates of how long their jobs
will run. The estimates are used by the scheduler to bettacK'pthe jobs and therefore one
would naturally assume that accurate values would yieltebgiacking and hence improve the
overall utilization and turnaround times. However, a decalll mystery that repeatedly surfaces
suggests otherwise: it turns out many independent resararttave found time and again that
increasingly inaccurate estimates actually improve perémce. Consequently, statements in the
spirit of “with respect to backfilling, what the schedulereda’t know won'’t hurt it” [34] have
become widespread.

This dissertation makes four major contributionsirst, we resolve the estimates mystery
and show it is merely the result of an unrealistic side efté¢he manner by which increasingly
inaccurate estimates are artificially manufactured. Thoese oursecondstep is developing an
alternative model that allows for a true evaluation. Theltesre in explicit disagreement with past
findings, and prove better accuracy does in fact translagagerior performance. This conclusion
motivates searching for a way to improve the quality of the@niously poor) user estimates, used
by backfill schedulers. All previous attempts to accompliish task have failed, due to technical
limitations inherent to backfilling. Ouhird contribution is overcoming these difficulties, while
leveraging the mechanics underlying the now-resolved enysif why performance appeared to
improve. The suggested scheduling scheme (which utiligstes-generated runtime predictions
instead of user estimates) is remarkably similar to, andysngall the benefits of, plain FCFS
with backfilling. Nevertheless, it significantly improvescaracy, predictability, and performance
(which is up to doubled).

Our findings are based on the modeling, analysis, and sironlat real workload logs recorded
on real production systems. This methodology is standadchaavily used by numerous studies,
under the assumption that such logs are reliable and repgegse. Ourfourth and final ma-
jor contribution is discovering this assumption is actyalften false, as logs might also contain
anomalies that make them non-representative and unmeli@sle important recurring anomaly is
what we call “workload flurries” (very rare surges of actith a repetitive nature, caused by
a single user). We show that basing an analysis on workloadigding such anomalies can lead
to bogus evaluation results and eventually to bad systeigrieesConsequently, in contrast to the
common practice, we advocate that production logs be ‘igadit before being used, by deleting
these anomalies (similarly to the removal of outliers iftistizal analysis).



2 Introduction

# topic motivation| preview |chapter referred paper
of results
sect. page| sect. page# page | ref. venue

1| Solving the inaccuracy mystery |1.2.1 9131 183 36| [159] IEEE Intl Symp. on Workload Characterj-
zation (ISWC'06)

2| Modeling user runtime estimates| 1.2.2 111.3.2 215 77|[157] LNCS Workshop on Job Scheduling Sitr-
ategies for Parallel ProcessintSSPP’05

3| Backfilling with system predictionsl.2.3 131.3.3 244 58|[156] IEEE Transactions on Parallel & Dis-
tributed SystemsT(PDS’07)

4| Flurries and data sanitization 1.2.4 16 1.3.4 286 103|[160] IEEE Intl Parallel & Distributed Process-
ing Symp. (PDPS’06)

[54] IEEE Intl Symp. on Performance Analysis
of Systems & Softwarel SPASS’06

Table 1.1: The four topics covered by this dissertation. Each topiaisoduced in this chapter by two
subsections: “motivation” and “preview of results” (2-3ges per subsections). Later, each topic is covered
by a dedicated chapter, which is largely based on the assdgiaper(s).

Dissertation Roadmap The layout of this dissertation revolves around the foureftentioned
topics, as shown in Tab. 1.1: each topic is associated witparate chapter, which in turn is
associated with (and largely based on) one or two of the paperhave chosen to include in this
dissertation, as mentioned above. Other than these fopteansathe dissertation includes another
three: this one, which introduces the work, the next oneclwpresents our methodology, and the
last one, which contains our concluding remarks.

Introduction Chapter Roadmap Similarly to the higher level presentation approach, thisp:
ter’'s structure is also largely based on the above divisioioair topics. It is composed of three
section: background (1.1), motivation (1.2), and prevawesults (1.3). The background is di-
vided into two parts: it first provides a general survey ongocheduling (Subsection 1.1.1), and
then zooms in on the issue of backfilling, which is the mostytapscheduling scheme and the
immediate setting for this work (Subsection 1.1.2). Theiwadion section is divided into four
subsections, one per topic, each discusses in detail theugaaspects and related work, which
motivated us to investigate that topic. Finally, the prex-results section is also subdivided into
four, such that each subsection presents our key findinggation to the associated topic.

We note that a considerable effort has been put into makiisgctiapter self-contained: the
“motivation” subsections fully introduce the four topi@s)d a real effort was made such that the
associated “preview-of-results” subsections would ¢yeaxplain the more important bottom-lines
and findings. (In contrast, the remaining chapters largeilgton the material presented here.)
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1.1 Background

This chapter first presents a general overview on the togmbo$cheduling (Sec. 1.1.1), and then
focuses on surveying backfill schemes (the immediate coofdhkis work), and in particular, on
the EASY scheduler.

1.1.1 Job Scheduling

Supercomputers A parallel computer is “a collection of processing eleméhé&t communicate
and cooperate to solve large problems fast” [3]. The mainvatidn for developing and using such
computers is that whatever the performance of a single psoceat a given time, higher perfor-
mance can, in principle, be achieved by utilizing many sucde@ssors. Parallel machines are often
referred to as “supercomputers”, if the number of processomposing them is relatively high.
Installations with tens to hundreds of processors are camptaoce nowadays, and the “top-500
list” (which lists the 500 most powerful supercomputershe tvorld) is dominated by machines
with thousands or more processors and is lead by the 131j0¢2gsors BlueGene/L [29]. It has
been established that the combined power of the top-500stldoaibles every year [43] and that
the combined number of processors is doubled every threms y42]. Thus, it is reasonable to
expect similar trends in lower-end supercomputers thairmmmmon use, ever increasing the
supercomputing power.

Jobs Supercomputers are nowadays used to execute diverse tagkdimg weather forecasting
and climate research (e.g. about global warming), molecutadeling (e.g. of structures and prop-
erties of chemical compounds, biological macromolecuyes/mers, crystals etc), various phys-
ical simulations (e.g. airplanes in wind tunnels, detamrabf nuclear weapons, nuclear fusion),
cryptanalysis, data mining, and more. Parallel applicsticalled “jobs”, are usually composed
of a number of independent sequential processes that exsicotiltaneously, each on a different
processor. While they run, the processes communicate artchege information from time to
time, in an effort to complete the task as soon as possibleer@ypes of parallel applications that
do not require communication between the computing paatsgsexist (e.g. workpile applications
like database transactions), but are not the focus of thik.wRather, we are interested in parallel
jobs in their “traditional” or “scientific” sense, where esses actually cooperate in order to solve
the problem.

Workload A supercomputer is a scarce and relatively expensive resoult the same time
there are many potential users that can benefit from haviogsado supercomputing capabilities.
In an attempt to both accommodate users’ collective needsehss to maximize the utilization
of what is essentially an expensive machine, modern sysaéiovge multiple users (typically hun-
dreds [110]) to simultaneously use the same supercom@gex.consequence, the workload of a
supercomputer generally consists of a sequence of jobarthaubmitted for execution by several
users at arbitrary times. This scenario is often referrezktbeing “on-line”, namely, that the sub-
mission times of jobs (also called their “arrival times”ga-priori unknown [51]. Thus, each job
is characterized first and foremost by its arrival time.

Partitioning  To support the execution of multiple jobs, most contempopaoduction systems
employ what is known as “space slicing” or “space sharin@’, [664, 73, 44, 2, 108], meaning that
each job is allocated a “partition” of the machine (a subsé@s@rocessors) for its exclusive use.
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After allocation, the parallel job runs to completion, inddlamode, without being interrupted or
preempted. The exact size of the partition is not enforcetthépgystem. Rather, it is set according
to the user’s explicit request, a policy called “variablatpi@ning”. Thus, a second defining

attribute of a job (in addition to its arrival time) is its Z&”, namely, the number of processors it
requires in order to run. This value is provided by the usenupe job submittal.

Note that there exist other partitioning strategies thdtilevan immense research effort has
been invested in them, are far less common. For example,teeeigh the mainstream practice
is to allow only “rigid” jobs (for which users specify a sirggpossible size), a recent survey [23]
revealed that 98% of the jobs are in fact “moldable” (fit mdnart one partition size). Such
information can certainly be used by the supercomputer fwaone its utilization [16, 120, 167,
168, 121, 127, 134, 112, 23] and this ability was even inc@iea in some research platforms
[45], however, we are unaware of any production system tlakiasiuse of it.

Rigid and moldable jobs are suitable for “static partitiugii, where the chosen size applies
throughout the entire execution of the job and is never cedngin contrast, “evolving” jobs
[116, 66] and “malleable” jobs [100, 14, 52, 80] must be supgmbby environments that employ
“dynamic partitioning”, which allows for a change in theesiaf the jobs during runtime [111, 32,
65, 102, 140, 107, 25]. (The difference between the two tgpleat for evolving jobs, changes are
application-initiated, whereas for malleable jobs theiglen to change the number of processors is
made by an external job scheduler.) One variant of dynamidipaing called “equipartitioning”
(strives for equal partition sizes for all jobs) was repdteshown to consistently produce good
results [103, 18, 28, 27, 113, 119]. Nevertheless, dynamititpning calls for a radical change
in the programming model, and we speculate that most usdreatieven consider structuring
their programs in a way that complies with this paradigm. R@test of our knowledge, the sole
implementation of dynamic partitioning on a production imae was done in research context
using the CM-5 Connection Machine [13].

Not only the space of the machine can be partitioned, butitdstime. Environments that
support “time sharing” or “time slicing” allow sharing of geessors between jobs by means of
context switching [109, 128, 104, 88, 119]. Under this titlee “gang scheduling” policy, which
insures all the processes of a job are executed simultalye@yspreempting and rescheduling
them at the exact same time) has drawn a lot of attention [480,7%69, 59, 126, 170]. In contrast
to the various dynamic partitioning alternatives that adrout to have mostly theoretical value,
gang scheduling (under the static partitioning disciplimes proved to be more practical: Firstly,
it has been implemented as an optional part of the schedalgmyithm within a range of real
systems (SGI's IRIX [8], Intel's Paragon [165], IBM’s Loadleler resource manager [82], and
Cray’s XD1 [153]). Secondly, it has been utilized in expezintal systems that were actually
deployed in several sites (LLNL's BBN-Butterfly [63] and @&3D [78]). And lastely, there is at
least one known, efficient, and widely deployed gang schieglimplementation — on the CM-5
Connection Machine [95, 108].

Despite this relative success, time slicing inevitablyiwes various nontrivial difficulties that
are absent from strict space-slicing/static-partitignatternatives. A notable example is how to
avoid memory contention in the face of having more than obhajmultaneously using the memory
[165, 9]. Such difficulties are probably the reason why patiduin systems predominantly favor
the space-slicing/static-partitioning, as will be furtkléscussed next.
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Figure 1.1:A space/time Gantt chart displaying a FCFS schedule wittefty and with (right) backfill-
ing. Each rectangle represents a job, such that the reetangidth and height are the job’s runtime and
size, respectively. The job numbers indicate arrival ofdet arrival time). Obviously, backfilling reduces
fragmentation and improves the utilization. Note, howgetfeat it would have been impossible to backfill
job 4 had its length been more than 2 time units, as the rasemviar job 3 would have been violated.
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1.1.2 Backfilling

EASY Backfilling The default algorithms used by current job schedulers foaljeh supercom-
puters are all rather simple and similar to each other [3Tipleying a straightforward version
of variable partitioning. (Recall that this means spadergj with static-partitioning, where users
specify the number of processors required by their jobs wgudimittal.) In essence, schedulers
select jobs for execution in first-come first-served (FCH8EeQ and run each job to completion,
in batch mode. The problem with this simplistic approactaét it causes significant fragmenta-
tion, as jobs with arbitrary sizes/arrivals do not pack etlf. Specifically, if the first queued job
requires many processors, it may have to wait a long timé emsvugh are freed. During this time,
processors stand idle as they accumulate, despite thehtzet inay very well be enough of them
to accommodate the requirements of other, smaller, waibing;

To solve the problem, most schedulers therefore employllening algorithm. Whenever the
system status changes (job arrivals or terminations),dhedsiler scans the queue of waiting jobs
in order of arrival (FCFS) and starts the traversed jobs dfugsn processors are available. Upon
reaching the first queued job that cannot be started imnedgitie scheduler makegeservation
on its behalf for the earliest future-time at which enougkefprocessors would accumulate to
allow it to run. This time is also called trehadow timeThe scheduler then continues to scan the
gueue for smaller jobs (require fewer processors) that baea waiting less, but can be started
immediately without interfering with the reservation. Ither words, a job is started out of FCFS
order only if it terminates before the shadow time and tleeefioes not delay the first queued job,
or if it uses extra processes that would not be needed by gtgtieued job. The action of selecting
smaller jobs for execution before their time provided theyndt violate the reservation constraint
is calledbackfilling, and is illustrated in Fig. 1.1 (see detailed descriptioS8eation 2.3).

This approach was initially developed for the IBM SP1 superputer installed at the Ar-
gonne National Laboratory as partlBASY(Extensible Argonne Scheduling sYstem), which was
the first backfilling scheduler [98]. The term “EASY” later became a synonym for FCFS with
backfilling against a reservation associated with the fiogtugd job. (Other backfill variants are
described below.) While the basic concept is extremely Engpcomprehensive study involving
5 supercomputers over a period of 11 years has shown thastamtdigures of 40-60% average
utilization have gone up to around 70%, once backfilling wasoduced [79]. Further, in terms

1Backfilling has later been integrated with the IBM LoadLevedcheduler for the SP2 system [60], and has been
supported ever since.
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of performance, backfilling was shown to be a close secondi@ sophisticated algorithms that
involve preemption (time slicing), migration, and dynarpartitioning [19, 170].

User Runtime Estimates The down side of backfilling is that it requires the schedtdeknow
in advance how long each job will run. This is needed for twasoas:

1. to compute the shadow time for the longest-waiting jod. (@.the example given in Fig. 1.1,
we need to know the runtimes of job 1 and job 2 to determine whein processors will be
freed in favor of job 3), and

2. to know if smaller jobs positioned beyond the head of thi-gaeue are short enough to be
backfilled (we need to make sure backfilling job 4 will not dejab 3, namely, that job 4
will terminate before the shadow time of job 3).

Therefore, EASY required users to provide a runtime esrf@tall submitted jobs [98], and the
practice continues to this day. Importantly, jobs that exkcéheir estimates are killed, so as not to
violate subsequent commitments (the reservation). Thig pblicy has the additional benefit that
it supplies an inherent and clear motivation for users twidhigh quality estimates , as short
enough values increase the chances for backfilling, bushaot values will get jobs prematurely
killed.?

Popularity of EASY The burden placed on users to provide estimates has not ledemeh-
tal. Rather, the combination of simplicity, effectiveneaad FCFS semantics (often perceived
as most fair [123]) has made EASY a very attractive and a vepufar job scheduling strategy.
Nowadays, virtually all major commercial and open-sounapction schedulers support EASY
backfilling [37], including

e IBM’s LoadLeveler [60, 82],

e Cluster Resources’ commercial Moab [118] and open-souraei [[T5] (which is probably
the most popular scheduler used within the academia),

e Platforms’ LSF (Load Sharing Facility) [172, 24],

e Altair's PBS (Portable Batch System) [68] in its two flavocemmercial PBS-Pro [33] and
open-source OpenPBS [10], and

e Sun’s GridEngine [61, 106]

The default configuration of all these schedulers, exce@,R8either EASY or plain FCFS
(with FCFS, however, the schedulers’ behavior becomes EA®¥ckfilling is nevertheless en-
abled). The CTO of Cluster Resources has estimated thab%0e® Maui/Moab installations do
not change their default (EASY) settings [74]. Being theepton that implies the rule, the PBS
variants use Shortest-Job First (SJF) as their basic deflidy. However, even with PBS, when a
job is “starved” (a situation defined by PBS to occur if the i@lvaiting for 24 hours or more) then
the scheduling reverts to EASY until this job is started. Aestament for its immense popularity,
a survey about the top 50 machines within the top-500 listaad that, out of the 25 machines for
which relevant information was available, 15 (= 60%) wereraging with backfilling enabled [36].

2Indeed, the administrator guide of e.g. LSF clearly states tSince jobs with a shorter run limit have more
chance of being scheduled as backfill jobs, users who spapjfyopriate run limits will be rewarded by improved
turnaround time.” [24]
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Variations on Backfilling Despite the simplicity of the concept, backfilling has néveless
been the focus of dozens of research papers attempting limaéxand improve the basic id2a.
We do not list them all here, but rather, cite many of them (arwale) when appropriate, within
their respective contexts later on. The remainder of thi@e only briefly mentions some of the
various tunable knobs of backfilling algorithms.

One tunable parameter is thember of reservations As mentioned above, in EASY, only
the first queued job receives a reservation. Thus, backfithay cause delays in the execution of
other waiting jobs which are not the first and therefore dogsdta reservation [47]. The obvious
alternative is to allocate reservation to all the jobs. Tapproach has been named “conserva-
tive backfilling” as opposed to the “aggressive” approadiemsby EASY [108]. However, it has
been shown that delaying other jobs is rarely a problem, hatidonservative backfilling tends
to achieve reduced performance in comparison to the aggeesternative. The MAUI scheduler
includes a parameter that allows system administratorsttasthe number of reservations [75].
It has been suggested that allocating up to four resengaisom good compromise [15].

A second parameter is theoseness of reservationsFor example, an intriguing suggestion
is a “selective reservation” strategy depending on thengxddferent jobs have been delayed by
previous backfilling decisions. If some job is delayed by noach, a reservation is made for this
job [141]. This is somewhat similar to the “flexible backfidj” strategy, in which backfilling is
allowed to violate the reservation(s) up to a certain sld&0[ 166]. (Setting the slack in the latter
strategy to be the threshold used for allocating selectisenvations in the former strategy, is more
or less equivalent.)

A third parameter is therder of queued jobs EASY, as well as many other system designs,
use FCFS order [98]. A general alternative is to prioritizieg in a certain way, and select jobs for
scheduling (including as candidates of backfilling) acowgdo this priority order. For example,
flexible backfilling combines three types of priories: an austrative priority to favor certain
users or projects, a user priority used to differentiatevben the jobs of the same user, and a
scheduler priority used to guarantee that no job is stari®8@][ The Maui scheduler has a priority
function that includes even more components [75]. Anotlpgr@ach is to prioritize based on
various job characteristics. In particular, a set of cidteelated to the current queueing time
and expected resource consumption of jobs has been propadsiett generalizes the well-known
SJF algorithm for improved performance [174, 115] as welt@®bines it with fairness notions
[19, 15]. The queuing order and the timing of reservationsaao be determined by economic
models [35] or various quality of service assurances [72].

A fourth parameter (related to the previous one) isghgitioning of reservations. The pro-
cessors of a machine can be partitioned into several digetis (free processors can dynamically
move around between them based on current needs). Eaclassb@ated with its own wait-queue
and reservation. Lawson and Smirni divided the machine shhdifferent sets serve different
jobs classes, characterized by their estimated runtinge ¢bort, medium, and long) [90, 92]. A
backfilling candidate is chosen in a round-robin fashiochdame from a different set, and must
respect all reservations. By separating short from long,jofis multiple queue policy reduces

3For example, searching the ACM digital library for paperimbackfill” appearing in their title or abstract results
in a (far from complete) list of more than 30 papers, most d@mectdy dealing with the subject. The query “(backfill
OR backfilling) AND parallel AND scheduler” in Google’s Sdaoretrieves more than 400 documents, of which the
overwhelming majority are related to job scheduling. Thahpaper about EASY [98] is listed by Scholar as cited
158 times.
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the likelihood that a short job is overly delayed in the qubakind a very long job, and therefore
improves average performance metrics.

A fifth parameter is thadaptiveness of backfilling An adaptive backfill scheduler continu-
ously simulates the execution of recently submitted jolzkeumarious scheduling disciplines, com-
pares the hypothetical resulting performance, and peaxadigliswitches the scheduling algorithm
to be the one that scored the highest. In the face of diffeveritload conditions, this adaptiveness
has the effect of both improving and stabilizing the obseémerformance results [144, 149].

A sixth parameter is the amount lmfokahead into the queue Most backfilling algorithms
consider the queued jobs one at a time when trying to backgint which often leads to loss
of resources to fragmentation. The alternative is to candige whole queue at once, and try to
find the set of jobs that together maximize the utilizationleviat the same time respecting the
allocated reservation(s). This appears to be a NP-hardggmlbut due to the fact machine sizes
are relatively small, this can be done in polynomial timetfia complexity of the machine size)
using dynamic programming, leading to optimal packing [1B21].

A seventh and final parameter is relategspzculative backfilling where the scheduler is al-
lowed to exploit gaps in the schedule for backfilling, evethd backfilled job interferes with the
reservation. By doing so, the scheduler speculates thdtatifilled job would terminate sooner
than its estimate suggests, and in any case before the shiadewSuccessful speculations ob-
viously improve performance and utilization, and have ngatige side effects. But unsuccessful
speculations must somehow be dealt with. Unfortunatelypraviously suggested solution re-
sulted in a scheduling algorithm that lies outside the etitra variable partitioning domain: The
simplest alternative is to Kill the offending backfilled jalnd restart it later on [90]. A similar
idea is to employ “short test runs”, during which jobs eithr@anage to terminate, or are reinserted
to the wait-queue with a tighter estimate deduced from tee[tel5, 15]. Unfortunately, both
ideas assume jobs are restartable, which is often not tlee @apossible workaround is to em-
ploy preemption (time sharing), such that instead of kijland restarting the job, it is suspended
and kept in memory, only to be resumed later on from the paointhich it was stopped [139].
However, if preemption comes into play, it may be preferablastead combine backfilling with
a full fledged gang scheduler altogether [169]. This contimnahas even been further extended
by adding migration capabilities [85, 170]. A recent studggested preemption is actually re-
dundant if migration or dynamic partitioning are availablEhe idea is to reduce the backfilled
job’s processor allocation by folding it over itself. Thieés most of its processors, and limits the
performance degradation to the offending job [162].

Finally, a new direction in job scheduling research is toamglminimize the electric power
demand, which is rapidly becoming a problem in the context of superputing [129]. It has been
suggested to integrate the concept of scheduling and poaeagement within EASY [91]. The
proposed scheduler continuously monitors load in the sysied selectively puts certain nodes in
“sleep mode” (makes them unavailable for execution), af&timating the effect of fewer nodes
on the projected job slowdown. Using online simulation,siistem adaptively selects the minimal
number of processors that are required to meet certain iaggpbservice level agreements.

Backfilling and Grid Computing We note in passing that the backfilling doctrine naturally fit
into grid settings were certain assurances are often neededding start times of waiting jobs.
(In fact, the “reservation” term is heavily used in gird cextt) For example, this is needed for co-
allocation, where a job is simultaneously scheduled to rumaltiple remote cites [83, 137, 96].
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Figure 1.2:The average wait time and slowdown of all jobs obtained wiranlating four different work-
loads, both with real user estimates (“real”) and afteraejplg them with actual runtimes (“perfectf=0).

In both cases making estimates less accurate by doubling’(‘ténds to help. (See the next chapter for a
detail description of both the simulator and the workloads.
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1.2 Motivation

This work focuses on backfill scheduling algorithms and irtipalar, due to its immense popu-
larity, on EASY as their representative. Recall that baltk§jlrequires users to provide runtime
estimates, used by the scheduler to better pack the jobsmpts to assess the impact of inaccurate
estimate on performance have yielded a very surprisindtresappears that increased inaccuracy
improves the performance, as described next.

1.2.1 The Unresolved Mystery of Inaccurate Estimates

Modeling Inaccuracy In 1998, Feitelson and Mu’alem-Weil proposed thierhodel” in order
to study the sensitivity of backfilling to the quality of estaites [47]. Given a jold with runtimer,
the model postulates that its estimate is chosen at randomdruniform distribution in the range
[r,(f + 1) -], wheref > 0 is a predetermined constehfThey termedf the “badness factor”
because estimates become increasingly inaccurafegasws, with f = 0 indicating completely
accurate estimates. Thfemodel has been used when simulating workloads that lackataes
data [169, 56, 58], but much more importantly, the model asdariants have been extensively
used to study the impact of inaccurate estimates on baoffiligorithms [146, 47, 174, 108, 15,
142,170,122, 34, 64]. One simple variant of interest is tred€rministicf-model”, in which there
is no random component and estimates are simply set (¢ bel) - r, that is, a direct multiple of
the associated runtime and some factor [174, 152 34].

The Inaccuracy Mystery A very surprising result repeatedly reported by the aforetineed
papers was that, in terms of performance, inaccurate esttnaae usually preferable over accurate
ones. This is illustrated in Fig. 1.2. Evidently, performanmproves when deliberately making
estimates less accurate by doubling them. This is true bégnwdoubling perfectly accurate
estimates and when doubling the original (inaccurate) esémates.

While there is a wide agreement that making estimates lessae by multiplying them with
some factor is usually beneficial, the effect of the chogaa less obvious. This is illustrated

4f is nonnegative because a job is killed by the system if istigerun beyond its estimate, so the estimate is never
smaller than the runtime.

SThe first known use of the deterministic model was by Suzudleh ¢146] in 1995 (the same year in which the
first paper about EASY was published [98]), which utilizetifeial estimates that are 50% bigger than real runtimes
(f = % in badness terminology) to evaluate the impact of inacgurac

6ln 1999, Zotkin and Keleher conjectured that the improvenoditained when multiplyingerfectestimates by
some factor (as was reported in 1998 by Feitelson and Mu-aMaih[47]), might also be obtained if multiplyingal
user estimates [174]. This was later verified to be true byaiéuh and Feitelson in 2001 [108].
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Figure 1.3: Performance as a function ¢ffor the random and the deterministfemodel (“real” corre-

sponds to real user estimates). Excluding SDSC, most segsgiociated with positive values are better
(smaller) than the performance associated Wit.

in Fig. 1.3. Faced with (usually a small subset of) such tesuksearchers claimed that the im-
provement in performance is largely “insensitive” f174, 169, 34, 64]. Further, England et
al. suggested a new “robustness” metric for evaluating dr@®opmance of computer systems and
claimed (in one case-study demonstrating the usefulnebefmetric) that [34]:

ROBUSTNESS CLAIM
“Our results support those of a previous work and also inticdat backfilling is robus
to inaccurate run time estimates in general. It seems thah w@spect to backfilling
what the scheduler doesn’'t know won't hurt it.”

—

The Failure to Explain the Mystery The fact nonzero badness & 0) usually improves perfor-
mance was unanimously explained by what we call'tiedes argument”[47, 174, 108, 15, 142],
as elegantly articulated by Chiang et al. [15]:

HOLES ARGUMENT
“We note that for largef (or when multiplying [real] estimates by two), jobs with &
runtimes can have very large runtime overestimation, wheeves larger 'holes’ foi
backfilling shorter jobs. As a result, average slowdown aad may be lower”

-

At the same time, the observed “insensitivity” of perforroarto the exact badness value for
f > 0, was explained by what we call tHealance argument”[174, 169, 170, 64], as articulated
by Zhang et al. [169]:

BALANCE ARGUMENT
“We can understand why backfilling is not that sensitive ®elstimated execution tinje
by the following reasoning. On average, overestimationaiotg both the jobs that a
running and the jobs that are waiting. The scheduler congatkater finish time for th
running jobs, creating larger holes in the schedule. Thegdauholes can then be used|to
accommodate waiting jobs that have overestimated exectitiees. The probability
finding a backfilling candidate effectively does not chanile the overestimation.”
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For example, doubling the lengths of all the jobs in Fig. Inlyaneans the X-axis is scaled
by a factor of two, but doesn’t change anything regardinghihekfilling decision: indeed, after
doubling, job 4 looks twice as long in the eyes of the schagdhblé the same applies to the 2-time-
units-hole opened by job 2, so job 4 can still backfill.

While both arguments seemingly make sense, one obvioudepnolvith them is that they
are contradictory: If the balance-argument is correctn ttiere is no benefit in opening those
“larger holes” as suggested by the holes-argument, bedmcdilling candidates would become
proportionally larger and cancel the effect. On the otherdhdahe “holes argument” implies a
performance improvement that is proportionalftan contrast to the balance-argument rationale.
Regardless of the contradiction, both arguments fail tdagxghe results shown in Fig. 1.3, for
example the noisiness of BLUE (performance is actuallyeggainsitive tqg), or the opposite trends
observed in SDSC/wait vs. CTC/wait (CTC/wait supports tbeesrargument while SDSC/wait
contradicts it; both contradict the balance-argument).

1.2.2 The Failure to Model the “Badness” of User Estimates

The Role of a Model The purpose of a model is to truthfully reflect reality, tHsrellowing
a valid performance evaluation methodology. A successbdehmakes it possible to artificially
generate aepresentativevorkload, similar to the activity typically experienced bye relevant
systems. The output of a model is then used as the input (bearkh that drives the evaluated
system, which can be an actual existing system or a simutated Simulations are especially
important for evaluating system designs, for which the ehasonfiguration is yet to be determined
(often based on simulation results). The main advantagesiofyjua model in this context is its
flexibility: changing the configuration of a planned systesrusually as easy as changing the
value of a parameter (e.g. memory size, number of processajs This methodology allows, for
example, to decide upon the most cost-productive systeffigcwation, before purchasing it.
There is another potentially significant benefit to deveigm model that manages to success-
fully characterize the inherent nature of a representativdéload: the understandings and insights
it exposes can often lead to the design of an improved systich is better suited to efficiently
handle this type of a workload.

The Failure of the f-Model According to Fig. 1.3, the populaf-model fails to achieve its
objective, as it yields unrealistically improved perfomaoa results that are consistently better than
those obtained when real user estimates are utilized (tlyeegneption is very smalf values in
CTCl/wait). Recall that the purpose of a model is not to paimtight picture of reality, but rather,
an accurate one. Surprisingly, this deficiency has usuaknlbrushed aside. And so, in contrast
to the other key parameters of parallel workloads (jobstimes, interarrival times, number of
processors) that receivedot of attention in terms of realistic modeling [46, 30, 77, 1@, 270,
99, 105], the dominant estimate model has beerftheodel [146, 47, 174, 169, 108, 15, 142, 170,
122, 34, 64], or simply using actual runtimes instead ofnestes {=0) [84, 145, 163, 39, 133].
We conjecture that this can be partially attributed to the@gtion that estimates are unimportant
because “inaccuracy improves performance” and “what tihedwer doesn’t know won’t hurt
it". (Paradoxically, these statements are largely base@search that utilizes thémodel itself.)
But the results associated with real estimates (Fig. 169ryt demonstrate that reality is more
complex.
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The Failure of the ®-Model Recall that backfill schedulers kill underestimated jobsmsure
reservations are respected, and that this policy creatiesarnotivation for users to supply accu-
rate estimates. This is true because (1) jobs would haveer lsbnce to backfill if their estimates
are tight, but (2) would be killed if they are too short. Thepplarity of EASY and the fact it
is used in production systems owned by organizations thateaip share their scheduling logs,
have made it possible to evaluate whether this incentiveageesto actually deliver high quality
estimates. The consistent conclusion was negative, haosay estimates turned out to be rather
poor [47, 17, 108, 20, 38, 93, 157]. This is demonstrated g Ei4 using data from the four
different installations used earlier. The graphs are bistms of the estimatioaccuracy what
percentage of the “requested time” (as embodied in estshatas actually used. The promising
peak at 100% regrettably reflects jobs that reached theratkd time and were then killed by the
system according to the backfilling rules. The hump near eftect very short jobs (less than 90
seconds) that failed on startup. The rest of the jobs, thiabHdyg ran successfully, have a rather flat
uniform-like histogram, meaning that for such jobs, anyelef accuracy is almost equally likely.
Noticing the failure of thef-model, Mu'alem and Feitelson attempted to develop a moee su
cessful model by recreating the histograms shown in Fig[1108]. The histogram’s flat portion
implies that-/e = u, i.e., that the ratio of the actual runtimeo the estimate can be modeled as
a uniformly distributed random variable in the range (0, 1]. By changing sides we get=r/u,
SO given a runtime we can generate an estimatthat, while unrelated to the actual user estimate
for this particular job, is expected to lead to the same gdrstatistics of all the estimates taken
together. To complete the model one just needs to notefthprcent of the jobs are underesti-
mated’ and for short jobs the estimates are too large by a factorafitat0 (accuracy of 10% or
less). The final model is therefore

1. With probability of® returnr (reconstructs the 100% peak).

2. Otherwise, create an estimatergfu, wherew is uniformly drawn from the rangéo, 1]
(generates the uniform-like histogram).

3. If r < 90 seconds, multiply the estimate by 10 (recreates the humpdién
4. If the estimate is “outrageous”, truncate it to some ujgoemd.

Fig. 1.5 shows that, unfortunately, despite the addedmm&bion, theb-model is also unsuccessful
in capturing the “badness” of user estimates. In fact, omeabaays find a badness factfrthat
yields performance results that are closer to the real tthiag when theb-model is employed.

Another model, similar to thé-model, was proposed by Cirne and Berman [20], which took
the opposite direction in comparison to the previous modélanose to produce runtimes as mul-
tiples of estimates and accuracies, while generating tineclels to the latter two. This decision
was based on the argument that accuracies correlate witte¢ss less than they do with runtimes.
In their model, accuracies were claimed to be well-modeled bamma distribution (a result of
trying to model the uniform part of the histogram along whike hump at low accuracies, by using
one function for both). Estimates were successfully matiblea log-uniform distribution. This
methodology suffers from the same problem as the previowemadn addition, it is not useful
when attempting to add estimates to existing logs that kaekt or to workloads that are generated
by other models which usually include runtimes and lackestes [46, 30, 77, 99].

"Mu’alem and Feitelson did not use a parameter to denote tieepiof killed jobs. Rather, they used a hard-coded
value of 10%. In a later paper, Zhang et al. parameterizadviilue, called itb, and named the model accordingly:
the “®-model”.
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Figure 1.5: Comparing the performance obtained when using real usgnass (“original”) to those

obtained when replacing them with artificial ones as geedray thef -model(f = 0, 1, 3,10, 30, 100, 300)
and thed-model.

1.2.3 The Failure to Improve the Quality of Estimates for Bafilling

Prediction Algorithms  There have been quite a few research efforts that attempiaesent a
higher quality alternative to user estimates. These havelynfmcused on using historical data,
as it is well known that users of parallel machines tend teatgdly do the same work [48, 173]
and therefore it is conceivable that historical data candselwo predict the future (Fig. 1.6). The
common practice has been to partition past jobs into disfsimilarity classes” or “categories”
based on one or more of their attributes, including user aadmID, requested processors num-
ber, requested memory size, queue identifier, submit tiorgime estimate, executable name and
arguments, and any other attribute which is known upon ss&ion. When two historical jobs
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Figure 1.6:Runtime and estimate of jobs by four arbitrary SDSC usersvsbmarkable repetitiveness.

agree on a predetermined subset of these attributes thaydaed “similar’®

A chosen attribute subset, according to which jobs aretmaréd into classes, is called a
“template”. When a new job arrives, the system checks whatbkeattributes, as listed in the
chosen template, coincide with one of the similarity clas#his is the case, the system generates
a prediction based on the runtimes of the jobs that popuiatectass. The metrics used to generate
the prediction (listed in order of increasing complexitsg:asimply using the median or mean [136,
156], adding to the mean 1.5 standard deviations [108] guki@ top 95% confidence interval [62],
using liner regression [135], using statistical model€bam the (usually) log-uniform distribution
of runtimes [31], and employing instance-based learniidg. [8

Prediction schemes may employ multiple templates simetiasly, in which case historical
jobs may reside in more than one class. Consequently, nesvnialy also match more than one
class. When such a situation arises, the scheme must sonustemnine which class to use for
prediction. The canonical approach has been to use the ahehgitightest statistical confidence
[62, 135, 136, 86].

A fundamental problem underlying the approach describeel isdhow to choose the templates
according to which jobs are partitioned. The number of jablattes along with all their possible
transformations is potentially very big. The number of plolsstemplates is therefore exponen-
tially bigger (recall that any subset of attributes andrtldeirivatives can serve as a template), so
it is obviously impractical to use all conceivable configioas. The simplest solution is to decide
upon a static set of templates that seemed reasonable tetbenpthat implemented the predic-
tion algorithm [62, 108]. A more sophisticated approacloigd it dynamically at runtime, in an
evolving manner. This is done based on the success thatdndivemplates demonstrate in pre-
dicting future runtimes during execution, combined witlmsoheuristic to periodically introduce
new templates to replace those that are less successftie imope of converging to a template-
collection that manages to produce robustly good resultss dpproach has been implemented
using statistical methods [97], genetic algorithms [13H]1and rough set theory [86].

The Failure of Prediction Algorithms Despite all the work devoted to prediction algorithms
(denoted “predictors”), these have never found their wag production systems, and backfill
schedulers in actual use still employ raw user estimatbsrétan history-based system-generated
predictions. We identify three reasons underlying thikifat

8Agreement may be defined as simple equality, or if attribalees are equal only after undergoing some trans-
formation, e.g. jobs sizes may agree if they fall in the sama@ge”, submission times may agree if both are during
daytime vs. nighttime, etc.
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1. Misperception of Estimates as Unimportant As described above, many studies found
that increased inaccuracy either doesn’t degrade or evproiras performance [146, 47,
169, 170, 34, 64]. This has led to the suggestion that estgrstould beloubled[174, 108]
or randomized115], to make them even less accurate. These findings sgmmagate
the motivation to incorporate mechanisms for better ptexhs, deeming user estimates as
“unimportant”.

2. Complexity of Predictors All previously suggested prediction techniques assumaiatin
important component in accurately predicting future nonets is to identify the most similar
jobs in the history, and base the predictions on them. Thisdaizs logging and mining the
history, often using very sophisticated algorithms. Iniadd, the metrics applied on the
chosen historical jobs to produce the predictions havendfeen nontrivial by themselves.
As described above, the end results has been relativelylearppedictors employing var-
ious statistical methods [62, 31, 136, 97], genetic alparg [136, 138], instance based
learning [83], and rough set theory [86]. Further, they rexja training period which can be
significant. For example, Smith et al. [136, 138] used arrenitace to guide the selection
of templates before evaluating their algorithm (on the \&agne trace, using the selected
templates), deeming their algorithm as off-line and sigariily limiting its practical value.
Paradoxically, all this algorithmic and computational gexity is often much more compli-
cated than the entire EASY scheduler, making existing ptedi an unattractive alternative.

3. Technical Barrier While the above two difficulties are certainly contributifagtors to
the failure of predictors to find their way into productiorsgsms, they are not detrimental.
The real problem is that it is simply impossible to naivelpleze estimates with system-
generated predictions, becalestimates are part of the user contradhile this contract
clearly states that a job trying to exceed its estimate velkitled (con), it also guarantees
that this job will be allowed to run until that time (pro). Tldficulty arises because ev-
ery reasonable prediction algorithm is bound to occasippabduce too-short predictions,
leading to premature killing of jobs according to the badkfij rules, thereby violating the
contract. Previous studies dealt with this difficulty usorge of the following alternatives:

e eliminating backfilling altogether, at the expense of fag® (using pure SJF) [62, 138]

e employing speculative backfilling or test runs (assumes gle restartable) [115, 15,
90]

e using preemption to e.g. suspend jobs exceeding theirgir@a$ and reinsert them to
the wait queue (augments space slicing with time slicing) ®, 139, 170]

e considering only artificial estimates generated by ther ®-models as multiples of
actual runtimes (assumes underprediction never occurd) 15, 15, 141, 142].

None of these retain the appeal of plain EASY. Noting thidprm, Mu’alem and Feitelson
checked whether underprediction does in fact occur whergwsconservative predictor (av-
erage of previous jobs with the same user, size, and exéeupibsl% times their standard
deviation)? They found that~20% of the jobs suffered from underprediction and would
have been killed prematurely by a backfill scheduler. Theydfore concluded that [108]:

%In the terminology defined above, this is a template compog#te attributeq user, size, exzecutable}.
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THE UNFEASIBILITY CLAIM
“Given the large fraction of jobs that are underestimatedseéems that using systein-
generated predictions for backfilling is not a feasible aygarh”.

We will show that the above three difficulties can be eithéutesl, or dealt with in a simple and
straightforward manner. Specifically, we will prove the eedibility-claim wrong.

The Inability of Users to Improve their Estimates An orthogonal effort to exploiting history
has been recently conducted by Lee et al. [93], which exglatgether users are able to improve
their estimates if given enough incentive. The study ingdlusers of the Blue Horizon supercom-
puter at the San Diego Supercomputer Center (denoted héBe. d&”). In the hope to alleviate
users’ concerns that their jobs will be prematurely killesers were given the opportunity to pro-
vide an additional runtime estimation value upon submigssuch that their job would not be
killed if this value is exceeded. Further, users were gdeaigout their degree of certainty of the
estimate they provide. Finally, to encourage users to do best, a competition was declared
where the most accurate user will win a prize. Results indctcgéhat users rarely change their
original estimate, are actually quite sure of themselved, most probably would not be able to
provide much better information.

1.2.4 The Problematic Nature of Raw Workload Data

The last issue we address in this dissertation is somewhatmieta issue”. It is related to pro-
duction workload logs and the manner in which these are use$earch. For example, in this
work we make heavy use of four such logs as the basis of mostirofidings (SDSC, CTC,
KTH, BLUE; to be introduced in the next chapter). Howevee tbsue is much more general, and
although its implications certainly have decisive conszmgpes regarding the work presented here,
it transcends the supercomputer domain and is actuallycaiié to all computer systems.

Importance of Representative Workloads It is well established that the performance of a com-
puter system depends not only on its design and implementdttiit also on the workload to which
it is subjected [40]. Different workloads may lead to diffat absolute performance numbers, and
in some cases to different relative ranking of systems aigdes Using representative workloads
is therefore crucial in order to obtain reliable performaegaluation results.

The canonical way to obtain representative workloads iséraal workloads from production
systems. One can record the workload on an existing systetrplay back the recording to drive
a simulation of a new system. If the existing system has dairfuinctionality to the new system
being evaluated, one can assume that the same workload plgy laigewise, if a new system de-
sign is shown to produce good results when applied to a witgeraf such “recorded” workloads,
one can claim the results are truly general. Indeed, thikwas well as numerous other papers,
use this methodology and exploits the many workload logsatafreely available, for example,
in the Parallel Workload Archive (from which the aforememnied four logs are taken [110]).

An alternative methodology is to use the recorded workloasishe basis for constructing
a workload model (like in [77, 20, 99]), later to be used to gyate input for a simulator of a
new system. This has the benefit of allowing for more flexitdage, e.g. by modifying model
parameters so as to adapt it to different system configumstio
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Figure 1.7:Unwarranted implications of using raw data for performaeealuation and modeling.

The Problem Using recorded workloads, however, has its problems. @ensnodeling for ex-
ample. This activity is typically done by collecting workld traces, and creating a statistical model
based on fitting the distributions of workload attribute8][8ut such an approach is questionable
if the data is not stationary. For example, Chiang et al.yamabix non-consecutive months of
data from the NCSA Origin 2000 machine, and find that the vaa#tk in different months may be
quite different from each other [17]. It is also well knowratlworkloads at different installations
differ, and that workloads evolve with time as users learbetber use the system [70, 46].

In this context, we identify a different problem in basing eraluation on production logs.
Despite the overwhelmingly accepted view that real pradactvorkloads are representative and
reliable, we claim that they may also contain anomalies, tiaile they do in fact occur, are
actually non-representativad the general casand are therefore unreliable. The “general case”
means the typical workload which is experienced by the eglegystems. We contend that one
should exclude from the workload activities that are unitua specific system when trying to
evaluate the performance of systems in the general caseappuoach unfortunately contrasts
common practices that view production logs as “the abstlutk”, a situation we aspire to change.

Examples As a motivation for this topic, we briefly describe three exdées demonstrating the
types of problematic results we encountered while usingdata for performance evaluation and
modeling. These are “real” examples in that we actually antered them during the process of
system evaluation. At the time, we were unaware these oceicthe aforementioned anomalies,
and our perception was that we must learn how to live with sashlts, however undesirable.

The first example is depicted in the left of Fig. 1.7. It shotws &verage slowdown @il the
simulated jobs under the EASY scheduler, when using two wads. The first (“as is”) is simply
the SDSC raw log. The second (“truncated”) is the very sargebat after we inject it with a
negligible perturbation: we change the original runtimaaingle specific job from 18 hours and
30 seconds, to exactly 18 hours. The 8% change irotlegall average is overwhelming, as the
perturbation is merely a 30 seconds change in the runtimelgfane jobfrom tens of thousands
of jobs that were submitted over a period of two yeaf@iis instability a very disturbing and
troublesome result, as it casts a serious shadow on thatyalidwhat is maybe the most basic
and standard performance evaluation methodology. Narnfedych a minor modification in the
workload can trigger such a major change in the resultingemesperformance, who'’s to say that
any relative ranking of systems and designs is not “bogusi?ekample, if system turns out
to be better than syste only because some job terminated 30 seconds later, but tberna
would have otherwise been reversed, then this ranking igably completely meaningless. We
will later show that this sensitivity is not representatdfg¢he general case.
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Figure 1.8: Expressing performance Figure 1.9:Simulating CTC, the percent of backfilled jobs,
in confidence intervals exposes clearer as well as the average delay that non-backfilled jobs suffer
trends (compare with Fig. 1.3, page 10). due to inaccuracy, are monotonically increasing with

Our second example is indeed along the lines of relativeesysainking. Using the CTC
workload, we compare the performance of two systems undéousload conditions® The
evaluated systems are the EASY scheduler (a single resemalocated to the first queued job)
and the conservative scheduler (reservation allocatelfiw@ding jobs). Unfortunately, as shown
in the middle of Fig. 1.7, the results are inconclusive: th&er to the question of which scheduler
is preferable turns out to be dependent on the load. Therhdite is that the systems analyst is
unable to make a clear recommendation, even though (we atdl Ishow that) one system is
consistantly better than the other when stripping the vaa#iform a non-representitive anomaly.

In addition to its impact on performance evaluation, usia data has also negative impli-
cations on workload modeling. Demonstrating this, ourdi@xample deals with the distribution
of interarrival times (elapsed time between submissiorsakecutive jobs). The associated his-
togram of the LANL CM-5 log is shown in Fig. 1.7 (right). We fititat the distribution is distinctly
abrupt and modal, with several values that are extremelymoom(note the broken Y-axis). Im-
portantly, this distribution cannot be fitted against (ordeled by) any standard distribution. We
will show below that this is the result of aggregating thedbag workload with an anomaly.

1.3 Preview of Results

1.3.1 Solving the Mystery of Why Inaccuracy May Help

Sec. 1.2.1 introduced the inaccuracy mystery that, baséldeopopularf-model, prompted many
researchers to claim that deliberately making estimasssdecurate either improves performance,
or has no real effect on it. These two observations were sgdaespectively by the contradictory
“holes” argument (improvementis due to increased overegion of long jobs that opens up larger
holes for backfilling shorter jobs) and “balance” argumanatéffect on performance because larger
holes are cancelled out by backfill candidates appearingoptionally longer).

Why Performance Improves Indeed, we find that the average performance is extremeki-sen
tive to minor changes irf and that the sample space is very noisy (Fig. 1.3). Thuspissible to
conclude any of the two contradictory observations, if agrtishg only a small number of exper-
iments in a non systematic manner. However, utilizing tmeloean component of th¢-model to
perform repeated simulations and presenting the resulésrims of mean and confideri¢eeveals

a clear trend: the effect of increasirfgs actually V or L-shaped, as is exemplified with BLUE
and CTC in Fig. 1.8.

10The manner in which load is artificially varied is explainedfie next chapter.
1Surprisingly, this was never done before.
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Figure 1.10:ncreasingf means trad- Figure 1.11: The biggerf gets, the more the scheduler favors
ing off fairness for performance. (Re- longer jobs for backfilling at the expense of shorter onegs(iRs

sults from simulating CTC.) from simulating CTC.)

We explain the descending part of the performance curvekisnfigure by reconciling the
seemingly contradictory “balance” and “holes” argumeniis.accordance with the “holes” ar-
gument, increased does indeed mean more backfilling (Fig. 1.9, left). But thefgrenance
improvement is not just the result of this, as backfill caatikd do in fact appear proportionally
longer (in accordance to the “balance” argument). Rathes the result of what we call a “heel-
and-toe” dynamic: a distinctive sequence of backfillingisiens that manages, step by step, to
prevent the holes from closing up, leading to a preferencsltfort jobs and the automatic produc-
tion of an SJF-like schedule. On each step, the schedul&igked” to believing the real earliest
start time of the first queued job is further away in the futilven it actually is. Fig. 1.9 (right)
shows the average delay of jobs with reservations, beyagidligpothetical “correct” start times
(had accurate estimates all of a sudden been made avaitatite scheduler, at the exact time
instance when they became first in the wait queue and thettoshéime was computed). The
bottom line is therefore that multiplying estimates by adacgs actuallytrading off fairness for
performanceas all the extra backfilling activity is at the expense oftfar delaying the jobs that
have been waiting the most. This tradeoff if exemplified hy. Ai.10, showing that the increasing
“unfairness” of the schedule is a kind of mirror image to itgroving performancé&

Why Performance Is Worsened We now go on to explaining the ascending part of the V-shaped
performance curves (BLUE in Fig. 1.8). Whehis very small, the holes in the schedule are
relatively narrow, insuring only truly short jobs can enjinem (explains the initial descending
part of the curves). But as becomes bigger, increasingly longer jobs fit the holes tadgmg
the scheduler to “err” and favor longer jobs for backfillingtze expense of shorter ones. Fig. 1.11
demonstrates this pathology, showing that backfilled jaxolne longer, while at the same time,
non-backfilled jobs become shorter. The situation is wasséhte random model, where long jobs
can masquerade as short and vice versa. We analyticallg inavthe probability for this to occur
is monotonically increasing a&goes to infinity. The absence of this random component fram th
deterministic model explains why it yields better perfonoathan the random model (Fig. 1.8).
The remaining question is how come CTC’s performance isdpsd? Namely, how does
it “manage to escape” the two aforementioned destructiveqeses? (Of longer jobs gradually
fitting into the widening holes and of randomness.) Indediderlogs are similar to BLUE and
also correspond to V-shaped curves (not shown here). Thi@oko this mystery is related to
load: the level and temporal structure of the activity ekkitbin each log. It turns out that CTC is

2ynfairness is defined to be the average delay in the starfijaps beyond what is “fair” (jobs that were started
earlier than what is fair contribute zero to the averageg fidition of “fairness” is accurately defined in Chapter 3.
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Figure 1.12:Introducing burstiness to Figure 1.13:The effect of multiplying real user estimates by a
CTC by reducing the size of the sim-factor (“real”) is qualitatively similar to using multipgeof run-
ulated machine resulted in V-shapedimes as estimates (“deterministic”), but the latter ysechetter
performance curves, similarly to otherresults in terms of performance and fairness, meaning ateeas-
logs (compare with Fig. 1.8). timates are better for backfilling. (Results from simulgt@TC.)

unique in that its load level is relatively stable, and intggatar, unlike all the other logs, it is not
bursty. Burstiness causes longer wait queues, a consegjaemany jobs arriving at the same time.
This intensifies both of the above destructive processesiaas backfill candidates with greater
diversity allow the scheduler to make more “wrong” decisioho demonstrate this, we simulated
the CTC workload on a machine with less processors than thmaksystem had: instead of 512
we used 336 (the size of the biggest job in CTC). This mantmravas verified to introduce
burstiness, and indeed, the associated performance cunvesi out to be V-shaped, similarly
to all other logs (Fig. 1.12). Thus, performance curves #&teeV or L-shaped, depending on
whether the workload is bursty or not, respectively.

Refuting the Myth  The above observations that were obtained by using-tmedel have seem-
ingly only theoretical value, because we are multiplyingiatruntimes, whereas this information
is usually unavailable to the scheduler. However, therenis ilmportant practical implication.
It turns out that all of our understandings regarding theafbf multiplying perfectestimates
(runtimes), also apply when multiplyirmgal estimates, as were given by users. Fig. 1.13 clearly
shows this, as the trends exhibited by multiplying are dqaiiely similar, regardless of whether
the multiplied values are perfect or real (=flawed). The legoting the quantitative difference.
Apparently, in contrast to common belief, better accuraggsdin fact improve performance in
the sense that the more accurate the initial (to be muldpkstimates are, the better the resulting
performance becomes. As will be further discussed nextpiway does the act of multiplying
emulate the inaccuracy exhibited by real users. Rathemjilg adds a certain “SJFness” to the
schedule through heel and toe dynamics. Consequentlyiphyuig is actually not more than a
(legitimate) scheduling policy that exercises the faisfgsrformance tradeoff. The bottom line is
that system analysts should clearly distinguish betweertyyes of inaccuracies:

1. artificial inaccuracy, which is generated by multiplying, trades ohtess for performance,
and is a property of the scheduler, and

2. real inaccuracy, which is generated by and is a property of reaisyusnd has the effect of
worsening performance.

By no means is the first type adequate to serve as a model feettumnd. The problem is that,
up till now, researchers confused between the two typesaafcuracies. This has led to tfedse
misconceptiothat “increased inaccuracy improves performance”. Theecbstatement should be
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that increased inaccuragyorsenperformance, but that the scheduler can boost it up at thensep
of fairness by multiplying the estimates with some factor.

This conclusion motives (1) developing an adequate modekEf user estimates, and (2) im-
prove the quality of estimates used by backfill scheduleh&s€ issues will now be addressed in
turn in the next two subsections, respectively.

1.3.2 Modeling Estimates

Recall that Sec. 1.2.2 motivated the need for a realistimes¢ model, and showed that the exist-
ing models { and®) are inadequate. The bottom line was that using these mpdgdsices an
unrealistic evaluation, whereby performance results dutrtoo good to be true (better than if real
estimates were used). The previous Sec. 1.3.1 has shed igitnerl why this is the case (with
respect to thg'-model; in this section we will, among other things, do theedor the®-model).
We now go on to focus on developing a better model.

Modality The fundamental and most important observation in achiethis goal is the follow-
ing. Human users doot choose estimates that are uniformly distributed betweemeél runtime
and its multiple with some constant factor, or anything miRather, they use “round” estimates,
like ten minutes, one hour, etc. In fact, we found about 90%hefjobs repeatedly use the same
20 “round” values. The result is a modal distribution, reéecin the staircase-like CDF curves
shown in Fig. 1.14, in which each “mode” corresponds to a faypstimate. One particular pop-
ular value isFE,,.., the maximal estimate allowed. This value is a per-site adtrative upper
bound on estimates (and therefore on runtimes). The value,gf is typically around 18h; in
KTH and BLUE 4h and 2h serve as the “effectivé;,,. because most jobs were submitted during
daytime or to the interactive/express queues, respegtig),.. is used by 10-27% of the jobs and
is the most popular in three of the four logs (in SDSC it’s rehkhird). I1ts immense popularity can
probably be attributed to (1) the fact underestimated jobskaled by the system upon reaching
their estimate, and (2) the inability of users to predict Homg their jobs will run and their desire
to “play it safe” and prevent their jobs from being premalyiglled.

Implications of Modality Regardless of why,,,... is SO popular, the implications are detrimen-
tal in terms of performance. This is true because any job With, as estimate will never be
backfilled (as all the holes in the schedule are smaller gp., by definition). The more the
jobs useF,,..., the worse the performance gets. At the extreme, assagialifobs with £,
would mean backfilling activity (as depicted in Fig. 1.1) wdaompletely stop and the schedule
would largely revert to plain FCFS. Surprisingly, despigedecisive effect, the mere existence
(and hence popularity) aof,,.. has been completely overlooked by past work, a fact thatded t
several mistakes.

One mistake is related to Fig. 1.15. Cirne and Berman hygatbd that the apparent connec-
tion between longer runtimes of jobs and improved accuratecause the more a job progresses
in its computation, the grater its chances become to reamtessful completion [20]. Obviously,
this hypothesis is false and unwarranted, because thepgesfFE,,,. guarantees long jobs to
have high accuracy. For example, assumihg,. is 18h, if a job’s runtime is 17h, then its estimate
must be between 17h—18h (bigger than the runtime, smaberih,,..) and thus at least 94% ac-
curate. In other words, long jobs are on the right of Fig. 1visere accuracy is high, while short
jobs tend to be on the left, at lower accuracies.
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equally sized bins according to their runtime.) Longer jebgy higher accuracy.

The same exact argument applies to another mistake, retafednodel (defined in Sec. 1.2.2
in an attempt to emulate the accuracy histograms shown inl=g page 13). Recall that the
uniform part of the accuracy histograms was modeled byr /u, whereu is uniformly distributed
in (0, 1], r is the runtime, and is the resulting estimate. However, duefg,.., the distribution of
jobs within the accuracy histogram is not at all uniform. Bany to the previous mistake, here too
(Fig. 1.4) long jobs must be on the right at higher accurasidgreas only short jobs can reside
on the left. ThusF,,..’s existence invalidates the rationale underlyingdhmodel.

Finally, we note that the harmful effect of modality is nosfuelated toF,,,... This is true
because an estimate distribution that is dominated by ofdwalistinct modes#,,... and others)
means less variance among waiting jobs, which means lessilitgxfor the scheduler to exploit
existing holes (with various sizes) for backfilling.

Modeling Modality Our model therefore targets the modal nature of estimateseliés on
three input parameters: (1) the number of jobs composingvtitkload (namely, the number of
estimates to produce), (2),...., and (3) the percent of jobs that usg,,,.. Based on these, instead
of employing the common practice of artificially generategjimate values in isolation on a per-
job basis, the model outputs a seriegiomodes given by (;, pi)}fil. Each pair(t;, p;) represents
one mode, such thatis the estimate value §tands for time), ang; is the percentage of jobs that
uset; as their estimatep(for “popularity”). For example, CTC'’s series includéssh, 23.8%),
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Figure 1.16: Given a head popularity rafke [1..20], the associated percent of jobs is given by
thep; = a-e~#7 +~ exponential function. Given a tail popularity rank [21..K7, the associated
percent of jobs is modeled by the = w - 577 power law. The middle figure has linear axes, while
the other two are logarithmically scaled. The left figureaenates the head and tail models.
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time rank of 2, etc. Normalizing a time rank means dividingytk'. Likewise, normalizing an
estimate means dividing it b¥,,... Given a normalized time rank; = % (i € [1..K]), the
associated normalized estimate= Et— is modeled by the; = % fractional function.
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because 23.8% of the jobs used 18 hours as their estimatter thé series is constructed, our
model offers a utility function to map the artificial estiraatonto the jobs, such that each estimate
is equal to or bigger than the associated runtime, as ratjbir¢he backfilling rules.)

Our approach is teeparatelymodel the time value§;},-, and the popularity value; }*
after which we define a mapping between times and populatdiereate the pairs in the final mode
series. But before doing this, we show that the modes natuiaide into two groups: the twenty
most popular “head” estimate values (used by about 90% gbtiethroughout the entire trace),
and the remaining “tail” estimates. We show that these twonigs have distinctive characteristics.
For example, Fig. 1.16 shows how tlﬁﬁj}f:l popularity series is modeled. The X-axis denotes
the “popularity rank”;, where the most popular estimate has rank, the second most popular
has rankj=2, and so on. The Y-axis denotes the associated percertt®{3p;). Indeed, “head”
estimates are well modeled by an exponential function, edeeftail” estimates obey a power law.
In contrast, modeling thét;} | time series does not require the head/tail differentiationd the
entire series is successfully modeled by a fractional fondiFig. 1.17). Deciding which specific
time values will serve as the twenty head estimates, howeuires a special effort.

Our conclusion from constructing the model is that userabelnvariantly when it comes to
estimating how long their jobs will run. Indeed, all modekespects of the estimates distribution
are almost identical across all logs, allowing us to rely otydhe three aforementioned input
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Figure 1.18: The original estimates distribution (“origblid lines) is very similar to the modal
output of our model, when used with four different seeds fog tandom number generator.
(KTH4H contains only the “daytime” jobs.)

parameters, while still producing excellent results. Etlmmugh considerable variance does in
fact exist, it is mostly encapsulated within the percentafgebs that chosé’,,,.. as their estimate,
which is indeed one of the three parameters. The remainmanee (if any) is attributed to another
1-2 very popular modes that sometimes exist, but are un@unelividual logs. When provided this
additional minimal information (optional parameters)r mwodel’s output is remarkably similar to
that of the original (Fig. 1.18), but even with its vanillatsgg results are satisfactory.

Finally, we show that when used in a simulation (by repladiea estimates with artificial
ones), our model consistently yields performance reshiétsdre close to the original. The model
is available for download at [155]. Unlike previously sugggl models, it allows for realistic
evaluation of the impact of increased inaccuracy on backigbrithms, e.g. by systematically
increasing the percent of jobs associated with,....

1.3.3 Incorporating System-Generated Predictions in Badidl Schedulers

Now that the source of the “badness” of user estimates iswnelerstood, we go on to revisit the
alternative: using history-based system-generatedmenpiredictions. In Sec. 1.2.3 we surveyed
the considerable amount of work done on the subject and ribtgdin spite of all this effort,
predictors were never incorporated within productioneystWe identified three major difficulties
underlying this failure, which we now revisit and resolveum, while outlining our contributions.

Addressing the Misperception of Estimates as Unimportant Recall that this difficulty em-
anates from many studies that found increased inaccurgmyiras or doesn't effect performance
[146, 47, 169, 170, 34, 64], yielding suggestions to make estmates even less accurate by dou-
bling [174, 108] or randomizing them [115]. This negatedni&tivation for improved predictors
and implied accurate estimates are unimportant. We arguéhis is false in three respects:

1. First, doubling (or multiplying) original user estimatandeed helps, but even more so if
applied to perfect estimates (compare “realX2” to “petk&tin Fig. 1.2 and inspect the
left of Fig. 1.13). We show that doubling of good system-gatex predictions is similar:
the more accurate the original predictions are, the mordadheling is effective.

2. Second, as mentioned above (Sec. 1.3.1), we show thatabkerr multiplying helps is due to
a heel and toe dynamic, which allows shorter jobs to movedaiwithin an FCFS setting
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by implicitly approximating an SJF-like schedule. RechHttthis is obtained by gradually
pushing away the start time of the first queued job, effeltitrading off FCFS-fairness for
performance. One contribution of our work is showing tha thadeoff can be avoided to
some extent by explicitly using shortest job backfilled firgiSIBF) backfilling order. By
still preserving FCFSeservation-orderwe maintain EASY’s initial appeal and enjoy both
worlds: a fair scheduler that nevertheless backfills effet. We argue that in any case
choosing SJBF is more sensible than “tricking” the schadiddavoring shorter jobs by
doubling estimates, randomizing them, or any other sinstiant.

3. The third fallacy in the “inaccuracy helps” claim is thedenlying implied assumption that
predictions are only important for performance. In faceytlare also important for various
other functions. One example is advance reservations fdrafjocation and co-allocation,
shown to considerably benefit from better accuracy [83, 887, Another is scheduling
moldable jobs (that may run on any number of nodes [31, 138, dhe scheduler’s goal
in this case is to minimize response time, considering wéretiaiting for more nodes to
become available is preferable over running immediateiysT a reliable prediction of how
long it will take for additional nodes to become availablerigcial.

Addressing the Complexity of Predictors Three drawbacks were identified in previously sug-
gested predictors (all algorithms suffer from at least @mel often all, of these drawbacks): sug-
gested predictors are (1) based on identifying “similaiigaon the history and therefore require
significant memory resources and complex data structurav®ttie history of users, (2) they em-
ploy complicated prediction algorithms (to the point ofdgeff-line), and therefore (3) pay the
price in terms of excessive computational overhead spemiantaining and mining the history
[31, 62, 135, 136, 83, 86, 97]. In this context, our contiidmtis showing that a trivial predictor
(free from all above drawbacks) can actually generate &elesults when used correctly, and
explaining why this is the case.

The predictors we use are as simple as e.g. averaging theneuof the two most recently
submitted (and already terminated) jobs by the same userio@ly, such an algorithm is very
easy to implement and is almost overhead-free (it is simphatter of saving two per-user num-
bers, updating them whenever a job by the user terminatésagraging them out whenever a
job by the user arrives). We show that when done correctly, approach works very well. In
fact, it turns out that for runtime predictione recency of past jobs is actually more important
than their similarity This is exemplified in Fig. 1.19, which is the summary of tehghousands
of simulations utilizing very many prediction algorithmnants. The algorithms differ in several
respects, mostly related to the definition of thistory window which previous jobs to use to
generate a prediction and how (exact details are provid€hapter 4). One important parameter
employed by all algorithms is theindow sizewhich determines the number of past jobs the al-
gorithm considers, such that the greater this number ismibre the predictor goes back in time
to obtain this many jobs. The window size serves as the X-@ixKg. 1.19. The Y-axis aver-
ages the performance degradation experienced by all tleias=d predictors, relative to some
optimum (exact definition in Chapter 4). The conclusion &t thhe more history we exploit when
making a prediction, the worse the resulting performancefes. In fact, the performance degra-
dation appears more or less linearly proportional to the sfzhe history window. This suggests
that the considerable overheads of storing/mining the fiatdifferent classes of historical jobs
[62, 136, 138, 83, 86, 96] are unwarranted, and that usingtbel1-2 most recent jobs by the same
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Figure 1.19:Average performance degradatian $tandard deviation) is more or less linearly proportional
to the size of the window, indicating that using smaller vawg with more recent information is preferable.

user may be optimal. Arlitt et al. reached a similar conduosn the context of the World Wide
Web, contending that “only the topmost stack element isxgegignificant reuse” when predicting
the destination of a work-session based on the user’s fistack [6].

Addressing the Technical Barrier Recall that what technically prevents systems from using
system-generated predictions for backfilling is the issuetat to do when underprediction oc-
curs. According to the backfilling rules, under-predictetl§ will be prematurely killed by the
system, thus violating the contract with users that haveestgd to run longer than was predicted.
Suggested solutions included simply ignoring the problesimg preemption, employing test runs,
or eliminating the need for backfilling by using pure SJF [624, 115, 19, 15, 90]. None of these
retain EASY’s initial appeal of simplicity and fairness. Mlem and Feitelson checked the extent
of the underprediction phenomenon, showed it to be sigmifi20% of the jobs), and concluded
that “it seems using system-generated predictions forfbkag is not a feasible approach” [108]
(this statement was termed the “unfeasibility claim”).

The initial part of our solution to this problem is noticingat estimates have a dual role:
(1) to serve as runtime approximations, and (2) to servelkirkes. We argue these should be
separated. As it is legitimate to kill a job once its userreate is reached, but not any sooner, the
main function of estimates is in fact to serve as kill-tim@s.the same time, there is nothing to
stop us from basing all the other scheduling consideratiortie best available informatida.

Ouir first step in utilizing predictions for backfilling is trefore doing just that, namely, basing
everything, but kill times, on predictions instead of esties!* This means the reservation time
is computed based on predictions of running jobs. Likewiggfing jobs that serve as backfill
candidates are judged suitable for backfilling only if th@ediction indicates they will terminate
before the reservation time. This optimization has thetpeseffect of dramatically improving the

3Note the terminology: “estimate” refers to the runtime apimation provided by the user upon job submittal,
whereas “prediction” refers to the value that the systenmiiadly uses. A prediction can be set to be the estimate, but
it can also be automatically generated by a predictor, azitbesl here. However, “prediction” is an overloaded term:
when “estimates” and “predictions” are contrasted, thetatctually means “system-generated predictions”.

YRecall our predictor generates a job’s prediction e.g. asiterage runtime of the last two jobs by the same user.
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Figure 1.20:Comparing average performance and accuracy of the EASY,YEA&nd EASY'" sched-
ulers. The numbers at the top of the bars show the associatedmtiage change relative to EASY: negative
values indicate an improvement of the performance metviest/slowdown); positive values indicate an
improvement of accuracy.

average accuracy. Regrettably, in spite of this improvenparformance is worsened by up to an
order of magnitude! A thorough analysis revealed that ghikie to “expired” predictions, outlived
by their jobs. Such stale information leads the schedul@rtoneously believe that processors
of currently running under-predicted jobs should be aéélat the present time. The result is an
unrealistically too close shadow time that opens up a vesfldmole in the schedule for backfilling.
At the extreme, the reservation is made for the present tifieetevely stopping all backfilling
activity (as shown in Fig. 1.1) and degrading the schedubmgrds plain FCFS.

One way to tackle this problem is to try to minimize it by prethg more “conservative”
(bigger) predictions. But as mentioned above, this altar@eavas shown to be unsuccessful (20%
of the jobs prematurely killed [108]). Further, just “minzmg” the problem is simply not enough,
as the contract with users shouleverbe violated. We therefore propose a simpler alternativie tha
finally manages to provide a solution.

The basic idea is to avoid the issue altogether, by refrgifiom placing the burden of han-
dling underprediction on theredictor. Instead, we modify thecheduletto dynamically increase
expired predictions proven too short. The underlying radle for this is the following. If a job’s
prediction indicated it would run for ten minutes, this tifmas already passed, but the job is still
alive, why not do the sensible thing and accept the fact itldvoun longer? Thus, when underpre-
diction is detected, we acknowledge the fact the user wagenthan us and set the new prediction
to be the original estimate as was given by the user. Oncerduigtion is updated, this effects
reservations for queued jobs and re-enables backfilling.

Fig. 1.20 shows some of the results of our approach. EA8places user estimates with
predictions, while employing prediction correction. Tlpital improvement over vanilla EASY
is around 25%. EASY" adds SJBF to EASY and demonstrates an additional improvement.
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age slowdown reveals the difference in the huge flurry of more the 10,000 submitted processes, ag-
performance occurs in the 58-ay. gregated to 32-sized jobs that react en masse to change.

This can up to double the performance relative to the baséBhUE/slowdown). Finally, under
both EASY" and EASY"* the average accuracy stabilizes at a bit more than 60% (videadpain
double the baseline in the case of BLUE).

1.3.4 Workload Flurries and Sanitization

Recall that Sec. 1.2.4 introduced three problematic exesitpat arose during the process of work-
load modeling and system performance analysis. Specyfidgakse involved the sensitivity of
overall performance to negligible change, inconclusivstay ranking, and the failure to fit a
workload attribute using a standard distribution (Fig., Jadge 17). As will be described next,
we discovered that all of these were the result a previousktpown phenomenon we call “work-
load flurries” (Chapter 6 discusses various types of an@spglrare surges of exceptionally large
repetitive activity, generated by a single user, that datethe system for a limited period of time.

Impact of Flurries Focusing on the first example (minus 30 seconds in the rurgino@e job
leads to 8% change in overall performance), we defineuhring average slowdowat time7’ to
be the average slowdown of all those jobs submitted pri@r.t&/hen plotted as a function of sub-
mission time, this metric exposes how the average perfocmawolves. Examining the associated
graph (Fig. 1.21), we see that most of the 8% difference opprat the 58% day. Further exam-
ination reveals that the cause of this difference is a grd@pfew hundred big jobs with identical
attributes that were submitted by a single user. Fig. 1.Bpgnts this group (rightmost peak);
as mentioned earlier, this type of an activity is called akhaad flurry. In a nutshell, the fact all
the jobs within the flurry have the same characteristics makem tend to be similarly affected
by change. Such a tendency has a decisive effect on averggenpence, because the manner in
which the first job reacts to the initial change is tremendtioasplified by all the succeeding jobs
in the flurry that react similarly, collectively “pulling’hie entire average in the same direction.
The graph shown in Fig. 1.22 is typical to relatively longdp@s most that are longer than
a year have at least one flurry in them. Once we discoveredrg fhas to blame regarding the
sensitivity issue, it became clear that this is not an isolancident. Fig. 1.23 reevaluates our
three examples using “cleaned” workloads from which fleriesre excluded. As we can see, the
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results are more robust to change (left), a consistent gar&tges when comparing the schedulers
(middle), and the examined distribution turns out to sinfpylognormal (right).

We note that the flurries phenomenon is not unique to the sapgruting domain and was also
identified in other types of systems for which we had long lagailable (various departmental
servers including file servers, authentication servers,GiAU servers).

Data Sanitization for Reliable Modeling We argue that modeling activity conducted naively
on the basis of raw data which contains flurries is methodcédly erroneous. It is in fact a lose-
lose situation, whereby both “normal” activity and the flasrthemselves are modeled incorrectly.
Consider the interarrival distribution example in Fig.3 (Bight). The abrupt flurry modes associ-
ated with shorter values actually occur within a very lirdifeeriod of time. A general fit which is
oblivious to this fact will evenly disperse these valuestigh the entire workload, thus (1) failing
to recreate the intense temporal flurry activity, and (2hing the otherwise lognormal structure
of the background normal conditions with the irregular mah@ modes. A better methodology
is to first divide the workload into “normal” conditions anfiurries”, and then to separately apply
current methodologies on the different parts. Modelingitas; however, in the current status of
things, is not a generalized approach, as no known flurrypiesntative of another.

Data Sanitization for Reliable Performance Evaluation Flurries are non-representative of the
typical parallel workload in that they are unique, rare, &gmdporally confined events, which do
not occur in the normal mode of work. In addition, flurries algo non representative of each
other, as each flurry has its own distinctive charactegstgince most of the time the workload
is flurry-free, the results of an evaluation that deletesi#igrfrom the raw workload will likewise
be applicable most of time. This approach is aligned withsfamdard methodology employed
in computer architecture research to use short “stitchedSions of a standard benchmark appli-
cations instead of the actual benchmarks, in the interes¢chicing simulation time (a stitched
version is composed of several “representative” fragmehtle application’s instruction stream
that are concatenated together) [114, 117].

A stronger justification for the removal of flurries is thaeyhactually have insignificant effect
on the performance metrics associated with the baselingtgcRather, the simulation instability
reported earlier is merely the artifact of aggregating tle¢rim values of flurry and non-flurry jobs
within the same average (slowdown in our case). Separdtiagtonolitic average into two values
— one that averages only flurry jobs and another that avebiee rest — reveals that the latter
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is actually stable, well-behaved, and insensitive to mef@anges; the former, on the other hand,
is exactly the opposite and is responsible for the obsemvadlbility, being extremely sensitive to
minor perturbations. Note that presenting a perfromandegicres a set of several averages, such
that each is associated with different group of jobs, is alstandard methodology (narrow jobs
vs. wide, short jobs vs. long, etc.) [125, 115, 141, 39].

The non-flurry average hasgnificantvalue: it embodies the system performamaseexperi-
enced by the vast majorityractoring in the flurry average within the same number rgergfo-
duces unwarranted noise that distorts the underlyingttebutontrast, the flurry average has no
meaning other than examplifying the sensitivity of the agsed jobs. (One certainly cannot use
it as a representative quantity, as it can change by an ofdeagnitude when negligible pertur-
bations are introduced.) Importantly, we find that the ¢ftéseparating the average performance
into two numbers (and considering only one), or deletingfllney from the raw workload alto-
gether, is qualitatively similar. We therefore recommemellatter alternative since it is clearly the
simpler one. Indeed, with a sanitized version of the log, amglyst can simply and immediately
use the log, whereas with the raw version, the analyst (1} briaware of all the details and (2)
must make a repeated effort to separate the population tg flar non-flurry jobs.

Data sanitization conflicts with certain common views, Wwheonsider the original workload
as almost “sacred” (a popular view in the computer systemsanity is that if one “tampers”
with the data, one might as well arbitrarily decide upon t&uits in any way one chooses). But
this is in disagreement with what is routinely done in evenyrsl statistical analysis, where data is
throughly validated and, if necessary, cleaned (removaudfers). So sanitization is certainly not
a far fetched idea. Moreover, to argue for an evaluationdasavorkloads with flurries, one must
argue that the activity of a specific user during a relativelgy short time should indeed dominate
the evaluation results. Also, one must be satisfied withlt®hat change considerably and even
swing the other way if conditions are slightly changed orgpan of the examined time covered
by the evaluation is shifted such that the flurry is excludédlurries are removed, one at least
may argue that the evaluation result are correct, say, 95%edime, and in any case to the vast
majority of the jobs; no such claim can be made if they areimeft

Once again, as noted with respect to the modeling processjveeate a two-phase evaluation:
with flurries first excluded and later included. However gi@o the fact no flurry is representative
of another limits the generality of the results of the latfereal generalization (if possible) is left
for future work, to be conducted when more date and knowle€ligéed to flurries are collected.

Dissemination of Data Finally, finding flurries is a nontrivial task. We will latehew there are
other types of non-representative data, and these are atdadfind. Indeed, numerous papers
have used the aforementioned logs (and others) in theiroaw for performance evaluation and
modeling, oblivious to the fact the various anomalies thatlbgs contain compromise the results.
We therefore contend that data should be shared along Wwittealccumulated related information.
As a first step, we have updated the Parallel Workload Architech is the source of the above
logs, to include a cleaned version of the logs, in additiotinéoraw version [110].
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Chapter 2
Methodology

This chapter describes our methodology, as used througieuést of this dissertation.

2.1 The Trace Files

All of our results are based on simulating and modeling weakllogs from real production system.
These are available through the PWA (Parallel Workload AeH110] in a standardized format
called SWF (Standard Workload Format) [147]. Briefly, logsgiven in plain ASCII text. The top
of each such log file contains “header comments” that des¢tlirough standardized fields) the
general aspects of the respective workload: which machenemted it, how many processors it
has, what are its queues and partitions, etc. The body abthis b sequence of lines, such that each
line represents a job. A line is composed of eighteen fieldsiédined by the SWF) separated by
whitespace. Each field specifies a job attribute: the jobigaitime, runtime, estimate, processors
number (size), user, group, memory size, completion stakgxutable, queue, partition and more.
The SWF dictates that all valid attribute values must unaler¢ransformation to be expressed as
nonnegative decimal numbers. However, if an original vaduaissing or corrupted, the standard
states it should be set to -1.

The logs we have used in this dissertation are listed in Tdb(tBese are most of the PWA'S
logs; the missing ones were added too recently to be usalthesitontext). The four top logs
are the ones containing data about real estimates. Onlg fbes are used in Chapters 3-5; the
remainder are used solely in Chapter 6. Note that the spediéita relates to the original trace files
(“raw”), their “cleaned” version (which the PWA recommertdsuse), and a “sane” version. The
first two can be freely downloaded from the PWA. The sane warapplies a filter on cleaned logs,
removing all jobs that cannot be used in simulations due &simg size, runtime, or submission-
time information. Chapter 6 actually constitutes the bémishe PWA's recommendation to favor
cleaned logs over their raw form. Indeed, Chapters 3-5 usseadhe versions only, whereas Chap-
ter 6 uses raw logs solely for the purpose of establishing#élse against them.

Finally, note that each log file is associated with a versiomiber of the raw log, and possibly
of a cleaned log (“cIn”). If the latter is missing, this mears anomalies or non-representative
activities were found within the original log. Thereforbetraw log version is also considered to
be the clean version. The version number itself reflects aifipénstance of the lod. This is

1A new version for a raw log is created only when identifyingralgem in the conversion process (from the
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abbreviation site machine version| cpus duration load job number avg
raw | cln start end |mon raw | clean | sane | run
-ths time
[min]

CTC Cornell Theory Ctr SP2 1 (1.1 512|Jun 96 May 97| 11|56%| 79,302 77,222 77,222 188
KTH Swedish Royal Instit. of TechSP2 1 100| Sep 96Aug 97| 11|69%| 28,490 28,490 28,490 148
SDSC San-Diego Supercomput. CtrSP2 2 (2.1) 128|Apr 98|Apr 00| 24|84%| 73,496 59,725 54,053 123
BLUE San-Diego Supercomput. CtrBlue Horizon | 2 [2.1]1,152|Apr 00|Jan 03 32|76%|250,44(0243,314223,407 73
NASA NASA Ames Research Ctr [iPSC/860 1 (1.1 128|Oct 93Dec 93 3|47%| 42,264 18,239 18,239 13
LANL-CM5 |Los Alamos National Lab |Conn. Maching 2 |2.2]1,024|Oct 94{Sep 96 24|74%]| 201,387 122,055122,052 43
SDSC-Par95 San-Diego Supercomput. CtrParagon 1 (1.1 416|Dec 94 Dec 95 12|68%| 76,872 53,947 53,133 68
SDSC-Par96 San-Diego Supercomput. CtrParagon 1 (1.1 416|Dec 95Dec 96 12|72%| 38,719 32,136 31,334 138
LLNL-T3D |Lawrence Livermore Nat. LaiCray T3D 1 256|Jun 96Sep 96 4[62%| 21,323 21,323 21,323 23
SDSC-SP2 | San-Diego Supercomput. C{rSP2 3 [3.1] 128|Apr 98|Apr 00| 24]|84%| 73,496 59,725 54,051 123
LANL-O2K |Los Alamos National Lab | Origin 2000 1 2,048/ Nov 99| Apr 00| 5|64%|121,989121,989116,996 86
0osC Ohio Supercomput. Ctr Linux Cluster | 1 178|Jan O0QNov 01| 22|51%| 80,713 80,713 80,713 220
DAS-Amst |DAS2 Grid Amsterdam U. | Linux Cluster | 1 64| Jan 03Dec 03 12|20%| 66,429 66,429 65,381 20
DAS-Leiden | DAS2 Grid Leiden U. Linux Cluster | 1 64| Jan 03Dec 03 12|12%| 40,315 40,315 39,356 18
DAS-Vrije |DAS2 Grid Vrije U. Linux Cluster | 1 144)Jan 03Jan 04 12|15%|225,711225,711219,618 9
DAS-Delft |DAS2 Grid Delft U. Linux Cluster | 1 64/ Jan 03Dec 03 12|11%| 66,737 66,737 66,112 12
DAS-Utrecht DAS2 Grid Utrecht U. Linux Cluster | 1 64|Feb 03Dec 03 11|14%| 33,795 33,795 32,953 47

Table 2.1:Real production logs used as the basis of this study. Seeefér more details [110].

specified to promote the reproducibility of results, asratances are available through the PYVA.
Specifically, note that the abbreviations “SDSC” and “SDSIE2” refer to different versions of the
same log. Chapters 3-5 use the former, while Chapter 6 uedatthr (the difference, however, is
negligible). This is the only occasion in which a log appéatise in Tab. 2.1, meaning it presents
16 different logs (rather than 17).

2.2 The Simulator

The performance evaluation done in this work is based on antévased simulation of the re-
spective system. This is basically EASY scheduling, witegdlole modifications as noted in the
context in which the evaluation is conducted (e.g. chanthiegcanning order of jobs for backfill-

ing). Events are job arrivals and terminations (Chapterdsaah additional event, to be described
in the relevant context). Upon arrival, the scheduler isimfed of the number of processors the
job needs and its estimated runtime. It can then start the gifnulated execution or place itin a

original format of the log to SWF). A new version for a clearegl is created when an additional non-representative
anomaly is discovered. The major version number of the eléaersion associates it with a raw log, such that some
filter was applied to the latter in order to form the former.

2Naturally, one cannot expect from researchers to redo aill ork whenever a problem with one of the logs is
encountered.
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gueue. Upon a job termination, the scheduler is notified andschedule other queued jobs on the
free processors. Job runtimes are part of the simulatiaut,jiyoit are not given to the scheduler.

The input used to drive simulations are the topmost four SW¢B {those with user estimates
data), as listed in the Tab. 2.1. Since these traces spamsthe@cade, were generated at different
sites, on machines with different sizes, and reflect diffelead conditions, we believe consistent
results obtained in this work are truly representative. [Digs are simulated using the exact data
provided, with possible modifications as noted (e.g. to klilee impact of replacing user estimates
with system generated predictions).

2.3 Simulating EASY Backfilling

The EASY backfilling algorithm was briefly described in theypbus chapter. In this section we
provide a more detailed description. The scheduler resptmdtivo types of events: job arrival
(also denoted job submission) and job termination. The lagndf a job’s arrival is

1. insert the job into the FCFS waiting queue, and

2. invoke theschedule function (that starts as many waiting jobs as possible wdbkeying the
backfilling rules),

The handling of a job’s termination is

1. increase theapacityof the machine (the number of currently availablty free pssors) by
the size of the terminated job, and

2. invoke theschedule function.
The implementation of thechedule function is as follows:

1. Let the FCFS waiting queue be denotedjasf () is empty, return.
2. Let the job at the head @) be denoted/ — this is the longest waiting job. Letsize be
the number of processors required.byLet C' denote the current capacity of the machine.
If J.size < C then
(@) update” = C' — J.size,
(b) removeJ from @,
(c) start executing/, and
(d) goto step 1.
3. Now that we are sure thét is not empty and thaf is too big to be started/(size > C),
start the backfilling process:
() Find the “shadow time” (also denoted “reservation tijraaid the “extra nodes”:

i. Sort the list of running jobs according to their estimaisnination time (this is
the start-time plus the user runtime estimate).

ii. Iterate through the list of running jobs and accumulabeles until their number,
when added t@’, is equal to or bigger tha size.

iii. The (estimated) time at which this happens is shadow time
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iv. If, at this time, more nodes are available than needed e first queued job),
the ones left over are thextra nodes

(b) Find as many jobs to backfill as possible by travergin@ FCFS order) and checking
for each job whether one of the following two conditions hold

i. It requires no more tha6' nodes and will terminate by the shadow time, or
ii. It requires no more than the minimum 6fand the extra nodes.

(c) If either of the two conditions are met, remove the jobir@, start it, and updaté’
accordingly. Additionally, if the job was backfilled at thepense of the extra nodes,
reduce the number of the extra nodes by the size of the backjdb.

Backfilling against the shadow time is illustrated in Fidl (page 5). Backfilling at the expense of
the extra nodes is illustrated in Fig. 3.14 (page 49).

2.4 Performance Metrics

Like most related studies [51], we measure the performahsgstems using two metrics: average
wait-time (A,.;;:) and bounded slowdowmi(,;;), where the average is taken over the jobs that
participate in the simulation.

A job’s walit timeis defined to be the duration of the period between its subhattd starting
time (in this work we usually use minutes to express this imetRelated studies sometimes prefer
to useresponse timénstead of wait time), defined to he+r, wherew andr are the job’s wait and
running time, respectively. Howeved,,.;; is preferable over average response titdg {onse).
because for batch systems the difference between the twooisstant, regardless of which batch
scheduler is being used. The constant that forms the difterés actually the average runtime
(Ayuntime), because

1 1 1
Aresponse = E Z (wj + rj) - E Z w; + E Z ry = Await + Aruntime

jeJ jeJ jeJ

whereJ is a set containing all participating jobs,is its size, andv; andr; are the wait-time
and runtime of jobyj, respectively. Sincel,....m IS @ given that is unaffected by the scheduler,
preferring wait-time implies focusing only on the schedgliactivity and neutralizing the highly
variable average runtime (rightmost column in Tab. 2.1).

Theslowdownmetric is response time normalized by running tirdeéz, reflecting the relative
delay factor of the job (e.g. if a job’s runtime is one hour dnladad waited for two hours before
being scheduled, then it suffered from a slowdown of 3; themym is of course 1). Theounded-
slowdowmmetric eliminates the emphasis on very short jobs (e.g. zégth runtime) due to having
the runtime in the denominator; a commonly used thresholtiOo$econds was set yielding the
formula:

bounded slowdown = max |1, _wrr .
max (10, 7)
Finally, to reduce warmup and cooldown effects of the sirtnoita the first 1% of terminated
jobs and those terminating after the last arrival were ndtited in the metrics averages [76]. In
the above definition of response time, for example, this mdaat these jobs were excluded from
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the J set, despite the fact they actually participated in the &atman. This is true not just for the
two performance metrics defined above, but also to the veryrother metrics we introduce in
their respective context (e.g. the backfilling rate of a scihe).

2.5 Artificially Varying the Load

In this dissertation, the term “load” is a synonym to whatfigio referred to as “offered load” or
“utilization”. Under the constraint of avoiding the warmapoldown effects, load is defined to be

> jes Sizej X runtime;

load =
P x (Tend - Tstart)

where P is the number of processors composing the paral&himg ;... is the last termination
within the 1% aforementioned jobs, afid,, is the last arrival. Thus, load is a fraction in [0,1],
or in [0,100] if expressed in percents. Note that the abovetita is a simplification: every job
that ran within thgT,..., T¢.4] time period contributes to the numerator, such that theémenis
replaced with a value which is truncated according to theeuppd lower bounds of this period.
In other words, the termuntime; is replaced with

min (7p,q, termination;) — max (T, Start;) .

When systems are underloaded, their performance is tyypioaly similar (e.g. there can be
very little difference between FCFS and EASY). Higher loadditions expose the real differences
in how systems perform. In this work we therefore often malafe the log files to reflect different
load conditions. The standard way to do is to multiply theijabrarrival times by a constant. For
example, if the original offered load js multiplying all interarrival times by a factor @f/0.8 will
change the offered load to 0.8.
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Chapter 3

Backfilling Dynamics: Solving the Mystery
of Why Increased Inaccuracy May Help

3.1 Introduction

Context This chapter was fully introduced in Sec. 1.2.1 (page 9) étsd conducted a detailed
survey of related work. Briefly, this chapter builds on thengatudies that researched the impact
of inaccurate estimates on the performance of backfill adeesl The de-facto standard for doing
this was modeling estimates by thé-model” [146, 47, 174, 169, 108, 15, 142, 170, 122, 34, 64],
wheref > 0 is a “badness factor”, such that given a runtimehe associated estimate is uniformly
distributed in[r, (f+1)-r] (the “random model”), or is simply set to be( f+ 1) (the “deterministic
mode”). With this, increasing translates to increased inaccuracy.

Surprisingly, inaccurate estimate$ £ 0) yielded better performance than accurate orfes (
0). Additionally, some researchers observed that this imgmeent is largely insensitive to the
exact value off, while others suggested bigggs imply a bigger improvement. Indeed, due to the
noisy nature of results, both observations are possiblsiifguonly a few experiments in a non-
systematic manner (Fig. 1.3, page 10). The fact 0 improves performance was unanimously
explained by thénoles argumentlaiming biggerfs imply wider holes in the schedule that allow
for more effective backfilling [47, 174, 108, 15, 142]. In ¢@st, the observed “insensitivity” of
performance to the exa¢t> 0 value was explained by thHElance argumentlaiming the effect
of bigger holes is cancelled out by backfill candidates appgagroportionally longer (as their
runtime is multiplied byf too) [174, 169, 170, 64]. We noted that while both argumerda&en
sense, they are contradictory, and in any case fail to exghai trends observed in Fig. 1.3.

Roadmap In this chapter we address the following questions: Can a&isbitrend be found
within the noisy sample space shown in Fig. 1.3? Can thigltbenexplained? Can the contradic-
tory holes/balance arguments be resolved? Specifically,daes multiplying the estimate by a
factor usually help? And finally, is this result realisticarNely, is it reflective of the nature of real
inaccurate estimates as provided by users?

To answer these questions, we perform a detailed study afiehlly happens wheli grows,
both in terms of performance (Sec. 3.2) and in terms of bdickfiactivity (Sec. 3.3). This leads
to the characterization of a heel-and-toe dynamic, whighlaexs the improved performance as
resulting from a shift in system behavior towards (a les9 falF scheduling (Sec. 3.4). We then
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show why this can break down with highgwvalues (Sec. 3.5), and pinpoint the burstiness of the
load as the main cause for this effect (Sec. 3.6). After thmaithof increased on performance is
fully understood, we go on to explicitly quantify the perfaince/fairness tradeoff. We then argue
that multiplying estimates is actually a scheduling tegheithat exercises this tradeoff, as sched-
ulers can multiply the estimates they use, whereas usehgiviom is completely different (Sec.
3.8). In fact, multiplying improves performance regardles whether the values being multiplied
are actual runtimes (perfect) or were supplied by usersé€ffawt’s just that the more accurate the
values we are multiplying, the better the resulting perfamce becomes (Sec. 3.9). Thus, accu-
rate estimates actually do improve performance, and thedel is simply inadequate. All these
findings are based on simulation of the EASY scheduler. Oaf Gantribution in this chapter is
therefore showing that the above understandings also &ppther backfill schedulers (Sec. 3.10).

Methodology This chapter presents the results of more than three miifimulationst Under-
standing the impact of varioug values on performance required us to artificially increase a
decrease the load of the trace files listed in Tab. 2.1 (sept@ha for an explanation of how this is
done). Thus, aside from simulating the original loads taltrace files are simulated under “high”
(SDSC'’s 84%) and “low” (CTC’s 56%) load conditions, yieldid0 trace/load pairs. (SDSC and
CTC are only evaluated under two load conditions). Sec. 88 a fifth trace file, adding another
3 pairs. Further, Sec. 3.10 reevaluates all 13 pairs undeatiditional schedulers (different than
EASY), yielding a total of 39 trace/load/scheduler trigleEach such triplet is evaluated under
401 differentf values: f € {0, %, %,...,10}, f € {11,12,...,100}, f € {110,120, ..., 1000},
andf € {1100, 1200, ...,10,000}. Then, when using the random model, each of the 400 positive
fs are simulated with 100 different seeds for the random nugdgerator. Lastly, Sec. 3.8 uses a
modified version of the randorfrmodel and therefore re-executes all the experiments aghia

yields39 x 400 x 100 x 2 & 3,000,000 simulations.

Naming Notation We have choseri’'s minimal value to be zero, because this seems to be best
aligned with the perception that “zero badness” impliedgmtraccuracy. However, due to the
multiplicative nature of this factor, it is often much mom@wenient to set the minimal value to 1,

in which case we use an uppercase notatiorn= f + 1. With this, the random model uniformly
draws an estimate of a job with runtimdrom [r, r - F'|, and the deterministic model simply sets
the estimate t@ - F'. Note that inall figures where badness is shown along the X-axis, the random
F-model is plotted against the deterministig2-model, such that both have the same mean.

3.2 Performance as a Function of Badness

Statistical Confidence The first step we take in trying to uncover the impact of insegi*bad-
ness” & f) on performance is to expose the trends underlying the veigyri-ig. 1.3 (page 10).
To this end, we note that somewhat surprisingly no previomk\was used thg-model in a statis-
tically sound manner, that is, researchers have condigteférred performance results associated
with a givenf from asinglesimulation, despite the model’s random component. FigsBdws
that plotting performance in terms of mean (“random”) anéd@terval (“90% confidence”, from

1The product of nearly a year’s worth of one Pentium-1V/3G4&B compute time, finished in about 6 days with
the help of a 64-CPU cluster.
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runs with different seeds. The mean results expose cleararmance trends (compare with Fig. 1.3).
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Figure 3.3:The low load conditions of CTC make the V-curves less prowsedrand closer to L.

the 5th percentile to the 95th percentile) is beneficiahing the initial noisy results (Fig. 1.3) into
relatively smooth curves.

V Trend vs. L Trend Fig. 3.1 reveals two trends: The first is V shaped (most prooed for
SDSC), and the second is L shaped (CTC). In both cases, rapddiormance curves initially
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drop (improve) for smallf values. Then, the curves either asymptotically converg®toe value
(L shape), or the trend is first reversed and only then coegefdg shape). This general tendency
continues to largef values: BLUE is actually V shaped in both metrics (its curmesquite similar

to that of SDSC if changing the X scale fos [0, 100] and bigger); KTH/wait and KTH/slowdown
are L and V shaped, respectively. The deterministic mod@boisly stays noisy (only one sample
per f), but it is evident that its curves are usually found in thexmmity of the lower (better)
performance bound of the random model.

Load Correlates with Trends If grouping SDSC and BLUE (V shapes only) and comparing
them to CTC and KTH (some L shapes), then Tab. 2.1 (page 38alethey can be characterized
as having higher and lower load, respectively. To check hdrethe load determines if curves
are V or L shaped, we simulated all the logs under “high” amiv*l load conditions. These are
chosen to be SDSC'’s 84% and CTC’s 56%, respectively. (Loadried as explained in Chapter
2). The results are shown in Figs. 3.2-3.3 and suggest tleaibge load is an influencing, yet
not the exclusive, factor in determining the performaneadr The trends of SDSC and CTC are
invariant to the load change. However, for high load, BLUE &TH clearly become very similar
to SDSC. In contrast, with lower load, the inner-angle ofVtheurves becomes less “sharp” and
somewhat closer to CTC's L curves.

FINDING #3.1
Expressed in terms of confidence intervals, performancihsre/ or L shaped. Highe
or lower average load implies a tendency towards a V or L shaseectively. The de
terministic model is usually closer to the best performamseilts of the random mode].

-

3.3 Backfilling as a Function of Badness

Holes vs. Balance Our goal is to understand the reason for the system behavimperted in
Finding 3.1. A reasonable first step is to validate or disprine (contradicting) claims underlying
the “holes” and “balance” arguments. Though we already khoth fail to provide a full expla-
nation to the observed performance trends (e.g. the V shagiermining which argument (if any)
better describes the effect of increasédn backfilling is essential. Recall the holes argument
implies backfilling activity intensifies witlf, whereas the balance argument claims the effect of
bigger holes evens out by backfill candidates appearingoptiopally longer.

Results Fig. 3.4 shows the percent of jobs that were backfilled, asation of f, along with

the main characteristics of these jobs. Trends are consiatel confidence intervals are tight.
Backfilling rates clearly increase with The exact numbers are workload dependent in that higher
loads (Tab. 2.1) imply higher rates. But when simulatingltgs under equal high/low load con-
ditions (as in Sec. 3.2), the rates become remarkably sindilze runtime/size of backfilled jobs
also follow the same pattern, though in this case the inersasvariant to the examined loads.

FINDING #3.2
In accordance to the holes argument and in contrast to teadalargument, biggegis
imply more jobs that enjoy backfilling. On average, these jate longer and wider.
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Figure 3.4:The percent of backfilled jobs and their average runtime eechsonotonically increase with
In all cases, the relative increase is roughly similar, thg.rates/runtimes/sizes associated witi0 are
10-20% bigger than that g=0.

This finding can be interpreted as supportive of the L-sh@eeidrmance curves (CTC, Fig. 3.1-
3.3), based on the notion that jobs can be partitioned intag#ight” or “heavy” according to
whether their characteristics allow them to be backfillechat: This interpretation suggests that
bigger fs mean more jobs are light and can enjoy better service. Hawas we will show below,
our finding doesn’t just meatmore” jobs. It also meandifferentjobs, and specifically longer
jobs, possibly at the expense of shorter ones.

3.4 The Heel-and-Toe Dynamics

Heel-and-Toe Hypothesis The question that follows Finding 3.2 is why is it s0? Whati®ing
with the balance argument? Why isn'’t the effect of biggeebaanceled by the backfill candidates
that are proportionally longer? After reexamining the bilakg rules, we came up with a possible
explanation, as illustrated in Fig. 3.5. To simplify, assuall estimates are exactly double the
runtime (=2 under the deterministic model; recall the uppercasetiootaefined in Sec. 3.1).
Based on the information available to the scheduldrdtime 0), it appears the earliest time for
Js (job 3) to start isl},, even though theesal earliest start time is actualliz. Thus, the scheduler
makes a reservation ofy’s behalf for7}; and can only backfill jobs that honor this reservation.
At Ty, Jo terminates. As/; is still running, nothing has changed with respect/its reservation,
and so the scheduler scans the wait queue in search of aeopandidates for backfilling/,
(the first backfill candidate under FCFS) fits the gap betwEeand the reservatiori/{,) and

it is therefore backfilled, effectively pushing back thelrearliest time at which/; could have
started fronil to Tx. Likewise, whenJ; terminates/s is backfilled, and when, terminates/s is
backfilled, pushing/s’s real earliest start time t&, and therl}.
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<

Waitinc
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Figure 3.5:lllustrating heel-and-toe. Job numbers indicate arrivdba Job estimates are exactly double
their runtime §=2). The left portion of jobs (green/dark) indicates the@alrruntimes. Due to the dou-
bling, the scheduler views jobs as twice as long (right partiyellow/bright). The bottom arrows show
the progress of time, whereas the top black arrows show ttiestaime at which job 3 would have been
started, had real runtimes been known (at that particulent potime). The thief's width shows the amount
of “stolen” time, at the expense of job 3.

SJFness This “heel-and-toe” scenario, of repeatedly pushing awaydarliest starting point of
the first queued job, step by step, may continue Untilis reached. During this time, the window
between the current time and the reservation time is cootisly shortened, such that waiting jobs
that fit this open gap get shorter and shorter, effectivelygmg the system towards Shortest-Job
First (SJF) scheduling. (Note that the initial open gap carvéry short to begin with). And
so, if the heel-and-toe dynamic does in fact occur, thistechform of “SJFness” contributes to
the performance improvement reported in Finding 3.1, ngntleé first (descending) part of the
V-curves, and the L-curves in their entirety. This effedliiectly quantified in the next section.

Tendency towards SJFness with positiwveas also observed (but not explained) by Zotkin and
Keleher [174], which conducted an “off-line” simulation what happens wheall the jobs in a
trace arrive at the same exact time instance. They foundithabmparison tof=0, shorter jobs
leave the system at a faster rate when estimates are set teeliarfes the actual runtinfe The
heel-and-toe dynamics explain this phenomenon.

Verifying Heel-and-Toe Occurs Let J;, be the first queued job (meanidg isn't backfilled, but
rather, it waits for its turn, becomes first, and gets a reg@m). LetS, denote theeal shadow
timeof J,,, defined to beJ/,’'s (hypothetical) start-time, if all estimates suddenlgt@e completely
accurate. For example, the initial real shadowpin Fig. 3.5 isTg. During the timeJ,, is first, we
say that a backfill operation wsild if .S, is pushed away because of it, or that itidd, otherwise.
All the backfill operations in Fig. 3.5 are wild, because aiulted in a change of the real shadow.
By definition, showing that wild backfilling happens meansving that heel-and-toe dynamics
indeed occur. Fortunately, detecting wild backfilling isyavithin a simulation: We computg,
by traversing the run-list in (real) termination order amdling the earliest time in which enough
free processor accumulate to satigfy By doing this before/after a backfill operation, we can tell
if the operation is wild 6, changed) or mild (stayed the same).

Fig. 3.6 clarifies that the heel-and-toe dynamic is not jygtdthetical, e.g. withf=10, 2-5%
of the jobs are wildly backfilled. The X-axis doesn'’t starizato, because there can be no wild
backfilling with perfect estimates (the first real shadowlvgags the last). The consequences of
wild backfilling aredelayedjobs that suffer from at least one wild backfill operation letthey
are at the head of the queue (&sn Fig. 3.5). Fig. 3.7 (top) shows that around 1% of the joles ar

2Though paradoxically this didn’t prevent Zotkin and Kelefrem using the balance argument [174].
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Figure 3.6: Existence of wild backfilling demonstrates heel-and-toeaslyics occurs. The rate of wild
jobs and their average runtime/size follow the same treadis the general case (Fig. 3.4), but wild jobs are
longer and wider. Increasing the load has similar effectb@se witnessed in Sec. 3.3 for the general case.

delayed. Any performance improvement obtained byfhrodel is at the expense of these jobs.
The average number of timé% is pushed away is shown in the middle of Fig. 3.7 (three tiroes f

J3 in Fig. 3.5). Finally, the bottom of Fig. 3.7 shows the averdglay duration. This is the elapsed
time between/,’s initial real shadow and its eventual start time (the “stdltime in Fig. 3.5).

Holes vs. Balance Revisited Our findings indicate that the seemingly contradictory doale”
and “holes” arguments can in fact be reconciled: The perdmice improvement attributed to pos-
itive fs is not just because of wider holes in the schedule that dtbownore backfilling (in ac-
cordance to the “holes” argument), because backfill canesdare indeed widened proportionally
(in accordance to the “balance argument”). Rather, it ig#iselt of a heel-and-toe effect, which
manages to keep the holes open by backfilling shorter jolise¢paatedly delay the execution of
the first queued job and lead to an SJF-like schedule.

FINDING #3.3
The heel-and-toe dynamic (1) is verified to occur in prac¢tiggreconciles between the
balance and holes arguments, and (3) leads to a limited fb8dFness. Thus, it explains
the performance improvement due to positfvealues.

Let us now explain why performance can also become worse.

3.5 Countering the SJFness of Heel-and-Toe

We now focus on the second, ascending, part of the V-shapéarm@nce curves where perfor-
mance continuously degrades (Finding 3.1; Fig. 3.1-3.3) @xplanation has two components:
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Figure 3.7: The rate of jobs that suffer from wild backfilling (top), theeaage number of wild events

per such job (middle), and the average delay (bottom). Nudé rhultiplying the top and middle curves
results in the top of Fig. 3.6. The unique trend observed iWBI(top) is also displayed by the other logs
if simulating high load conditions as in Sec. 3.2 and exangra slightly widerf range; on the other hand,

BLUE becomes like all the others if simulating low load cdrafis.

the increased’, and the resulting amplification of randomness (for the deterministic model).
These components increasingly contradict the SIFnesdedpearlier:

Increased f As shown in Fig. 3.4 (and highlighted in Finding 3.2), badkfg activity mono-
tonically increases witlf, while at the same time, the runtime of backfilled jobs becolonger.
Longer average runtime wouldn’t have been problematicdslfithad short jobs been nevertheless
prioritized. But this is not the case. To illustrate why, Ut reconsider the scenario depicted in
Fig. 3.5. Tab. 3.1 lists the estimates of jobs at tildafter ./, terminates) for varioug’ values,

as well as the length of the resulting hole. The last row synspkcifies what is shown in Fig. 3.5
(F=2). Recall that job indexes indicate arrival order, usedh®sy/scheduler when searching for
backfill candidates. Thug, is the first candidate and since it fits the existing hole itigsen for
backfilling. However, if the value of" had been ; instead of 2 (second row in Tab. 3.1), then
the hole would have been proportionally smaller and the chalee would have deemed, as too
long for backfilling, favoring instead the shortéy for execution. IfF" was further reduced to 1
(complete accuracy; first row), thall would also appear as too long, effectively making(the
shortest waiting job) the only eligible candidate. We cagréffiore see there’s a subtle tradeoff
here:

FINDING #3.4
While biggerf means more backfilling (which short jobs enjoy more than érames),
the bigger holes do in fact allow longer jobs to backfill.

This finding is verified in Fig. 3.8. First, the top row showe taverage runtime of non-
backfilled jobs: this usually becomes shorter with incrdagesuggesting the scheduler indeed
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F estimates hole length
Ji | Ja | Js | Js at’Ty

1 6 | 4 3 2 2

11| 8 |54 21 4

2 112| 8 6 4 8

Table 3.1:The length of the hole in the schedule and the estimates sfijobBig. 3.5, for various” values.
The first row (complete accuracy) lists job runtimes anddfoee estimates in later rows can be obtained by
multiplying this row with the appropriaté'. The hole size igh’s estimate minus 4 (the current timeTg,
thus 4 time-units have already elapsed). For dacthe estimate of the first job that fits the hole appears in
bold.
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Figure 3.8:Average runtime of non-backfilled jobs is usually made s#rasthen increasing (top). Aver-
age SJFness initially rises, but there’s a quick trend caasgbackfilled jobs become longer.

makes “wrong” decisions by forcing shorter jobs to wait anef@rring longer jobs for backfilling
(Fig. 3.4). More important is the bottom row that directlyaquifies the effect: “SJFness” is the
percent of jobs that are the shortest in the waiting queuleeatime they are chosen to run. Evi-
dently, SJFness intensifies with very smfaltalues, only to monotonically drop later on (perfectly
coinciding with our explanation above).

Increased Randomness The situation gets worse when randomness is introducedowasin
addition, long jobs can masquerade as short jobs and visa.véio illustrate this, let/;/.J; be
two jobs within the wait queue with runtimeg/r, and estimates, /e, that were generated by the
random model, respectively. This is depicted in Fig. 3.&)l@ssuming; < r, without loss of
generality. We are interested v (e; > e5), that is, the probability the scheduler is erroneously
told that./; is longer than/,. By conditioning (Bayes’ theorem) this is

Pr(eg >e3) = Pr(e; >es|e1,ea €a)Pr(e,ea€a)+ Pr(eg >es|er,ea €a)Pr(ee €a)

wherea = [rq, F'r] is the intersection between the two domains from whicknde, are drawn.
The second term in the above summation is obviously zerorfwltbere; or e, are outsider then
e1 < eg) and so we are left with

Pr(e; >e2) = Pr(e; >ez|er,ea €a) - Pr(e; € ) - Pr(es € a)

A1 A2 A3
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Figure 3.9:Left: r; ande; (i = 1,2) are the runtime and estimate of jah such that; is uniformly chosen
from [r;, F'r;]. Right: probability that, > es when actuallyry < rs.

If o exists E'ry > 1), then); = % because it's simply the probability one number is bigganth
another if both are uniformly chosen from the same domafnx (§ degenerate theky = 0.) As
A2 and\; represent standard events in a uniform setting, we get

1 Fry— Fry — 1
Pr(e; > e3) = noh TR a

2 Frl—rl FT‘Q—’I"Q F—oo 2 19

because the supremum limits of the middle and third faciarthe above multiple) are 1 arfd,
respectively, wher goes to infinity. Thus, the error probability is monotonigahcreasing, as
depicted in Fig. 3.9 (right).

FINDING #3.5
Under the random model, the bigger tfiethe more it is probable the scheduler would
erroneously view short jobs as long and vice versa. ThissexpWwhy SJFness is highgr
for the deterministic model (Fig 3.8) and hence why the deiteistic model consistentl
outperforms the random model (Fig. 3.1-3.3).

3.6 The Role of Burstiness

CTC is Different We have now managed to explain all the observed performaendg, both
the descending and the ascending parts of the curves in .Ei}.3. The remaining missing piece
in the puzzle is the inherent difference between CTC and tifver dogs, best observed in Fig. 3.2
that shows performance trends under high load conditiof%(8tilization across all logs, as in
SDSC). Clearly, the trend of CTC is L-shaped, whereas thersthre V-shaped. The question is
therefore what makes CTC “immune” to high load conditions®vtHtioes it manage to “escape”
the destructive processes outlined in Sec. 3.5?

Momentary Load To answer this question, we first define thementary loadht time7" to be
the total number of running/waiting processes (not joba) #ine present in the system at that time
instance, divided by the size of the machine. For examp&emfchine with 10 CPUs is currently
running 8 processes (leaving 2 CPUs idle), while two jobszd 6§ are waiting in the queue, then
the momentary load i€ + 6 + 6) /10 = 2. The momentary load induced by EASY (with real
user estimates) is shown in Fig. 3.10 for when the (offeredyllis made equal to that of CTC
(top; associated with Fig. 3.3) and that of SDSC (bottomgpeissed with Fig. 3.2) by means of
manipulating arrival-times as explained in Chapter 2. Waein its original form (top) or after its
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Figure 3.10:When the overall load is made higher (bottom) by means o¥aftime manipulation, the
momentary load exposes a bursty activity pattern in all lbgisCTC. Increasing CTC's overall load by
manipulating the size of the machine rectifies this (CTC)336

offered load has been artificially intensified (bottom), thementary load of CTC stands out as
being “well behaved” and exhibits very little burstinesse Werefore conjecture performance is
not just related to the average overall load, but ratheheaatanner in which its temporal structure
is manifested.

Burstiness Conflicts With SJFness Our conjecture is supported by the fact the effectiveness of
the two “anti-SJFness” processes (characterized in SBEisdtightly correlated with the size of
the wait-queue: To begin with, both processes only applghs that simultaneously populate the
gueue, dealing with situations where the scheduler corsoderentlywaiting jobs for backfilling,
and chooses the longer one. A smaller number of concurrevaityng jobs implies such occur-
rences are less frequent. (E.g., at the extreme, there areraro waiting jobs, so no scheduling
“mistakes” can be made.) Further, the error probabilityictepl in Fig 3.9 Pr(e; > e3) — %7’:—;)

is actually quite small if-; is considerably smaller thary. But this relates to only one pair of
jobs; a crowded wait queue means many pairs are comparedagieg the error-probability pro-
portionally to the wait-queue size. Similarly, the sceosiwutlined in Tab. 3.1 only have meaning
if J4/JslJs are ever simultaneously present in the wait queue.

Introducing Burstiness to CTC It is therefore possible CTC'’s performance trends are guali
tatively different because it lacks burstiness. To verifist we decided to try and raise CTC’s
offered load (to be equal to that of SDSC) in a manner thatemitiourage burstiness. The de-facto
standard methodology for varying the load of job-schedutaiated workloads is with arrival-time
manipulation (Chapter 2). However, this is not the only wiagtlowing the intuition illustrated in
Fig. 3.11, we've decided to change the load by reducing tteecfithe CTC machine (512 proces-
sors, originally). Luckily this is possible because the meat job size within the CTC workload
is 336. Incidentally, changing the machine size from 51236 Brocessors yielded a workload
with 85% utilization, very close to the desired target lod842%6. We call this modified workload
CTC-336, and present its momentary load at the right of Fi0 3CTC-336’s 85% was made
equal to SDSC's 84% and CTC'’s 56% by standard arrival-timeipudation). Our attempt is in-
deed successful, as CTC-336 is clearly more bursty than @ifiéed, examining the performance
trends of CTC-336 in Fig. 3.12 reveals our hypothesis wdgrig
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Figure 3.11: Increasing the load of a given trac&igure 3.12: Performance of CTC-336 (high load
(middle) by arrival time manipulation (right) or byconditions; compare with Fig. 3.2). In contrast to the
reducing the size of the machine (left). Left displayariginal CTC, which was associated with L perfor-
a burstier pattern (2/1/2/1) relative to the right (1/Ippance curves, CTC-336 is V-shaped.

though both have 100% utilization.

FINDING #3.6
Performance trends tend to be either V- or L-shaped, depgrati whether the worklo
is bursty or not, respectively.

3.7 Unfairness as a Function of Badness

The heel and toe dynamics suggest that the performance werpent obtained by multiplying is
at the expense of jobs that get a reservation, which are lyduath long and wide. (In the four
logs their average runtime, estimate, and size are appeat&lydh, 7h, and 17% of the machine’s
processors, respectively.) It therefore appears as ieasingf is “unfair”. However, to directly
verify that this is true, we need a way to measure fairnessh 8umetric is described next.

Given a jobJ, assume it is possible to calculate the hypothetical tinvehich it is “most fair”
to start this job. This is called’s fair start timg denoted:’ST'(.J). Let theactual start timeof .J
(under the scheduler we happen to evaluate, which is EASYiircase) be denoted asS7'(J).
Using this notation, Sabin and Sadayappan defined the aendgirnessas

1
|jobs|

> max (0, AST(J) — FST(J))

Jejobs

where thejobs set contains all the participating jobs [123]. Note thas tmetric expresses time
(e.g. minutes), which is the per-job average delay perigebibe what is “most fair”. Also note
that the term involvingnax insures the summation includes only nonnegative valuestrat only
jobs which were treated unfairly contribute positive quizeg. (These may be “delayed jobs” in
our terminology from above.)

The remaining missing piece is how to compft&7'(J). This was defined by Srinivasan et al.
[141] as the start time of under a hypothetical “conservative” backfill schedulesigss reser-
vations toall waiting jobs; see Sec. 1.1.2) that has two unique propetlgst utilizes completely
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Figure 3.13:Unfairness as a function of badness. Increased badnestateznto a less fair schedule.

accurate estimates, and (2) it suddenly changes the samgdtdategy to strict no-backfill FCFS
at the exact time instance in whicharrives?

An attractive property of this definition is that it is at Ieas fair as using a strict FCFS defini-
tion (the order of the FSTs is in perfect alignment with theéesrof job arrivals and no job is ever
delayed due to later arriving jobs), but it is neverthelesticient” enough to be useful, allowing
for a meaningful evaluation when judging the fairness ohkegd schedulers. (Unfortunately, in
comparison to FCFS start times, virtually all high-end stthers may have zero unfairness, due to
the poor performance of FCFS).

The results are shown in Fig. 3.13 and all havel&ke shape indicating that increas¢andeed
yields increased unfairness, a fact that perfectly coesidith the heel and toe description. Note
that, with f=0, unfairness is smaller than when real estimates are geghloHowever, ag is
increased the situation is quickly reversed. The conciusitherefore that

FINDING #3.7
Multiplying all estimates by a factor is actualisading off fairness for performance

3.8 Making the Model More Realistic

The Problem The f-model isthe dominant model for generating artificial user runtime esti-
mates. It is used to complement workloads that lack estsnddga [169, 56, 58], but more im-
portantly, to evaluate the impact of inaccurate user eséisman backfilling algorithms [146, 47,
174,169, 108, 15, 142, 170, 122, 34, 64]. Based orftheodel, researchers have drawn neat con-
clusions that range from “performance is independent ofi@oy”, through “what the scheduler
don’t know won't hurt it”, to “inaccuracy actually improveerformance” (see Sec. 1.2.1, page 9).
Indeed, when employinartificial estimates as generated by thienodel, these claims may reflect
certain aspects of the truth, as shown above. However, theréundamental, yet evidently very
elusive and overlooked, problem with all the insights thratlzased on th¢-model:

THE PROBLEM WITH THE f-MODEL

Increased inaccuracy thatis modeled by greAtealues effectivelygpreadghe estimates
across a larger domain. But with real estimates it's exdabtyopposite! Namely, inag
curacy manifests itself by more jobs using gemeestimate value. Thus, conclusiohs

based on the theoreticaéimodel might not apply when real user estimates are involyed

3It's as if we're using a different scheduler for each job; lewer, with the right data structure, FSTs may actually
be computed during one sequentiain) pass through all the jobs, requiring no simulation.
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Figure 3.14: FCFS cannot starl; before.J,. But with backfilling, if more nodes than needed will be
available forJ, at its reservation time, these “extra” nodes can be allocatenediately.

Processors

Understanding results that are based onfi#model can be interesting and important. For ex-
ample, the heel-and-toe dynamics turned out to be the reslspras shown in Fig. 1.2, doubling
of real user estimates improves performance. (Doubling is a legie scheduling optimization as
will be discussed in Sec. 3.9.) Nevertheless, such undgtisigs can have only limited applica-
bility for real systems that employ real user estimates. drigmtly, a statement like “inaccuracy
improves performance” is a misleading oversimplificaticeal inaccuracy is actually tightly cor-
related with degraded performance, as will be exemplified.ne

Modality Human users do not choose estimates that are uniformlytulited between the real
runtime and its multiple with some value, but rather repdigitase the same “round” estimates (5
minutes, 1 hour etc). Indeed, we find that 90% of the jobs uses#ime 20 “round” values (see
Chapter 5), a fact that explains the staircase-like CDFesushown in Fig. 1.14 (page 22). As
noted in the associated table, a value that always enjoyemaepopularity i€,,.. (the maximal
estimate allowed), used by 10-27% of the jobs, which typjcalakes it the most popular esti-
mate. This is probably due to a combination of users lackiegability to provide good estimates,
along with the strict policy of backfill schedulers to kill derestimated jobs. (Nevertheless, even
when this policy is not enforced, the improvement in the fyaif user estimates is apparently
negligible [93], which means the former argument is mosliikmore detrimental.)

E,...’s popularity has dire implications on performance. To ustend why, consider an ex-
treme case in whichll jobs useF,,,, as their estimate. We claim that in such a case, backfilling
activity (as shown in Fig. 1.1, page 5) completely stops. pito®f’s outline is the following. The
reservation of the first queued job is computed based on a&&triermination times of currently
running jobs, and these will all occur befokg, ., time, by definition. Hence, the reservation it-
self will occur beforeF,,., time, and therefore backfilling holes (from the present timél the
reservation) are always smaller thap,,.. Since we assume all estimates of waiting jobs are ex-
actly £,,..., we get that none will fit the holes in the schedule. The comsece is that scheduling
largely reverts to plain FCFS, resulting in a serious penfomce degradation. (The only remaining
backfill activity is on the expense of the “extra” nodes [1G8& shown in Fig. 3.14.)

Previous studies have neglected to takg . into account. For example, it has been conjectured
that the connection between longer execution time andrattiracy shown in Fig. 1.15 (page
22) is because the more a job progresses in its computadtegyater its chances become to reach
successful completion [20]. But the reason is actually mmaine prosaic: since (1,,.. iS an
upper bound on estimates, and (2) backfilling insures estgraae bigger than runtimes, we have

runtime < estimate < E, 2

Thus, as runtimes get bigger (closerAy,,. ), the accuracy fractions{ rurtme) converges to 1.

estimate

Further, the various peaks in Fig. 1.15 are due to other pomsdtimates (smaller thah,,,,)
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and the manynderestimategobs that used them: as these jobs are killed upon reacheig th
estimates, they have 100% accuracy. But many other jobsisiesthese popular values are in fact
significantlyoverestimatedThe problem is that the scheduler has no way to distinguasivden
such jobs, in contrast to when thfemodel is used. To clarify, consider a scheduler that ekplic
favors shorter jobs for backfilling [174, 15, 156] and mustkwith inaccurate estimates. If these
estimates nevertheless result in a relatively correctrorgef waiting jobs (as would happen with
the f-model), performance can dramatically improve (up to areoaf magnitude according to
[15]). However, if estimates are modal (as generated byusais), many jobs look the same
in the eyes of the scheduler, which consequently fails torpize them correctly, which means
performance deteriorates. As shown earlier, heel-andytnamics nudge a FCFS-based scheduler
towards SJFness, and therefore the same argument applieserf-an estimate distribution that
is dominated by only a few monolithic modek,(,., and others) negatively effects performance,
because less variance among waiting jobs means less opiiedguor the scheduler to exploit
existing holes (with various sizes) for backfilling.

Enforcing an Upper Bound on Estimates The bottom line is that if one wants to model in-
creasing user inaccuracy, one should focus on the moddilitger estimates. For example, 10%
of the jobs using¥,,.. is an optimistic scenario relative to 20%, which in turn isrenoptimistic
than 30%, etc. Modeling increased inaccuracy by gradualpeiating more jobs witlk,,,,. is
certainly more realistic than using the vaniffamodel. FortunatelyF,,.. can be easily incorpo-
rated within thef-model if instead of using artificial estimates as is, we ¢ate them to bé’,,,..

in case they are bigger. Namely, if the artificial estimate, iz/e instead usenin(e, F,,,.). Let
this be denoted as theuncatedf-model This model has the property that biggévalues imply
more jobs associated with,,..

Fig. 3.15 shows the results. The truncation has negligibfgaict for very smallf values, be-
cause at this points very few artificial estimates excéggd,. The common trend is therefore
of improved performance, similarly to the vanilfamodel. Truncation gradually becomes the
dominant factor ag’ increases and so the trend is reversed. The difference &etihe truncated
(Fig. 3.15) and vanilla (Fig. 3.1) models whé¢goes to infinity is that the ascending part of the lat-
ter nevet intersects the curves associated with real user estimaggfi€d till f=10,000), whereas
the former always does. At the intersection point, the tated model is successful in “capturing
the badness” of the real estimates. Thus, with big engyghe behavior of the truncated model
coincides with our claim above that performance degradesidcuracy is increased by making
the estimate distribution more modal.

An Accurate Model While the truncateg-model is more realistic than the vanilla one, its output
is still fundamentally different from the real thing. A keiffdrence is that only one mode is created
(at F.42), Whereas real estimates exhibit several modes (Fig. pdde 22). Indeed, thg,, ..
mode is the most influential, but other modes are also ess@nthat they significantly contribute
to the overall observed effect of bad performance in the tdaeal user estimates. Further, the
E,... mode as created by the model is poorly constructed: it ctsngfdong jobs only (with big
enough runtimes such that multiplying them withresults in estimates bigger thd),,.). In
reality, many short jobs are estimated by users tofiyp,.. Of these, most notable are jobs that
fail on startup. Thus, even with the truncated model, thedater can still identify shorter jobs
better than when real estimates are employed (until a ceftpi

4With the exception of BLUE/wait.
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Figure 3.15:Performance results obtained with the truncatemiodel (compare with Fig. 3.1). The table
specifies the intersection point between curves assodigtédthe “random” model and those associated
with real estimates. (Slight differences exist betweenltesissociated with real user estimate of the vanilla
and the truncated models. This is due to runtimes bigger han that unexplainably exist in the original
logs and were truncated to make sure they are not bigger lileasssociated estimates.)

For these reasons, we find ourselves in an undesirableisitwahere each trace/metric com-
bination requires a different to obtain performance results comparable to that of thethéady
(table at right of Fig. 3.15). This serious drawback is casted with the model’s simplicity and
ease of implementation and use. We therefore view it as tbheKeand dirty” substitute for the
vanilla version, namely, if faced with the choice of usinther one of them, we strongly support
the truncated version. It is our opinion that while it is netfect, it is also not “garbage”.

In general, however, we advocate using the more sophisticgtimate model developed in
Chapter 5, instead of the-model variants. This chapter serves in part as motivatidre input
of our new model i, and optionally the percent of associated jébEhe optional argument
allows to gradually increase inaccuracy in a truly reaistanner. The output of the new model is
a series of modes, where each mode is a pair consisting ofiaraésvalue and the percent of jobs
that use it (twenty of which cover 90% of the jobs). This metad in contrast to common prac-
tices, estimates are not generated on a per-job basis tbat,reollectively, before hand. Thus, our
model also provides a way to map the generated distributibtm @ set of jobs with predetermined
runtimes, such that each job’s assigned estimate is eqoaldigger than its runtime, as required
by the backfilling rules. The model is available for downl@diLl55], and was verified to produce
results that are almost identical to the real thing [157]gkr 5).

3.9 Practical Implications

Our results so far that were obtained under fh@odel have mostly a theoretical value, because
we are multiplying completely accurate runtimes and thferimation is normally not available
a-priori to the scheduler. Nevertheless, the results de peactical implications, both in terms of
system design and implementation, and in terms of systefuai@n.

It turns out that our understandings regarding the act otipiying prefectestimates (= run-

SWe show that the dissimilarity between estimate distrimgiof different traces is largely embodied in the percent
of jobs that us&”,,,.,. as their estimate; the distributions are otherwise rentaylamilar.
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Figure 3.16:CDF of absolute accuracy (difference Figure 3.17:Correlation between runtimes and es-

between estimate and actual runtime of jobs). timates.

times) also hold when multiplyingeal estimates, as were given by users. Intuitively, this is so
because a non-negligible portion of the jobs reach theimesés and are killed by the system,
which leads to 100% accuracy for such jobs (peaks in Fig.,Jpage 22). Further, despite the
popularity of £,,..., most estimates are nonetheless rather short (Fig. 1.1&, 22), and since
estimates serve as runtime upper bounds then jobs with ekimates are guaranteed to indeed
be short. In this respeatglative accuracy:, can be less important thatsoluteaccuracye — r
(actual time difference between an estimate and the asedcaiantime). Fig. 3.16 shows the CDF
of absolute accuracy, which is zero for 2-10% of the jobss lean one minute for 8-20%, and
less than five minutes for 15-40%. Tab. 3.17 summarizes threlation between runtimes and es-
timates, which is indeed non-negligible. The bottom linthest user estimates are, to some extent,
similar to runtimes. It is therefore not far fetched to expibat the results of multiplying them
would be similar too.

Using X,., andX,.,; to denote the cases when multiplying real and perfect esgsneespec-
tively, let us now compare between the tw&,(, ; relates to the deterministjcmodel.) Fig. 3.18
shows most of the backfilling related metrics that we havel sefar, as a function of, for
the two alternatives (note that the X-axis is logarithmicataled and spans 0—10000). Indeed,
in all cases the trends are clearly qualitatively similflved have quantitative differences, to be
discussed next.

Better Estimates Yield Favoring of Shorter Jobs Specifically, in Fig. 3.18a we can see that
for small f values (0-10), there is less backfilling activity wik),., ;, though it rapidly becomes
similar to that ofX,.,; for bigger fs. Runtimes of backfilled jobs behave similarly (Fig. 3.1 &nit
the initial f domain whereX,,., ; backfilled jobs are shorter stretches beygrd 0. The situation is
different when considering wild backfilling (Figs. 3.18%-ds there is a difference across the entire
f range: theX,,.,  wild jobs are shorter, their rate grows faster and is asytigatily bigger. This
means more and smaller heel-and-toe “steps”, implying @teat preference ok ., ; to backfill
shorter jobs sooner. In other words, even though the rateagexhge runtime of all backfilled
jobs (wild+mild) is usually asymptotically comparable &, and X,.,; (Figs. 3.18a-b), with
X,erp sShorter jobs wait less before being backfilled. Indeed, by Fil8e X, ; SIFness is clearly
higher, and by Figs. 3.18f-g, this improved SJFness is nibteaéxpanse of the “delayed” jobs, as
their rate and delay can be similar, higher, or lowerXq,, or X,.,, depending on the trace.

Better Estimates Yield Increased Fairness Note that even though there can be more delayed
jobs with X, (Fig. 3.18f;, CTC/KTH), the delay can be longer (Fig. 3.18@SE/BLUE), and
there are certainly more wild jobs (Fig. 3.18c; all logs) #$thedule with perfect estimates is
nevertheless distinctively more fair (Fig. 3.18h). Thisegbecause the “delay” related metrics
are computed with respect to the single reservation EASYesiakhich is based on inaccurate
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Figure 3.18:Comparing the impact of multiplying real and perfect est@san various backfilling aspects.
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Figure 3.19:Comparing the impact of multiplying real and perfect esti#san performance metrics.

estimates. In contrast, the unfairness metric quantifieedss in absolute terms, relative to a
theoretical schedule with perfect information in whichjabs get a reservation and are therefore
guaranteed never to be delayed due to any later arriving @basequently, a job may very well
be considered asot being delayed, while at the same time be treated unfairlyefmtaking all
this “unfairness” into accounty,,, , is clearly more fair thac, ;.

Better Estimates Yield Better Performance The performance results are shown in Fig. 3.19.
They are rather noisy due to the inherent noisy nature of éterchinistic models. Nevertheless,
there are two immediate observations that can be made (#nesgrobably the more important
findings of this chapter). The first is that, like with perfestimates, making real estimates less
accurate by multiplying them with a factér > 1 usually improves performance. In combination
with Fig. 3.18h (“unfairness”) this reinforces Finding 3tvat multiplying estimates by a factor
means trading off fairness for performance.

The second observation is that in contrast to common béletfer accuracy does in fact im-
prove performance in the sense that the more accurate tred (to be multiplied) estimates are,
the better the resulting performance becomes. As seerrearino way does the act of multiplying
emulate the inaccuracy exhibited by real users. Rathemjilg adds a certain “SJFness” to the
schedule through heel and toe dynamics. Consequentlyiphyuig is, and should be viewed as,
not more than a scheduling “optimization”. Indeed, it istblgtgitimate and practical to configure
the scheduler to boost performance at the expense of failnesieans of multiplying estimates.
Thus, we contend that artificial inaccuracy (multiplying)aproperty of the schedulewhereas
“real” inaccuracy is a property of users. The latter mangé@self completely differently and like-
wise has completely different consequences in terms obpeence (Sec. 3.8). The problem is
that up till now researchers confused between the two typieaccuracies. This central argument
is summarized in Tab. 3.2 and its bottom line is that
FINDING #3.8
The popular statement that “increased inaccuracy imprpggermance” is dalse mis-
conception originating from a confusion between a scheduling stsategd the nature
of users. The correct statement is that increased inagcu@senperformance, but ths
the scheduler can boost it at the expense of fairness byptyitty the estimates wit
some factor.

14

- —
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# | source of property of| nature of effect on effect on
inaccuracy inaccuracy performance| fairness
1] real users modal & favorsE,,,. | worsened worsened
2 | artificial (f) | scheduler | promotes heel & toe | improved worsened

Table 3.2:Comparing real and artificial sources of inaccuracy.

Conclusion The implication of our findings on the design and implemeatabf systems is ex-
posing the performance-fairness tradeoff that may nowdieipily exploited by system designers.
The implication of our findings on systems evaluation is atwg that analyses which evaluated
the impact of inaccurate estimates on performance wereadelbgically erroneous if they relied
on the f-model, as multiplying by a factor is (1) actually a schedglstrategy that is (2) anything
but representative of actual users. A correct evaluationlshbe done as specified in Sec. 3.8.

3.10 Non-FCFS Backfilling

The results presented in this chapter were all obtainedrund&ASY scheduler, which is the most
popular supercomputer default setting to date [37]. Nagle#ts, many other backfilling configu-
rations were proposed and evaluated (see Sec. 1.1.2), aodlexgly, contemporary schedulers
offer a wide range of tunable policies. The question is oeeawhether the results presented here
are applicable to other scheduling schemes. In this cqriteselation to the initial observation by
Mu’alem and Feitelson that multiplying helps [47, 108], Llaeed Snavely argued that

MUST-REPROVE CLAIM
“The key point is that Mu’alem and Feitelson’s result onlypéips to the specific algg
rithms they studied, and it is necessary to re-prove (orrdiep) their result for each ney
algorithm individually” [94].

<

We contend that the situation is not so bleak and that a gkezedran is possible.

SJIBF Let us first consider the question of what will happen if thieextuler is modified such that
traversing the wait-queue in search of the next job to bdd&filone in SJF order, instead of FCFS.
(We introduce this scheduler in Chapter 4 and nans&)BF Shortest-Job Backfilled First [156]).
It would seem that such a scheduling scheme of explicitlgriag shorter jobs will invalidate the
heel-and-toe rationale of doing it implicitly. One mighetlkfore expect SIBF performance to be
independent of . Nevertheless, as shown in Fig. 3.20, the results are qtiadity rather similar to
that of plain EASY (compare with Fig. 3.19): A positive badadactor usually yields improved
performance for the real and deterministic models, evenghslowdown is less sensitive {0
under the latter. Likewise, the random model yields the fian¥ and L shapes we have previously
encountered (compare with Fig. 3.1). The reason for thiitqtige similarity is that the heel-and-
toe dynamics occur even under SJBF. This is true because 183Bivations are still allocated in
FCFS order and therefore the same exact mechanism of rdpedetaying the first queued job
applies. In quantitative terms, SJBF is unsurprisinglydyghan EASY, because of the increased
preference of shorter jobs.
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Figure 3.21:Performance of the LXF&W scheduler, as a functionf of

LXF&W  Another non-FCFS scheduling variant for improving perfanoe as well as fairness is
LXF&W (Largest eXpansion Factor and Wait time), proposed by Chéard Vernon [19]. Under
this discipline, the priority of a job is given b§#< 4- 0.02w, wheree is the job’s runtime estimate
andw is its current wait timé. The left term is the estimated “expansion factor”, a.k.awslown.
This component makes sure that shorter jobs are initiallgreed, due to having the estimate as the
denominator. However, in the interest of fairness, it grgnaportionally tow as time elapses, a
trend that is further intensified by the addition(of2w. Fig. 3.21 shows the performance results
of LXF&W. Surprisingly, instead of being L-shaped, the ‘ffeand “deterministic” curves are U-
shaped and usually intersect the associated straightdimesponding tg'=0 (somewhat similarly
to the results obtained with the truncated model shown inFith). The solution to this mystery
lies in the definition of the LXF&W priority function, which kaen using e.g. the deterministic
f-model is actually

6Note that (1) bothe andw are expressed in hours, which is significant due to the ifmusf 0.02w in the
LXF&W priority, and (2) due to thev component, the priority idynamidn that it changes over time (recomputed for
each scheduling decision).



3.11 Conclusions 57

w—+e

4002w = 1+ 240020 = 1+ -2 +0.02w

e r-f
wherer denotes the runtime. Whehgoes to infinity, this priority obviously becomes dominated
by the rightmost term, which means LXF&W converges to plakSE, as ordering the queue
by wait- or arrival-time is completely equivalent. The U pkas therefore explained as follows:
The initial performance improvement (left side of the U) swsual the result of heel-and-toe
dynamics, as similarly to other backfilling algorithms, gaihat wait and get a reservation under
LXF&W are too both long and widé.At the same time, for smallefs, LXF&W is significantly
better than EASY in terms of absolute numbers, due to its@kpteference of shorter jobs (com-
pare Fig. 3.21 to 3.19, for example, LXF&W)5=0/KTH/deterministic/slowdown is 50, whereas
EASY’s is 71). Consequently, ag increases, the convergence of LXF&W to EASY becomes
the dominant effect, rapidly overshadowing the initial doamce of heel-and-toe dynamics while
the significant performance gap between the two algorithraduglly closes. In other words,
LXF&W is positioned somewhere between LXF and EASY, such with smallerfs it is closer
to the former and with biggefs to the latter. Other than that, our findings so far still gppl

Generalizing The bottom line is that the three representatives of thefblaag algorithms class
(EASY, SJIBF, and LXF&W) have reacted similarly when sulgedio estimates that were multi-
plied by a factor. Based on this observation and on our ctitrederstanding of the dynamics of
backfilling, we conclude that

e

FINDING #3.9
As long as reservations are allocatedoromote fairnesshen multiplying of estimatep
will result in a heel-and-toe effect whereby shorter jobpleit the wider scheduling
holes for backfilling, at the expense of longer/wider jobkisTis completely orthogonal
to the specific ordering in which backfilling activity is camtted or reservations afe
allocated.

Only if reservations are allocated in a way that is unreldatedcCFS fairness (e.g. in SJF
order) or are categorically eliminated (e.g. pure SJF) carexpect the impact of multiplying to
be different.

3.11 Conclusions

For the conclusion of this chapter, we refer the reader to&@ee.1 (page 122).

"Their average runtime, (real) user estimate, and size areufsh7.5 hours, and 17% of the machine’s size,
respectively. Thus, multiplying all estimates by a factelps delay such job in favor of shorter ones.
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Chapter 4

Backfilling With System-Generated
Predictions Rather Than User Runtime
Estimates

4.1 Introduction

Context This chapter was fully introduced in Sec. 1.2.3 (page 13) $ed. 1.3.3 (page 24),
which also conducted a detailed survey of related work. fBriescall that backfilling kills jobs
that exceed their estimates, so as not to violate subseqgoemnnitments. This policy suppos-
edly provides motivation for users to supply accurate estids, because jobs would have a better
chance to backfill if their estimates are tight, but would bied if they are too short. Neverthe-
less, estimates are inaccurate despite this incentives@stdd in Fig. 1.4 (page 13), which shows
a uniform-like accuracy histogram when only consideringsjthat have terminated successfully,
meaning any level of accuracy is almost equally likely tofep A possible reason is that users
find the motivation to overestimate — so their jobs will notkiked — much stronger than the
motivation to provide accurate estimates and help the stbetb perform better packing. But
a recent study indicates that users are actually quite cmntfiof their estimates, and most prob-
ably would not be able to provide much better information][98s mentioned in the previous
chapter, estimates also embody a characteristic that tEyarly harmful for backfilling: they
are inherently modal, as users tend to choose “round” estsr(@.g. one hour) resulting in 90%
of the jobs using the same 20 values; worse, the most popsiianae is typically the maximal
allowed. This significantly limits the scheduler’s ability exploit existing holes in the schedule
because all jobs appear the same, and often too long. Themation of inaccuracy and modality
deteriorates performance (Fig. 1.2, page 9; compare “tediperfect”) and motivates searching
for an alternative.

The alternative The search for better estimates has focused on using lestddta in an attempt
to predict the future, based on the fact users of parallehinas tend to repeatedly do the same
work (Fig. 1.6, page 14). Suggested prediction schemesgdealsing the top of a 95% confidence
interval of job runtimes [62], a statistical model based lba (usually) log-uniform distribution
of runtimes [31], using the mean plus 1.5 standard deviaj@@8], and more sophisticated tech-
niques [62, 136, 83, 86, 96]. Despite all this work, productbackfill schedulers in actual use
still employ user estimates rather than history-basedesygtenerated predictions, due to three
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difficulties: (1) a technicality, (2) a usability issue, &3) a misconception, to be further discussed
next. This chapter is about refuting or dealing with these diffiad

Technicality The core problem is that it's simply impossible to naivelpleze estimates with

system predictions, as these might turn out too short lgadipremature killing of jobs according
to the backfilling rules. Suggested solutions have inclugedring the problem, using preemption,
employing test runs, or replacing backfilling by shortedi fost (SJF) [62, 174, 115, 19, 15,
90].! None of these retain the appeal of plain EASY. Mu’alem andefson checked the extent
of the underprediction phenomenon, showed it to be sigmnifjcand concluded that “it seems
using system-generated predictions for backfilling is nfeasible approach” [108] (denoted the
“unfeasibility claim” in Chapter 1). However, as we will skpsolving this problem is actually

quite simple: user estimates must serve as Kill times (fathe user contract), while system
predictions can be used for everything else.

Usability Previous prediction techniques have assumed that an iemga®mponent is to iden-
tify the most similar jobs in the history, and base the prioins on them. To this end they em-
ployed complex algorithm including various statisticalthwls [31, 136, 97], genetic algorithms
[136], instance based learning [83], and rough set theddy. [81 addition to their unwarranted
computational overhead and complexity, most algorithngsiire a training period which can be
significant, e.g. Smith et al. trained their algorithm usargentire trace before evaluating it (on
the very same trace) [138]. In contrast, in this chapter vesvsiat trivial algorithms (e.g. using
the average runtime of two preceding jobs by the same useigaificantly improve the perfor-
mance as well as the accuracy of the predictions themsaNepreferred using a simple predictor
so as to focus on how predictions are integrated into baickfischedulers, and not on the predic-
tion algorithm itself. However, our evaluations indicatattthis was a fortuitous choice, and that
recency is actually more important than similarity whemgdhistorical data.

Misconception As noted above, studies regarding the impact of inaccuragg found that it
doesn't effect or even improves performance [146, 47, 189, B4, 64], which has led to the
suggestion that estimates should be doubled [174, 108]noioraized [115], to make them even
less accurate. Doubling indeed exhibits remarkable imgm@nts, which supposedly negates the
motivation to improve the quality of estimates, deemingihes “unimportant”. We show this
to be false in three respects. First, we have already notdathile doubling original estimates
helps, doubling of accurate estimates is even better (Fy.phge 9; compare “realX2” to “per-
fectX2”). In this chapter we show that doubling of good prtidins is similar, namely, that the
more accurate the original predictions are, the more théldayis effective. Second, Chapter 3
has shown that the reason doubling helps is due to the “heldioai dynamics (Sec. 3.4), which
trades off FCFS-fairness for performance by implicitly gindy the systems towards a more SJF-
like schedule. (Incidentally, most studies dealing witbdictions indicate that increased accuracy
improves performance when shorter jobs are favored [62, 188 115, 15].) This chapter shows
this tradeoff can be largely avoided by explicitly usingheortest job backfilled firdiSIBF) back-
filling order. By still preserving FCF$®eservation-orderwe maintain EASY'’s appeal, enjoying
a fair scheduler that nevertheless backfills effectivelye Third fallacy in the “inaccuracy helps”
myth is that it implies predictions are only important forckélling, even though they are used
in other contexts as well (e.g. advance reservations fdrajldocation and co-allocation, shown to
considerably benefit from better accuracy [83, 137, 96];herdcheduling ofmoldablejobs that

1Smith et al. didn’t specify how they utilized system preitins for backfilling [138].
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may run on any number of nodes [31, 138, 22], mandating thesyt decide whether waiting
for more nodes to become available is preferable over rgninmediately on what is currently
available).

Naming Notation In our terminology, the term “estimate” always refers to thetime approx-
imation that was provided by the user upon job submittal. T “prediction”, however, is
overloaded. In its general meaning, prediction refers ¢ovidue that the system eventually uses
for backfilling. When no system-generated predictions anpleyed, estimates and predictions
are one and the same (e.qg. for vanilla EASY that directlyzatdl user estimates for backfilling).
But when system-generated predictions come into playjshis longer the case, and predictions
and estimates may obviously differ. The second (more frefjuese of “prediction” is shorthand
for “system-generated predictions”. The ambiguity is 8lsveesolved by the context in which the
term is used.

Measuring Accuracy The measure adccuracyis the ratio of the real runtime to the prediction.
If the prediction is larger than the runtime, this reflects thaction of predicted time that was
actually used. But as noted, predictions can also be tod.sBonsequently, to avoid under- and
over-prediction canceling themselves out (when averageslfiefine

1 if P=T,
accuracy = T,n// P i]1: P>T,
P/T, if P<T,

whereP is the prediction; the closer the accuracy is to 1 the morarate the prediction. This is
averaged across jobs, and also along the lifetime of a gjolg)é& the system updates its prediction.
In that case a weighted average is used, where weights rigféectlative time that each prediction

was in effect. More formally, given a joB, its weighted accuracy [ | A; - ( %=1 ) where
- N 0
Ty and Ty are J's submission and termination time, respectively, ahds the accuracy of the

prediction ofJ that was in effect from timé&;_; to timeT;.

Roadmap The rest of the chapter is structured as follows. Sec. 4.2agghow prediction-
based backfilling is done and demonstrates the improvenrenesms of average performance
and accuracy. Sec. 4.3 deals with “predictability”, namélgw do reservations relate to actual
start times. Sec. 4.4 shows the generality of our techniuespplying them to schedulers other
than EASY. We then discuss the connection between accupacigrmance, and predictability
(Sec. 4.5). And finally, we investigate the optimal paramsétings for our prediction algorithms,
and contrast the common approach of favoring similar jobsmwgdrenerating predictions, with our
approach of favoring recent ones (Sec. 4.6).

4.2 Incorporating Predictions into Backfilling Schedulers

The simplest way to incorporate system-generated preditinto a backfilling scheduler is to
use them in place of user-provided estimates. The problethisfapproach is that aside from
serving as a runtimapproximation estimates also serve as the runtiapper-boundkill-time).

But predictions might happen to be shorter than actual medj and users will not tolerate their
jobs being killed just because the system speculated theg slerter than the user estimate.
So it is not advisable to just replace estimates by predistidPrevious studies have dealt with
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trace] wait [minutes] b. slowdown | accuracy%]
EASY EASY EASY EASY EASY| EASY

PRED PRED PRED
SDSC] 363 757+109% 99/233 +136% 32| 55+70%
CTC 21) 29 +38% 4.6 7.0 +53% 39 56 +44%

KTH 114 968+748% 90|746 +729% 47| 49 +4%
BLUE| 1301324+920% 35|439+11419 31| 55+78%
avg. +454% +515% +49%

Table 4.1:Average wait time (minutes), bounded slowdown, and acgui@cvanilla backfilling with user
estimates (EASY), and when these are replaced by our simgllers-generated predictions (EAS¥: D).
Shaded columns give changes relative to EASY in percentesd Are always positive, which is a good
thing for accuracy (as now it is higher), but bad for the othetrics (bigger wait period and slowdown).

this difficulty either by eliminating the need for backfigjn(e.g. using pure SJF [62, 138]), by
employing test runs [115, 15, 90], by assuming preempti@vaslable (so jobs that exceed their
prediction can be stopped and reinserted into the wait q{&2e19]), or by considering only
artificial estimates generated as multiples of actual nuesi (effectively assuming underprediction
never occurs) [174, 115, 15, 141, 142]. As mentioned ealleralem and Feitelson noted this
problem, and investigated whether underprediction doéadnoccur when using a conservative
predictor (average of previous jobs with the same user / /sezeecutable, pIuS% times their
standard deviation) [108]. They found thaR0% of the jobs suffered from underprediction and
would have been killed prematurely by a backfill scheduléeyitherefore suggested that system-
generated predictions for backfilling is not a feasible apph.

4.2.1 Separating the Dual Roles of Estimates

The key idea of our solution is recognizing that the undetioteon problem emanates from the
dual role an estimate plays: both as a prediction and as-tirkdl. We argue that these should
be separated. It is legitimate to kill a jamce its user estimate is reachdulit not any sooner;
therefore user estimates should only retain their role lasitkies. All the other considerations of
a backfilling scheduler should be based upon predictiongshwdan potentially be more accurate.
There is no technical problem preventing us from runningtzagkfill scheduler using predictions
instead of estimates. The only change is that a running joloikilled when its prediction is
reached; rather, it is allowed to continue, and is only Eiehen it reaches its estimate. This
entirely eliminates the problem of premature killings.

The system-generated prediction algorithm we use is verplsi. The prediction of a new job
J is set to be the average runtime of the two most recent jolisntbige submitted by the same
user prior toJ and that have already terminated. If no such two jobs existaldack on the
associated user estimate (other ways to select the higibsygre considered in Sec. 4.6). If a
prediction turns out higher than the job’s estimate it isdiged, and the estimate is used, because
the job would be killed anyway when it reaches its estimatglémenting this predictor is truly
trivial and requires about a dozen lines of code: savinguhéme of the two most recent jobs in
a per-user data structure, updating it when more recentlgngted jobs terminate, and averaging
the two runtimes when a new job arrives. Nevertheless, asrshelow, this simple predictor is
enough to significantly improve the accuracy of the data bgettie scheduler, which is sufficient
for our needs in this chapter.
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Figure 4.1:Underpredicting the runtime of job 1 causes the scheduleratke an early reservation for job
2 (left). This misconception prevents jobs 3 and 4 from bddagkfilled (middle). Correcting the prediction
once proved wrong enables the scheduler to reschedulestivadion and re-enables backfilling (right).

Tab. 4.1 shows the results of our experiment of running aesystsing original EASY vs. a
system in which estimates are replaced with our autométigaherated predictions. The results
indicate a colossal failure. Both performance metrics r@ye wait and slowdown) consistently
show that using predictions results in severe performaegeadiation of up to an order of mag-
nitude (KTH’s wait time). This happens despite the improaeduracy of the predictions. The
first suspect of being responsible for the dismal resultsafa®urse our ridiculously simplistic
prediction algorithm. However, as noted, even these simpi@dictions are usually far superior to
the estimates supplied by users, and may almost double ¢éhageraccuracy. Discovering the un-
derlying reason for the performance loss required a thdraagestigation. Our in-depth analysis
revealed that the true guilty partyusderestimationthat is, cases in which a generated prediction
is smaller than the job’s actual runtime. This problem isradged next.

4.2.2 Prediction Correction

By the rules of backfilling, a reservation computed basedsar astimates will never be smaller
than the start time of the associated job, as estimates miieneiupper boundsThis is no longer
true for predictions, as they are occasionally too shortth&textreme, predictions might erro-
neously indicate that certain jobs should have terminayeabolv and thus their processors should
be already available. Assuming there aren’t enough procgs$sr the first queued jol, this dis-
crepancy might lead to a situation whefs reservation is made for the present time, because the
scheduler erroneously thinks the required processordédhtready be available.

Note that the backfill window is between the current time @owound) and the reservation
(upper). When these are made equal, backfill activity effelst stops and the scheduler largely
reverts to plain FCFES, eliminating the potential benefitbaxtkfilling (Fig. 4.1, left/middle). This
explains why our naive approach from above dramaticallysened performance, despite the im-
provement in average accuracy.

The solution is to modify the scheduler to increase expirediptions proven to be too short.
For example, if a job’s prediction indicated it would run @ minutes, and this time has already
passed but the job is still running, we must generate a nedigtien. The simplest approach is to
acknowledge that the user was smarter than us and set thereéiotfpn to be the user’s estimate
(other approaches are explored later on). Once the preditiupdated, this affects reservations

2Apparently, this is not always the case in practice, as \nitirly be described.
3The only remaining backfill activity is on the expense of tletta” processors, which are the “leftover” after
satisfying the reservation for the first queued job, seeFitd (page 49).
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Figure 4.2:Left: up to 10% of the jobs have runtimes bigger than usemedéis. Right: CDF of differences
between runtimes and estimates, of underestimated jobst ddtimate violations are less than one minute.

for queued jobs and re-enables backfilling (Fig. 4.1, rigihile this may undesirably delay the
reservations made for queued jobs, such delays are stitidemliby the original runtime estimates
of the running (underpredicted) jobs.

On rare occasions prediction correction is necessary esgonlol the estimate, as in real sys-
tems jobs sometimes exceed their estimates (Fig. 4.2, leftinost cases the overshoot is very
short (not more than a minute) and probably reflects the tieseled to Kill the job. But in some
cases itis much longer, for unknown reasons. Regardlebg @act reason, the prediction should
be extended to keep the scheduler up to date (independdr tzHdt the job should be killed, and
maybeis being killed). As most of these jobs only exceed their estinbg a short time, we enlarge
post-estimate predictions in a gradual manner: The firststiljent adds only one minute to the
old prediction. This will cover the majority of the underiesated jobs (Fig. 4.2, right). If this is
not enough, thé’” prediction correction addss x 2i~2 minutes (15min, 30min, 1h, 2h, etc.).

The results of adding prediction correction are shown in. lab. This compares the origi-
nal EASY with a version that uses user estimates as predgctod adds prediction correction
(EASYpcor), and a version that combines prediction correction witktesy-generated predic-
tions (EASY"). Note that while EASY:cor employs user estimates as predictions, correction is
still needed to handle the underestimated jobs discusskereRrediction-correction by itself has
only a marginal effect, because only a small fraction of tiesjare grossly underestimated. The
real value of prediction correction is revealed in EASYvhere system-generated predictions are
added: results show a significant and consistent improveafarp to 28% (KTH's slowdown in
Tab. 4.2). This is an important result that shouldn’t be talightly. The fact that historical infor-
mation can be successfully used to generate runtime pi@akats known for more than a decade
[48]. Our results in Tab. 4.2 demonstrate for the first timat this may be put to productive use
within backfilling schedulers, without violating the coatt with users. Moreover, the overhead is
low, with predictions corrected only 0.56—0.63 times onrage per job.

Note that obtaining the reported improvement is almost fi&leone has to do is create pre-
dictions as the average runtime of the user’s two most rgobatand set an alarm event to correct
those predictions that prove too short. Importantly, tlieginot change the way users view the
scheduler, allowing the popularity of EASY to be retainethaly, note that this scheme signif-
icantly improves the average accuracy, which can be up tbldduBLUE) and is stabilized at
60-62% across all four traces when using EASY
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trace wait [minutes] b. slowdown accuracy%] avg. Corr.[+o]

EASY | EASY EASYT | EASY | EASY EASYt | EASY | EASY EASY ™t EASY EASY™T
PCOR all PCOR PCOR PCOR

SDSC 363|360 -1%/| 326 -10% 99| 93 -6%| 86 -13% 32| 32 +0%| 60 +87%)| 0.09+0.33 | 0.5610.64

CTC 21| 21 +0%| 16 -26% 46|45 -2%|3.3 -27% 39| 39 +0%| 62 +61%]| 0.12+9.41 | 0.63+0.69

KTH 114|115 +1%]| 96 -16% 90| 90 +1%| 65 -28% 47| 47 +0%| 60 +28%]| 0.02+0.24 | 0.53+0.57

BLUE 130| 128 -1%]| 102 -21% 35| 36 +1%| 26 -25% 31| 31 +0%| 61 +100%| 0.13+9.48 | 0.60+0.69

avg. -0% -18% -2% -23% +0% +69%| 0.09 0.58

Table 4.2: Average performance, accuracy, and overhead for scheaaizmts. EASYcor adds pre-
diction correction (needed even when user estimates semeedictions, as these are occasionally smaller
than runtimes). EASY further adds system-generated predictions, replacinmatss. As before, shaded
percents are changes relative to EASY; negative valuesca fpr wait/slowdown, positive ones are good
for accuracy. Right most metric shows the per-job averagdiption-correction numbet( std. deviation).

4.2.3 Shortest Job Backfilled First (SJBF)

A well known scheduling principle is that favoring shorteb$ significantly improves overall
performance. Supercomputer batch schedulers are one f@tgpes of systems which enjoy a-
priori knowledge regarding runtimes of scheduled taskgtivr through estimates or predictions.
Therefore, SJF scheduling may actually be applied. Momgegeseral studies have demonstrated
that the benefit of accuracy dramatically increases if gngobs are favored [62, 138, 174, 115,
15, 131]. For example, Chiang et al. [15] show that when @ptpuser estimates with actual

runtimes, while ordering the wait queue by descendings"= + I, average and maximal wait

times are halved and slowdowns are an order of magnitude.fowe

Contemporary schedulers such as Maui can be configureddo fastimated) short jobs, but
their default configuration is essentially the same as in Ef&] (SJF is the default only in PBS).
This may perhaps be attributed to a reluctance to change S€Rantics perceived as being the
most fair. Such reluctance has probably hurt previouslygestgd non-FCFS schedulers, that
impose the new ordering as a “package deal”, affecting batikfidling and reservation order (for
example, with SJF, a reservation made for the first queuetig¢tiis the shortest job, rather than
the one that has been delayed the most). In contrast, we SiugggEarating the two.

Our scheme introduces a controlled amount of “SJFnesshreserves EASY’s FCFS nature.
The idea s to keep reservation order FCFS (as in EASY) santhgtb will be backfilled if it delays
the oldest job in the wait queuén contrast, backfilling is done in SJF order, that is, Sésirdob
Backfilled First — SJBF. This is acceptable, as the first-fite@se of backfilling is a departure
from FCFS anyway. We argue that in any case, explicit SIBFdsemsensible than “tricking”
EASY into SJFness by doubling [174, 108] or randomizing [ldfimates (see Sec. 4.5).

Results of applying SIBF are shown in Tab. 4.3. In its simplession this reordering is used
with conventional EASY (i.e. using user estimates and ndiption correction). Even this leads
to typical improvements of 10—20%, and up to 42% (BLUE’s laechslowdown).

Much more interesting is EASY" which adds SJBF to EASY (namely combines system-
generated predictions, prediction correction, and SJBRis usually results in double to triple

4Recall thatT,, andT,. are wait- and run-times. Short jobs are favored since theenator of the first term rapidly
becomes bigger than its denominator. The second term isladde effort to avoid starvation. We remark that this
priority is very similar to the LXF&W priority used in Chapt8, which was proposed by the same researchers.
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trace wait [minutes] b. slowdown accuracy%]

EASY| EASY |EASYYH|PERFECTTH|EASY| EASY |EASYtH|PERFECTY|EASY| EASY |EASYtt |PERFECTTT

SJBF SJBF SJBF

SDSC| 363361 -0%)327 -10%278 -23% 99| 87-12% 70 -29% 58 -42% 32 32 +0%| 60/ +8794100  +211%
CTC 21| 19-10% 14 -33% 19 -10%| 4.6/3.9-14%2.9 -37%2.8 -39% 39 39 +0% 62 +61%100  +158%
KTH 114{102-11% 95 -17% 91 -20% 90| 73-19% 57 -36% 50 -44% 47| 47 +0% 61 +28%100  +111%
BLUE| 130102-21% 87 -33% 87 -33% 35| 21-42% 19 -47% 13 -64% 31| 31 +0% 62+1029%4100  +225%
avg. -10% -23% -22% -22% -37% -47% +0% +70% +176%

Table 4.3:Average wait, bounded slowdown, and accuracy of EASY coetpaiith three improved vari-
ants. EASY gr just adds SJF backfilling (based on original user estimates)SY™+ employs all our

optimizations: system-generated predictions, prediatirrection, and SIBF. PERFECT is the optimum,

using SJBF with perfect predictions. Shaded columns shqwawement relative to traditional EASY.
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Figure 4.3:Relative performance of EASYY/ EASY" typically improves with medium or higher loads.

the performance improvement in comparison to EASY and EASY". Performance gains are
especially pronounced for bounded slowdown (nearly haindl UE). There is also a 33% peak
improvement in average wait (CTC and BLUE). This is quite liegsive for a scheduler with
basic FCFS semantics that differs from EASY by only a few dszénes of code. Even more
impressive is theonsistencyf the results, which all point to the same conclusion, asoepgd
to other experimental evaluations in which results depémuatethe trace or even the metric being
used [138, 39]. The accuracy of EASY is similar to that of EASY at 60—62%.

Finally, we have also checked the impact of having perfeatlistions when SJBF is employed
(here there is no meaning to prediction correction as ptiedis are always correct). It turns
out PERFECT™ is marginally to significantly better than EASY with the difference being
most pronounced in SDSC, the site with the highest load (Zab. further discussed below).
Interestingly, EASY " outperforms PERFECT" in CTC's average wait. This is due to subtle
backfill issues and a fundamental difference between CTCtla@dther logs, as analyzed by
Feitelson [39].

4.2.4 Varying the Load

All results in this chapter evaluate our suggested optitiuna using the workloads “as is”. Here,
through trace manipulation, we complement our measurenigninvestigating the effect of load.
Load is artificially varied by multiplying all arrival timeky a constant (see Chapter 2). Results
show that PERFECT?" is better than EASY™, which is better than EASY, which is better than
EASY (Fig. 4.3). Higher loads usually intensify the trendsnped out earlier, but the precise
effect of the optimizations is workload dependent. EASYoenefits are relatively small in SDSC,
especially under high loads; for KTH the biggest improvetracurs for intermediate loads of



66 Backfilling With System-Generated Predictions

algorithm optimization
prediction | replace estimatg SJBF
correction | with prediction
EASY
EASYprED v
EASYpcor
EASYs BF Vv
EASY+ Vv Vv
EASY++ Vi v Vi
PERFECT+ N/A (with runtime) Vv

Table 4.4:Summary of the algorithms used in this section, and the dpditions they employ.

around 70-80%; for CTC, the improvement over EASY grows Witd, and is most significant
towards 90%. Examining PERFECT, we see that in all cases accuracy becomes crucial as load
conditions increase, generating a strong incentive foeldg@ing better prediction schemes.

4.2.5 Optimizations Summary

To summarize, three optimizations were suggested: (1)igired correction where predictions
are updated when proven wrong, (2) simple system-genepagelictions based on recent history
of users, and (3) SJBF in which backfilling order is shortebtfjrst. All optimizations maintain
basic FCFS semantics. They are all orthogonal in the seasé¢hidy may be applied separately.
However, using system generated predictions without ptiedi correction leads to substantially
decreased performance. The combination of all three demsig yields the best improvement of
up to doubling performance in comparison to the default goméition of EASY. The algorithms
covered and the optimizations they employ are summarizédlin4.4 for convenience. The rest
of the chapter will focus on EASYand EASY".

4.3 Predictability

Previous sections have shown that, on average, replacergestimates with system-generated
predictions is beneficial in terms of both performance araigry. However, when abandoning
estimates in favor of predictions, we might Iggedictability. The original backfilling rules state
that a jobJ, can be backfilled if its estimated termination time does nolate the reservation
time R, of the first queued joly;. SinceJ, is killed when reaching its estimate, it is guaranteed
that.J; will indeed be started no later thdt. However, this is no longer the case when replacing
estimates with predictions, d#, is computed based on predictions, but jobs are not killednwhe
their predicted termination time is reached; rather, theysamply assigned a bigger prediction.
For example, ifJ, is predicted to run for 10 minutes ariti happens to be 10 minutes away, then
Jy will be backfilled, even if it was estimated to run for (say)etd hours. Now, if our prediction
turned out to be too short anfl uses up its entire allowed three houss,might be delayed by
nearly 3 hours beyond its reservation.

Predictability is important for two main reasons. One isghpport ofmoldablejobs [31, 138,
22], that may run on any partition size (according to [23%8% of the jobs are moldable). Such
jobs trust the scheduler to decide whether waiting for moes to become available is preferable
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trace rate[% of jobs] avg. diff. [minutes] median diff.[minutes] stddev diff.[minutes]
EASY | EASYT |EASYt+ | EASY | EASYT | EASY Tt | EASY | EASYt |EASYytt | EASY | EASYtT | EAsyt+
SDSC 17| 14 -18%| 15 -15% 171| 93 -46%| 91 -47% 64| 20 -69%| 19 -70% 471|174 -63%| 168 -64%
CTC 6.8/ 5.4 -19%| 5.7 -16% 51| 29 -43%| 27 -46% 8.3|2.2 -73%| 1.9 -78% 92| 74 -20%| 69 -25%
KTH 15| 14 -8%| 14 -8% 38| 35 -7%| 35/ -7% 6.3 3.2 -49%| 3.2 -49% 84| 90 +7%| 88 +5%
BLUE 9.6| 7.5 -22%| 7.8 -18% 68| 45 -33%| 45 -34% 16| 3.3 -79%| 3.4 -79% 212(191 -10%| 184 -13%
avg. -17% -14% -32% -34% -68% -69% -22% -24%

Table 4.5: Effect of predictions on the absolute difference betweeemetions and actual start times.
Rate is the percentage of jobs that wait and get a reservaBoth rate and statistics of the distribution
of differences are reduced with predictions, indicatingiaved performance and superior predictability,
respectively.

over running immediately on what's available now. Predidity is crucial for such jobs. For
example, a situation in which we decide to wait for (say) 3Gwies because it is predicted a
hundred additional nodes will be available by then, only nal fihat the prediction was wrong, is
highly undesirable. The second reason predictability igartant is that it is needed to support
advance reservations. These are used to determine whible sftes composing a grid is able to
run a job at the earliest time [96], or to coordinate co-altamn in a grid environment [83, 137],
i.e. to cause cooperating applications to run at the same dimdistinct machines. Note that in
this case underprediction is as bad as overpredictionfa.g.grid broker that must select where
to dispatch a job. Knowing that resources would becomeavailearlier could shift the balance.

The question is therefore which alternative (using esesat predictions) yields more credible
reservation times. To answer it, we have characterizedidtelaition of the absolute difference
between a job’s reservation and its actual start time. Bhanly computed for jobs that actually
wait, become first, and get a reservation; jobs that are bieckér started immediately don’t have
reservations, and are therefore excluded. A schedulereadi minimize both the number of jobs
that need reservations and the differences between tiseirvagtions and start times. Note that with
prediction correction a job may have multiple reservatidusng its life; we use the first for the
predictability measurements.

The predictor we use (in this section only) is slightly diéfiet from the one used in Sec. 4.2:
instead of using the last two jobs to make a prediction, weg aiske them if their estimate is
identical to that of the newly submitted job; otherwise, va# back on the user estimate. The
reason is that, in some respects, this is the optimal padictthis case; a full discussion of the
tradeoffs along with results for the predictor used so fargven in Sec. 4.5. Results are shown
in Tab. 4.5. Evidently, the rate of jobs that need a resesmas consistently reduced by 8-22%
when predictions are used, indicating more jobs enjoy biliokfiand reduced wait times. The rest
of the table characterizes the associated distributiosblate differences between reservations
and start times. Both EASYand EASY"* obtain big reduction in the average differences: e.g.
on SDSC, from almost 3 hours (171 minutes) to about an houadwadf (91 minutes). Reductions
in median differences are even more pronounced: they aeasit thalved across all traces, with a
79% top improvement obtained by EASY on BLUE. The variance of differences is typically also
reduced, sometimes significantly, with an exception of &b+Ycrease for KTH. The bottom line
is therefore that using runtime predictions consistenly significantly improves predictability of
jobs’ starting time.

Improving the quality of reservations on average is defraby. in grid context where it is
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trace] rate[% of jobs] avg. delayminutes] median delayminutes] stddev delayminutes]

EASY| EASY™ EASY*TT |[EASY| EASYt |EASYt+ |EASY| EASY™ EASYTt |EASY| EASYT |EASY T+
SDSC| 1.5(3.8 +1499%3.8 +150% 513| 92 -82%)| 86 -83% 0.9/8.6/ +896% 8.3 +859%)| 1442223 -85%|206 -86%
CTC 0.7|11.3 +81% 1.3 +83% 72| 37 -49%| 34 -53% 1.9{3.0 +62%|2.6 +43%)| 119(102-14%| 94 -21%
KTH 0.1/1.8+1518% 1.8 +1493% 58| 52 -11%| 44 -23% 0.7| 11 +15419%9.9 +1428% 108|107 -1%| 87 -20%
BLUE 0.9/1.8° +97%|1.8 +102%) 48| 35-28%| 31 -35% 0.8/2.2 +174% 2.1 +165%| 318|154 -52%)136 -57%
avg. +461% +457%) -42% -48% +668% +624%) -38%) -46%

Table 4.6: Effect of predictions on the delays beyond a job’s resesvatiWith predictions, the rate and
median delay are increased, but the average and standaatiafewf delays are reduced.

important to know that a job will start on time. (If site§ B declare they can run a job in 5/10
hours from the current time, respectively, then obviougl 4 will be chosen; however, if it turns
out that siteB could have executed the job in only 10 minutes from the caithere, and just didn’t
know about it because of low quality predictions, then obslg submitting the job tod was the
wrong way to go.) However, it is conceivable some systemsladvoare more about jobs being
delayed beyond their reservation, than started earlidr. 4& shows the rate of delayed jobs and
the distribution of actual delays. Even with plain EASY QL15% of the jobs are delayed, because
(as reported earlier) jobs sometimes outlive their usemases. Unfortunately, when predictions
come into play, the delays become much more frequent andveno3-3.8% of the jobs. On
the other hand, both the average delay and its standardtideveae dramatically reduced, e.g.
SDSC'’s average drops from about 8.5 hours (513 minutesk®tiean 1.5 (86 minutes) and its
standard deviation drops at a similar rate. Medians valoesgever, increase by up to an order
of magnitude (KTH/SDSC), though in absolute terms they diréess than ten minutes. This
indicates that EASY’s delay-distribution is highly skewastd that our techniques curb the tail, at
the expense of making short delays more frequent.

Nevertheless, there are two solutions for systems that ttwlevate delays. One is to employ
double booking: leave the internals of the algorithms basegredictions, while reporting to
interested outside parties about reservations which wioaNé been made based on user estimates
(never violated if jobs are killed on time). This solutiorj@ys EASY**’s performance but suffers
from EASY’s (in)accuracy. The other solution is to backfdbg in prediction order, but only if
their user-estimated termination falls before the red@ma This ensures backfilled jobs do not
interfere with reservations, at the price of reducing thekfiing rate. Indeed, this algorithm
enjoys all the benefits of the+” variants in terms of internal accuracy, while being simita
better than EASY with respect to unwarranted delays. As éofgpmance, it is 1-10% better than
that of plain EASYs ;5 (Tab. 4.3).

4.4 Relationship With Other Algorithms

Our measurements so far have compared various schedulisgiss, culminating with EASY",
against vanilla EASY. However, other variants of backfglschedulers have been proposed since
the original EASY scheduler was introduced. In this respeid desirable to explore two aspects:
comparing EASY " against some other generic proposals, along with invesim¢he effect of
directly applying our optimization techniques to the otbelnedulers themselves.

We have chosen to compare EASYagainst the two generic scheduling alternatives that were
previously mentioned in this chapter: EASY with doubledrusstimates (denoted 2), and SJF
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trace wait [minutes] b. slowdown accuracy%)

EASY X2 SJF EASY*TT | EASY X2 SJF |EASYTt|EASY X2 SJF EASY*++
SDSC| 363|333 -8%]535 +47%|327-10% 99| 89 -10%| 69 -30%| 70 -29% 32| 16 -49%| 32 -0%| 60/ +87%
CTC 21| 20 -8%| 13 -38%| 14/-33% 4.6|4.1 -10%| 2.8 -40%|2.9 -37% 39| 20 -49%| 39 +0%| 62/ +61%

KTH 114{102/-11%| 79 -31%| 95/-17% 90| 80 -11%| 45 -50%| 57 -36% 47| 24/-50%| 47 -0%| 61 +28%
BLUE 130{115/-11%| 81 -38%| 87/-33% 35| 30 -15%| 25 -29%| 19 -47% 31| 16 -47%| 31 +0%| 62 +102%
avg. -10% -15% -23% -12% -37% -37% -49% +0% +70%

Table 4.7:Average wait and bounded slowdown achieved by EASYompared with two other schedulers
proposed in the literature: doubling user estimates an@juSiJF scheduling.

trace doubling shortest job

wait [minutes] b. slowdown walit [minutes] b. slowdown
x2| X2t | x| X2PF | X2t HIX2| xot X2, | xott | xobt [sur| SuFT |SUFep |STF| STFT [STFp
SDS(|333357 +7%/293-1294333 -0%/270-19% 89| 94 +6% 77-13% 67-25% 58-34% 535308 -42%270-50% 69| 34 -519%] 19-73%
CTC | 20 16-18% 18 -8% 15-25% 16-16% 4.1/3.6-13943.2-21943.0-28%2.5-38% 13 12 -11% 12-11% 2.82.4 -129%1.8-35%
KTH |102 98 -4% 95 -6% 93 -8% 84-18%4 80| 66-18% 70-13% 53-33% 50-38%| 79 87+10% 67-16% 45| 44, -2%]| 24-46%
BLUE|115105 -9% 107 -8% 86-26%4 80-31%4 30| 33 +8%) 28 -7% 21-3294 12-59% 81 90+119%4 50-39% 25| 37+49%5.4-78%

avg. -6% -8% -15% -21% 4% -149  -30%  -42% -8% -29% -4%|  -58%

Table 4.8:Average performance and (shaded) improvement when ofitignizanilla X 2 and SJF.

based on user estimates (as a representative of seveeaédiftchemes that prioritize short jobs).
The results are shown in Tab. 4.7. EASYoutperformsX2 by a wide margin for all traces and
both metrics. It is also rather close to SJF scheduling isadkes, and outperforms it in one case
(SDSC'’s wait) where SJF fails for an unexplained reason.aflvantage over SJF is, of course, the
fact that EASY" ™ is fairer, being based on FCFS scheduling with no dangeranfation. Also,
the gap can potentially be reduced if better predictiongarerated.

As mentioned earlier, EASY" attempts to be similar to prevalent schedulers’ defauttregt
(usually EASY [37]) in order to increase its chances to repldnem as the default configuration.
But the techniques presented in this chapter can be usedhtmesany backfilling algorithm.
Tab. 4.8 compares vanillA2 and SJF to their corresponding “optimized” versions: Iniaold
to doubling of estimates (recall that these serve as fatlippedictions when there’s not enough
history), X2 replaces estimates with (doubled) predictions, and ensgbogdiction correction.
X2+ adds SJIBF t&(2". Finally, SJF is similar to EASY"*, but allocates the reservation to the
shortest (predicted) job, rather than to the one that had/éihe most. The theoretical optima
of X2, X2**, and SJF, are X2,.,;, X2/ 1, and SJE., respectively (use perfect estimates
instead of system-generated predictions).

Tab. 4.8 shows that switching froii2 to X2+ can better performance (up to -18% in CTC'’s
wait and KTH'’s slowdown) or worsen it (up to +8% in BLUE’s sldawn), though improvements
are more frequent and on averagél2™ is 4-6% better thanX2. When further optimizing by
adding SJBF X2*1), performance is consistently better, with a common improgent of 25-
33%. The result of upgrading SJF to SJiB once again inconsistent among traces/metrics, but
here too improvements are more frequent (4-8% on averaga)l. dases, using prefect predictions
(X2perp, X207, and SJF., ) leads to consistent improvements in performance, inidigtrior

perf’
inconsistency steamed from our simplistic predictor andivating the search for a better one.

5SJF and SJE are equivalent because both employ SJBF by definition.
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trace performance accuracy| prediction DYabs DYdelay
wait [min] b. slowdown rate [job %] | rate [job %] minutes rate [job %)] minutes

imm all imm all imm all imm all imm all imm all imm all imm all

SDSC 363327-10% 81| 70-13%) 56| 60 +8%| 59 89 +52% 15 12-21% 91|98 +8%| 3.85.0 +30% 86150 +74%
CTC 17| 14-16% 3.6/2.9-20%)| 59 62 +6%| 63| 90 +44% 5.7/5.1-11% 27|27 -1%| 1.31.7 +26% 34 53 +56%
KTH 98| 95 -3% 67|57-15%| 58/ 61 +5%| 39 84+115% 14 11-22% 35 63+78%| 1.83.6+106% 44/149+236%
BLUE| 100 87-13% 19| 19 -2%| 59 62 +5% 70 90 +29% 7.85.2-33% 45/ 65+46% 1.82.0 +10% 31|136+333%
avg. -10% -12% +6% +60% -22% +33% +43% +175%

Table 4.9:Comparing themmediate andall versions of EASY ™ : py.s relates to metrics from Tab. 4.5
(absolute difference between start time and reservation),., relates to metrics from Tab. 4.6 (delay
beyond a reservation). Thal version is-~10% better in terms of average performance and 6% more
accurate. Nevertheless, despite its improved accurasgeins to loose in predictability: itg.,s rate is
11-33% lower (good), but the actual difference might be 78¢hér (KTH); worse, both rate and duration
of delayed jobs are significantly increased (KTH’s rate iglled, BLUE's delay is more than quadrupled).

4.5 Does Better Accuracy Imply Better Performance/Predicbility?

This study is based on the notion that superior accuracylghesult in improved performance
(better packing) and predictability (better individuahtime predictions). However, we have also
witnessed several occasions in which these metrics appeantlict. This issue has been largely
dealt with in the previous chapter. But (1) in order to clos@e loose ends from previous sections,
and (2) to argue that, similarly to multiplying of user esti@s, multiplied predictions shouldn’t
be used as a model for “worse” predictérand (3) for completeness, we also conduct a short
discussion here.

The first and most obvious (though already addressed) example isLEAgpage 9), where
deliberately making estimates less accurate by doubliegn ttonsistently improves performance.
A secondexample is related to the predictor switch done in Sec. 4@&odghout this chapter
we've used what we call aall prediction window, where the last two terminated jobs byshme
user were used for prediction, regardless of their attedbuln contrast, in Sec. 4.3 we've used an
immediate window, in which we generate a prediction only if these twbgdave user runtime
estimates that are equal to that of the newly submitted jebthey are “similar”). The fact of the
matter is thaall (which is more accurate) is better for performance, whereasediate appears as
better for predictability (Tab. 4.9). Furthenldard example is that the performanceiofmediate-
EASY* and X2 is very similar (Tab. 4.10). These schedulers are ideniticadery respect, except
EASY" uses runtime predictions, where&Q uses something that is even less accurate than user
estimates (user estimates that are doubled). The fact the/ild similar performance might
prompt a reader (who did not fully absorb the implicationofapter 3) to raise the question of
whether it is worthwhile to even bother with runtime prediaot

This section addresses the question implied from the txamples, namely, what makes accu-
racy, performance, and predictability seem contradi@dgginning with why doubling estimates
helps performance, we simply note that this question wasadir addressed to its full in Chapter
3. The bottom line was that due to the heel-and-toe dynamwigat X 2 is really doing is trading
off FCFS-fairness for performance. Indeed, when doublésal user estimates the “heel and toe
effect is greatly amplified (Tab. 4.11).

5A methodological mistake already done by Guim et al. thdofedéd up on our work [64].
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trace|wait [minutes]b. slowdowr trace|stalled ratge]| stall time[min] | avg. thieves #
imm X2 imm X2 EASY X2 EASY X2 EASY X2
SDSC| 343333 -3%| 9289 -3% sbsc| 7.2 11/+49%  91]137 +50% 1.92.1 +9%
CTC | 18 20 +7%| 3.7/4.1+10% CTC 9.111 +9% 35 50 +4294 2.5(2.8 +10%
KTH | 108102 -6%| 79 80 +2% KTH 7.0 11 +619%  51/107+1119% 1.62.3 +45%
BLUE| 121/115 -4%| 31/ 30 -3% BLUE| 9.212 +29%  54/118+119%  2.3(3.1 +33%
avg. -2% +2%) avg. +39% +80% +24%

Table 4.10: X2 andimmedi- Table 4.11: “Heel and toe” effect is amplified due t&2. Rate is

ate EASY ™ yield similar per- the percent of jobs that had their earliest start time pudiaedt due to

formance despite the fact theyhe effect, out of waiting jobs that got a reservation. Siate is the

are identical except the latter imaverage period between a job’s earliest start-time (coetpatcording

proves predictions whereas th® perfect estimates) and its actual start-time. “Thievieslicate the

former worsens them. per-job average number of times the earliest start-timassed back (3
times forJs in Fig. 3.5, page 41).

Based on this analysis, it should be clear that comparingd®mtiX 2 andimmediate EASY*
(Tab. 4.10) is actually comparing between two differentetyf unrelated andrthogonalop-
timizations: favoring shorter jobs vs. improving predicts. Thus, as was well established in
Chapter 3 in relation to user estimates, doubling of preahcthould be viewed as a property of a
schedulernot the prediction algorithm. Indeed, both Fig. 1.2 and Tab.iddicate that doubling
of improved predictions (whether perfect or based on hy3tgields better performance than when
doubling the lower quality user runtime estimates. We atfaépredictors should strive to make
the best predictions they can, and leave the choice of whidlexercise the performance/fairness
tradeoff to the scheduler, where it belongs. In any caseyaluation of the implications of pre-
diction mistakes, where “mistakes” actually means mujtigj predictions [64], would simply be
dominated by the tradeoff and will not teach us anything new.

The remaining open issue is thadt, which is more accurate, seems less predictable ithan
mediate in Tab. 4.9. Neverthelesall is actually more predictable. First, consiget,,s. While
the absolute difference undenmediate is reduced, the rate of jobs that suffer such a difference
is significantly higher. To see which of the two metrics havaenimpact (rate or difference), we
computed the average difference with respedeitthe jobs in the log (product of Tab. 4.9's “rate”
and “minutes” columns, divided by 100). This reveals takhtis actually more predictable than
immediate in 3 out of the 4 log<.

As for pygeqy, We note that this metric is actuallyery problematic and should not be used
alone. For exampleX2 obviously reduces the accuracy of estimates, but has mwetr }ay,.;,,
than using the estimates as is, because it computes resasvhised on unrealistically too-long
predictions; tripling the estimates would make the effe@nemore pronounced. Likewisan-
mediate produces less predictions that and therefore falls back on user estimates more often
(Tab. 4.9’s prediction rate). This explains wimymediate is less accurate. Additionally, as esti-
mates are bigger than predictions (by definitiommediate’s reservations are further away in the
future. In other wordspya.i, iS @an unreliable predictability metric as it only accounts fone
side to the coin”: jobs that rulater than their reservation.

"The number associated witmmediate are 13,1.5, 4.6, and 3.5 minutes for SDSC, CTC, KTH, and BLUE,
respectively; the numbers fafl are 11, 1.4, 6.7, 3.4.
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4.6 Tuning Parameters

The EASY* algorithm has several selectable parameters that mayt affeiormance. We have
identified seven parameters (formally defined later on)dhamainly concerned with the definition
of the history window which previous jobs to use, and how to generate the predictsome of
these parameters have only two optional values, while stig@re a wide spectrum of possibilities.

To evaluate the effect of different settings, we simulatk@,640 possible parameter combina-
tion, henceforth called¢onfigurationsusing our four different workloads. This led to a total of
nearly 35,000 simulations (8,640 times the 4 traeshere each simulation yielded two perfor-
mance metrics (average wait and slowdown). Thus, each cwafign (that is, parameter combina-
tion) is evaluated by eight trace/mettestcase${ SDSC,CTC,KTH,BLUE x {wait,slowdowr}).

The results of the simulations indicate that the “perforogesurface” is extremely noisy. There
are many different and seemingly unrelated configuratioasachieve high performance, but there
is no single configuration that is best for all eight testsase order to provide effective guidance
in choosing the parameters we therefore performed a joalysis of all the data. Our goal is to
find the best configuration, where “best” means robust godpeance under all eight testcases.
We anticipate that such a configuration will also performlwelder other conditions, e.g. with
new workloads, as will be explained below.

The analysis is done as follows. We start by ranking all 8 &attfigurations (parameter com-
binations) in two steps. First, we evaluate the “degradatiqperformance” of each configuration
c under each trace/metric testcas@&his is done relative to the best performing configuratidor
that testcase, as follows: |€ and P. be the performance @éfandc undert, respectively, then’s
degradation underis defined to belOOPC 100. Thus, each configuration is now characterized
by eight numbers, reflecting its relatlve performance digfian under the eight testcases. In the
second step we average these eight values and the confogusratie ranked accordingly: the best
configuration, with théowestaverage performance degradation, has rank 1; the worsgooafi
tion has rank 8,640. Even with this ranking, the top confijares are rather diverse (Tab. 4.12;
parameters will be discussed shortly).

It is important to note that our methodology is findingc@ampromisethat reflects all eight
testcases. For example, the top ranking configuration igapstanked for any of the testcases
individually. Instead, it suffers a degradations rangiranf 4.1% to 21.8% relative to the best
configurations for each testcase. But its average degoadatonly 9.4%, which is lower than the
average of any other configuration.

Recall we are searching foobustconfigurations. This robustness should manifest itself by
being immune to trivial changes and small modification. Tégranking configuration does not
qualify as such: it uses 11 jobs for its prediction window, Wwhen this value is replaced with 12,
the associated configuration is ranked 1,295 and suffeublethe average performance degra-
dation. It would be ludicrous to assume 11 is a magic numbértamecommend using it based
on this analysis. We therefore search focantiguous subspacoeithin the configuration space
(namely, a set “nearby” configurations), such talhits population yields good results.

The distributions of the different parameter values arevshio Fig. 4.4, and we now discuss

8Product of the number of different values each parameterimaag. Following the left-to-right parameters’ order
in Fig. 4.4, thisis3 x 2 x 2 x 2 x 4 x 3 x 30 = 8, 640; see detailed explanation below.

9Some combinations were actually equivalent and were tbegehly done once; an example is making predictions
using the average, median, maximum, or minimum of histolog jwhen there is only one history job.



4.6 Tuning Parameters 73

rank average configuration

performance| window | window | fullness| metric | fallback | propagation| prediction
degradation size type correction
1 9.41% 11 all partial avg est yes estimate
2 10.60% 3 ext full avg rel yes estimate
3 10.84% 16 all full med rel yes estimate
4 11.16% 21 all partial | med rel yes estimate
5 11.25% 10 all full med est yes estimate
6 11.31% 4 ext partial min rel yes estimate
718 11.47% 9 all partial | med rel/est no estimate
9 11.56% 2 ext full min est yes estimate
10/11 11.61% 22 all partial | med rel/est no estimate

8640 239.88% 26 all full min est no gradual

Table 4.12:Top and bottom ranked configurations.
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Figure 4.4:Distributions of ranked configurations, as a function ofreparameter. Rank values (X-axis)

are converted to percents by dividing them with 8,640. Caméiions are aggregated into 5%-sized bins.
For example, with prediction correction (left subfiguredpat 90% of the 5%-top-ranking configurations

are associated witkstimate and the remaining 10% are associated withonential.

each one in turn, starting with those that are easiest tacteize (left to right). The first param-
eter is how to perfornprediction correction (when the predicted termination has arrived but the
job continues to run). One option is to simply revert to thigioal userestimate. Other options
are to grow the predictiogradually (by predefined increments as in Section 4.2), or iregpo-
nential manner (by adding e.g. 20% each time). The results (Fig.l&f#},clearly indicate that

it is best to jump directly to the full usexstimate, and not to first try lower predictions, as this
option dominates 90% of top-ranked configuration. This @bpbly so because using the full user
estimate opens the largest window for backfilling. Usirggadual increase is especially bad, and
dominates the bottom half of the ranked configurations.

When we cannot generate a prediction due to lack of histanéarmation, we use the user
estimate as arediction fallback. Theestimate can be used as is, or it can bedatively scaled
according to the accuracy the user had displayed previq8f]. The results (Fig. 4.4, “fall-
back”) show thatelative provides a slight advantage, as it appears more often in riaigking
configurations.

The next two parameters (“propagation” and “fullness”hed out not to have such decisive
results, at least not when considered in isolatPrpagation refers to the action taken when new
data becomes available. For example, if we make a predifdicannewly submitted job, and later
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a previous job terminates, should we update the predictasedb on this new information? The
second is windoviullness The window is the set of history jobs that is used to gengregdic-
tions. The two options are to allowpartial window, meaning that a prediction is made based on
whatever data is available, or to requireui window and use the user estimate as a fallback if not
enough jobs are available. For both these parameters, fisébpovalues are approximately evenly
spread across the ranked configuration. The slight advamtiggropagation seems not enough to
justify its computational complexity. On the other hapdrtial is significantly better when larger
prediction windows are employed (not shown).

The last three parameters have intricate interactionsattiagventually lead to the configura-
tion subspace we seek. The first is irediction metric. Given a set of history jobs, how should
a prediction be generated? Four simple options are to usavdrage, median, minimum, or
maximum of the runtimes of these jobs. Evidentiginimum tends to lead to a low-ranking con-
figuration, and thenaximum to a middle rank. Thaverage and themedian share 80% of the
top-ranked configurations, leaving the question of whicé simould be used.

A harder question occurs with theindow type. The three types arall, meaning that all
recent jobs are eligiblammediate, meaning that recent jobs are used only if they are similar
to the new job (same estimate), @ttended, meaning similar jobs are used even if they are not
the most recent (using the entire user history). The probethat theall distribution has a U
shape: it accounts for more than half the top-ranked cordtgunrs, but also for two-thirds of the
lower-ranked ones.

Finally, a third difficult question is how to set tlendow size (the number of history jobs to
consider). We simulated all sizes in the range 1-30; thelgf&ig. 4.4, right) shows them in bins
of 5. Smaller windows are more common in high-ranking comfigans, but there is no range-size
that can be said tdominatehigh-ranking configurations.

To solve these problems we need to employ additional coraidas, and to carefully study
the interactions among the problematic parameters. We wsitdr the window type parameter.
There are actually big advantages to usingath&indow type. First, its evident top ranking peak.
Second, it is easier and more efficient to implement, becaesest need to keep a record of the
runtimes of the last terminated (and most recently subdjijtebs by the user, and do not need to
check for job similarity. The problem is that many configizas that employ aall window type
are low ranking. The question is therefore whether we cardaliem (and how). Luckily, this can
be done by a judicious choice of the other parameter values.

Specifically, there are 1298 configurations in the bottonkea 30% that employ aall win-
dow type. Of these, only 194 use tlestimate directly as a prediction correction. As using
estimate was shown above to be obviously beneficial, this helps eltei85% of the problem-
atic configurations. Of the remaining configurations, 186 tiieminimum prediction metriand
employ a relatively large prediction windowr (7, with average of 18.8). It turns out the huge
tail of minimum (Fig. 4.4) is mostly associated with large window sizes, #rad increasing the
window size consistently worsen the average degradatimssall configurations. In fact, Fig.
1.19 (page 26) shows the connection between size and dégragaalmost linear (both average
and variance), with the exception that 2 is slightly betemnt 1.

The bottom line is that using ail window-type is actually safe in combination wiglstimate
prediction correction and a small window size (7), eliminating more than 99% ddll’s tail
configurations and clearly making it the best choice. Indé¢leid subspace seems to meet our
robustness demands, as is shown in Fig. 4.5 (left), becdiuse@nfigurations are high ranking.



4.6 Tuning Parameters 75
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Figure 4.5:Left: chosen subspace (typak correctionestimate) with decreasing window size. Others:
parameters distribution within the smallest shown subsgsize< 3).

parameter |description suggestion perf. degradationsize=1size=2 full space
window sizehow many history jobs to considef1-2 min 11.799 12.0% 9.4%
job selectionwhich jobs to include in the windoyall max 15.3%9 14.7% 239.9%
metric how to generate predictions average average 14.29913.4%  30.4%
correction |how to increase too-short predictiquser estimate std. deviation 1.2% 0.7% 10.1%

Table 4.13:Suggested settings for EASY (left), and performance degradation statistics of sizeside=2
configurations within this chosen subspace, compared tstétistics of all 8,640 configurations (right).

Accordingly, we choose to limit the window size of our choseibspace to be 3. The rest
of the sub-figures explore the remaining parameters withisidubspace. Clearly, average is the
preferable metric. Additionally, 1-2 sized windows arefprable over 3. However, it is hard to
decide between the two because size=2 dominates the top (ai%he worst-case of size=1 is
better than that of size=2, and so we seem to have a tie. Asdnerlso no clear winners within the
other parameters, we conclude by summarizing our recomatiemd in Tab. 4.13, which match
the prediction algorithms used in this chapter.

Note that our conclusions are in disagreement with prewaur&: Gibbons used all the history
available [62], and Smith et al. experimented with a limikestory just to reduce the size of the
search space, implying a preference for the full history6[3ge 129]. However, they did not
show results. We too intuitively felt that when using higtat information, it would be necessary
to focus onsimilar jobs, i.e. those with the same partition size, executalsmate, etc. This
has motivated the definition of tlextended window type. However, the results clearly show that
recencyis more important than similarity (Fig. 1.19, page 26) — ib&tter to use the last job by
the same user than to search for the most similar job. Thifiesthat the overheads for storing
and searching through data about different classes ofriigibs (as is done in e.g. [136, 138,
83, 86, 96]) can be avoided altogether. Arlitt et al. reacAesimilar conclusion in the context
of the World Wide Web, contending “only the topmost stackredat is seeing significant reuse”
when predicting a destination of a work session based onghesuhistory stack[6]. Likewise,
Isci et al. reached a similar conclusion when predictingnfeenory-references to operations ratio
for the next 100-million operations phase: they conclud&dbietter to use the ratio of the last
phase as a predictor, than to use an 8-sized prediction wind@ven a variable sized prediction
window [71].

Finally, we remark that in addition to preferring to use &kigable history, Gibbons also used a
different prediction metric: the 95th percentile of histgmbs [62], which is close to the maximum
metric, and was shown above to be inferior to the average.
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4.7 Conclusions

For the conclusion of this chapter, we refer the reader td&@ec.3 (page 125).
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Chapter 5

Modeling User Runtime Estimates

5.1 Introduction

Context This chapter was fully introduced in Sec. 1.2.2 (page 11) 8ead. 1.3.2 (page 21),
which also conducted a detailed survey of related work. fBrieackfill systems mandate users
to provide runtime estimates for all the jobs they submitichfare then used by the scheduler for
better packing. This was shown to improve utilization, tigbput, and turnaround time. However,
the strict policy of backfilling systems to (1) kill underiesated jobs, while (2) rewarding jobs
with tight estimates (with increased chances for backg)lirhas failed to deliver, as in spite of
it, user estimates turned out to be highly inaccurate (Fi4, fpage 13). The previous chapters
have thoroughly demonstrated that this inaccuracy hasiaideeffect on performance, and that
estimates are an important and influential parameter witienworkload experienced by paral-
lel machines. In fact, estimates are important enough tocobsidered alongside the three most
important job attributes: arrival time, runtime, and sidde starting point of this chapter is not-
ing that in contrast to the latter three attributes, whichehaeenextensivelystudied and modeled
[46, 30, 77, 17, 20, 170, 99, 105], estimates were largelyented in this respect. The reason is
most probably related to the misperception of inaccurdtienases as not affecting or improving
performance, best articulated in a recent paper by Englieald [84] that claimed

ROBUSTNESS CLAIM
“Our results support those of a previous work and also inticdat backfilling is robus
to inaccurate run time estimates in general. It seems thah w@spect to backfilling
what the scheduler doesn’t know won't hurt it”

—

In Chapters 3 and 4 we have proved this claim, along with tbeeaientioned previous work,
wrong. The goal of this chapter is therefore to close the riaglgap.

The Need For an Estimates Model The purpose of any good model, and hence an estimate-
model, is to truthfully reflect reality. It is needed for threeasons. First, it is useful as part of a
general workload model of parallel machines that allowsvadid performance evaluations, e.g.,
to study different job scheduling schemes by means of simonla (Simulations are particularly
valuable when evaluating system designs; here, a modeiis mexit is its flexibility, allowing an
evaluation of multiple configurations without having towdty build the respective systems.)
Second, it is often the case that estimates data is absemtefktsting log files of production
systems [110], e.g., when those employed a non-backfillkdbe Similarly to models, real logs
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can also be used to drive simulations (the approach takemrrirwork). While not as flexible
as models, real logs have the advantage of being truly reptas/e of what really goes on in
production systems, eliminating the concern that the alnasadel might have neglected to reflect
some important aspettAn estimate model can artificially add the missing informatio the log.

Indeed, an important product of our work in this chapter igibityi(available for download
at [155]) that gets as input a log in “Standard Workload Fdtrfial 7] and appends to it estimates
information. This utility can be used to complement botH praduction log-files and outputs of
previously suggested models. Specifically, we advocatethigashould replace thg-model and
®-model (addressed below), which have been used for thisoparpp till now.

The third reason for the need for a model, is that it allowsaateeper understanding of the
nature of the workload, with which the associated systemstroope. This can often provide
helpful insights as to “what went wrong” and as to how can aesysdesign be improved to
rectify the problem. To illustrate this, note that while @kexr 4 (that deals with improving the
system rather than understanding it) appears before thigtet) chronologically, the order was
reversed (see publication dates of [157] and [156]). Indeaty after we modeled the estimates
and understood their modal nature and its dire implicatiorbackfilling, did we come up with
the idea presented in Chapter 4, about how to improve egghauality in a manner usable for
backfilling. Thereal motivation for Chapter 4 and its simplistic prediction apgech was our
understandings based on this chapter: that, in contrasetequs work [62, 83, 138, 86, 97], one
in no way needs a sophisticated algorithm to overcome nitydadither, even a simple average
of recent jobs will do. After this, it became clear that theds should not be on the prediction
algorithm, but rather, on how to exploit its output for th&eaf backfilling. The bottom line is that
only throughunderstandinghe workload were we able to understand how to improve thigdes

We therefore note that, in contrast to the previous chaftierone targets the first two above
reasons. Namely, here we aim to understand, model, andtnefédity, not to make it better.

The Need For Estimates Altogether As noted above, the quality of estimates has a dramatic
effect on the performance of systems, which makes them aortart and model-worthy attribute.
However, Chapter 4 have opened an intriguing possibilitydaisers from the annoying need to
provide estimates altogether. While our prediction aldpons above still make use of estimates for
prediction-correction and as fallback when not enouglohyss available, it is technically possible
to get by without this information. (We explore this idea I5P], but the details are beyond the
scope of this dissertation). Nonetheless, we argue th&trsgswith no user estimates all (that

is, with no runtime upper bound) are undesirable, as theleallw jobs to run indefinitely,
potentially overwhelming the system (e.g. consider runalaygy jobs). Thus, it appears such a
policy is inadequate for supercomputers. At the very leastwould expect users to choose some
runtime upper-bound from a predefined set of values (pgssikdociated with different system
gueues). However, we will show below that this scenario tkaasimilar to reality anyway, as
most users are already limiting themselves to very few caabfround” estimates. It turns out
there is actually no fundamental difference between algwisers to choose “any value”, or from
within a limited set. The bottom line is that regardless of possible scheduling improvements
or changes, it seems a parallel workload model will not bepdete if realistic user estimates are
not included.

1This concern is acute: suggested models were often foudednate or lacking after they were put into use. One
example is Lublin’s model of rigid jobs [99], which Talby dt found to lack self-similarity [151].
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5.2 Existing Estimate Models and Their Shortcomings

As estimates were never “natively” incorporated within gmgviously-suggested general work-
load model, researchers were forced to artificially gereestimates by themselves. This was
done using three models that specifically targeted estsrditectly (runtimes, sizes, and arrival
times came from a different source: either from the outpua gfeneral model, or from a real
trace-file generated by a production system).

Complete Accuracy The simplest model is to assume that user estimates are etatyphccu-
rate. For example, such a model was used by [84, 145, 163,33), This approach has two
advantages: it is extremely simple, and it avoids the muskye of how to model user estimates
correctly. However, as witnessed by the data in Fig. 1.14€22) and Fig. 1.4 (page 13), itis far
from the truth.

The f-Model The second model, which is a generalization of the first,es'tmodel [47]. This
model assumes a job’s estimate is uniformly distributed-inf + 1) - r], wherer is the job’s
runtime, andf is a non-negative “badness” factor. Thus, wjth= 0, we get the above model,
but increasingly positiveg's supposedly model increasingly inaccurate estimatess mioidel
proved to be the most popular and was extensively used tdydy she impact of inaccuracy on
performance [146, 174, 108, 15, 142, 122, 34, 64], and tod&)ptement workloads that did not
contain estimates data but were simulated under backfglystem [169, 56, 58].

By Chapter 3, the generalizedmodel is actually worse than the previous modeK 0), as
positive f's suffer from all the shortcomings of a zefpand more. The bottom line was that tfie
model’s artificial-inaccuracy simply trades off fairness performance, which at best is reflective
of a scheduling policy, but is anything but reflective or thgact of real estimates on performance
(Tab. 3.17, page 52).

The ®-Model The third model is th&-model [108], which attempts to reproduce the accuracy
histogramin Fig. 1.4 (page 1.4). This model was describeeiail in Sec. 1.2.2 (page 11). The flat
histogram portion implies that/e = u, for estimate:, and a uniform random variabte< [0, 1].
Thus,e is modeled by /u. The model also artificially created the hump of failed joblea values,
and the 100% peak of underestimated job (the height of ttak pe&as denoted, and was set to
be a parameter of the model [171]). Although far less popthian thef-model, theb-model was
used for the same purposes, namely to complement worklbatisvere missing estimates data,
and to evaluate the impact of increased inaccuracy (by gtgcheducing®) [171, 170]. Similarly

to the f-model, theb-model ignored the per-site limit on runtimes and estimateg, ..., which
contradicts its assumption thats independent ofi: since estimates are bigger than runtimes, we
haver < e < E,..., Which means the bigger thethe moreu (= r/e) gets closer 1. In other
words,r andwu are proportional. And since is defined to be the accuracy, longer jobs (bigger
are always on the right of Fig. 1.4 (page 13), where accumatygh, while short jobs tend to be
on the left, at lower accuracies.

We note in passing that Cirne and Berman [20] suggested aIntwatetakes the opposite
direction in comparison to th@-model (see details in Sec. 1.2.2). They assumexgiven and
that the model should generatedr his methodology suffers from the same problem as theralgi
model, because accuracy is again independent of runtime.

Lack of Repetitiveness In addition to the per-model shortcomings listed aboveretlage two
drawbacks from which all models collectively suffer: Thefiis lack of repetitiveness: The work
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of users of parallel machines usually takes the form of tenaddmursts of very similar jobs, charac-
terized as “sessions” [173, 133]. In SDSC for example, thdiarevalue of the number of different
estimates used by a user is only 3, which means most of theias=mjobs look identical to the
scheduler. In the next chapter (and in [160, 54]) we showdhelh repetitiveness can have decisive
effect on performance.

Lack of Modality The second shortcoming of all models is a direct result ofitse estimates
form a modal distribution composed of very few values, a faat is not reflected in any existing
model. Modality was shown above to be particularly harmfiuthie context of backfilling. While
this was largely revealed during the development of the miodee described in this chapter, we
already considered the issue in great detail (Section &gk @8). Thus, we only conduct a short
discussion here regarding the bottom line.

Jobs that use the maximal allowed estimatel,, — cannot be backfilled (see proof in
aforementioned section). Therefore, the fagt,, is always a very popular estimate (typically
the most; see Fig. 1.14, page 22) has a detrimental effecedarmance. At the extreme, if all
jobs usedt,,..., backfilling activity would completely stop (except from thre “extra” nodes; see
Fig. 3.14 page 49) and the schedule would largely revertaimpiCFS. The observation regarding
E,... is true to some extent for all the other modes (= popular egés), as in general, if the
estimates distribution is dominated by only a few large nsp@erformance is negatively effected,
because less variance among jobs means less opportuoittas scheduler to perform backfilling
using existing holes. In addition, many scheduling poiggeovide some preference to shorter jobs.
This may be an explicit preference, as is the case of the LXF&Weduler (discussed in Sec. 3.10,
page 55), or an implicit preference, as is the case of plaiS¥EAlue to users’ inaccurate estimates
and the resulting heel and toe effect. Obviously, the moeeetstimates distribution is modal,
the less the scheduler can distinguish between short agdidtis, and performance deteriorates
accordingly.

The result of replacing real user estimates by values that wenerated by the above three
models is shown in Fig. 1.5 (page 13). It is evident all of megeoduce unrealistically good
results in comparison to the original. While counter intait our goal in this chapter is to produce
estimates such that performancewisrsened not improved. Namely, our aim is to accurately
reflect reality, not to paint a brighter (false) picture.

Arbitrary Binning  When addressing modality, an immediate heuristic that sdmeind when
trying to reconstruct this property within a model, is to dra” artificially generated estimates
(e.g. by one of the models described above) to the nearesvricaal” value: values smaller than
1 hour are rounded to (say) the nearest multiple of 5 minwaisies smaller than 5 hours are
rounded to the nearest hour, and so on. Experiments havengheivthis heuristic also fails in
capturing the badness of real user estimates, and perfoemasults are actually rather similar to
those obtained before this artificial modality was introgiic

Further, arbitrary “binning” fails to reproduce the varsoproperties of the estimate distribu-
tion, as reported in the following sections. The fact of thatter is that modes have a different
(worse) nature than produced by the arbitrary binning. kangle, when examining the number
of jobs associated with the most popular estimates, we lgeinthese decay in an exponential
manner e.g. half of the jobs use only 5 estimate values, 908teojobs use 20 estimates values
etc. Thus, there is no way around the need to develop an aecuaalel, as is done next.
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5.3 Methodology and Roadmap

The modal nature of estimates motivates the following madhmgy. When examining a trace, we
view its estimate distribution as a seriesfofmodes given by{ (t;, p;) }=-,. Each pair(;, p;) rep-
resents one mode, such thais the estimate-value in secondsdr time), andp; is the percentage
of jobs that use; as their estimaten(for percent or popularity). For example, the CTC mode series
includes the paif18h,23.8%) because 23.8% of the jobs have used 18 hours as their estimate
Occasionally, we refer to modes lisswithin the estimate histogram. Note th@i’i1 pi = 100%
(we are considering all the jobs in the trace).

The remainder of this section serves as a roadmap of thigerhdescribing step-by-step how
the {(t;, p;) } -, mode-series is constructed, while outlining our methogpl&ach of the follow-
ing paragraphs correspond to a section or two in this chagbelr may contain some associated
definitions to be used later on.

Trace Files We build our model carefully, one component at a time, in otdeachieve the

desired effect. Each step is based on analyzing user es8nratraces from various production
machines, in an attempt to find invariants that are not unig@aesingle installation. To this end we
had to apply some manipulations to some of the traces filese€lthis is discussed in Section 5.5.

Mass Disparity Our first step is showing that the modes composing the modesseaturally
divide into two groups: About 20 “head” estimate values aeduthroughout the entire trace by
about 90% of the jobs. The rest of the estimates are consid&i€’ values. This subject is titled
“mass disparity” [41] and is discussed in Section 5.6. We sd@k that the two mode groups have
distinctive characteristics and actually require a sdparadel. Naturally, the efforts we invest in
modeling the two are proportional to the mass they entail.

Number of Estimates We start the modeling in Section 5.7 by finding out how manfedsnt
estimates there are, that is, modeling the valu&ofNote that this mostly effects the tail as we
already know the head size 20).

Time Ranks The next step is modeling the values themselves, that ist extectly are they
time-values{ti}fil. The indexing of this ascendingly sorted series is accgrtbrthe values, with
t; being the shortest arigt being the maximal value allowed within the trace (also dedét,,....).
The index: denotes theéime rankof estimatet;. This concept proved to be very helpful in our
modeling efforts. We also define tlmrmalized timeof an estimate; to bet;/E,,.. (a value
between 0 and 1). Section 5.8 defines the funclgp that gets as input (time rank), and returns
t; (seconds).

Popularity Ranks Likewise, we need to model the mode sizes / popularities ¢greages:
{pj}j.il. This series is sorted in order of decreasing popularityy;sis the percentage of jobs
associated with the most popular estimate. The inddenotes th@opularity rankof the mode to
which p,; belongs. For example, the popularity rank of 18h within C¥Q ip; = 23.8%), as this
is the most popular estimate. We also definerthemalized popularity ranko bej/K (a value
between 0 and 1). Section 5.9 defines the funchigy that getsj as input (popularity rank), and
returnsp;, the associated mode size.

Mapping Given the above two series, we need to generate a mappingd&etivem, namely, to
determine the popularity; of any given estimatg, which are paired to form a mode. Section 5.10
defines the functiot,,,,, that gets as input (time rank) and returpsas output (popularity rank).
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Using the two functions defined above, we can now associatetewith the appropriate;. This
yields a complete description of the estimates distrilbutibhe model is then briefly surveyed in
Section 5.11.

Validation Finally, the last part of this chapter is validating that tlesulting distribution re-
sembles the reality. Additionally, we also verify throughmslation that the “badness” of user
estimates is successfully captured, by replacing thera@igistimates with those generated by our
model. The replacement activity mandates developing aadedlbcording to which estimates are
assigned to jobs (recall that an estimate of a job must beebitpgn or equal to its runtime). This
is done in Section 5.12.

5.4 Input, Output, and Availability

As we go along, the number ofodel parameteraccumulates to around a dozen. Most are optional
and are supplied with reasonable default values. The onhdatary parameters are the number
of jobs N (the number of estimates to produce), and the maximal atlosstimate valudv, ...
Another important parameter is the percentage of jobs &dsdownithE,,,., as this popular mode
exhibits great variance and has decisive effect on perfocea Theoutput of the modeis the
series of the modes: how many jobs use which estimate.

The model we develop is somewhat sophisticated and invaeesral technical issues with
subtle nature. As it is our purpose to allow simulations @ira more realistic, th€++ source
code of the model is made available for download from thelRhi&orkload Archive [110, 155].
Its interface includes of two functions: The first gets adite containing all the model parameters
(all but two are assigned default values), and returns ayat X modes. The second gets the
mode array, and another array composed of job structurastiwicludes ID and runtime). It then
associates each job with a suitable estimate, under théraorghat runtime mustn’t be bigger.
An accompanying shell utility can read SWF file and appenéstgnates to it.

5.5 Trace Files Manipulation

The analysis and simulations reported in this chapter aresaal, based on the four accounting
logs we have used throughout this entire dissertation. Meweuring the development of the
estimate model we found that SDSC and KTH need to be mangullat order to be useful in the
context of this chapter. The two “new” trace files are listedab. 5.1, alongside the “old” four, to
provide convenient reference. SDSC-106 and KTH4H are thepukated versions of SDSC and
KTH, respectively, to be described next.

SDSC-106 We say an estimate mode is “owned” by a user if this estimateexalusively used
by only that user within the log. It turns out that user 106ngjuely “creative” in comparison to
others, owning 204 estimates of the 543 found in SDSC (nd&d%). This is highly irregulat,as
shown in Fig. 5.1, which displays the number of modes owneghay user (only mode owners are
shown). We therefore remove this unique activity from thgeflar the remainder of the discussion
(regular activity of user 106, using estimates that are atsm by others, is allowed to remain).

2In fact, as this activity is concentrated within about 2 nisnof the log, it actually constitutes a workload flurry
as will be defined in Chapter 6.
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Abbrev. Site Start End CPUs Number of jobs {V) M U X K

original | cleaned sane mon | usr | max | est
SDSC-106 | San-Diego SC Ctr. Apr 98 | Apr 00 128 73,103 | 59,332 | 53,673 24 | 428 | 18h | 339
CTC Cornell Theory Ctr. | Jun 96| May 97 512 79,302 | 77,222 | 77,222 11 | 679 | 18h | 265
KTH4H Swedish Royal Instit.| Sep 96| Aug 97 100 23,070 | 23,070 | 23,070 11 | 209 4h | 106
BLUE San-Diego SC Cir. Apr 00 | Jun 03| 1,152 | 250,440 | 243,314 | 223,407 32 | 468 | 36h | 525
SDSC San-Diego SC Cir. Apr 98 | Apr 00 128 73,496 | 59,725 | 54,053 24 | 428 | 18h | 543
KTH Swedish Royal Instit.| Sep 96| Aug 97 100 28,490 | 28,490 | 28,490 11 | 214 | 60h | 271

Table 5.1:Adding SDSC-106 and KTH4H to the 4 trace files we have usedllugoti. The variables\I,

U, X, andK are months duration, number of users, maximal estimateyvahd number of estimate bins,
respectively. Note that while BLUE'’s maximal estimate i$13is “effective” E,, ... is actually 2h, the limit
associated with the “express” and “interactive” queuesdusy most jobs within BLUE (Fig. 1.14, page 22).
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Figure 5.1: Assume there ane users in a log. Users are associated with the number of mbegewnm;

(t = 1,...,n) such thain, is the smallest anah,, is the biggest. The indexis defined to be the “user-rank”
and serves as an X-valuey;; serves as the associated Y-value. Only positives are displayed (users that
own no modes are not shown). The SDSC outlier is associatiduser 106 which is order of magnitude
more “industrious” than other users, exclusively owninga8f SDSC's modes.

The resulting log is calle@DSC-106 This version is beneficial when modelifgin Section 5.7
(number of estimate modes) aii,, in Section 5.8 (actual estimate time values). Other aspects
of the model are not affected.

KTH4H The other problematic workload was KTH: This log is actualgombination of three
different modes of activity (see bottom of Fig. 1.14, pagg 2@8nning jobs of up to 4 hours on
weekdays, running jobs of up to 15 hours on weeknights, anding jobs of up to 60 hours on
weekends. We have found that in the context of user estimadeleling, considering these three
domains in an aggregated manner is similar to, say, aggngdgal C and BLUE to be a single log.
We therefore focused on only one of them — the daytime workle#dh the 4-hour limit, which
is the largest component of the log. This is denote&BiH4H.

5.6 Mass Disparity of Estimates

Examining the histogram of estimates immediately reveads the distribution is highly modal
(Fig. 1.14, page 22): A small number of values are used venyrtimes, while many other values
are only used a small number of times. In this section, web8stathe mass disparity among
estimate bins.

Human beings tend to estimate runtime with “round” or “caoali numbers: 15 minutes, one
hour etc. [108, 15, 93]. This has two consequences. Onetigiaumber of bins in the histogram
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Figure 5.2: Distributions of bins and of jobs, showing that a small fiaatof the bins account for a
large fraction of the jobs and vice versa. The actual frastiare indicated by the joint ratio, which is a
generalization of the proverbial 10/90 rule.

(K) is very small relative to the number of jobs in the trad®.(According to Table 5.1V may
be in the order of tens to hundreds of thousands, whilis invariably in the order of only a few
hundreds.

The other consequence is that a small set of canonical bmsdtes the set of values. Similar
phenomena have been observed in many other types of wosklddaty are called a “mass dis-
parity”, because the mass of the distribution is not spredaqually; rather, a small set of values
gets a disproportionally large part of the mass [26].

The mass disparity of user runtime estimates is illustratdedg. 5.2. These are CDFs related
to the bin size (the number of jobs composing a bin). In eaelplyrthe top line is simply the
distribution of bin sizes. This line grows sharply at the ibeghg, indicating that there are very
many small bins (i.e. values that are used by only a small murabjobs). The other line is the
distribution of jobs, showing the fraction of jobs with estites that fall into bins of the different
sizes. This line starts out flat and only grows sharply at tigg endicating that most jobs belong
to large bins (i.e. most estimate values are the populaesahat are repeatedly used very many
times).

The figure also shows the joint ratio for each case [41]. T$is generalization of the well-
know 10/90 rule. For example, the joint ratio of 9/91 for thElog means that 9% of the bins
account for 91% of the jobs, and vice versa: the other 91%eobihs contain only 9% of the jobs.
Further details about the shape of the distributions arergir Table 5.2. This shows the absolute
number of bins involved, rather than their fraction; for ewae, the CTC row shows that a mere 4
bins cover 50% of the jobs, 10 bins cover 75% of the jobs, anbi?2 contain 90%. Indeed, a bit
more than 20 head bins are enough to account for 90% of therjasfour logs.

“Head” bins dramatically vary in size: While the most popusaused byl0 — 27% of the jobs,
only =~ 1% use the 20-th most popular. Regardless, all head bins, ehktige or small, have a
common temporal quality: their use is not confined to a lichpperiod of time. Rather, they are
uniformly used throughout the entire log. This is shown ig.[5.3 that plots the number of weeks
in which estimates are used, as a function of their popylaaitks. The horizontal dot sequence
associated with head bins indicates they are spread oulyetveoughout the log. Further, the
point of intersection between this sequence and the Y-axagnays the duration of the trace, e.g.
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jobs 10% | 50% | 75% | 90% | 95% | 98% | 99% | 100%
SDSC-106 1 6 12 22 39 77 116 339
CTC 1 4 10 22 36 62 89 265
KTH4H 1 6 12 21 28 36 43 106
BLUE 1 3 8 23 42 76 116 563
SDSC 1 6 12 23 43 91 156 543
KTH 1 8 21 41 60 89 122 270

Table 5.2: Mass disparity: per-log minimal number of estimate binsdegkto cover the specified percent
of the jobs, as noted in the first row.
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Figure 5.3: Weeks in which an estimate appears, as a function of its paputank. Recall that using
popularity-ranks implies estimates are sorted on the X-awim the most popular to the least. The top-20
most popular estimates appear throughout the entire logs.

for SDSC this is 2 years (a bit more than 100 weeks).

5.7 Number of Estimates

We have established that about 20 popular “head” bins reptegout 90% of the jobs’ estimate
distribution mass. We are left with the question of modelimg number of the other “tail” bins
used by the remaining 10%.

Examining the four traces of choice in Table 5.1, we see fh&tnds to grow with the size of
the trace, where this “size” can be measured in various was/the number of jobs executell),
as the duration of time spanneil/§, as the maximal estimate&(), or as the number of different
active users{(). Note that thel/’ metric also measures size, as new users continue to appear
throughout each log. This is relevant because after altsiee the ones generating the estimates.
In fact, in each of the four traces of choice, about 40% of Sterete modes are exclusively owned
(as defined above) by various usérs.

We have experimented in modelirfg as a function of the aspects mentioned above (indi-
vidually or combined), and most attempts revealed somegltisil observations. In fact, we are
convincedkK is the product of a combination of all factors, and that tHegféect it to some degree.
However, in the interest of being short while avoiding umaated complications (considering this
only affects the tail of the distribution), we have chosemtwdel K as a function ofV alone, which
obtains tolerable results.

3A surprising anecdote is that the actual number of bin-owisealso (exactly) 40, in three of the four traces.
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Figure 5.4: Modeling K using a power moddk = aN® (o = 1.1, 8 = 0.5) and a liner model which
is defined by the points as specified in Table 5.3. In the topdigturves associated with SDSC share the
same texture (color), the lower is of SDSC-106.

N (jobs) 0| 20| 200 | 1,000 10,0000 70,000| 250,000
K (ests) 0|10| 20| 35 90 | 340 565
K/N (slope)l |1/2 |1/18 | 1/53 | 1/164 | 1/240| 1/800

Table 5.3: Points defining the linear model &f usingN. Slope indicates the arrival rate of new estimates.

Fig. 5.4 plotsK as a function of the number of jobs submitted so fam(it an X value, its
associated Y is the number of estimate bins in use, before-thgob was submitted). Note how
the vanilla version of KTH and SDSC stands out: the formertduée three estimate domains it
contains, and the latter due to user 106. All curves can beratuccessfully fitted with a power
model on individual bases (we present one such power moatehMis simultaneously fitted against
all four traces of choice).

Accordingly, we allow the user of our model to supply the aympiate coefficients (as optional
parameters). However, as this only effects tail bins, weasead-hoc linear model (defined by
Table 5.3) as the default configuration. This provides a#blie approximation ok for any given
job numberN.

5.8 Time Values of Estimates

Having computed & approximation (order of a few hundreds), we know how maniyrese bins
should be produced by our model. Let us continue to gendrasek” values, namely manufacture
the{ti}fi1 series. It has already been noted that users tend to givadif@astimates [108, 17, 93],
but this loose specification is not enough. In this sectiordexelop a simple method to generate
K such appropriate values. We are currently not considehagriost popular (20) estimates in
a separate manner. These will be addressed in detail lat¢Semtion 5.10), complementing the
model we develop in this section.
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Figure 5.5: Modeling estimate times using(z) =

a—x

trace| KTH4H CTC SDSC-106 BLUE
a 191 > 157 > 1.50 >  1.24
K 106 < 265 < 339 < 525

Table 5.4: Thea parameter of the fractional fit presented in Fig. 5.5 is dateel with the number of
different estimatesk).

Recall that the time-ranks of estimates are their assatiatiexes when ascendingly num-
bered from shortest to longest. Evidently, this conceptlearmery helpful for our purposes. We
define a functiort};,, that upon a time-rank inpuf returns the associated time valyéseconds),
such thatty;,, (i) = t;.

The top-left of Fig. 5.5 plots normalized estimate timg £,,,..., whereE, .. is the maximal
estimate) as a function of its associated normalized tiamé-¢ / K'), for all four traces. According
to the top-right and bottom of Fig. 5.5, it turns out the résaglcurves can be modeled with great
success when using the fractional functipfr) = “~2% for somea > 1 (= is normalized time-
rank). Further, the actual values©o{Table 5.4) are negatively correlated with in that biggerk’
implies smalleta.

An obvious property off (z) in the relevant domain( € [0, 1]) is that whena gets closer
to 1, its numerator goes to zero and therefore the curve ¢gtercto the bottom and right axes.
On the other hand, asgets further from 1 (goes to infinity), its numerator and demator get
more and more similar, which means the function converge§t9 = z (the main diagonal).
The practical meaning of this is that less estimate valuasi{sr i, biggera) means estimates’
temporal spread is more uniform. In contrast, more estiveltees (biggers, smallera) means a
tendency of estimates to concentrate at the beginning of-tieas, namely, be shorter.

In order to reduce the number of user-supplied parametavarainodel, we can approximate
a as a function of<” (which we already know how to reasonably deduce from the raurobjobs).
The problem is that we only have four samples (Table 5.4)féacto produce a fit. One heuristic
to overcome this problem is splitting the traces in two anghjgoting X" anda for each half. This
enlarges our sample space by eight (two additional samgletrgce) to a total of twelve. The
results of fitting this data to the best model we could find d®@as in Fig. 5.6 and indicate a
moderate success.
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Figure 5.6: Modelinga as a function of usingl +aK?® (witha = 12.1, 3 = —0.6). A biggerK results
in ana-parameter that is closer (but never equal) to 1, as required

We can now define the requirdd;,, to be

wg

Ftim(i) - Emaa: : f ('L/K) - Emax .

2
K

Generating théti}fil series of time values is done by simply assigning, ..., K to the time-rank

7 in an iterative manner. Finally, as almost 100% of the ed#share given in a minute resolution,
the generated values are rounded to the nearest multipl ¢f 6ot colliding with previously
generated estimates).

5.9 Popularity of Estimates

In the previous section we have modeled the time values iohatts. Here we raise the question of
how popular is each estimate, that is, how many jobs actualyeach estimate value? Answering
this question implies modeling th@oi}fil percentage series. Once again, like in the previous
section, ranking the estimates (this time based on popyjl@roves to be highly beneficial. Recall
that {pi}fil is descendingly sorted such thatis the percentage of jobs using the most popular
estimate valuep; is the percentage of jobs using thenost popular estimate value, anderves

as the associated popularity rank. We seek a fundtign such thatF,,, (i) = p;. Note that the
constraint ofy " | F,,,,(i) = 100 must hold.

Fig. 5.7 plots the size (percent) of each estimate bin, amaetifin of its popularity-rank.
There’s a clear distinction between the top-20 most popegéimates (distribution’s head) and
the others (tail), in that the sizes of head-bins decay espivaly, whereas the decay of the talil
obeys some power law.

The suggested fits are indeed very succesd®l £ 0.95 in both cases). However, when
concentrating on the head (left or middle of Fig. 5.7), itw&dent the exponential model is less
successful for the first few estimates. For example, in CT&ntiost popular estimate is used
by about 24% of the jobs, while in SDSC this is true for only 11% BLUE the situation is
worse as the three top ranking estimates “break” the expg@hienrve. (Indeed, the exponential
fit was produced after excluding these “abnormal” pointshviQusly, no model is perfect. But
this seemingly minor deficiency (at the “head of the head§jawually quite significant, as a large



5.9 Popularity of Estimates 89

all head [x <= 20 tail [x > 20
100 F— 25 [. T ] 10 [ ]
-~. ; mode|
10 3 TR 4 SDSC'106 - |4 .
—_ I 20 ¢ SDSC — ! “&%
e 1F aeii ' CTC -=--- 0.
l;l [ ‘ 15 v KTH - - 0.1 '._ %
_8 0.1 ¢ :“' - 0 ‘43;; KTHA4H - 0.01 "-._. %%
0.001 L K 51" ‘%,%4 0.001
[ 1 ‘"ﬂami&,; .
le-04 L 0 L 1le-04
12 5 20 100 500 1 5 10 15 20 20 50 100 200 500

estimate popularity-rank

Figure 5.7: Modeling percent of jobs associated with estimate bins, asation of popularity rank.
The head (middle) is modeled by the exponential functief* + ~ (with oo = 14.05, 5 = —0.18, and

~ = 0.46). The tail (right) is modeled by thex’ power law (withw = 795.6 andp = —2.27). Note that
the middle figure has linear axes, while the other two are tadesl. The left figure concatenates the head
and tail models.

part of the distribution mass lies within this part (diffeces in less popular estimates are far less
important).

We note that the observed differences among the traces anehd of the head” expose an
inherent weakness in any estimate model one might suggesaube the effect of the variance
among these 1-3 estimates is decisive. Consequently, odelmall allow (though not mandate)
the user to provide information regarding top-rankingreates as model parameters (this will be
further addressed in the next section). As for the defaattalt that a job estimating to run for
the maximal allowed valueH,,...) is the worst kind of job in the eyes of a backfilling scheduler
(Section 5.2). For this reason, we prefer the default man&dltow the CTC example by making
the (single) top ranking estimate “break” the exponenvaliguity. This significant job percentage
will later be associated with,,,, to serve as a realistic worst case scenario. We therefoneedefi
F,., as follows

(89T (e ) =
Foop(i) = 4 ae®i+~4 i=2,3,..,20
w - ir - 10089 i=21,22,...,.K

Starting with the (simplest) middle branch,,, is determined by the exponential model for all
head popularity ranks but the first (the default values ferabefficients are specified in the caption
of Fig. 5.7). The first branch is defined so as to preserve traiamt shown in Table 5.2 that the
twenty top ranking estimates are enough to cover almost 9G#eqobs. Finally, the third branch
determine sizes of tail estimates according to a power lgaifa coefficient values are specified in
Fig. 5.7). But to preserve the constraint t@ﬁl F,op(1) = 100, tail sizes are scaled by a factor of
10089 "where is the sum of the taily " ,, w - i*. The resulting default curve is almost identical
to the one associated with the model as presented in Figwgly a top rank of a bit more than
20% (to be associated with, ,,,.).
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Figure 5.8: Scatter plots of relative popularity-ranks vs. relativediranks appear to reveal a uniform
distribution across all traces.
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Figure 5.9: Aggregating the data shown in Fig. 5.8 into a grid-based-heat reveals no further insight,
other than a consistent tendency of popular estimates thdre (bottom-left black cells).

5.10 Mapping Time to Popularity

The next step after separately generating the estimates’ {il;},~, and popularity{p;}" , is
figuring out how two construct a bipartite matching betwesa tivo. We seek a functiof;,,,,
such thatF,,., (i) = j, that is, we want to map each time-rank to a popularity-ran& manner
that yields estimate distributions similar to those foumthie original traces (Fig. 1.14, page 22).

5.10.1 Mapping of Tail Estimates

As a first step towards constructirfg,,,, let us examine this mapping as it appears in the four
traces. Fig. 5.8 scatter plots normalized popularity-sar&k normalized time-ranks: one point per
estimate’ The points appear to be more or less uniformly distributeldiclv means there is no
apparent mapping rule.

In an effort to expose some trend possibly hidden within thiedrder” of the scatter plots, we
counted the number of points in each grid-cell within Fi®.5We then generated an associated
heat-map for each sub-figure by assigning a color based gooihecount of each cell: cells that
are populated by 80-100% of the maximal (cell) point-cownind within the sub-figure (denoted
(), are assigned with black; cells populated by 0-20% @ire assigned with white; the remaining
cells are assigned with a gray intensity that is linearlypprtional to their point-count, batched in
multiples of 20% ofC.

4A scatter plot of actual values turns out to be meaningless.
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The result, displayed in Fig. 5.9, appears to strengthenroual hypothesis that the map-
ping between popularity-ranks and time-ranks is more & legformly random, as other than
the bottom-left cell being consistently black (top-20 plaplestimates show tendency of being
shorter), there is no consistent pattern that emerges wdraparing the different traces.

Our next step was therefore to randomly map between time apdlarity ranks. Regrettably,
this resulted in failure, as the generated CDFs were signifig different than those displayed
in Fig. 1.14 (page 22), because “big modes” fell in wrong efacThe fact of the matter is that
when (uniformly) randomly mapping between time and poptylaanks, there is a nonnegligible
probability that the 4-5 most popular estimates are asdigmésay) times in the proximity of the
maximal value, which means that the majority of the distitoumass is much too long. Alterna-
tively, there is also a nonnegligible probability that thgposite will occur, namely, that none of
the more popular estimates will be assigned to a time in tbgimity of F,,.., contrary to our
previous findings.

We conclude that it is tail estimates (in terms of populatityat are roughly randomly mapped
to times in a uniform manner, forming the relatively balashseatter plot observed in Fig. 5.8. This
appearance is created due to the fact there are much magsttaiates (few hundreds) than head'’s
(20). The head estimates minority, which neverthelesstitates 90% of the mass, distributes
differently and requires a greater modeling effort.

5.10.2 Determining Head Times

We have reached the point where the effort to model user assns reduced to simply deter-
mining 20 actual time-values and mapping them correctiyhéodppropriate (head) sizes. In other
words, our task is as simple as producing(20p;) pairs. These are good news, as the number
of samples is small enough to allow a thorough examinatigh@®ntire sample-space. The bad
news is that unlike previous parts of the model that are #dgtuaatively trivial, and in spite of
considerable efforts we've made, we failed to produs@naplemethod to accomplish the task.
In the interest of practicality and space, we do not desailrevarious unsuccessful attempts to
produce a simple straightforward solution. Instead, weceatrate on describing the sophisticated
algorithm we've developed that has finally managed to desaéisfactory results.

Let us examine the relevant sample space. Table 5.5 listh®ost popular estimates in each
trace, and their associated sizes (percent of jobs). Oféhalies displayed, a remarkable 15 are
joint timesacross all traces (we ignore KTH4H when deciding which vallégger than 4h, are
joint). The joint times are highlighted in bold font, and kaxalues one would expect from humans
to ordinarily use. Note that this is regardless of the dédfgper-trace maximal estimate limits. We
conclude that joint times should be hard-coded in our madgil, is fairly reasonable to conjecture
humans will always extensively use values like 15 minutelsodr, etc. We therefore define the
first head-mapping step — determining the 20 time valuesateathe most popular — as follows:

1. ChooseF,,.., the maximal estimate (which is a mandatory parameter oihmalel). As
previously mentioned, this is always a top ranking value.

2. Choose all hard-coded joint times that are smaller #iap, .

3. Choose in descending order multiplesiof,,.q (smaller thank,,,,..), whereT,,,.q is 200h,
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#|estimatd SDSC-10§ CTC |KTH4H| BLUE
hh:mm

1| 00:01 6.6,

2| 00:02 4.0

3| 00:03 2.2

4| 00:04 1.2,

5| 00:05 |11.3;, 8.8 [11.5,, 2.7

6| 00:10 | 7.9, 6.4, 9.6, 4.3

7/ 00:12 | 1.2,

8| 00:15 | 3.04, |10.6, | 534 |16.04

9| 00:20 | 4.8, 2.0, | 314y | 2.54

10| 00:30 | 4.7, 3.5 5.5¢ [17.74

11| 00:40 1.3 | 0.54y

12| 00:45 | 1.1

13| 00:50 0.5

14| 01:00 |10.5,, 4.2 5.8 4.9,

15| 01:30 0.8.us | 1.34s | 1.5y

16/ 01:40 1.4,

17| 01:59 6.0,

18| 02:00 | 5.3 544 | 4.54 |[21.3,

19| 02:10 1.3

20| 02:30 | 1.2 1.4,

21| 03:00 | 384, | 4.9 | 254 | 1.84,

22| 03:20 5.1y

23| 03:50 3.3

24| 04:00 | 5.7, 2.2, [12.5,, 1.6,

25| 04:50 0.6,

26| 05:00 | 1.4, 1.1, 0.9

27| 06:00 | 2.0 6.1 1.0,

28| 07:00 | 0.9

29| 08:00 | 3.4, 1.5.4 0.8

30| 10:00 | 3.3, 1.7 0.96)

31| 12:00 | 4.0, 2.2 0.6

32| 15:00 | 0.9, | 1.5.

33| 16:00 1-0(17)

34| 17:00 0.6,

35| 18:00 | 9.8, 23.8,, 2.1,

36| 36:00 1.1,

sum (all) 86.4 88.9 89.3 88.7

sum (joint) [ 81.2 84.4 [60.4 79.1

Table 5.5: The top-20 most popular modes in the four traces. Each coantains exactly 20 job percent
values. Note that 15 of the top-20 estimates are joint aabdsaces (excluding KTH4H for estimates
bigger than 4 hours). Joint estimates are highlighted id barit. The parenthesized subscripts denote the
associated popularity-ranks (e.g. in BLUE, 2h is the mopuar value used b¥1.3% of the jobs). Notice
that the sum of each column is invariantly in the neighbochob89%, the value we used in Section 5.9 to
defineF,,.
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then 100h, 50h, 10h, 5h, 2h, 1h, 20m, 10m, and 5m. We stop vieemumber of (different)
chosen values reaches 20.

The role of the third item above is to addelative aspect to the process of choosing popu-
lar estimates, which is largely hard-coded. As will laterdh®wn, this manages to successfully
capture KTH4H's condensed nature. At the other end, woddadth larger estimate domains, of
jobs that span hundreds of hours, do in fact exist [17]. Realy, their owners refuse to share
them with the community. Nevertheless, our algorithm gatesrlonger times based on the modes
they report (400h, 200h, 100h, and 50h in the NCSA O2K traces)

Finally, recall we have already generat&dtime values usingr};,, defined in Section 5.8.
Head times generated here, replace the 20 values genesatég, that are the closest to them
(and so the structure reported in Fig. 5.5 is preserved).

5.10.3 Mapping of Head Estimates

Having both head times (seconds) and sizes (job percentagego on to map between them. As
usual, mapping is made possible by using the associated,reatker than the actual values. For
this purpose we need two new definitions:

First, we define a new type of time-rank, tt@p-20 time rank(or ttr for short), which is
rather similar to the ordinary time-rank: All top-20 timexcludingF,,.., are ascendingly sorted.
The first is assigned a ttr=1, the second a ttr=2, and the ldastE0. For example, according to
Table 5.5, in CTC, 00:05 has ttr=1, 00:10 has ttr=2, 01:30tas7, and 17:00 has a ttr=18,,,,..
is always associated with ttr=0.

Second, for each trace-fileg, we define a functiort},, that maps ttr-s to the associated pop-
ularity ranks, within that log. For examplé...(0)=1 askE,,..=18h (associated with ttr=0) is its
most popular estimate. Likewisé,,.(1)=3, as 5min is the smallest top-20 estimate (ttr=1) and is
the third most popular estimate within CTC. Table 5.6 ligtg of the four traces. Recall that 2h
is the effectiver,,,, of BLUE and therefore this is the estimate we choose to agsowiith ttr=0.
Additionally, note the BLUE 01:59 mode near i&5,,,=2h (Table 5.5). This is probably due to
users trying to enjoy both worlds: use the maximal value levhiricking” the system to assign
their jobs a higher priority as a result of being shorter. \Weret interested (nor able) to model
such phenomena. Therefore, in the generation of Table Bl&@raoughout the reminder of this
chapter, we aggregate the 01:59 mode with that of 2h anddemnisiem a single 27.3% mode.

The F},, functions in Table 5.6 reflect reality, and are in fact thesogafor the log-uniform
CDFs observed in Fig. 1.14 (page 22). We therefore seek amithlign that can “learn” these
functions and be able to imitate them. Given such an artifigig, we would finally be able to
match head-sizes (produced in Section 5.9, their size defiveer popularity rank) to head-times
(produced in Section 5.10.2, their value defines their)tarsl complete our model.

At first glance, the four;,, functions appear to have little similarities (the cornelatcoeffi-
cient between the columns of Table 5.6 is only 0.1-0.3), segi;mdeeming failure on the general-
ization attempt. However a closer inspection reveals s@gelarities. Consider for example the
more popular (and therefore more important to model) raak&east three of four values of each
such rank are clustering across neighboring lines (ttiHsis is made clearer in Fig. 5.10.

Another observation is that when dividing popularity-ramito two (1-10 vs. 11-20), around
75% of the more popular ranks are found in the top half of T&b& which indicates a clear
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tir Fsdsc—lO()‘ Fctc Fk:th4h Fblue
0 1 1 1
1 1} 3 4 6
2 4, 4 10 5
3 170 2 14 3
4 13| 12 20 7
5 709 2 2
6 8 8 3| 18
7 18| 18 7] 19
8 2] 6 12 4
9 6| 7 6| 11
10 16| 11 19] 20
11 10| 20 5 9
12 5| 16 18| 10
13 15| 5 16| 14
14 14| 14 9/ 13
15 19| 13 17| 16
16 11| 10 15| 15
17 12| 15 13| 17
18 9| 17 8 8
19 20| 19 11} 12

Table 5.6: The F,,, functions of the four traces. The four most popular ranksaithetrace are highlighted
in bold font.
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Figure 5.10: There is only 0-3 difference between the closest threetttasare associated with the more
popular ranks (Table 5.6). For example, 3 of the ttr-s assediwith popularity rank 2, are located in rows

3-5in Table 5.6 (underlined and highlighted in a differealoc). In the above figure, this corresponds to
range-bar associated with popularity rank 2 that stretbbéseen lines 3-5.

tendency of more popular ranks to be associated with sntailer (This coincides with the log-
uniformity of the original estimate distributions). It isiojob to capture these regularities.

In the initialization part of our algorithm, which we calldpool algorithm we associate ttr=0
(of E,...) With popularity rank=1, that is, the maximal estimate iscathe most popular. The
rationale of this decision is that

1. according to Table 5.6 this is usually the case in reaéBac

2. as explained in Section 5.2, makinhg,,, the most popular estimate constitutes a realistic
worst case scenario, which is most appropriate to servecadetiault setting, and

3. itis the “safest” decision due to the constraint thatneates must be longer than runtimes.
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The last two items are the reason why we chose to follow the €4dnple and enforce a sizable
first rank on the construction df,,, (end of Section 5.9) that “breaks” the exponential contigui
observed in Fig. 5.7. To complete the initialization parg allocate an empty vectar,,, des-
ignated to hold popularity ranks. Any popularity rank mayéap to four occurrences within
V;?ool-

The body of the pool-algorithm iterates through the resthefttr-s in ascending ordey, =
1,...,19) and performs the following steps on each iteration:

1. For each trace filéog, insert the popularity rank;,, (i) to V., but only if this rank
wasn’t already mapped to some smaller ttr in previous it@mat (In other words, insert all
the values from within thgy,, line in Table 5.6, that weren'’t already chosen.)

2. If there exists popularity ranks that have four occuresnwithinV/,,.;, choose the smallest
of these ranksz, map.J,, to R, remove all occurrences &f from V,,,,;, and move on to the
next iteration.

3. Otherwise, randomly choose two (not necessarily diffgrpopularity ranks from within
Vooot, map the smaller of these th,,., and remove all its occurrences frdrj,;.

A main principle of the algorithm is the gradual iteratioreofable 5.6, such that no popularity-
rank R is eligible for mapping to/,;,., before we have actually witnessed at least one occasion in
which R was mapped to a ttr that is smaller than or equal,ta This aims to imitate the original
F,, functions, along with serving as the first safety-mecharogistructing more popular ranks
to be mapped to longer estimates (recall that estimate CBFH®@-uniform, which means most
estimates are short).

Another important principle of the algorithm is that incsed number of occurrences of the
sameR within V,,,;, implies a greater chance &f to be randomly chosen. And so, &hthat is
mapped to a tt Jy,. within two traces (two occurrences withln,,,;), has double the chance
of being chosen in comparison to a popularity rank for whitk tondition holds with respect to
only one trace (one occurrence withif,,). This aspect of the algorithm also aims to capture the
commonality between the various traces.

Item number two in the algorithm tries to make surefawill not be mapped to a ttr that is
bigger tharall the ttr-s to which it was mapped in the four traces. Like tre principle mentioned
above, this item has the role of making sure the resultingpimgpisn’'t too different than that of
the original logs. It also serves as the second safety-nméandimiting the probability of more
popular ranks to be mapped to longer estimates.

The combination of the above “safety mechanisms” was ugaathugh to produce satisfactory
results. However, on rare occasions, too many high popylamks have managed to nevertheless
“escape” these mechanisms and be mapped to longer estirAdtdiag a third safety-mechanism,
in the form of using the minimum between two choices of poptylaanks (third item of the
algorithm), has turned this probability negligible.

5.10.4 Embedding User-Supplied Estimates

While the estimate distributions of the traces bare rentdekeesemblance, they are also very
distinct within the “head of the head” (as discussed in ®ach.9), that is, the 1-3 most popular
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estimates. For example, considering Table 5.5, the difter&etween the percentage of SDSC and
CTC jobs associated with 18h (10% vs. 24%) is enough to yiehddetely different distributions.
Another example is BLUE’s shift of the maximum from 36h to 2in,its two huge modes in
15min and 30min; the fact that more than 60% of its jobs useobnieese estimates (along with
01:59), cannot be captured by any general model. Yet aneaenple is KTH4H’s unique modes
below 5min. This variance among the most important estirigi® along with the fact users may
be aware of special queues and other influential techneslttoncerning their site, mandates a
general model to allow its user to manually supply head eg@sas parameters.

To this end, we allow the user to supply the model with a veatarp to 20(¢;, p;) pairs. The
manner in which these pairs are embedded within our modet¢ifotlowing: Thet; values replace
default-generated head times (Section 5.10.2) that areltisest to them, with the exception of
E.... Which is never replaced unless explicitly given by the useorze of thet;, p;) pairs. (This
is due to the reasons discussed in Section 5.10.3.) As anpdxaim order to effectively replace
the maximal value of BLUE, the user must supply two pa(8s#, 1%) to prevent the model from
making the old maximum (36h) the most popular estimate, @hd27%) to generate the new
maximum.

Similarly to times, user supplied sizes (job percents) replace default-generated sizes (Sec
tion 5.9) that are the closest to them. Once again, the biggése (reserved foF,,,,) is not
replaced if the user did not supply a pair containifig,.. Additionally, the remaining non-user
head-sizes are scaled such that the total mass of the he#Bi8% (scaling however does apply to
the largest non-user size). If scaling is not possible (stimser sizes exceed 89%), non-user head-
sizes are simply eliminated, and the tail sizes are scalguthat the sum of the entire distribution
is 100%.

Finally, the pool algorithm is refined to skip ttr-s that assaciated with user-supplied esti-
mates and to avoid mapping their associated popularitystank

5.11 Overview of the Model

Now that all the different pieces are in place, let us brieflyiew the default operation of the
estimates model we have developed:

1. Getinput. The mandatory parameters are maximal estvahie F,,,..., and number of jobs
N (which is the number of estimates the model must produce gmiu A third, “semi
mandatory”, parameter is the percentage of jobs assoaiated,,... While the model can
arbitrarily decide this value by itself, its variation inatéy is too big to be captured by a
model, whereas its influence on performance results is toortEntal to be ignoredi,,,,..
jobs are the “worst kind” of jobs in the eyes of the schedu$egtion 5.2).

2. Compute the value ot (different estimate times) as defined in Section 5.7.
3. Generatey time-values usind;,, as defined in Section 5.8.

4. Generate 20 “head” time-values using the algorithm définéSection 5.10.2 and combine
them with theK time-values produced in the previous item. Non-head timnesianoted
“tail” times.
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5. Generatds sizes (jobs percent) using,,, as defined in Section 5.9. The largest 20 sizes
are the head sizes. The rest are tail.

6. Map between time- and size-values ushyg,, as defined in Section 5.10, by

¢ Randomly mapping between tail-times and tail-sizes in fomm manner (Section 5.10.1).
e Mapping head-times and head-sizes using the pool algo(#action 5.10.3).

7. If received user supplied estimate bins, embed them nvitte model as described in Sec-
tion 5.10.4.

5.11.1 About the Complexity

The only part which is non-trivial in our model is the poolalghm: Generating the estimate time
values by themselves is a trivial operation. Generatingssjgercentages of jobs) is equally trivial.
Mapping between these two value sets is also a relatively @asration, as all but the 20 most
popular sizes can be randomly mapped. All the complexith@hbhodel concentrates in solving the
problem of deciding how many jobs are associated with eaehdhestimate, or in other words,
where exactly to place the larger modes. The question ofivenet simpler alternative than the
one suggested here exists, is an open one, and it is conleeiliabe’s a positive answer. However,
all the “immediate” heuristics we could think of in order terform this task in a simpler manner
have been checked and verified to be inadequate. In facthiese inadequacies that has lead us
step by step in the development of the pool algorithm.

5.12 Validating the Model

Having implemented the estimate model, we now go on to viids effectiveness. This is essen-
tially composed of two parts. The first is obviously makingesthat the resulting distribution is
similar to that of the traces (Section 5.12.1). Howeves ifinot enough by itself, as our ultimate
goal is to allow realistic performance evaluation. The secpart is therefore checking whether
performance results obtained by using the original datacangparable to those produced when
replacing original estimates with artificial values prodddy the model (Section 5.12.3). The
latter part mandates developing a method according to wdnitficial estimates are assigned to
jobs (Section 5.12.2).

5.12.1 Validating the Distribution

Fig. 5.11 plots the original CDFs (solid line) against thgeaerated by the “vanilla” model using
various seeds. The only input parameters that are givee totiuel are those listed in Section 5.11,
that is, the maximal estimaté,,...,, then number of jobgV, and the percentage of jobs associated
with E,,,.. Recall that BLUE’s maximum is considered to be 2 hours aatlithorder to reflect
this we must explicitly supply the model with an additionalm(Section 5.10.4).

The results indicate the model has notable success in demedsstributions that are remark-
ably similar to that of SDSC-106 and CTC,; it is far less sustidswith respect to the other two
traces. However, this should come as no surprise becauserd®ned earlier, the model has no
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Figure 5.11: The original estimate distribution of the traces (soliceéh vs. the output of the vanilla
model, when used with four different seeds. Output is lessessful for traces with unique features.
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Figure 5.12: Output of the model under the “improved” setting which pd®g minimal information
identifying the unique features.

pretense of reflecting abnormalities or features that aiguerto individual traces. In the case of
KTH4H, these are the large modes that are found below 5 nsr(dfeble 5.5). In fact, if aggre-
gating these modes with that of 5 minutes, we get that a reab&k25.5% of KTH4H's jobs have
estimates that are 5 minutes or less, which is inherentlgreifit in comparison to the other traces.
In the case of BLUE, its uniqueness takes the form of two eti@ea@l modes located at 15 and 30
minutes. This distinctive quality is especially apparenFEig. 5.7, where the three biggest modes
“break” the log-uniform contiguity.

The practical question is therefore if the model can prodyem results when provided with
minimaladditional information highlighting the trace-specifimalbmalities. The amount of such
information is inherently limited if we are to keep the modpplicable and maintain its practical
value. We therefore define the “improved” setting in which KTH4H model is provided with the
additional(5min, 25%) pair. The BLUE model is provided with two additional pairsasiated
with its two exceptional modeg15min, 16%) and(30min, 18%).

The results of the improved setting are shown in Fig. 5.12iadidate that this additional in-
formation was all that the model needed in order to produtisfaetory results (also) with respect
to the two “unique” traces. To test the impact of additiomd@brmation on situations where the
vanilla model manages to produce reasonable results by tteimproved setting supplied three
additional pairs (of the most popular estimates) when mogeCTC and SDSC-106. It is not
apparent whether the additional information made a quizigaifference.

The important conclusion that follows from the successkleziment we have conducted in
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this section, is that estimate distributions are indeerkextly similar: Most of their variance con-
centrates within the 1-3 most popular estimates, and oresetare provided, the model produces
very good results.

5.12.2 Assigning Estimates to Jobs

The next step in validating the model is putting it to use with simulation. For this purpose
we have decided to simulate the EASY scheduler and evaltsafgerformance under the four
workloads. This can be done with original estimates or aéptacing them with artificial values
that were generated by our model. Similar performance tesuuld indicate success.

The common practice when modeling a parallel workload iseiing canonical random vari-
ables to represent the different attributes of the jobs, rugtime, size, inter-arrival time etc.
[30, 77, 99]. Generating a workload of jobs is then performed by creating samples of these
random variables. Importantly, each sample is geneiatigpendentlyf other samples.

In this respect, the assignment of artificial estimatestts je subtle, as this must be done under
the constraint that estimates mustn’t be smaller than theémes of the jobs to which they are
assigned. Here, we can'’t just simply randomly choose a vidowvever, if independence between
jobs is still assumed, we can easily overcome the problenmsmguherandom shuffle algorithm
This algorithm gets two vectors, ;... andV,.....me that hold N values as suggested by their
names. The content of both vectors is generated as usualdaug to the procedure described
above (under the assumption of independence). Now all sha¢éded is a random permutation
that maps between the two, such that every estimate is egoiabtgger than its associated runtime.
The random shuffle algorithm finds such a permutation asvislld=irst, it sorts the two vectors;
call the sorted versionSV,_;imate @NASV,.niime. NEXt, it iterates througB'V,.,,..ime from the top
down i.e. starting with the largest runtimes. For each runté,,..i...[i], it finds the smallest
index j such thatSV, niimeli]l = SViuntime|i]. This identifies the legal estimates to use: they
are those from that index to the end. The algorithm then piciesof these estimates at random,
and pairs is with théth runtime. After values are paired, they are removed froeir ttespective
vectors.

Note that we do not claim that the independence assumptidarlying the random shuffle
algorithm is correct. On the contrary. We only argue that thithe common practice. However,
there is a way to transform the original data such that thésimgtion holds: The algorithm can
be applied to the original data, that is, we can populatelihg,.... vector with original trace
estimates and reassign them to jobs using the shuffle dlgarithe outcome of doing this would
be that the original estimates are “randomly shuffled” betwgbs (which is the source of the
algorithm’s name). The result of such shuffling is to creatiependent “real” estimates. This is
suitable as a basis for comparison with our model, as exgidielow.

5.12.3 Validating Performance Results
Several estimate-generation models have been evaluadembarpared against the original data:
e TheX2-model: simply doubles user estimates on the fly (as in e.gp@in 4).

e Theshflmodel: the result of applying the random shuffle algorititefined above) to the
original data. As noted, assuming independence in thisegbrg correct.



100

Modeling User Runtime Estimates

14 KTH4H BLUE
o g E—
it =l
U sl LD

KTH4H BLUE

14

13

12

11

c SDSC-106 CTC
S 100
()
D, [
3 90 4
w
L ﬁfﬂl 3 Dﬂﬂfﬂ'
o)
c
>
8 D[TJ 2
NS59HNOO0908ES NS5OHANMO008ES
X2 TrEgg e g X2TTTESg s g
SDSC-106 CTC
400 24
)
1 O S .
> 360 20
E ............ -n .
£
= 320 16
[}
2 ol KT
280 12

Figure 5.13: Validating badness. The reason for the peculiar resultsciated with the average wait time
of SDSC and BLUE remain unknown.

e The f-model (see Sec.5.2). In accordance with [108], six valdieswere chosen: 0 (com-
plete accuracy), 1, 3, 10, 100, and 300.

e Thed-model (see Sec.5.2).
e Thevankmodel: the vanilla setting of the model developed in thigater (defined above).

e Theimpr-model: the improved setting of our model, supplying it wstbme additional in-
formation (defined above).

Notice X2 andshflaren’t models per-se as both are based on real estimateScdmeetitors” of
our model aref and® (producing estimates based on runtime).

Performance results are shown in Fig. 5.13 in the usual fdrwerage wait time and bounded
slowdown. The black dotted lines present the results ofingnthhe simulations using the original
data. Therefore, models that are closer to this line are memkstic. Recall that our aim here
is not to improve performance. Rather, it is to produce wosthy results that are closest to
reality. All the results associated with models that cantarandom component (all b2 andf0)
are the average of one hundred different simulation rundeymy different seeds. The error-bars
associated with these models display the absolute-derigdverage of absolute value of deviation
from the average).

When examining Fig. 5.13, it is clear the two variants of olgoathm are more realistic,
in that they are closer to the real thing (compare with and®). Another observation, which
reaffirms our results from Chapter 3 is that using incregsedo model increased user inaccuracy
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(for the sake of realism) is erroneous, f@usually produces results that are much closer to the
truth. In fact,fO is usually comparable to the results obtained by our modt thie exception
of the SDSC trace. However, this is limited to the FCFS-bds&8Y scenario: if introducing a
certain amount of limited SJF-ness to the scheduler (e.ig. 83F, SIBF, LXF&W, etc.¥0 yields
considerably better performance results in comparisoheootiginal, whereas our model stays
relatively the same (not shown). Another scenario in whitban't be used is when evaluating
system-generated runtime predictors that make use ofa&ststo make predictions (as in Chapter
4). Finally (returning to the context of EASY), unlik®, our model has room for improvement as
will shortly be discussed, and we believe it has potenti&yjtothe extra mile”.

A key point in understanding the performance results iscivagi that the vanilla setting of
our algorithm is surprisingly more successful in being eto® the original than its improved
counterpart. This is troublesome as our entire case is tmithe argument that models that are
more accurate would yield results that are closer to thé.tlihe answer to the riddle is revealed
when examining thehflmodel. The fact of the matter is that one cannot get more atetian
shfl as it “generates” a distribution that identical to that of the original. Yet it too seems to
be inferior to our vanilla model. This exposes our indep@&edeassumption (the random shuffle
algorithm) as the true guilty party which is responsible thoe difference betweeimpr and the
original. The correct comparison betwemnmpr and vanl should actually be based on which is
closer toshfl not to the original, as only witkhflcan independence be assumed. Based on this
criterion,impr is consistently better tharanl.

Once this is understood, we can also explain why the perfocmafimpr (in terms of wait and
slowdown) is always better than thatwanl. Consider the difference between the two modietgar
simply has much more accurate data regardimyterjobs (e.g. KTH4H’s 25% of 5 minutes jobs).
As short jobs benefit the most from the backfilling optimiaatiimpr consistently outperforms
vanl (in absolute terms).

5.12.4 Repetitiveness is Missing

We are currently not interested in artificially producingra@results by means of “falsely” boost-
ing up estimates (as is done bgnl with respect tompr). This would be equivalent to, say,
increasing the fraction of jobs that estimate to thi),,, which can arbitrarily worsen results.
Our current goal is creating a reliable model. The abovecatds that the problem lies in the
assumption of independence, namely, the manner we assigratss to jobs. While it is possible
that this is partially because we neglected to enforce tbaracy to be as displayed in Fig. 1.4
(the accuracy histograms of evenflare dissimilar to that of the original), we conjecture threg t
independence assumption is more acute.

It has been known for over a decade that the work generateddag is highly repetitive [48]
(a fact which was exploited in the Chapter 4 to make predisfio Recent work [173, 133, 148]
suggests that the correct way to model a workload is by vig\uias a sequence ofer sessions
that is, bursts of very similar jobs by the same user. Thigrdwesuggests that a correct model
cannot just draw values from a given distribution while dgarding previous values as is done by
most existing parallel workload models (e.g. [30, 77, 21)).9%he rationale of this claim is that
the repetitive nature of the sequence within the sessionhaay a decisive effect on performance
results (as in the example we have given in Sec. 1.3.4, wheharge of 30 seconds in one job
resulted in a 8% change in the average performaned oiue to the flurry session).



102 Modeling User Runtime Estimates

Since users tend to submit bursts of jobs having the sanmaastivalue (Fig. 1.6, page 14), the
end result is somewhat similar to that of the existence ainedes modes, but in a more “temporal
sense”. At any time instance, jobs within the wait-queuel temlook the same to the scheduler,
as jobs belonging to the same session usually share the stimate value. Consequently, the
scheduler has less flexibility in making backfilling decrsiand the performance is negatively
effected. Ourshfl algorithm, along with all the rest of the models, do not dritee concept of
sessions and therefore result in superior performancenmpadson to the original.

To make out model complete, one must first develop a sessiseedbmodel. This work is
underway, but is far beyond the scope of this dissertatid8,[130].

5.13 Conclusions

For the conclusion of this chapter, we refer the reader to&@ec.2 (page 124).
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Chapter 6

Workload Flurries and Data Sanitization

6.1 Introduction

Context The performance of a computer systems is a product of thelaamko which they are
subjected, as much as it is a product of their design and mmgeation [40]. Indeed, different
workloads may lead to different absolute performance nusksnd in some cases to different
relative ranking of systems or designs. Using represemtatiorkloads is therefore crucial in
order to obtain reliable performance evaluation resultgee €anonical way to obtain representative
workloads is to use logs that record the activity experidrimg real productions systems. These
can then be used as follows

e If a recorded system has a similar functionality to a neweysbeing evaluated, one can
assume that the same workload may apply. One can thereflae pck” the recording to
drive a simulation of the new system and use the results aécpoes of performance.

e Even if the new system differs from existing systems, themded workloads can be valu-
able: if the new system design is shown to produce good eesidien applied to a wide
range of recorded workloads, one has strong indicationtitteatesults are general and rep-
resentative. (This is largely the approach we have takemsrdissertation.)

e Alternatively, recorded workloads can be used as the basisdnstructing a workload
model, as was done in the previous chapter. This has two bené&irst, it often reveals
insights and understandings that may lead to a better syd#sign. Additionally, the output
of a model can be put to use within the above two items; in thigext, a model allows
a more flexible usage than an actual log, as its parameterbecaasily varied to reflect
different system configurations.

All of the above are standard, heavily used, methodolodgesearchers share many logs of a
wide variety of computer systems and use them to improveetBgstems in the aforementioned
manner. The logs are routinely used as-is, no questionslaghkes fundamental justification for
this approach is the perception that recorded workloadsatedctual events that really did happen.
And if it happened, it is “representative” (of the type of rt@the associated system must handle),
and therefore must be included in the evaluation. We chgdiehis perception, and the remainder
of this section is devoted to explaining why.
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many single-node system jobs. AM on the SDSC Paragon.

Bogus System Activity Large-scale systems often require continuous support fhenvendors
that installed them. In some cases, a vendor employee isstaoned at the installation site, so as
to be on hand in case of need. Such employees also perforniaringitasks and take preventative
measures to avert failures before they happen.

Given the presence of such system staff, the workload obdesa the system is actually a
mixture of two classes of workload: work submitted by rearssthe system'’s “payload”), and
work submitted by the system personnel as part of perforrfiag tasks. What we do about this
depends on our goals. If we are only interested in user actsystem staff activity should be
filtered out. But if we are interested in the complete systdran monitoring and maintenance
tasks should be left in, because they are indeed part of Whatytstem has to do.

However, sometimes system staff generate extraneousawatithat is obviously bogus. One
striking example was reported in the analysis of the workloa the NASA Ames iPSC/860 hy-
percube [48]. The histogram of job sizes on that 128-nodehmadndicated that more than half
of the jobs were serial; moreover, most of the serial jobsvilagged as being run by the system
support staff (Fig. 6.1). This turned out to be a result of drhac method used to verify that
the system was operational and responsive by running the pvd command on a single node.
Overall, a full 56.8% of the trace (24025 jobs) were such kkrems. This type of activity was not
observed on any other parallel system. It is site specifizisTh is quite obvious that these jobs
should be removed if the trace is used to analyze or evalaasdi@l workloads in general.

Non-Representative Robot Activity Another example is shown in Fig. 6.2. This compares
the daily arrival cycle on 5 different parallel supercormgrat All display the expected periodic
behavior, with load peaking during work hours and lower katinight. But the SDSC Paragon
machine has an additional and much higher peak between 8c88:60 AM. Upon investigation,

it turned out that a set of 16 jobs with a distinct profile was@aied during this time slice every
day. While specific information is not available, it is reaable to assume that these jobs served
some system administration function and were executedratically. It is again obvious that they
should be removed when using the log for evaluations, so&sltece the danger of optimizing for
this abnormal behavior.

Flurries We believe the above are “easy to digest” examples, in that enmalysts would agree
that the associated abnormal data should be sanitizededsdorg used. This chapter is largely de-
voted to a previously unknown, less obvious anomaly, céileatkload flurries”. Flurries consist
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of rare, huge surges of repetitive activity by single uskat tominate the workload for a limited
time (see more precise definition in Section 6.3). They hawetypes of effects on performance
evaluation. One is in the context of workload modeling, apélctfically the fitting of statistical
distributions to workload data. The existence of a flurry ratigr workload statistics, leading to
the use of un-representative values by an unwary analys.oflfer is an effect on performance
evaluation results when using the workload trace to drivenaulsition. Flurries may cause a sim-
ulation to be very sensitive to fine details of the system gométion or workload, because the
whole flurry reacts to a changs masseand thereby amplifies its effect. Hence extremely small
modifications may lead to large effects that are not religbbelictors of real performance.

Roadmap We start in Sec. 6.2 with a detailed example concerning awesdkload trace that
spans two years and records 73,496 parallel jobs. We shawtibetening the runtime ofsingle
18-hour job by a mere 30 seconds results in an 8% change invénage slowdown ddll the jobs,
solely due to the effect it had on a subsequent 375-job flimay was submitted by a single user
over a period of 10 hours. This motivates the study of fluragsinique and important events in
computer workloads in Sec. 6.3. In Sec. 6.4 we show that fiahggl or “sanitizing” workloads by
deleting the flurries leads to more stable, reliable, andistent performance evaluation results. In
Sec. 6.5 we show why the removal of flurries is methodoloticaund (namely, the correct thing
to do). Flurries also have a detrimental negative effect odeting activity, as shown in Sec. 6.6,
further motivating their removal. Lastly, in Sec. 6.7, wewstthat the flurries phenomenon is not
unique to parallel supercomputers and that it is in fact sjdead.

6.2 A Case Study of Instability

In this section we present a case study showing how the pressna flurry leads to unstable
results: very small changes to the workload are amplifiedhbyltrry and lead to an unexpectedly
large change in the results. This example uses the SDSCegP2 |

6.2.1 Example of a Butterfly Effect

The largest user runtime estimatg,(,,) appearing in the SDSC-SP2 trace is 18 hours, a limit
imposed by the site administrators. Consequently, as jabkilded once their estimate is reached,
the longest jobs in SDSC-SP2 are limited to 18 hours. Howeswe have shown in Fig. 4.2
(page 63), in a real system, it takes some time to propagatmstruction to kill a job to all the
nodes. Therefore the trace indicates that some jobs rundibn@ore than 18 hours. Of the 73,496
jobs in the trace, only 619 (less than 1%) have runtimes lotingen 18 hours.

In a simulation it is possible to change the irregular ruesnto beexactly18 hours. Sur-
prisingly, we found that the average bounded slowdown Iserasensitive to such a change. The
following is a striking example that demonstrates this mmanon. The attributes of job 64,241
are listed in the left of Fig. 6.3. In our simulation, we hamancated this job’s runtime by a mere
30 seconds, and set it to be exactly 18 hours (a modificatiOrdd63%). This was thenly change
we've made, that is, we have modified one job out of 73,498B6%). Remarkably, as a result,
the average bounded slowdownadifthe jobs in the tracehanged from 88.16 to 81.38 — that is,
by about 8%! Moreover, the effect turned out to be dependeeiactly how much the runtime of
this job was changed. Fig. 6.3 shows the effect of differéwinges to the runtime of job 64,241
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Figure 6.3: Average bounded slowdown (obtained by simulating EASY an $IDSC-SP2 trace) as a
function of the simulated runtime of the specified job. Thie'gaoriginal runtime is 18:00:30 and so an
offset of +1 means the simulated runtime is 18:01:30.

on the overall average. Note that counterintuitively, therage may change by roughly the same
amount both by enlarging and by reducing the runtime of the jo

6.2.2 The Role of a Flurry in Causing the Effect

In a nutshell, the mechanism leading to the above effectiasdmponents. First, the backfilling
algorithm propagates the small modification to a single joth iafluences many other jobs. Sec-
ond, a whole flurry of similar jobs are affected masseand their combined weight leads to the
observed change in the global average.

In a batch system, a reduction of 30 seconds in the runtimgadf has the obvious immediate
(minor) effect of allowing other waiting jobs to obtain thequired resources sooner, possibly
allowing them to start earlier by up to 30 seconds. But in trgext of a backfill scheduler, a more
important effect is that a modification of 30 seconds is ehdognake the difference regarding a
backfilling decision: by terminating 30 seconds earlieldighgly larger window is opened, and a
job that was previously considered too long to be backfilley mow fit into the available space.
This causes a modification of the schedule down the road. &abhin of modifications allows the
effect of one truncated job to accumulate. In our simulatexactly 2024 jobs were affected by
the truncation of the runtime of job 64,241 (in terms of cheshgtart time). The changes in start
time are depicted in Fig. 6.4, where each affected job isasprted by a single point. The rest of
the schedule remained unchanged.

According to the figure, many of the affected jobs have almest difference in start time,
and probably reflect the fact that 9 processors became bleaid® seconds earlier. The bigger
differences between the original and modified schedulesoaresed in two areas: between days
560-570 (10 days after job 64,241), and between days 58@et@onth after), and reflect changes
in backfilling decisions. Nevertheless, the 8% change iratlegage bounded slowdown actually
stems from start-time differences associated with a grdygbs submitted on the 581st day. This
can be seen in Fig. 6.5, that compares between the runnimggageof the bounded slowdowns
obtained by the two schedules. (The running average atfinedefined to be the average of
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Figure 6.5:Running average of the bounded slowdown obtained

by the EASY scheduler on the SDSC SP2 trace with/without th&igure 6.6:Start-time differences of
30-second truncation of job 64,241. Left: full trace. Rigttom  the specified flurry jobs by user 328
in on the part where start-time differences occur. (X-axis denotes hours on that day).

bounded slowdowns experienced by jobs that were submitiedtp 7".) From this figure it is
evident that the major difference in overall average pemntoice was due to changes associated
with jobs that were submitted at the 581th day, and that allotitner changes (e.g. between days
560-570) had a negligible effect.

A closer inspection of the data revels that the perceivedghas due to a flurry composed of
375 similar jobs that were submitted sequentially over @opesf about 10 hours in the 581st day
(exactly one month after the truncated job was submittedl)th&se jobs were submitted by user
328, required 32 nodes, were estimated to run five minutelstaanfor about one to two minutes;
this is the biggest flurry shown in the right of Fig. 6.9. Theming average of the bounded
slowdown of the original and the “truncated” runs were quit@ilar when the first job of this
flurry was submitted (about 1% difference). By the time trst jab of the flurry was submitted,
the difference was as high as 9%.

Fig. 6.6 shows the start-time differences associated \wihdbs of the flurry (this is a subset
of the data displayed in Fig. 6.4). The jobs’ profile simiialong with the fact that they were
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Figure 6.7:Evolution of the SDSC SP2 process load and the waiting-qleswgh when simulating EASY
on the original trace.

submitted sequentially, explains their tendency to bectgfitin the same way by changes to the
schedule (in terms of wait time). Note that the effect of sfwing the wait time of a job with
runtime of around one minute by 30 hours is a reduction of 1806 bounded slowdown. This
is a huge figure compared to the average bounded slowdowre atire trace (less than 90), a
fact that explains the considerable difference betweesltvedown averages of the truncated and
original runs.

6.2.3 Explaining the Sensitivity

Truncating the runtime of job 64,241 (which was submitteadld@9s before the flurry) is only one
of many trivial modifications we have identified that resdlie a significant change in the average
bounded slowdown. These modifications may involve more tranjob, and may be applied to
jobs with different runtimes, different runtime estimatasd different sizes. However, all these
modifications have an effect only when the flurry identifiedabis scheduled. No other flurry in
this log displayed this type of sensitivity. In particulamnilar modifications in the neighborhood
of the huge flurry identified at the beginning of the log (seg Bi8) didn’t produce similar effects,
even though this flurry is an order of magnitude bigger thariltirry above (in terms of the number
of jobs composing it).

The reason that the 375-job flurry is so sensitive is thatdtuaes a very high process-load
on the system. The process load at tilmes defined to be the total number of running or waiting
processes (not jobs) that are present in the system atrtiairtstant, divided by the size of the ma-
chine. For example, if a machine with 10 nodes is currentiyiiig 8 processes (leaving 2 nodes
idle), while two jobs of size 6 are waiting in the queue, thismprocess load i + 6 + 6) /10 = 2.
The left of Fig. 6.7 displays the evolution of the processllaasociated with the SDSC SP2 trace.
The unequivocal peak in the weekly-average line occursenatbek that contains the 581st day.
The right of Fig. 6.7 shows that this is also reflected in tlagesof the waiting-queue.

We note in passing that the long-term average process loagsgontinuously across the trace.
This explains the growth trend of the average bounded slamudas seen in the left of Fig. 6.5).
It is tolerated by the users because the majority of the jolbgsjoy a fairly reasonable quality of
service, as indicated by the bounded slowdown median of I&CSSP2 trace which is 1.8.

Finally, it should be noted that the effect described ab@&pedds on the existence of the flurry,
but not only on it. It also depends on the metric being usedeMfheasuring the actual response
time, for example, the difference caused by the flurry job®issignificant enough to change the
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overall average, because the average response time isateohby long jobs [40]. By contrast, the
average slowdown is dominated by short jobs (that typidadilye higher slowdowns), so a flurry
of short jobs may have a large effect.

6.3 The Phenomenon of Workload Flurries

Having seen the effect that workload flurries may have onoperédnce evaluations, we now turn
to the phenomenon of workload flurries themselves. We defimerkload flurry to be a pattern of
activity with the following characteristics:

1. it causes a level of activity significantly higher than aisthus dominating the workload,
2. it exists for a limited period of time,

3. it significantly changes the distributions of workloattibtites, and

4. itis caused by a single user.

The name “workload flurry” derives from the first and secontilaites, and from the fact that
the items constituting the flurry are typically lightweigbtecause otherwise the system would be
overwhelmed by their numbers. The above definition is ddrik@m observations of such phenom-
ena in the long-term workloads experienced by large-saaléyztion parallel supercomputers, as
demonstrated now. However, we believe that the phenomeinwar&load flurries is widespread,
and indeed we have also found such flurries in other systeestigee below).

Fig. 6.8 shows the job arrival rate at the granularity of weeek6 logs (see details in Chapter
2). In all of them, large flurries are observed. They rangeze som double the average activity
to 10 times the average activity, are caused by a single aisérextend from a few days to several
weeks. The flurries in the CTC log and the Blue Horizon log seemnilar to normal fluctuations,
but nevertheless turn out to have an important effect (at fea CTC), as shown in Section 6.4. It
should be noted that flurries were observed in all the long Inghe Parallel Workloads Archive,
but were not observed in the shorter ones. Indeed, periedsadenonths long with no flurry occur
also in the logs that do include flurries.

Fig. 6.8 shows an especially prominent flurry in the SDSC-8&2. But this isotthe flurry
that caused the instability described in Section 6.2. Rathat flurry is a process flurry, i.e. it
includes very many processes but not so many jobs. Fig.l8frites the weekly process arrival
rate on two of the machines, showing that process flurriesadmecessarily correspond to job
flurries (the largest one in SDSC-SP2 corresponds to theyftnat caused the butterfly effect,
above). In fact, what exactly constitutes a flurry dependghercontext in which the question is
asked. The “high level of activity” (mentioned as part of tedinition of flurries) can in principle
also be defined in terms of memory usage, disk operationgtaronk bandwidth consumed.

The statistical nature of the observed flurries is explorellig. 6.10 (representative for other
logs as well). This shows the joint distribution of two magdtributes of parallel jobs: the number
of processors they use, and their runtime. The flurries termbtrespond to specific locations in
these scatter plots, indicating that they are largely caagmf jobs with fixed characteristics. In
particular, the jobs composing the flurries identified heredtto be small, using few processors
and/or running for a relatively short time, as witnessedh®y/fact that they concentrate near the
axes (note that both axes use a logarithmic scale). The tacy fbbs’ attributes are distinct from
that of the other jobs, has a profound affect on modeling,idb®discussed below.
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Figure 6.8:Per-week job arrivals in six parallel machines. All exhihitries of activity due to single users.
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6.4 Impact of Flurries on System Evaluation

As we've seen, simulations of parallel job scheduling caeieemely sensitive to the exact work-
load conditions. This may also happen in normal evaluatisthiout any targeted modifications
such as the truncation of job 64,241 as described above.

An example is given in Fig. 6.11, using CTC. This is again ausation of the performance
of EASY backfilling, this time showing how it depends on thetgyn’s offered load (varied as
described in Chapter 2). As Fig. 6.11 shows, changing the ¢aaises large fluctuations in the
bounded slowdown results when using the raw log. It wouldugkctous to take such effects at
face value, and claim that, say, the expected performareéad of 77% is much better than at a
load of 76%. In fact, these fluctuations are again exampléamy amplifications: if the 2000-job
flurry of activity by user 135 shown in Fig. 6.8 is removed $tld 2.5% of the total of 78,500 jobs
in the log) the result becomes a smooth curve similar to tposguced in queuing analysis.

Given that results such as these are hard to predict andaterveith the modifications used to
change the offered load, they can also sway the results afai@ns. An example is given in Fig.
6.12. This shows a study comparing EASY backfilling with cawative backfilling (reservation
to only the first, or all of the queued jobs, respectively; See. 1.1.2 for details). The study in
guestion dealt with the effect that the accuracy of uselimaestimates have on the performance
of the two backfilling schemes [40]. The results shown in Bid2 (left) were obtained by sim-
ulating the CTC workload using accurate runtime estimatgber than real user estimates. The
results were inconsistent, showing that conservative fidtaely produce higher slowdown values
for an offered load of 85% but lower values for 90% and 95%sTinconsistency was traced to the
same flurry identified above: rerunning the simulations onodifired workload where the flurry
was removed led to the cleaner results shown on the right.

We note that the “difference” curve is not the differencenssn the performancaverages
obtained by EASY and the conservative algorithm, as thislisist statistically significant (notice
that the associated 90% confidence intervals are stillappihg). Rather, it is the result of a more
sophisticated analysis, using the common random nurhisar&nce reduction technique [89]. In

1The name is somewhat of a misnomer in this case, as we useedleggkload rather than generating it using a
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Figure 6.13:With randomization, simulation results become non-deiaistic. Flurries make them spread
out more, reducing the accuracy with which results can berteg.

this analysis, we first compute the difference in slowdowetsveen the two schedulers on a per-
job basis (which is possible because we are using the samdoadrtrace). We then compute
confidence intervals on these differences. This showshledturry indeed makes a big difference
in the quality of the results. When it is present, we canngtasg/thing definite for most offered
loads, as the confidence intervals for the difference ireldWhen it is removed, the advantage
of conservative over EASY is clear across the whole rangdfefex loads.

A third example is given in Fig. 6.13. This is again part of #tady of the effect of user
runtime estimates, this time by randomly shuffling the eates in the log among the jobs (for
details, recall Sec. 5.12.2, page 99). Due to the shufflregaverage slowdown is different in each
run. The figure shows the histogram of these averages ovér208. When flurries are present,
the standard deviation is larger, thereby enlarging thédence intervals characterizing the result.

6.5 On Why the Removal of Flurries is the Right Thing to Do

A common initial reaction to the notion of referring to theigity of some particular user as non-
representative and unreliable, is of disbelief. The uryilegl rationale of this view is that one
can’'t get more reliable and representative than an actwitich was actually recorded on a real
system. This section addresses this concern in an incrahmaanner. It discusses the goals of
the performance evaluation process and the meaning thtdrthe “representative” and “reliable”
have within this context. It then shows why the removal ofrfes inherently coincides with these
goals and ideas.

A party that opposes the removal of flurries acknowledgegatitethat the observed instabil-
ity renders the results (of the corresponding performamnedyais process) useless. Indeed, with
respect to the overly-sensitive system under consideratioe cannot dispute the fact that a negli-
gible perturbation can sway the results in the other dioectieeming them unreliable and useless.
The opposing party therefore contends that the correctiesion should simply be that “there are
no valid conclusions”. Alas, no-conclusion is a common andespread result, as anybody that
ever conducted system research knows too well. The quastighether this reasoning applies if
the inconclusiveness of the results is due to flurries. Weerwhit does not.

random number generator.



6.5 On Why the Removal of Flurries is the Right Thing to Do 113

6.5.1 How About Removing Entire Days?

A first “rough” reason why flurries should not be show-stogper the performance evaluation
process is that they are temporally confined in relativelyrisperiods of time and have short-
lived impact. Consider, for example, the 24-months SDSC \wdgch is the log that exhibits the
heaviest load conditions (see Table 2.1, page 32). In SBavé.have shown that the instability
and sensitivity is due to the 375-jobs flurry that was suleditiuring the 58% day. It turns out
that even under SDSC'’s heavy load conditions, removindflilnigy has a lasting effect ainly five
days namely,

1. the schedule that is produced when using the original S&SGe simulator’s input, and

2. the schedule that is produced when deleting the aforeomeat 375 jobs from SDSC and
using this “cleaned” version as the simulator’s input

areidenticalin every respect until the 580day and from the 586 onwards. Thus, a perfectly
legitimate methodology would be to delete days 581-58%@gtirom the log and proclaim that the
results of the evaluation only apply to 725 days out of the thad the log covers. This statement
is sound, and it has real value: it is an accurate performanalysis that applies 99.3% of the the
time. It should be obvious that this result is far superiadh®“no-conclusions” alternative that the
opposing party has to offer. Indeed, an important goal opiréormance analysis process is e.g.
to help choose between competing systems. A result thaiesp@d.3% of the time can be rather
helpful in this respect, especially if the alternative isitd say anything at all.

Our justification for removing the 5 days is that they ares(ally) not “representative” of
the other 725. Since the latter are the vast majority, it &ified to characterize them as “the
norm”. Likewise, it is justified to characterize the 5 daysiethare affected by the flurry as a
rare short-lived “anomaly”. Finally, the assertion thatesaluation which includes the anomalous
5 days is unreliable, is also well justified; in this senseritisr may indeed be characterized as
an “unreliable” activity. Importantly, one flurry is not mgsentative of another: all the flurries
we have encountered are substantially different from om¢han (in terms of the number of jobs
that compose them, the attributes of the jobs, and the daratiwhich they are submitted). We
therefore contend that flurries are very similar in essemtied site-specific anomalies described in
Sec. 6.1, which most analysts would agree to sanitize dunettatt that they are not representative
of the typical workload.

6.5.2 Standard Alternatives are More Aggressive

Deleting a few short periods from the input is actually a vauptle approach compared to several
other routinely practiced (and much more aggressive) srahohethodologies. For example, in
computer architecture, in the interest of shortening satmoth time, it is customary to choose a
few dozens of relatively short “representative” instrantsequences of a SPEC application [143],
“stitch” these sequences together, and use the resulathstiethe original application under the
assumption that the former is reasonably representatitfeedatter [114, 117]. The short version
might be less than 1% of the total. Choosing small fractidiiseinput to represent the entire input
constitutes a far more aggressive filter than removing ong/foaction and explicitly proclaiming
that the result does not apply to the removed part. And sakesolur methodology by which
one can be sure that the obtained results are represeritativest of the time, with the stitching
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approach, one can only hope that the selection is représentghlso, note that had we randomly
chosen e.g. 1% of supercomputer log, the chances of chotbsrg 1" day were rather slim.)

A related acceptable approach from the supercomputing toim&o divide the input (usu-
ally years worth of activity) into relatively short disjdinoonsecutive sequences (usually individual
months) and to report the results associated with someéseptative” subset of these subse-
guences [15] or even with all of them [108, 149]. Using onlyuaset of the months is obviously
more aggressive than our approach of just deleting a few diagstivity. Using all the months
translates to localizing the effect of the flurry within themth in which it occurred. But reporting
the outcome associated with this month as a reliable resoiethodologically erroneous, because
it does in fact contain a flurry that might arbitrarily distéine result as shown above. Thus, the
correct thing to do is single out the result associated wighnhonth that contains the flurry as unre-
liable, which is equivalent to our removing-a-few-days@@eh, but has the drawback of deleting
some extra “innocent” days instead of just the “contamitfataes.

Yet another standard methodology (again for the sake oteshsimulations) is to use some
small prefix of the input as representative of the input irerisrety. This is done both in computer
architecture, as well as in supercomputing related rekd&ic 123] and is considered acceptable,
even though its actually far less reliable than stitchingcusing only on the beginning of the input
runs the risk of missing important aspects, and is certantyore aggressive approach than using
all of the input except a few days.

Finally, many research efforts simply abandon the use dfweekload traces altogether [169,
170, 57] and prefer to use workload models [77, 20, 99] (trebased on real traces), even though
the models are overwhelmingly more well-behaved than thétreng [39]; for example, they
generate stationary distributions (even though this dalthe case; see Fig. 6.7 and [17, 149]),
they lack self similarity (even though this property waswhdo consistently exist in real logs
[151]), they often make various unrealistic assumptio®s [57, 133], and they are certainly not
generating any flurries. Consequently, results obtainexlith using existing workload models to
drive a simulation is far less reliable than using real lag&n if the latter is a slightly reduced
version of the original. Put in another way, using the ougguthodels as the input for a simulation
is equivalent to applying sanitization to the real thing tisaorders of magnitude more aggressive
than just deleting a few days.

6.5.3 How About Removing Just the Anomalous Part of the Days?

Having established the fact that the removal of some shorwg&om a log (in our case the said
period is at least an order of magnitude shorter than theitog)valid and sound methodology,
we go on to further refine this methodology and make it everemnsabtle and even less intrusive.
Note that, with the exception of the flurry jobs, the five daysvhich the flurry resides consist
of perfectly regular activity. There is nothing which is flamentally different between the jobs
that reside outside the five days and the non-flurry jobs #&tle within them. Importantly, the
flurry activity is completely independent of the non-flurrgtigity, as it is largely generated by
independent, unrelated, users. Indeed, as the flurry j@bgearerated by one user, it is reasonable
to speculate that they could have been submitted duringexeiiit period, had the schedule of the
submitting user been somewhat different.

Thus, deleting only the flurry jobs and leaving the rest offiedays activity in, is a founded
and well-justified approach. It is certainly as valid as tietethe 5 days in their entirety, and
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is actually superior in two respects. Firstly, it preseralighe available information which is
reliable and representative and therefore allows the paence analyst to argue for a result that
is somewhat stronger than “99.3% of the time”. The seconamidge of removing just the flurry
jobs is that it avoids the issue of determining the exacttituraf the period to be deleted: In the
above example, we had to simulate the run with and withoufltley activity, and compare the
results on a per-job basis in order to determine that theaffestted job resides in the 585day.
Note that this period can possibly change under differentionstances, e.qg. if we used a scheduler
that is different from EASY, if we artificially changed thedd, etc. Determining the exact duration
can therefore be even more labor intensive. Consequesethting only the flurry jobs is a much
simpler alternative (in fact it's quite simple even in ahg#elterms) and therefore it has a viable
chance to actually be adopted, especially if analysts areigeed with a clean log to begin with
and are spared all the details.

6.5.4 How About Not Removing Anything and Separate Averagelstead?

While be believe the above arguments are more than enoughtifyjthe removal of flurries, there
is in fact an even more subtle sanitization methodology weagly, which yields identical results
to the approach we advocate (of deleting flurries), theralthér strengthening it. It turns out that
we actually don’t have to remove the flurry to eliminate thevarranted sensitivity. Instead, we
can simulate the input as is, as long as we exclude the flubg/ffom participating in the overall
average performance metric (slowdown in our case). Theipeaaf separating the job population
to disjoint subcategories (wide vs. narrow, short vs. |dvagkfilled vs. non-backfilled etc.) and
presenting the separate performance averages associdteelaesh, is very popular and heavily
used [125, 115, 141, 39]. Accordingly, we suggest that tieategories should be flurry vs. non-
flurry jobs. With this approach we do not alter the input sempeeat all. Specifically, the flurry
jobs are simulated along side the rest of the jobs and arer@dldo influence them. The only
change we introduce is in the manner by which the performameteic is computed: we isolate
the performance experienced by flurry jobs in an averagedsiax of their own.

Fig. 6.14 illustrates the result of doing this with the ageralowdown obtained when repeat-
edly simulating SDSC, such that in each simulation the ratof job 64,241 is slightly altered.
This is exactly the experiment that was described in refatioFig. 6.3, only now we add two
curves that are associated with the average slowdown of uhg #hind non-flurry jobs, respec-
tively. As can be seen, the non-flurry slowdown average iBlstaetween 79-80, whereas the
flurry average “goes wild” between 450-1450. Indeed, thesisigity as manifested in the highs
and lows of the “all jobs” curve that is associated with thenbined average of the two, is per-
fectly correlated with the highs and lows of the flurry curidis again highlights the sensitivity
effect as the product of hundreds of (flurry) jobs that reac similar manner to a minor change
and therefore disproportionally sway the overall averagéeir direction.

Fig. 6.15 compares the result obtained when systematicatlying the load of two versions
of the CTC workload: the raw log and a cleaned version of itf(itheletes flurries). Like with
the example given in the previous paragraph, the curremhpbacorresponds to an experiment
we conducted earlier in this chapter, the result of which pr@sented in Fig 6.11. Once again,
the difference between Fig. 6.11 and Fig. 6.15 is that therladds two curves that subdivide the
overall slowdown associated with the raw (non-sanitized)ihto two: the average slowdown of
flurry and non-flurry jobs, respectively. (The flurry curveplstted in the right subfigure only, due
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to the limited Y axis scale in the left.) Concentrating on tbi subfigure, we see that there is
virtually no difference between the average associated thi cleaned log (“flurries removed”)
and the one associated with the non-flurry jobs within theloa(“flurries excluded”), as the two
curves continuously overlap. Turning to the right subfigurgich introduces a widened log-scaled
Y axis and can therefore add the flurry curve into the picttiter(y jobs”), we again see that the
latter’s highs and lows correlate with those of the combioadie (“all jobs”) and single out the
flurry as the sole cause of instability.

The bottom line is that deleting the flurry jobs has an almdentiical effect to leaving them
in while isolating them within an average of their own (thadeaggressive methodology). This
result further justifies the flurry-deletion approach, whig preferable over the average-separation
approach, as it is much simpler.

6.5.5 How About Not Separating the Averages and Shake the Iy Instead?

A final alternative to dealing with the instability that isrgrated by flurries is what we catiput
shaking With this approach we (1) leave the flurries in, and (2)ndd separate the averages.
Instead, we substitute a single simulation run with mudtipins, such that for each run we system-
atically introduce negligible random perturbations irfte tnput, e.g. by changing the arrival time
of 10% of the jobs to be-u seconds earlier or later, whetds e.g. uniformly distributed between
0 to 60. We argue that a slightly perturbed version of a logsisepresentative and reliable as
the original version. The multiple simulations create a gl@space, which can be averaged and
bounded within confidence intervals. In [161] we show thé& #pproach is effective and largely
defeats the instability generated by flurries. But a fullaliggion is beyond the scope of this dis-
sertation. Shaking has the clear advantage of not requtinatgflurries would be known. It allows
the use of raw data as is, at the price of deciding upon theirshapecifics and of performing
multiple simulations instead of one.

6.6 Impact of Flurries on Modeling

The above sections focused on the instability induced byidksion the process of parallel systems
evaluation. This section focuses on flurries’ impact on niage As noted above, the fact flurries
have statistical properties that are different from therfmal” background distributions (Fig. 6.10)
has significant implication on this subject. Three exampleggiven.

Weekly Cycle The first example that demonstrates this is given in Fig. ,6atich shows the
weekly cycle of all 16 logs available through the Parallelrioad Archive [110], as listed in
Chapter 2. Naturally, more work is being done on weekdays traweekends, with the single
exception of DAS-Utrecht. In fact, this is also true for tlagtér log, with the single exception of
4,297 jobs submitted by user 26 on Saturday Aug 16. (Whiahedlgtconstitutes the major part of
the associated DAS-Utrecht flurry shown in Fig. 6.8.) Indedten deleting this flurry, the weekly
cycle of DAS-Utrecht becomes similar to that of all the otlogys. Obviously, it is erroneous to
base a workload model that takes into account the weeklyeaytlthe raw data of DAS-Utrecht,
as throughout all the logs in all Saturdays, but one, the i®&alv.
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allel computers, showing abnormal spike Saturdaytion of interarrival times in the LANL CM-5 log into
within the DAS-Utrecht log. a noisy and modal distribution.

Interarrival Times Due to their repetitive nature, flurries tend to modify therkload distri-
butions by adding huge modes. Focusing on the LANL CM-5 artéral times as an example,
we find that the distribution for the whole log is distinctlyodual, with several values that are ex-
tremely common and each come from a different flurry (Fig7g. After the flurry-related data is
removed, the underlying distribution can easily be charamtd as lognormal.

Non-Stationarity Flurries are not only different from the normal workloadt lalso different
from each other. This combination leads to severe norestatity, as demonstrated in Fig. 6.18.
The figure compares the distributions of four different woakl attributes in the 1995 and 1996
portions of the LANL CM-5 log. For example, in 1996 the log tained a large flurry of activity
by user 38 as seen in Fig. 6.8. The flurry consisted of jobstket about 10 seconds long, arrived
about 12 seconds apart, ran on 128 nodes, and used eithdittlermemory or about 1.84 MB
per node. This accounted for 12,344 (29%) of the total of @2 jébs in this part of the log, and
thus had a decisive effect on the distributions of these lwarkattributes.

For comparison, during 1995 the log contained two otheriéiarby users 31 and 50, which
accounted for 71,161 (58%) of that year’s total of 123,0%%jdBy comparing the 1995 and 1996
distributions in Fig. 6.18, we see that the workload seent®toon-stationary, as the distributions
for the two years are quite different (dashed lines). Bub# flurries are removed, we find that
in reality the base workloads are actually quite similardaoreother (solid lines). Thus the major
differences between 1995 and 1996 are actually the resflltrags introduced by 3 users out of a
total population of 213. Including the flurry data gives tlsi@ns of these 3 users significant sway
over the results.

6.7 Generalizing

All of our examples so far come from the supercomputing domdowever, flurries are not unique

to parallel supercomputers. Once we became aware of thepteron and began to look for it,

it was rather easy to find it in other systems. Here three elesrgre provided, based on logs
generated by three different types of departmental servers
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Figure 6.18:Changes to the distributions of workload attributes whemiéla are removed from the LANL
CM-5 log. Most differences between 1995 and 1996 are ataibto the inclusion of flurries.

CPU Server A large flurry was observed in the session log for March 200 @hix server used
by students (Fig. 6.19). This turned out to be the resuftpiing a large directory structure by a
certain student one afternoon; the (MS Windows) implentertaautomatically opened a new ftp
session for each directory, and this was logged as a distsgrtsession. Obviously, this data does
not represent normal user sessions, and would cause nigleagdults if used as the basis of an
attempt to optimize for interactive user sessions.

Authentication Server Another example is the activity on our departmental auibhatibn server
(Fig. 6.20). In this case data covering a long period waslabai, and two distinct flurries were
observed. These were traced to a bug in Windows, where aargigation failure led to an infinite
loop of retries. Indeed, it is possible that some of the fasron supercomputers are also the result
of runaway scripts rather than being intentional. This dugsdetract from the importance of the
phenomenon. On the contrary, situations in which flurriesusnintentional add motivation to the
need to identify them before using the workload as represigatof normal work.

File Server An important generalization of flurries replaces the sowa®ponent of their def-
inition: instead of being work generated by a single usercarm consider work generated by a
singular event. Two such events are shown in Fig. 6.21, alyapd a file server’s level of activity.
The first high-load event, in September 2002, is attribubesl tnassive copying due to a hardware
upgrade. The second, during September to December 20G8jhsited to a bug in a new release
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Figure 6.21:Activity on a departmental NetApp filer.

of the GNU C library [154]. Installing the new version is the event that triggetieis flurry of
activity, and fixing it ended the flurry.

Refining the Definition of Flurries There are many accounts of flurry-like events on the Inter-
net, provided we generalize the notion of source from a singer to some singular event that
attracts many users (but still a small subset of all Inteusstrs, and for a limited time). For
example, new releases of software by Microsoft have causedd called “midnight madness”
phenomenon, where users flocking to download the new ve(sipitally released at midnight)
saturate the network and overwhelm the servers [124]. @ttenples include the surge of activity
on CNN'’s servers on September 11, 2001, and the usage o$sttap especially to cover sporting
events such as the Olympic games or the World Cup finals [$pfahese events are singular, and
lead to unique traffic patterns. We claim that it would be vgrém use workload data including

2The bug is that the_off field in thedirent structure isn’t maintained correctly by the auto-mountdae. Specif-
ically, the 64-bit offset is either O or a garbage value. Whsimg a 32-bit file system interface (like the liteaddir
routine),getdents verifies that only 32 bits are actually used, and therefdte ifadhe garbage contains more bits. In
trying to handle this error it attempts to seek to the begigmf the erroneous entry, identified using the offset of the
previous one. But this is also a garbage value. And if it is®and up with an endless loop of repeatedly reading the
first entry, which is what caused the surge of activity sedrign 6.21.
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such singular events to analyze the performance of webrsanmeler normal conditions, just as it
would be wrong to use normal data for an evaluation of howesystwould behave under unique
conditions. Of course, in these particular cases, high-taaditions may be more important and
meaningful than normal conditions; if this is the case, thleguld be the focus of study rather than
being eliminated as suggested below. For example, Ari ehatlel such activity, which they call
“flash crowds”, with the aim of evaluating schemes to surthem [4].

Targeted attacks on specific servers also qualify as flurtiesnany cases, the nature of the
attack is to flood the server and overwhelm it with a load teanuch higher than its capacity.
This load is generated by a small group of machines (relébitbe whole Internet), and lasts for
a limited, well-defined time. In this case, an analysis ofdttack workload patterns is not only
useful for evaluation of servers, but also as a tool in ideimg such attacks [11].

6.8 Conclusions

For the conclusion of this chapter, we refer the reader to&@ee.4 (page 127).
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Chapter 7

Discussion and Conclusions

The most popular scheduling policy for parallel system<i&§ with backfilling [53, 37], as intro-
duced by the EASY scheduler [98]. This popularity most pbdpamanates from the combination
of its attractive properties, being

e simple (easy to implement, understand, and maintain),
e fair (uses FCFS as the basis), and
o effective (yields performance results comparable to muokersophisticated algorithms).

The price of these benefits, however, is that users mustygeppimates of how long their jobs will
run. Estimates are utilized by the system to better packothe py means of exploiting scheduling
“holes” to allow short jobs to run ahead of their time, praddhey do not delay previously queued
jobs (or at least the first). Jobs attempting to exceed tls¢imates are killed by the system so as
not to violate subsequent commitments. Surprisingly, aade®f related studies resulted in an
almost overwhelming agreement amongst researchers #Haalirate estimates either do not effect
or, more frequently, improve performance [146, 47, 174,189, 108, 142, 170, 122, 34, 64].

In light of this background, this work has three major cdnitions. We begin by showing that
the “inaccuracy helps” common wisdom is merely an unwaaaattifact of the erroneous manner
in which inaccurate estimates have been modeled, and ttratised accuracy does in fact improve
performance (Section 7.1). We go on to develop a correct hibde from now on, will allow for
valid performance evaluations (Section 7.2). We then ek{ile new insights and understandings
regarding the underlying essence of the workload expegby parallel systems, to devise a new
scheduler that is able to automatically improve the qualitystimates and put this into productive
use (Section 7.3). We note that previous attempts to do &isJ15, 19, 15, 90, 170] yielded
algorithms that are inherently different than native badlik§, and that our solution is the first to
achieve this goal while preserving all the attractive diedias listed above.

Finally, a fourth contribution of this work is finding a funai@ntal flow in the standard method-
ology of conducting system-related research based oniagsd@roduction logs: the inclusion of
“workload flurries” casts a shadow on the validity of the ahéal results. Thus, we propose that
workload logs be sanitized to eliminate the problem (Sectidt).

7.1 Resolving the Misconception of Inaccurate Estimates

The de-facto standard for modeling increasingly inaceutser estimates has been fhenodel
that, given a runtime, uniformly chooses the associated estimate ffam- (f + 1)] at random,
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or deterministically sets it to be- (f + 1). With this, biggerfs imply increased inaccuracy. The
perception that “inaccuracy doesn'’t affect or improvedgrenance” is largely based on results
obtained with this model. Studies reporting a performameprovement explained it with the
“holes” argument, claiming that increased overestimatibfong jobs opens larger holes in the
schedule for backfilling shorter jobs. In contrast, studegrting performance is unaffected have
used the “balance” argument, claiming that larger holes&aout by the fact backfill candidates
appear proportionally longer. While both arguments maksegthey are contradictory, and in any
case fail to explain the results as reported below.

We found performance is extremely sensitive to minor chamgeg, and that within the noisy
results space the two contradictory observations abotanpeance-trends are both possible, when
using only few samples in a non-systematic manner. Howaveraging over repeated simulations
revealed that the mean effect of increasfnig usually V- or L-shaped: in both cases average wait
time and slowdown drop at low inaccuracies and then, for Mes, the trend is gradually reversed
for larger fs (though larges still yield better results thafi=0).

To explain this, we show that the seemingly contradictorgldince” and “holes” arguments
are both incorrect, or rather, correct to some extent, bas e key issue that reconciles between
them: Performance improvement due to increagesl not simply the result of more backfilling
due to more holes in the schedule (in accordance with theeSiadrgument), because inflated
runtime estimates not only create holes in the schedulealsatenlarge potential backfill jobs,
making it harder for them to fit into these holes (in accor@éawnith the “balance” argument).
Rather, it is the result of a “heel-and-toe” dynamic: a distive sequence of events where small
backfill jobs continuouslprevent the holes from closing ueading to a preference for short jobs
and the automatic production of an SJF-like schedule. Whinvery small, the proportionally
narrow holes make sure only jobs that are truly short enjeyefifiect (explaining the descending
part of the V and L-shapes). However, Agets bigger, increasingly longer jobs can enjoy it too
(explaining the ascending part). The situation is worsdaHherrandom model, which allows long
jobs to masquerade as short and vice versa (explaining vehgidterministic model yields better
performance and is usually inclined to an L-shape). We haeetty quantified this by measuring
the “SJFness” as a function gf defined to be the percent of jobs that are the shortest in the
wait-queue at the time they are started. The result was stemsly A-shaped, a kind of mirror
image to the V performance curves. The single L-shaped wadkive found (both random and
deterministic models) managed to “escape” the reversakgberformance trend due to the fact the
activity it embodies lacks temporal burstiness, implyinguapopulated wait-queue and therefore
fewer opportunities to mistake long jobs for short. Indegden burstiness was artificially added
to this log, the L performance curve turned into a V curve.

Importantly, the heel-and-toe effect means that perfomaamprovements due to multiplying
the estimates are at the expense of the first queued job, whielpeatedly delayed in favor of
shorter/smaller jobs. Directly quantifying this revealbdt the “unfairness” of the schedule is
proportional tof: the bigger thef, the greater the unfairness. This means that multiplying is
simply trading off fairness for performanggig. 1.10, page 19). In fact, this statement is correct
regardless of whether the values being multiplied are actudimes (perfect) or were supplied
by users (flawed); it's just that the more accurate the init#dues we multiply, the better the
resulting performance becomes. The bottom line isrindtiplying is actually a scheduling policy
it is technically possible as well as legitimate for schedsiito multiply the estimates they use,
exercising the performance/fairness tradeoff; but userire and behavior is completely different,
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as will be discussed next.

Fully understanding th¢-model highlights its fundamental flaw: it leads to a limitedF-like
scheduling, and indeed, SJF is insensitive to multiplyungtimes by some factor as long as the
relative ordering of jobs is preserved. Batl user estimates provide no such ordering! Rather, as
outlined in the next section, they are inherently modalhwi®% of the jobs using only 20 “round”
estimate values (e.g. 1 hour) and, in particular, 10-27%gu8},,.., — the maximum allowed.
Any popular estimate is bad for backfilling as the scheduéemot tell whether the associated
jobs are short or long (e.g. regardless of the estimate gdlguintime is often zero because of the
many jobs that fail on startup). Howevéy,,,.. is especially bad, as the associated jobs are never
backfilled and thus the more there are jobs that use it, the therschedule resembles plain FCFS.

We conclude that the popular claim that “increasingly insate estimates improve perfor-
mance” is only correct if “inaccurate” means “multiplied byfactor”, which is far from the truth
when real estimates are involved. Inaccuracy of real estismaanifests itself in the form of modal-
ity, and “increasing it” means making estimates more moelg. (by adjusting the number of jobs
associated withe,,,., from 10% to 20%). In this caséncreased inaccuracy actually degrades
performance as one would intuitively expect. Previous studies thatyssted otherwise were
simply unaware their results are dominated by the perfoo@éarness tradeoff. Put in another
way, we refute the overwhelmingly accepted myth that inesxcy improves (or doesn't effect)
performance, on the grounds that it is based on false andlistre assumptions.

We demonstrate the correctness of our findings by suggetsteiguncated f-mode] which
adjusts an estimatethat is generated by the vanilfamodel to bemin(FE,,,,, ¢). This creates
a mode atF,,.,, such that bigger's imply more jobs associated with,,.,. Indeed, one can
“manufacture” arbitrarily bad performance results by cfing a big enouglf. Importantly, one
can always find arf for which results obtained when using artificial estimases,equal to those
obtained when real estimates are employed, in contraséteethilla model. We view the truncated
model as a simple “quick and dirty” substitute for the vamilhnd contend it should always be
preferred over the latter. Regrettably, the truncated misdstill not realistic. For example, it
generates only one mode (&t,..) and only associates longer jobs with it, whereas with real
estimates there are several modes and short jobs are asdaeitn all of them. One consequence
was that each trace/metric combination required a signifigdifferent f in order to obtain results
comparable to those of real estimates. We therefore advtivatuse our accurate estimates model
as suggested in the next section.

This part of our work was published in [159].

7.2 Accurately Modeling User Runtime Estimates

While the f-model is the most popular, other estimate models have hegested. Together they
have been used to study the impact of inaccurate estimafgsrormance (see previous section),
and to complement workloads that lacked estimates datg 188 58]. Collectively examining
all models, we find each of them to be lacking in some respéoeirBhortcomings include im-
plicitly revealing too much information about real runtisy@rroneously emulating the accuracy
ratio of runtime to estimate, neglecting to take into coasation the fact that all production instal-
lations have a limit on the maximal allowed estimakg,(..), and that this value is typically the

1Probably due to a combination of the inability of users tousately predict how long their jobs will run and the
strict backfilling policy of killing underestimated jobs.
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most popular. Importantly, two key ingredients are missnogn existing models: the inherently
modal nature of the estimates caused by users’ tendencypdystround” values [108, 17, 93],
and the temporal repetitive nature of user estimates, r@sgjthe same value to bursts of jobs (ses-
sions) [173, 133]. The combination of these has a decisieetedn performance results, as low
estimate-variance of currently waiting jobs reduces tifecéfeness of backfilling. Consequently,
the outcome of using the existing models in simulation islidvperformance evaluation results
that are unrealistically better than those obtained widh estimates.

Our approach is to develop a model that targets estimatedalitya We view the estimates
distribution as a sequence of “modes” (each mode is a paiposed of the estimate’s value and
the percent of jobs that used it) and investigate their mla@macteristics. Our findings include the
aforementioned invariant that 20 “head” estimates are byeabout 90% of the jobs throughout
the entire duration of the log. The “popularity” of head esdtes (percentage of jobs using them)
decreases exponentially, whereas the tail obeys a poweitlze few hundred time values that are
used as estimates are well-fitted by a fractional model,endtiithe same time, 15 out of the 20
head estimates are identical across all the productiondegsave examined. The major difficulty
we faced was determining how popular is each head estimaterffany jobs are associated with
each). This was solved by the “pool algorithm”, aimed to oapthe many similarities between
profiles of head-estimates within the different productmgs we analyzed.

We find thatall modeled aspects of the estimates distribution are almestiwhl across the
logs, and therefore our model defines only two mandatorynpeters: the number of jobs and
the maximal allowed estimaté(,,..). While considerable variance does in fact exist, it is yost
encapsulated within the percentage of jobs estimated téorufi,,.. (an optional parameter). The
remaining variance (if any) is attributed to another 1-2/ygopular modes that sometimes exist,
but are unique to individual logs. When provided this addisil information, our model produces
distributions that are remarkably similar to that of theyoral. Importantly, the ability of our model
to make the resulting distribution more modal through amdigarameters, allows for a realistic
evaluation of the impact of increasingly inaccurate estaman performance.

When put to use in simulation (by replacing real estimatet \artificial ones), our model
consistently yields performance results that are clos#rdmriginal than those obtained by other
models. In fact, these results are almost identical to whaheastimates are used and are randomly
shuffled between jobs. This pinpoints the temporal repetigss of per-user estimates as the
final obstacle separating us from achieving truly realistgults. Future work therefore includes
developing an assignment scheme of estimates to jobs tsgwes this feature, but this requires
the development of a session-based model [148, 130] thaymn the scope of this work.

Our model can be downloaded from this site [155] within theafal Workload Archive [110].

Its interface contains two functions: generating the diatron modes, and assigning estimates to
jobs. (The latter is essentially random shuffling of estesdtetween jobs, under the constraint that
runtimes are smaller than estimates.) A utility that malsesaf this interface, to append estimates
to workloads that are given in Standard Workloads Format]jli4 also available for download.

This part of our work was published in [157].

7.3 Leveraging System-Generated Predictions for Backfillig

As noted above, user estimates are inaccurate and modal, thda significantly reduces system
performance. The alternative is system-generated predicbased on users’ history, which are
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much more accurate. Despite considerable efforts of relsees [48, 62, 136, 83, 108, 86, 97],
predictions weraeverincorporated into production systems. This part of our werikbout iden-
tifying the problems causing this situation, and providapgplicable and easy to use solutions to
all of them. Specifically, we identify three major difficids and thus the contribution of this part
of our work is threefold.

The first difficulty is of a technical nature. Under backfigiruser estimates are part of the user
contract: jobs that exceed their estimates are killed byyséem, so as not to violate subsequent
commitments. This makes system-generated predictionstabke, as some predictions inevitably
turn out too short, and users will not tolerate their jobsgeiilled prematurely just because of
erroneous system speculations. Researchers that noseprdtiilem failed to solve it within the
native backfilling framework [62, 115, 108, 15, 90], but oahuion is rather simple: (1) use user
estimates exclusively as Kkill-times, (2) base all othereskciing decisions on system-generated
predictions, and (3) dynamically increase prediction$ived by their jobs, and push back affected
reservations, in order to provide the scheduler with a tulthiew of the state of the machine.
Applying this to EASY usually results in @25% reduction in average wait time and slowdown.
We call this improved algorithm EASY.

The second major difficulty is related to the common miscptioa suggesting inaccuracy
actually improves performance, and therefore implying ti@od estimates are “unimportant”.
As discussed above in great detail, this relies on a numb&tudfes showing significant improve-
ments when deliberately making user estimates even legsaede.g. by doubling or randomizing
them [174, 115]). In this respect, our contribution has taas (1) explaining this phenomenon
(Section 7.1), and (2) exploiting it. As noted, doublinggsebecause it induces “heel and toe”
backfilling dynamics that approximates an SJF-like schedoy repeatedly preventing the first
gueued job from being started. Thus doubling trades offiéss for performance and should be
viewed as a property of the scheduler, not the predictoe@ddwe’ve shown that the more accu-
rate predictions are, the better the results that doubliains). We exploit this new understanding
to avoid the performance/fairness tradeoff by explicigyng a shortest jobackfilled first(SJBF)
backfilling order. This leads directly to a performance ioy@ment that was previously incorrectly
attributed to doubling, randomizing and other similar ssuBy still preserving FCFS as the basis,
we manage to enjoy both worlds: a fair scheduler that negtasls backfills effectively. Applying
this to EASY" can nearly double the performance (up to 47% reduction inagesslowdown).
We call this enhanced algorithm EASY.

The third and final difficulty is related to the usability ofgprously suggested prediction algo-
rithms. These all suffer from at least one (and sometimgetihe following drawbacks: (1) they
require significant memory and complex data structureswue #e history of users, (2) they em-
ploy a complicated prediction algorithm (to the point ofrigeoff-line), and (3) they pay the price in
terms of computational overheads for maintaining the hystad searching it [62, 138, 83, 86, 97].
Here too our contribution is twofold: (1) showing that a vemnple predictor can do an excellent
job, and (2) explaining why. Indeed, the improvements of EA$ EASY " reported above were
obtained by employing a very simple predictor that is botsyda implement and suffers almost
no overheads: the average runtime of the two most recenii;mgted (and already terminated)
jobs by the same user. We have argued that our predictotessistems from the fact it focuses
onrecentjobs, in contrast to previous predictors that focusediamlar ones (in terms of various
job attributes). This claim is supported by our finding thetfprmance degradation is more or less
linearly proportional to the amount of past jobs upon whioh prediction is based, suggesting a



7.4 Cleaning Workloads From Flurries and Other Anomalies 17

prediction window of only one or two jobs is optimal (Fig. 2,Jage 26).

Finally, note that while we focus on improving EASY, we halgashown our techniques can
be applied equally well to any other backfilling schedulardéed, our work has already inspired
researchers working on teNANOS grid [87] to incorporate runtime predictions using our tech
niques.) The reason we choose to focus on EASY is its popylarproduction systems, which
may be attributed to the combination of conservative FCH8asgics with improved utilization
and performance. Since EASY essentially preserves these qualities, but consistentiyeo-
forms its predecessor in terms of accuracy, predictapditygl performance, we believe it has an
honest chance to replace EASY as the default configuratipnoafuction systems.

This part of our work was published in [156], and is the ba$& pending patent [158].

7.4 Cleaning Workloads From Flurries and Other Anomalies

All the results presented above exclusively rely on the rtingeand performance evaluation,
through simulation, of activity logs from real productioystems. This methodology is standard,
and is utilized by numerous computer-systems related pdeey. the logs we have used in this
work were also extensively used in dozens of other pape®])1The underlying assumption of
this methodology is that recordings of production systerageliable and representative. We chal-
lenge this assumption, demonstrate it is often erronemassaggest non-representative anomalies
be “sanitized” or “cleaned” from the logs, before they aredis

Beginning with workload characterization and modeling, meg¢e that this activity has been
advocated and practiced for many years [55, 1, 12], typidall means of collecting workload
traces and creating a statistical model based on fittingigteluitions of workload attributes [89].
But such an approach is questionable if the data is not statyp as seems to be the case in
the context of parallel supercomputers: we identify fligr@es a specific type of deviations from
stationarity that have to be taken into account when crgatiworkload model.

Continuing with performance evaluations through simolatiwe note that this activity is also
heavily practiced for many years and constitutes an indispele tool for system analysts and
designers [101]. But when unsanitized workloads (or mobated upon them) are utilized as the
simulators’ input, the results are questionable and might well be erroneous or misleading. The
reason is that real workloads are often “multiclass”, megihey are composed of the “normal”
load (that is truly representative of the system being stlidiand anomalies (unique and non-
representative). The problem is that the latter, less itapbr part might come to dominate the
results of the evaluation, specifically if the anomaly is afkoad flurry”: rare surges of activity
with a repetitive nature, caused by a single user.

We therefore suggest that a workload be separated into ‘@bdmorkload and “flurries”. Mod-
eling and the performance evaluation of the normal part ksan be performed using current stan-
dard methodologies. With modeling, this was shown to sigaifily promote stationarity, e.g.
revealing two halves of the same log initially appearingiddive, are in fact statistically simi-
lar if flurries are removed and only the normal portions anmpared. With simulation, this was
shown to make results robust to small and insignificant cesragpplied to the workload, and to
enable a clear ranking of alternative system designs, whiahunobtainable when utilizing raw
logs. Thus, sanitization may be expected to lead to reliabteconsistent results that are appli-
cable most of the time (during which flurries are not presefifjerwards, comparing evaluation
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results using the cleaned log against those based on thegawill identify whether the removed
flurries actually have a significant effect in the specificeclasing studied.

The main justification for removing flurries steams from thetfthey are rare, unique, and has
has an effect during a very short period of the time: Using &igad with a flurry in effect em-
phasizes the rare and unique event at the expense of nornsitions. Thudeaving the flurry in
is actually the unjustifiable approach. With respect togrenbince evaluation, the “flurry removal”
can be as subtle as not including the flurry jobs within theaye performance metric; but we have
shown that the much simpler approach of deleting the fluoynfthe input altogether has exactly
the same effect. To argue for evaluations based on workloatswhich flurries arenot removed,
one must argue

1. that the activity of a specific user during a short time $thandeed dominate the entire
evaluation results,

2. that the evaluation results are valid even though ndgégierturbation applied to the work-
load can significantly change them, possibly swaying theth@éopposite direction, and

3. that the results are satisfactory even though they mighsiderably change if the span of
time covered by the evaluation is shifted such that the floagpens to be excluded.

We speculate most analysts would be reluctant to make sgamants. Likewise, when modeling
unsanitized data and fitting an attribute against the raw ¢og must be willing to accept the
following lose-lose situation: on one hand, results areraptesentative of the “norm” because
they are influenced by the flurries, and do not reflect normed@son the other hand results also do
not reflect flurries, because flurries have a specific temgtnadture (they are concentrated within
a limited span of time). In other words, sampling from a dsttion that includes a flurry does
not produce a flurry; rather, it spreads the flurry evenly akierwhole duration of the generated
workload. Moreover, any specific flurry is not representat¥ flurries in general

The question is then how to identify and remove the flurridse Tethodology we have used
is to plot activity levels as a function of time. In the caseafallel jobs, this means job or process
arrivals per unit time. In other contexts, other workloattilatites would be appropriate. For
example, when analyzing Internet traffic one can tabulat&gia and flows; for storage systems,
one can look at I/O operations and at bytes transferred.

Once a period of time with exceptionally heavy load is idieedi, this load should be checked
for uniformity and source. The flurries we have identified @vall composed of numerous rep-
etitions of the same type of work. Identifying this is the Key removing the flurry from the
workload, as the combination of the time frame and the flsrsypecific attributes often provide an
effective filter. As finding flurries is not trivial, this infmation should be shared together with the
original data. In other words, when workload data is maddate, it should be accompanied by
all the accumulated knowledge regarding problems withsts and specifically, with information
regarding flurries that occur in it. As a first step, we haveeadour data to the Parallel Workloads
Archive [110], from which our original logs come, and whichused by many researchers for
numerous studies of parallel job scheduling.

We view this as a first step because, somewhat surprisingiypater systems analysts rarely
verify the integrity of the data on which they rely for theiradysis, and the overwhelmingly com-
mon case is to use the data “as is” (e.g. consider all the pdpat fit distributions against log
files without even considering whether some sanitation mrdater [54]). This is in disagreement
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with what is routinely done in every statistical analysisiene data is throughly validated, outliers
are removed when necessary, etc. Rare studies that do atesgnitize, tend to have a “local”
or “specific” nature, targeting a single attribute or cortdegtead of providing a generalization
like we do in this part of our work. For example, in an attengtiiodel the daily cycle of the
jobs submittal process, Cirne and Berman clustered dagsxciuded clusters populated by only
one day from participating in the evaluation [20]. The flasrphenomenon suggests this approach
is problematic because (1) “normal” jobs are also needlesstluded, and (2) flurries may span
more than one day and thus be erroneously included. Of cgusi@liminating flurries is also not
a good solution, as flurries do in fact occur. An open quessitilow to model or evaluate the effect
of the flurries on a system designed and optimized for the rm@m@mon non-flurry workload. An
obvious first step is to use specific flurries that occur in réed workloads and study their effect.
But it is doubtful whether this can predict the effect of atpetential flurries. Important future
work is therefore to develop methods to extend and genertiiz results obtained with specific
flurries, and try to derive bounds on the effects of other pidéflurries.

To summarize, it is extremely important to use real datardegg the workload on computer
systems. But it is equally important to ensure that this ghkquality and representative data.
Using measured workloads indiscriminately risks the iditrction of unknown anomalies that may
lead to unknown effects. Workload flurries are such an angraad should be handled with care.

This part of our work was published in [160, 54].
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