Portably Solving File Races
with Hardness Ampilification

DAN TSAFRIR

IBM T.J. Watson Research Center
TOMER HERTZ

Microsoft Research

DAVID WAGNER

University of California, Berkeley
and

DILMA DA SILVA

IBM T.J. Watson Research Center

The file-system API of contemporary systems makes programs vulnerable to TOCTTOU (time-
of-check-to-time-of-use) race conditions. Existing solutions either help users to detect these
problems (by pinpointing their locations in the code), or prevent the problem altogether (by
modifying the kernel or its API). But the latter alternative is not prevalent, and the former
is just the first step: Programmers must still address TOCTTOU flaws within the limits of
the existing API with which several important tasks cannot be accomplished in a portable
straightforward manner. Recently, Dean and Hu [2004] addressed this problem and suggested
a probabilistic hardness amplification approach that alleviated the matter. Alas, shortly after,
Borisov et al. [2005] responded with an attack termed “filesystem maze” that defeated the new
approach.

We begin by noting that mazes constitute a generic way to deterministically win many TOCT-
TOU races (gone are the days when the probability was small). In the face of this threat, we:
(1) develop a new user-level defense that can withstand mazes; and (2) show that our method is un-
defeated even by much stronger hypothetical attacks that provide the adversary program with ideal
conditions to win the race (enjoying complete and instantaneous knowledge about the defending
program’s actions and being able to perfectly synchronize accordingly). The fact that our approach
is immune to these unrealistic attacks suggests it can be used as a simple and portable solution
to a large class of TOCTTOU vulnerabilities, without requiring modifications to the underlying
operating system.

Authors’ addresses: D. Tsafrir, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598; email: dants@us.ibm.com; T. Hertz, Microsoft Research, One Microsoft Way,
Redmond, WA 98052; email: hertz@microsoft.com; D. Wagner, University of California, Berkeley,
CA 94720; email: daw@cs.berkeley.edu; D. Da Silva, IBM T.J. Watson Research Center, P.O. Box
218, Yorktown Heights, NY 10598; email: dilmasilva@us.ibm.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 1550-4859/2008/11-ART9 $5.00 DOI = 10.1145/1416944.1416948 http://doi.acm.org/
10.1145/1416944.1416948

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:2 . D. Tsafrir et al.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
Access controls; D.4.3 [Operating Systems]: File Systems Management—Access methods; K.6.5
[Management of Computing and Information Systems]: Security and Protection—Unautho-
rized access

General Terms: Security, Algorithms, Performance, Measurement
Additional Key Words and Phrases: Race conditions, time-of-check-to-time-of-use, TOCTTOU

ACM Reference Format:

Tsafrir, D., Hertz, T., Wagner, D., and Da Silva, D. 2008. Portably solving file races with hard-
ness amplification. ACM Trans. Storage 4, 3, Article 9 (November 2008), 30 pages. DOI =
10.1145/1416944.1416948 http://doi.acm.org/ 10.1145/1416944.1416948

1. INTRODUCTION

The TOCTTOU (time-of-check-to-time-of-use) race condition was characterized
as the situation which occurs

“if there exists a time interval between a validity-check and the op-
eration connected with that validity-check [such that] through mul-
titasking, the validity-check variables can deliberately be changed
during this time interval, resulting in an invalid operation being
performed by the control program.” [McPhee 1974]

Dissecting a 1993 CERT advisory [CERT Coordination Center 1993], Bishop
[Bishop 1995; Bishop and Dilger 1996] was the first to systematically show
that file systems with weak consistency semantics (like Unix and Windows) are
inherently vulnerable to TOCTTOU races. First, a program checks the status
of a file using the file’s name. Then, depending on the status, it applies some
operation to the file, unjustifiably assuming the status has not changed since it
was checked. This error is caused by the fact that the mapping between file
names and file objects (inodes) is mutable by design, and might therefore change
between a status check and the subsequent operation.

Researchers have put a lot of effort into trying to solve or alleviate the prob-
lem, by: (1) developing compile-time tools to pinpoint locations in the source-
code that are suspected of suffering from a TOCTTOU race [Bishop and Dilger
1996; Viega et al. 2000; Chess 2002; Chen and Wagner 2002; Schwarz et al.
2005]; (2) modifying the kernel to log all relevant system calls and analyz-
ing the log, postmortem, to detect TOCTTOU attacks [Ko and Redmond 2002;
Goyal et al. 2003; Lhee and Chapin 2005; Joshi et al. 2005; Wei and Pu 2005;
Aggarwal and Jalote 2006]; (3) having the kernel speculatively identify offend-
ing processes and temporarily suspend them or fail their respective suspected
system calls [Cowan et al. 2001; Tsyrklevich and Yee 2003; Park et al. 2004;
Uppuluri et al. 2005; Pu and Wei 2006]; and finally (4) designing new file-system
interfaces to make it easier for programmers to avoid the races [Bishop 1995;
Schmuck and Wylie 1991; Maziéres and Kaashoek 1997; Wright et al. 2007].

None of the aforementioned helps programmers to safely and portably accom-
plish a TOCTTOU-prone task on existing systems, as kernels that prevent races
are currently an academic exercise, whereas new-and-improved file systems are
unfortunately not prevalent (and certainly not standard). Thus, regardless of

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:3

©F 40 - -
=0 - -
g2 |
ago%l LI | T T T T T
20 20 D D D D D D Y 2
O O O, O, N0, N0, V0, N0, N0, O
year: %% D0 GG %GO

Fig. 1. The National Vulnerability Database reports on 462 “symlink attack” vulnerabilities be-
tween the years 1998 and 2007. In 2001 and 2005 there were 73 and 106 reports, respectively; the
associated bars are truncated. (Data retrieved on 22 Jan, 2008.)

how programmers become aware of the problem, whether through compile-time
tools or just by being careful, they must still face the problem with the existing
API.

At the same time, resolving a TOCTTOU race is not as easy as fixing a buffer-
overflow bug, for example, because the programmer must somehow achieve
atomicity of two operations using an API that was not designed for such a pur-
pose. In fact, overcoming TOCTTOU races in a portable manner is notoriously
hard, sometimes even for experts (see Section 2.3). Hence, it is probably im-
practical to expect average programmers to successfully accomplish such tasks
(or attempt them) on a regular basis.

Indeed, to-date TOCTTOU races pose a significant problem, as exemplified
by Wei and Pu, who analyzed CERT [US-CERT 2005] advisories between 2000
and 2004 and found 20 reports concerning the issue, 11 of which provided the
attacker with unauthorized root access [US-CERT 2005; Wei and Pu 2005].
Figure 1 shows the yearly number of TOCTTOU “symlink attack” vulnerabili-
ties reported by the NVD (National Vulnerability Database) [NVD 2008]. These
affect a wide range of mainstream applications and tools (e.g., bzip2, gzip, Fire-
Fox, make, OpenOffice, OpenSSL, Kerberos, perl, samba, sh), environments
(e.g., GNOME, KDE), distributions (e.g., Debian, Mandrake, RedHat, SuSE,
Ubuntu), and operating systems (e.g., AIX, FreeBSD, HPUX, Linux, Solaris).

We contend that the situation can potentially be greatly improved if program-
mers are able to use some portable, standard, generic, user-mode check_use util-
ity function that, given a “check” operation and a “use” operation, would perform
the two as a kind of transaction, in a way that appears atomic for all relevant
purposes. This article takes a significant step towards achieving such a goal.

The first step in this direction was taken by Dean and Hu [2004], who im-
plemented a transaction-like access_open routine that set out to solve a single
race: the one which occurs between the access system call (used by root to check
if a user has adequate privileges to open a file) and the subsequent open. Their
idea (later termed K-race [Borisov et al. 2005]) was to use hardness amplifi-
cation as found in the cryptology literature [Yao 1982], but applied to system
calls rather than to cryptologic primitives. In a nutshell, if an adversary has
a probability p < 1 to win a race, then the probability pX to win K races can
be made negligible by choosing a big enough K. Indeed, by mandating attack-
ers to win K consecutive races before agreeing to open the file, access_open
seemingly accomplished its transactional goal of aggregating access and open
into a single “atomic” operation.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:4 . D. Tsafrir et al.

But the new and intriguing K -race defense did not stand the test of time.
Shortly after, Borisov et al. [2005] orchestrated their filesystem maze attack
and showed that an adversary can in fact win every race (hence making the
assumption that p < 1 wrong). Roughly speaking, the adversary is able to slow
down, and effectively “single step,” the proposed algorithm by feeding it with
a carefully constructed file name (the maze) and polling the status of certain
components within the name. This induces perfect synchronicity between the
adversary and the K -race, thereby enabling the adversary to win all races
(p ~ 1). Indeed, in his online publication list, adjacent to his 2004 article [Dean
and Hu 2004], Alan Hu concedes that

“The scheme proposed here has been beautifully and thoroughly de-
molished by Borisov et al. [2005]. The theory is, of course, still valid,
but it relies on an assumption of the attacker having a non-negligible
probability of losing races. Borisov et al. came up with ingenious
means (1) to force the victim to go to disk on each race, thereby
allowing plenty of time for the attacker to win races, and (2) to deter-
mine precisely what protocol operation the victim is doing at any
point in time, thereby foiling the randomized delays. The upshot
is that they can win these TOCTTOU races with almost complete
certainty.” [Hu 2005]

Dean and Hu were only concerned with finding a way to correctly use the ac-
cess system call; likewise, the explicit goal of Borisov et al. [2005] was to prove
that access should never be used. But the consequences of the filesystem maze
attack are much more general. In fact, mazes constitute a generic way to con-
sistently win a large class of TOCTTOU races. This is true because any check
operation can be slowed down and single-stepped if provided with a filesystem
maze as an argument. Consequently, the common belief that “TOCTTOU vul-
nerabilities are hard to exploit, because they...rely on whether the attacking
code is executed within the usually narrow window of vulnerability (on the
order of milliseconds)” [Wei and Pu 2005] is no longer true: With filesystem
mazes, the attacker can often proactively prolong the vulnerability window,
while simultaneously finding out when it opens up.

Motivated by the alarmingly wide applicability of the filesystem maze at-
tack, we set out to search for an effective defense, with the long-term goal of
providing programmers with a generic and portable check_use utility function
that would allow for a pseudo-atomic transaction of the “check” and “use” op-
erations. Importantly, this should work on existing systems without requiring
changes to the kernel or the API it provides.

This article is structured as follows: After exemplifying the TOCTTOU prob-
lem in detail, surveying the existing solutions, and pointing out their shortcom-
ings and the elusiveness of a contemporary practical solution (Section 2), we go
on to explain how hardness amplification was applied to solve file TOCTTOU
races, and why it has failed (Section 3). We then show how to turn this failure
to success (Section 4) and experimentally evaluate our solution by subjecting
it to a hypothetical attack far more powerful than filesystem mazes (Sections
5-6). We discuss how to generalize our solution, its limitations, and how/when

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:5

root attacker || root attacker || root attacker
mkdir(/tmp/etc) || Istat(/mail/ann) access(file)
creat(/tmp/etc/passwd) unlink(/mail/ann) unlink(file)
readdir(/tmp) symlink(/etc/passwd,/mail/ann) link(secret,file)
Istat(/tmp/etc) fd = open(/mail/ann) fd = open(file)
readdir(/tmp/etc) write(fd,...) read(fd,...)
rename(/tmp/etc,/tmp/x)
symlink(/etc,/tmp/etc)
unlink(/tmp/etc/passwd)

(a) garbage collector (b) mail server (c) setuid

Fig. 2. Three canonical file TOCTTOU examples. The y-axis denotes the time (future is down-
wards). The left-justified operations, performed by root, suffer from a TOCTTOU vulnerability.
The right-justified operations show how an attacker can exploit this vulnerability to circumvent
the system’s protection mechanisms and to gain illegal access.

its probabilistic aspect can be eliminated (Section 7). Finally, we present our
conclusions (Section 8).

2. MOTIVATION AND RELATED WORK

Many of the administrative and security-crucial tasks of Unix-like systems
are performed by root-privileged programs. Since such programs often interact
with and affect the system by means of file manipulation, they are susceptible
to TOCTTOU vulnerabilities. A successful exploitation of these vulnerabilities
would allow a nonprivileged user to circumvent the system’s normal protection
mechanisms and unlawfully execute some operation as root.

2.1 Classic Examples

Many sites periodically delete files residing under the /tmp directory. If a file
has not been accessed for a certain amount of time, the “garbage collection”
script deletes it. Maziéres and Kaashoek noted that this policy might contain
a TOCTTOU window between the “check” statement (of the file-access time)
and the subsequent “use” statement (the file removal); if a name/inode mapping
changes within this window, the script can be tricked into deleting any arbitrary
file, even if it attempts to prevent this from happening by explicitly ignoring
symbolic links [Maziéres and Kaashoek 1997]. This is illustrated in Figure 2(a):
The garbage collector uses Istat to verify that /tmp/etc is not a symbolic link.
But, as with all TOCTTOU flaws, this check is fruitless in the case where
/tmp/etc is manipulated just after.

Another well-known TOCTTOU example, initially documented by Bishop,
is that of a mail server which appends a new message to the corresponding
user’s inbox file [Bishop 1995; Bishop and Dilger 1996]. Before opening the
inbox, the server Istats it to rule out the possibility the user has replaced it
with some symbolic link pointing to a file that lies elsewhere. Figure 2(b) shows
how the inevitable associated TOCTTOU race can be exploited to add arbitrary
data to the /etc/passwd file, providing the attacker with the ability to obtain
permanent root access.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:6 . D. Tsafrir et al.

A third example concerns the setuid bit that Unix-like systems associate
with an executable to indicate it should run with the privileges of its owner,
rather than the user that invoked it (as is the normal case). Of course, just
handing off root privileges is not a good idea, which is why the access system call
confers setuid programs the ability to check whether an invoker has adequate
privileges:

if (access(filename,R_0K) == 0)
fd = open(filename,0_RDONLY);

Alas, the access/open idiom constitutes the archetypal, and arguably the most
infamous, TOCTTOU flaw.! Figure 2(c) illustrates how this race can be exploited
to access any file. Therefore, access was deemed unusable, as indicated, for
example, by its FreeBSD manual, which explicitly states that “the access system
call is a potential security hole due to race conditions and should never be used”
[Man access(2) 2001].

2.2 Existing Solutions

Considerable research effort has been put into providing solutions for TOCT-
TOU vulnerabilities like the ones described before. In order to highlight the
contribution of this article we first survey this work, which can be subdivided
into the following four categories.

— Static Detection. Some groundbreaking work has been done in recent years
to statically analyze the source-code of programs and pinpoint the locations
of nontrivial vulnerabilities and bugs [Engler et al. 2000, 2001; Ashcraft and
Engler 2002; Engler and Ashcraft 2003]. This type of analysis is rooted in
Bishop’s work, which used pattern matching to locate pairs of TOCTTOU sys-
tem calls in root-privileged programs on a per-function basis [Bishop 1995;
Bishop and Dilger 1996]. The tools ITS4 [Viega et al. 2000], Eau Claire [Chess
2002], and MOPS [Chen and Wagner 2002; Schwarz et al. 2005] later super-
seded Bishop’s work by being more general, accurate, and scalable.

— Dynamic Detection. Static analysis can be very effective and has the ad-
vantage of: (1) not incurring runtime overheads, (2) covering all the code
(in a reasonable amount of time), and (3) locating the bugs before the sys-
tem is deployed. But the code is not always available, and even if it is, the
static doctrine is inherently missing key information that is often only avail-
able at runtime, which might result in many false positives. To solve this,
Ko and Redmond [2002] patched the kernel to log the required informa-
tion and utilized it, postmortem, to feed a model that detects TOCTTOU
flaws. A similar approach was later adopted by many subsequent projects
[Goyal et al. 2003; Lhee and Chapin 2005; Joshi et al. 2005; Wei and Pu
2005; Aggarwal and Jalote 2006]. Notable of these is the work by Wei and

IThis race was reported by what is believed to be the first formal documentation of a file TOCTTOU
vulnerability [CERT Coordination Center 1993]; it is described by almost all articles that address
the TOCTTOU issue (see Section 2.2) when exemplifying the problem.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:7

Pu [2005] that exhaustively enumerated all of Linux’s TOCTTOU pairs, 2
and the IntroVirt tool, which supports virtual-machine checkpoint and replay,
and could also be used for postmortem identification of TOCTTOU attacks
[Joshi et al. 2005].

— Dynamic Prevention. The kernel can be modified to apply the principles
of dynamic detection on-the-fly, as discovering TOCTTOU attacks while
they occur allows for online prevention. This approach was first taken by
Cowan et al. [2001] in their RaceGuard system. Their technique tackles one
TOCTTOU flaw that occurs between: (1) a check of whether a candidate
name for a temporary file doesn’t match an existing file, and (2) the new file’s
creation (stat/open). They modify the kernel to maintain a cache of files that
have been stated and found not to exist; if a subsequent open finds an existing
file, it fails.

Later on, Tsyrklevich and Yee [2003] developed a more general approach
that was capable of generically preventing most TOCTTOU attacks. They
patched the kernel to suspend any process that interferes with a “pseu-
dotransaction” (check-use pair that agree on the target file), such that the
worst outcome of a false-positive detection is a temporary suspension of the
corresponding process. Several similar solutions followed [Park et al. 2004;
Uppuluri et al. 2005; Pu and Wei 2006], the latter of which (by Pu and Wei)
was argued to be “complete,” being based on their aforementioned earlier
work [Wei and Pu 2005].

—New API. All of the preceding are solutions that respect the existing file-
system API so as to accommodate existing applications and operating
systems! The complementary approach is to augment or change the API,
such that tasks that currently suffer from TOCTTOU issues are made eas-
ier to safely accomplish. For example, to resolve the access/open race, Dean
and Hu [2004] suggested that open would accept an O_RUID flag which
would instruct it to use the real (rather than effective) user ID of the
process; alternatively, Bishop [1995] suggested to add a new faccess sys-
tem call that would operate on a file descriptor rather than a file name.?
Likewise, the O_NOFOLLOW flag supported by Linux and FreeBSD makes
open fail if its argument refers to a symbolic link, which may help in cer-
tain cases (e.g., as in Figure 2(b)). However, aside from being nonportable,
it relates only to the last component of the file path: Earlier components
may still be symbolic links, and hence can be juggled by an attacker (e.g.,
Figure 2(a)).

2Wei and Pu [2005] (and later Lhee and Chapin [2005]) augmented the definition of check-use
TOCTTOU pairs to also refer to use-use pairs. With this, they found a bug in rpm that: (1) generated
a script that was writable by all (first use of open), and (2) executed it with root privileges (second
use of open). While such bugs can be very hard to detect, they are nevertheless easy to fix and
therefore are of no interest in this article.

3This suggestion was later raised again by Dean and Hu [2004]. But even so, we contend that it
is impossible to implement because the corresponding inode can be referred to by multiple paths,
among which some are accessible to the user and some are not.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:8 . D. Tsafrir et al.

To obtain a more general solution, a bigger change is needed, such as replac-
ing (or augmenting) Unix semantics with that of a transactional file system
[Schmuck and Wylie 1991; Wright et al. 2007]: Atomicity would then ensure
that a check-use pair that has been annotated by the programmer as a single
transaction would be executed with no interference.

A more radical approach was suggested by Maziéres and Kaashoek [1997].
They proposed to use the fact that the binding between file descriptors and
inodes is immutable (and thus cannot be exploited) to devise a safer pro-
gramming paradigm that would make it harder for the programmer to make
mistakes. By this paradigm:

(a) all access checks would be done on file descriptors rather than on names;

(b) users would be given explicit control of whether symlinks are followed
when files are opened; and

(c) each system call invocation would be provided with the user credentials
with which the system call should operate.

We contend that some of this vision can be realized in user-mode on current

systems.

2.3 The Problem

Notice that all the existing solutions surveyed previously do not help program-
mers in resolving a known TOCTTOU flaw within existing systems! Static
detection techniques are invaluable in locating such flaws, but what are pro-
grammers to do if/once they are aware of the vulnerability? Surely they cannot
wait until all contemporary kernels employ dynamic prevention (if ever, as
significant complexity and performance penalty might be involved). Likewise,
programmers cannot wait until all contemporary OSes portably support trans-
actional file systems (or constructs like the aforementioned API suggested by
Maziéres and Kaashoek [1997]).

The fact of the matter is that in order to achieve a portable solution, program-
mers are bound to handling the matter with a decades-old API. Importantly,
as mentioned earlier, a portable user-mode solution to a given TOCTTOU race
(if such exists) is often much harder and more elusive than, for example, fixing
a buffer-overflow bug: Even experts that explicitly target a specific TOCTTOU
problem are prone to getting it wrong.

Consider, for example, the access/open race depicted in Figure 2(c). Tsyrkle-
vich and Yee suggested two solutions to this flaw. The first argues that “to avoid
this race condition, an application should change its effective id [with setxuid
system calls] to that of a desired user and then make the open system call
directly” [Tsyrklevich and Yee 2003]. However, after carefully evaluating this
suggestion, Dean and Hu found that

“Unfortunately, the setuid family of system calls is its own rats nest.
On different Unix and Unix-like systems, system calls of the same
name and arguments can have different semantics, including the
possibility of silent failure [Chen et al. 2002]. Hence, a solution
depending on user id juggling can be made to work, but is gener-
ally not portable.” [Dean and Hu 2004]

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:9

The second suggestion by Tsyrklevich and Yee was “to use fstat after the open
instead of invoking access” [Tsyrklevich and Yee 2003]. As the input of fstat is
a file descriptor, the latter is permanently mapped to the underlying inode and
hence can never be abused by an attacker; the user is then expected to inspect
the ownership information returned by fstat and check if the invoker was indeed
allowed to open the file. However, this will not work, as file access permissions
can not be deduced in such a way; rather, they are the conjunction of all the
(inode) permissions associated with each component in the respective path. For
example, if a file’s name is x/y and x is solely accessible by its owner, then other
users are forbidden from reading y even if fstat indicates it is readable by all
(which may very well be the case when root invokes the fstat).

A third alternative is to fork a child that permanently drops all extra privi-
leges and then attempts to open the file; if successful, the child can then pass
the open file descriptor across a Unix-domain socket and exit. Borisov et al.
[2005] have mistakenly attributed to Dean and Hu [2004] the claim that this
version is portable. But the latter have actually argued the contrary, stating
that, with respect to the Unix-domain approach “some of the [aforesaid user
id juggling] caveats still apply.” Indeed, as mentioned earlier, dropping privi-
leges is a nonportable operation [Chen et al. 2002], regardless of whether it is
being done by a parent or a forked child; our recent attempts to achieve this
goal under four Unix flavors (Linux, Solaris, FreeBSD, and AIX) are described
in Tsafrir et al. [2008a] and strongly support this statement. Furthermore, we
find that passing an open descriptor alone, even without dropping privileges,
suffers serious portability issues.*

A fourth failed attempt will be discussed next.

3. THE FAILURE OF HARDNESS AMPLIFICATION

Noting that no prior art helps programmers to portably resolve TOCTTOU vul-
nerabilities on existing systems, Dean and Hu [2004] took the first step towards
a portable solution, explicitly focusing their efforts on the aforementioned ac-
cess/open TOCTTOU race. After formally proving that no algorithm can ever
deterministically overcome this race, they turned to explore a nondeterministic
solution.

3.1 The K-Race Technique

Their solution, termed K -race, was inspired by the hardness amplification tech-
nique that is commonly used in cryptology contexts [Yao 1982]. The idea un-
derlying hardness amplification is to use a problem which is computationally

4This is the result of changes related to the msghdr structure which is used by the sendmsg and
recvmsg system calls to pass an open descriptor through a Unix-domain socket. Specifically: (1) In
the mid-1990’s, POSIX replaced the msg_accrights field with the msg_control array (but commercial
OSes such as Solaris and HPUX preferred to keep the earlier version as the default); and (2) more
recently, RFC 3542 defined a set of macros to be exclusively used when accessing/manipulating
the msg_control array (but, despite being mandated by OSes like Linux, some of the macros are
not yet standard) [Stevens et al. 2003]. The end result is lack of portability and source-code that
is littered with ifdefs and conditional compilation tricks [Stevens and Fenner 2003; Zeilenga et al.
2007; Sirainen 2004; Boulet 2002].

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:10 o D. Tsafrir et al.

“somewhat hard” in order do devise another computational problem that is “re-
ally hard.” In a TOCTTOU access/open scenario, the somewhat hard problem
consists in timing and completing the attack (removing one file and linking
another) within the exact window of opportunity delimited by the access and
open calls (see Figure 2(c)). The really hard problem is requiring the attacker
to succeed in doing this for 2K + 1 consecutive times.

The K -race routine, shown in Figure 3, starts with a standard call to access,
followed by an open, followed by K strengthening rounds. Each round consists of
an additional access check and a corresponding open, which are then followed
by a statement that verifies whether the currently opened file is the same file
that was opened in the previous round. Note that when K = 0, the routine
degenerates to the standard access/open TOCTTOU race.

To be successful, an attacker must indeed win 2K + 1 races: This is true be-
cause on each round, the access check must be applied to some user-accessible
file, or else permission is denied; On the other hand, every open must be ap-
plied to the same inaccessible target file, or else the verification that all file
descriptors refer to the same file object would fail. Thus, assuming each race
is an independent random event with some probability p < 1 for the attacker
to win, the overall probability of tricking a K-race is p?§*!. (Independence
of events is supposedly obtained by introducing short random delays between
successive system call invocations: As delays are randomized, an adversary
wouldn’t be able to synchronize with the K -race.) After measuring several sys-
tems (among which are SMP systems), Dean and Hu concluded that K = 7 is
enough to make the probability of success negligible for all practical purposes.

3.2 Filesystem Mazes

In 2005, Borisov et al. defeated the K -race technique [Borisov et al. 2005]. They
did so by refuting the (then widely accepted) assumption that the probability
p for an attacker to win a race is significantly smaller than 1. In fact, they
have managed to effectively make it a certainty (p ~ 1). The heart of the attack
consists of a filesystem maze, which, in simple terms, is the longest and most
nested file path a user can pass as an argument to a system call without causing
it to fail due to hardcoded kernel limits.

Constructing a maze. The basic building block of a maze is a chain, defined
to be (nearly) the deepest nested directory tree that can be defined without
violating the PATH_MAX constraint imposed by the kernel on the length of
file paths (4KB is a typical value). Thus, chainy would be chain0/d/d/d/.../d
such that the associated number of characters is a little less than PATH MAX.
Likewise, chaini is chain1/d/d/d/.../4d, etc.

To form a maze, the attacker connects chains by placing a symbolic link at
the bottom of chain; 1 that points to chain;. The final symlink, at the bottom
of chaing, points to an exit symlink, which in turn points to the actual target
file. Finally, the entry point to the maze, sentry, is a symlink pointing to the
highest chain. This is illustrated in Figure 4.

Unix systems impose a limit on the total number of symlinks that a single
file-name lookup can traverse; for example, Linux 2.6 limits this number to 40.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:11

#define DO_SYS(call) \ sentry

if ((call)==-1) return -1 (relative link to highest chain)
#define DO_CHK(expr) \ :

if (!'(expr)) return -1 qha1n7/d/d/d/ e /d}/lnk

L

#define DO_CMP(x,y) \ (absolute link)
(((x)->st_ino == (y)->st_ino) && \ :
(ot don == (rrrot oy 3 ’:]chalne/d/d/d/.. /dylnk

t

(absolute link)
int access_open_2004(char *f) , chains/d/d/d/. .. /dVlnk
¢ |
int f£d1, £d2, i; (absolute link)
struct stat si, s2; ’;Chain4/d/d/d/ ... /dylnk
- (absolute link) 4—|
// 1- the access/open idiom .
DO_SYS(access(f , R_OK)), lj»{chalni%/d/d/d/ .. ./dylnk]

DO_SYS(fdl = open (f , O_RDONLY)); (absolute link)

DO_SYS fstat (fdl, &si ; -
-SYS(stat (®) gchalnz/d/d/d/.) ./dylnk]
// 2- the strengthening rounds (absolute link)
for(i=0; i<K; i++) { .
T v v Rk s ,;chalnl/d/d/d/. : ./dylnk]
DO_SYS(£d2 = open (f , O_RDONLY)); (absolute link)
DO_SYS(fstat (£d2, &s2)); gchaino/d/d/d/. . ./dylnk
DO_SYS(close (fd2)); bsolute link
DO_CHK (DO_CMP (&s1, &s2) s (absolute link)
} exit
(relative link to target ﬁle)4
return fdi;
}

Fig. 4

Fig. 3. The K-race routine checks on each strengthening round that the underlying file object, as
represented by the inode (st-ino) and IO device (st_dev), remains the same.

Fig. 4. The structure of a maze with 8 chains. Arrows represents symbolic links. (Originally pub-
lished by Borisov et al. [2005]; reproduced with permission.)

This places a limit on the number of chains comprising the maze. Still, even
with this limit, a maze can be composed of nearly 80,000 directories, which may
require loading about 300MB from the disk just to resolve the associated name.

Importantly, if even one of the corresponding directory entries is not found
in-memory, in the file-system cache, the process that invoked the system call on
behalf of which the path resolution is performed would be put to sleep, blocked-
waiting for IO.

The attack. We now describe how to trick the K-race routine (Figure 3)
into opening a private inaccessible file. The routine invokes access and open
K +1 times. For these total of 2K + 2 invocations, we create 2K + 2 directories
diril, dir2, ..., dir2K+2, each containing a new maze. We arrange things such
that exit points of odd mazes point to some public-accessible file, whereas exit
points of even mazes point to the inaccessible protected file we are about to
attack. Finally, we generate a new symlink called activedir to point to dirl.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:12 o D. Tsafrir et al.

The attack is started by invoking the access_open K -race routine with the
following file path as an argument:

activedir/sentry/lnk/1nk/.../lnk

This file path is then passed along to the initial access call, which forces the
K -race routine into the first maze. As a result, two things occur.

(1) The kernel updates the atime (access time) of every symbolic link it tra-
verses during the name resolution, so that by repeatedly examining the
atime of activedir/sentry, the attacker can learn that the respective ac-
cess invocation is already in flight.

(2) As mentioned earlier, the file path being resolved (the maze) is big enough to
ensure that the kernel would have no choice but to fetch some of the relevant
directory entries from disk; whenever this occurs the K -race routine would
be suspended and put to sleep, and the attacker would get a chance to run
and poll the atime of activedir/sentry.

Upon noticing that the atime has been updated, the attacker knows that the
first access has begun. The attacker therefore switches activedir to point to
dir2, and begins polling the atime of dir2/sentry. The initial access call is not
affected by the change to activedir because it has already traversed that part
of the path.

Eventually, the IO operations complete and the access finishes successfully.
When the K -race calls the subsequent open, the exact same scenario occurs:
The kernel updates the atime of dir2/sentry, the K-race routine sleeps on 10
when loading parts of the respective maze that are not cached, the attacker
consequently resumes and notices the updated atime of dir2/sentry, the at-
tacker switches activedir to point to dir3, and the K -race routine completes
the open successfully. This sequence of events repeats itself until all system
calls comprising the K -race complete, and the attacker has managed to fool the
K -race and open the protected file.

Enhancements. In order to increase the confidence that some directory en-
tries are not cached by the file system while the name resolution takes place, an
attacker can run in parallel various unrelated I0-intensive activities to wipe
out the cache. A recursive string search in the file system

grep -r anystring /usr > /dev/null 2>&1

was found to be especially effective in this respect.

Finally, for completeness, Borisov et al. [2005] considered a K-race version
that randomly flips the order of the calls to access and open within the strength-
ening loop (this is a valid and technically sound defense against their maze
attack). They defeated this approach as well, by deducing which system call
is currently being executed with the help of various kernel variables exported
through the /proc file system. For example, in Solaris 9, any process can read
the current system call number of any other process from /proc/pid/psinfo.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:13

row-oriented traversal column-oriented traversal
/) B/ B /B |/ /BB - /()

/BB /B /)| | /) /(B /) s - /)

/BB /B -l | /) B /B /()

Fig. 5. The original row-oriented K -race traversal suggested by Dean and Hu (left) versus our
newly proposed column-oriented traversal (right). While Dean and Hu traverse the entire path on
each access/open invocation, we traverse the path component by component, iterating through each
specific element K times.

4. MAKING AMPLIFICATION WORK

The maze attack is a generic way to systematically win TOCTTOU races. By
utilizing complex file names, an attacker can slow down the victim application,
effectively single-step it, and gain a decisive advantage which allows it to defeat
the probabilistic K -race approach. In this section we show that this advantage
is in fact not inherent. Defenders need not play by the rules that are dictated
by the attacker. Rather, they can impose new rules that make it practically
impossible for an attacker to win.

4.1 Column-Oriented Traversal

The key observation is simple and well known: System calls like open, stat,
chdir, access, chown, etc., that operate on a specified file name are in fact O(n)
algorithms, where n is the number of components comprising the name (n also
embodies symlinks that are part of the name, as well as the components of
the soft links that must be recursively traversed). And so, in order to resolve
an n-component name, the associated system call must sequentially iterate
through n inodes. In the case of the K-race approach this is done K times,
so the number of traversed inodes is actually n - K. The order in which the
traversal is performed is crucial for the success of the maze attack; assuming
a file name of the form /f1/f2/f3 (with no symbolic links along the way) and
assuming K = 2, this order would be

/» f1, f2 f3, /s f1, fa, f3.

The general case is illustrated in Figure 5 (left); due to this type of a visualiza-
tion we call this order row-oriented. The success of the K -race approach relies
on the assumption that the rows remain identical from round to round. In con-
trast, the principle underlying the file-maze attack is to make n so big such that
the time period between two “consecutive visits” in the inode associated with
fi; would be relatively long; that is, long enough to make it easy to violate the
said assumption.

Our approach contends that row-orientated traversal, while seemingly dic-
tated by the system-call API, is not carved in stone. There is actually no

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:14 o D. Tsafrir et al.

technical difficulty preventing us from doing a different inode traversal that
would better suit our needs. Specifically, column-oriented traversal is perfectly
aligned with our intent to make it harder for an adversary to win a race. This
approach is illustrated in Figure 5 (right). The idea is to resolve a path one com-
ponent at-a-time, atom by atom, such that on each step we effectively conduct
a kind of “short race,” or “atom race,” as part of the K -strengthening doctrine.
This approach provides a clear advantage: An adversary no longer has con-
trol over the duration of the elapsed time between consecutive visits at f;. For
example, the traversal order in the aforesaid example would be

/s /s f1, f1, fa2, fa, f3, f3.

Thus, the race is made “fair” again and the respective inode would most probably
be continuously present in the cache throughout the K-race, and almost cer-
tainly at least once during two consecutive iterations (which would be enough
to defeat an attacker). The next section will show that even under the theoreti-
cal scenario where the attacker is completely and instantaneously synchronized
with the defender, the attacker would have to wait tens to millions of years in
order to subvert a K = 9 column-oriented defense.

4.2 Implementation

We will now describe our algorithm in a bottom-up fashion (all source-code in-
cluded, as an indication of its simplicity). Doing a column-oriented traversal
entails a price, which is having to handle the parsing of the file path ourselves
when splitting it into atoms. For our purposes, however, the chop_1st function
(as listed in Figure 6) was all that was needed in this respect. This function gets
a relative path and “chops off” the first component while returning the remain-
der to the caller. By repeatedly invoking this function (using the remainder of
the path from the previous invocation as the input to the current invocation),
we gradually consume the file path in a column-oriented manner.

A second difficulty we face when doing a user-level path resolution is hav-
ing to handle atom components that are in fact symbolic links. To handle this
caveat we used the simple is_symlink function (listed in Figure 7) that gets as
input the atom that was just chopped off the prefix of the full file path. Note
that, by applying the Istat system call upon the given atom, we make sure
that the invoker is not forced to go through a maze. If this atom happens to
be a symbolic link, then is_symlink copies the name of the target file to the
memory pointed to by the appropriate argument; this would be later processed
recursively. However, if the atom is a hard link (i.e., not a symlink), then the
result of the Istat operation (as recorded by the given stat structure) will be used
as a reference point within the race, when inodes are compared, as described
next.

Having dealt with all the low-level details, we go on to consider how a race
would actually be conducted when a hard link is finally encountered. Recall
that the access permissions of a file are more than just the per-inode access
bits (user/group/all, read/write/execute, etc.): They are the conjunction of all
the permissions of each and every directory component along the path. For

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:15

char* chop_ist(char *path) int is_symlink(const char *atom,

{ char target[],
// Find end of 1st component struct stat *s,
// and null-terminate it bool *is_sym)

char *p = strchr(path,’/’);
int nb, 1=PATH_MAX;

if(p == NULL)
return NULL; DO_SYS(1lstat(atom,s));
*pt+t = 7\0’;
if (S_ISLNK(s->st_mode)) {
DO_SYS(nb = readlink(atom,target,l));

// Strip multiple slashes,
target[nb] = ’\0’;

// ensuring ’p’ points to

// a relative path (no *is_sym = true;
// preceding ’/’) b
for(; *p == ’/7; ++p) else {
. *is_sym = false;
}
// NULL means end of path
return *p ? p : NULL; return 0;
} }
Fig. 6 Fig. 7

Fig. 6. All the parsing is encapsulated in the above function, which gets a relative path, chops off
its first component, and returns the reminder as a relative path. (A null return value indicates the
entire path was consumed.)

Fig. 7. We retrieve the name of the target file if the atom is a symbolic link. Otherwise, we record
the file’s inode information in the supplied stat structure for future reference. The return value
indicates whether the Istat operations succeeded.

example, even if an inode indicates it is readable by all, if it nevertheless resides
within a private directory, then obviously no one should be able to access the
associated file. Therefore, before descending into the next directory component,
the algorithm must verify that the invoker has the appropriate permissions.
However, since this entails a TOCTTOU vulnerability, each such check must
be K -strengthened.

Figure 8 shows how a per-atom K -race is conducted. Note that the security
of our algorithm is reduced to the security of atom_race (all other functions are
completely safe). The information encapsulated by the stat structure input has
been placed there by the is_symlink function that has just been invoked using
the very same atom. Thus, it is likely that the inode (that is associated with
the atom) is still in the cache. Further, since the atom is in fact an “atom” (one
component file) that has just now been verified to be a hard link, it is also
likely that the initial call to access and open would operate on the same inode.
However, since there is a chance the attacker has managed to (1) unlink the
previously Istated atom, and to (2) symlink it to a maze, strengthening steps are
still required. The algorithm therefore continues into a K-loop that is almost
identical to the one suggested by Dean and Hu (Figure 3). All the original
operations are still present. The difference is that now, on each iteration, the
algorithm also verifies that the atom is still a hard link. This check is necessary
in order for the defense to recover if the attacker somehow managed to win the
first race and to force the algorithm into a maze while doing the access and open

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:16 o D. Tsafrir et al.

int atom_race(const char *atom, int access_open_2008(char *f)
struct stat *s0) {
{ int fd;
int i, mode; char *suffix, target[PATH_MAX];
int fdi1, £d42; struct stat s;
struct stat sl , s2; bool is_sym;

// 1- If f is an absolute path

mode = S_ISDIR(sO->st_mode) if(*xf == /7) {
? X_0K /* directory */ DO_SYS(chdir("/"));
: R_OK /* regular */ ; do { ++f; } while(xf == °/?);
if (*f == ’\0’) // it’s root
return open("/",0_RDONLY);
// 1- The initial access/open }
DO_SYS(access(atom, mode))
DO_SYS(fdl = open (atom, O_RDONLY)); // 2- f is now relative
DO_SYS(fstat (fd1 , &si)); while(true) {
DO_CHK (DO_CMP(sO , &si))

suffix = chop_1st(f);
DO_SYS(is_symlink

// 2- The k strengthening rounds (f,target,&s,&is_sym));
for(i=0; i<K; i++) {
DO_SYS(fd = is_sym

DO_sYs(lstat (atom, &si))s ? access_open_2008(target)
DO_CHK (! S_ISLNK(sl.st_mode)) : atom_race(f,&s));
DO_SYS(access (atom, mode))
DO_SYS(fd2 = open (atom, O_RDONLY)); if (suffix) {
DO_SYS(fstat (£fd2 , &s2)) DO_SYS(fchdir(fd));
DO_SYS(close (fd));
DO_SYS(close (fd2) s f = suffix;
DO_CHK (DO_CMP (sO , &si)) }
DO_CHK (DO_CMP (sO , &s2)) else
} break;
}
return fdi; return fd;
} }
Fig. 8 Fig. 9

Fig. 8. The given atom was just Istated and found not to be a symlink. Thus, it is unlikely that an
attacker would manage to set things up such that atom_race would be thrown into a maze. If this
has nevertheless happened, an additional Istat upon each iteration allows the algorithm to recover
(compare with Figure 3).

Fig. 9. A one-component-at-a-time traversal prevents access_open from being abused. The heart
of the function is the “? :” construct that decides whether to recurse over the next component
(symlink) or to consume it (nonsymlink).

operations. Since the Istating of an atom is an operation not affected in any way
by the target that a symbolic link might have, our algorithm is not vulnerable
in this respect. The only other additions we have made are: (1) to check that
fstating the initial file we open (fd1) yields identical information to that pointed
to by s0, as the K strengthening rounds utilize sO for the verification checks;
and (2) to check that the Istated inode matches the initial inode, similarly to the
original check with regard to the information that is retrieved by fstat.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:17

Note that the two invocations of DO_CMP within the strengthening loop
ensure that all three stat structures are equal (sO0 = s1 = s2), a check that is
needed for the following reasons. By verifying that s1 is equal to s2, we know for
a fact that the Istated and the opened files are one and the same, which means
we deterministically force an adversary to win a race involving a nonsymlink
atom, on each round. This by itself, however, is not enough, as we must also
make sure that s1 and s2 are equal to s0O: Failing to do so would make the K -
loop meaningless, allowing an attacker to unlawfully open the file after winning
only two races, as follows.

(1) The attacker creates a nonsymlink file, myfile.

(2) Afteris_symlink determines that myfile is not a symlink through the s0 stat
structure, atom_race is invoked, with myfile and sO as arguments.

(3) After the initial access in atom_race, the attacker must switch myfile to be
a symlink to the file (s)he wishes to unlawfully access. (Race no. 1.)

(4) After the initial open in atom_race, the attacker must switch back to its
original file. (Race no. 2.)

(5) All the strengthening rounds can now execute without any further effort
from the attacker.

We now have everything we need in order to implement a column-oriented K -
race traversal. The access_open procedure we implement does this in a straight-
forward manner, as is shown in Figure 9. The first chunk of code simply makes
sure that the traversal is only conducted with the help of relative names (that
do not start with a slash). The second chunk is the traversal per-se. This part
simply iterates through the atom components, one component at-a-time, and
takes the necessary action according to whether the atom is a symbolic link or
not. The latter is the simpler alternative: If the atom is a hard link, a short
atom_race is conducted and the atom is directly opened. However, if the atom
is a symbolic link, the algorithm calls itself recursively to handle the newly en-
countered composite path. In both cases, if a valid file descriptor is returned, the
algorithm is allowed to continue to the next step after fchdiring to the current
directory component. This strategy ensures a high probability that all relevant
inodes reside in the cache during the time in which this is critical: when the
K -race takes place.

4.3 Implementation Notes

For brevity, the presented algorithm does not handle several minor details that
should be addressed in a real implementation. These are as follows.

First, it lacks a defense mechanism against circular symbolic links. This can
be easily incorporated within the procedure shown in Figure 9 in the exact
same manner as it is done within the kernel, that is, by counting the number of
traversed symbolic links and aborting the procedure if the count violates some
predefined threshold.

Second, our algorithm opens a file for reading only. It does not allow the caller
to specify other/additional flags to be passed along to open (such as O_RDWR,
O_APPEND, etc.). There is no technical difficulty preventing us from adding a

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:18 o D. Tsafrir et al.

“flags” parameter that allows this, as long as we provide special treatment for
file truncation (O_TRUNC) and forbid file creation (O_CREAT). Truncation is
problematic, as the first open would truncate the file regardless of whether the
real user has adequate permissions to do so; the solution is to access/open the
file without O_TRUNC and, if successful, to ftruncate the resulting descriptor.
File creation raises other (independent and well-known) TOCTTOU issues that
are commonly associated with the problem of creating temporary files [Cowan
et al. 2001]; these are outside the scope of this work.

Additional details that should be handled are: (1) setting errno to EACCES
when appropriate, namely, when DO_CMP and DO_CHK fail; (2) closing already
opened file descriptors (if such exist) upon errors, for example, when fstat fails
in Figure 8; and (3) saving and restoring the working directory before and after
the invocation of access/open, to undo the effect of using fchdir.

The final item raises an important point we wish to make explicit: Our
access/open implementation is inadequate for multithreaded applications if
some other thread (different than the one performing the access/open) re-
quires the working directory to remain unchanged, as this directory is shared
by all threads. We note in passing that the relatively new system call ope-
nat (which opens a file path relative to a given directory file descriptor [Man
openat(2) 2006]) would solve this problem, as it will eliminate the need for
using fchdir; openat is proposed for inclusion in the next revision of POSIX
[Josey 2006].

5. CRAFTING A FULLY SYNCHRONIZED ATTACK

It should come as no surprise that the new access_open algorithm is immune to
the maze attack, as the attacker can no longer synchronize with the activities of
the defender and has no clue about when it would be most beneficial to unlink/link
the targeted file in order to fool the defense. Nevertheless, while we believe it is
improbable, it is still possible that somebody someday might come up with some
surprising approach that would allow an attacker to achieve synchronicity once
again. Hence we seek a stronger result: We want to show that our algorithm
does not rely upon the presumed hardness of synchronization.

To this end, we run an experiment in which the defender is completely “ex-
posed”: Any attacker would be able to precisely know which actions are taken
by the defender and when. In other words, our experiment fully reinstates the
synchronicity capabilities to potential attackers, makes these capabilities or-
ders of magnitude more powerful and precise, and measures the probability
attackers have to win a single round in light of the new approach; the bigger
question being: Do file TOCTTOU races still pose a problem in the face of a
column-oriented traversal? And if so, to what extent?

5.1 Exposed Defender

To answer these questions we have implemented a defender program that pro-
vides information regarding its activities to any interested party through a
shared-memory integer variable (instated with the help of SysV IPC facilities).
The code of the defender is listed in Figure 10. It essentially does all of the

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:19

bool sysfail; void synchronized_attacker()
#define DO_SYS(syscall) \ {
if((syscall)==-1) sysfail = true volatile int timerl, timer2;

void exposed_defender(ino_t private) unlink("target");
{ link ("private", "target");

struct stat sl, s2;

int fd; while(true) {

char *f = "target";

timerl = timer2 = 0;
sleep(1); // grace period for attacker
// must wait for attacker
while(true) { // to lstat private file
while(*x != LSTAT)

>

sysfail = false;

// x is the shared variable while(*x == LSTAT)
*x=LSTAT ; DO_SYS(1stat (f , &sl)); if (T1 && (++timerl >= T1))
*x=ACCESS; DO_SYS(access(f , R_OK)); break;
*x=0PEN ; DO_SYS(fd=open (f , O_RDONLY));
*x=FSTAT ; DO_SYS(fstat (fd, &s2)); // now we’re really racing:
*x=CLOSE ; DO_SYS(close (fd) // defender about to access
unlink ("target")
// The attacker is victorious only if symlink("maze", "target");
// all the following conditions hold
if ((! sysfail) && while(*x == ACCESS)
(! S_ISLNK(sl.st_mode)) && if (T2 && (++timer2 >= T2))
(sl.st_ino == s2.st_ino) && break;
(sl.st_dev == s2.st_dev) &&
(s2.st_ino == private)) unlink("target")3
defender_loss++; link ("private", "target");
} }
¥ }
Fig. 10 Fig. 11

Fig. 10. The defender publicizes the operations about to be performed through a shared variable

)

x” accessible to all.

Fig. 11 The attacker achieves synchronicity by repeatedly polling the shared variable.

defense steps that are listed in Figure 8, but now each step is executed only
after the defender publishes (through the shared integer) the next action to be
performed. Note that the DO_SYS macro is redefined to record a system-call
failure (instead of returning). This is done so that the defender process will not
terminate. But this also means that the defender maintains a fixed order of op-
erations and thereby simplifies the code of the attacker (which is exempt from
considering various corner cases). Importantly, an attacker may safely assume
that the defender performs the same exact operations in the same exact order
within each iteration.

In accordance with the column-oriented doctrine, the defender is operating
on a file which is an atom, namely, comprised of only one component that is arbi-
trarily called “target”. Upon each iteration, after the operation sequence is over,
the defender checks whether the attack was successful and, if so, increments its
losses count to be printed at the end of the run. The conditions that are asserted

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:20 o D. Tsafrir et al.

at the end of each iteration are identical to those that are checked on-the-fly
within Figure 8, with only one addition: The defender is made aware before-
hand of the inode of the private file that the attacker wants to read; obviously, an
attack is successful only if it manages to fool the defender into opening this file.

5.2 Synchronized Attacker

We now go on to review the attacker’s code as given in Figure 11. Initially, the
attacker must make sure that the file to be Istated is not a symbolic link. Ad-
ditionally, since the defender is going to compare the inode of the Istated file to
that of the opened file (which is the private file, if the attacker gets his way),
the “target” file should point to the private file at this point. The attacker then
waits until the defender is ready to Istat. As explained, the attacker’s interest
dictates that the defender would be able to successfully Istat the private file,
and so the attacker must give it enough time to do so. This is also the rea-
son for the next “while” loop that ends when the defender finishes the Istat, or
before, depending on the heuristic we have chosen to prematurely terminate
the busy-waiting: We have evaluated a wide range of T'1 values (see next sec-
tion). Note that when 7T'1 = 0, the busy wait period continues until the shared
variable changes; but when 7'1 > 0, the waiting may be shorter, as 7'1 bounds
the number of busy-wait iterations and so the smaller it is, the shorter the
wait.

After the defender Istats the private file, the real race is on, as the defender
is about to check access and so the attacker must arrange things such that
“target” will point to an appropriate location. Additionally, the attacker aspires
to slow down the defender by forcing him into a maze, in order to have a bet-
ter chance of winning future races. The attacker therefore symlinks the target
to a maze. Much like with the initial Istat operation, the attacker must now
speculate when the access operation is already in flight. Once again, it may be
advisable to end the busy-waiting before the shared variable changes, and so
another timer limit, 72, is employed. We allow for two different limits so as to
maximize the chances of success. The attacker is now hopeful that the defender
has been forced into the maze, which would mean (s)he can safely prepare to-
wards the next open by linking to the private file. But even if the attacker was
not successful, this is the correct thing to do in preparation for the defender’s
next Istat at the beginning of the next round.

6. EXPERIMENTAL RESULTS

Our goal is to find out whether the column-oriented traversal technique is ef-
fective against the aforesaid hypothetical attack. (If this turns out to be the
case, we can be reasonably sure that our solution would be effective in real-life
scenarios where the defender is not exposed.)

6.1 Methodology

We obtain our goal by quantifying the expected time that a hypothetical attack
should run in order to achieve k& consecutive wins. Let this time be denoted By,.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:21

Table I. Platforms Used for the Experimental Evaluation

Processor Operating System CPUs Clock Mem
UltraSPARC-II Solaris 8 4 448 MHz 2 GB
Pentium-III Linux 2.4.26 4 550 MHz 1GB
Power4 AIX 5.3 8 1450 MHz 16 GB
Dual Core AMD Linux 2.6.22 4 2200 MHz 8 GB
Intel Core 2 Duo Linux 2.6.20 2 2400 MHz 4GB

If p is the probability for an attacker to win one round (iteration) within the
exposed defender’s loop, and ¢ is the time it takes to conduct one round, then

B, =t -pik (1

because p* is the probability for success. Thus, 1/ p* is the mean of the geometric
random variable that counts the number of trials until success is observed for
the first time. For example, if a round takes one millisecond (¢ = 1 ms) and the
probability to win a round is 1/10 (p = 0.1), then Bs, B3, B4, and Bs are 100
milliseconds, 1 second, 167 minutes, and 28 hours, respectively. We approximate
t and p by running the attack scenario and, upon termination, outputting: (1)
the duration of the attack, (2) the number of rounds conducted, and (3) the
number of rounds lost. (We set ¢ to be the average-round duration, and p to be
the ratio of rounds-lost to rounds-conducted.)

In order to increase the attackers’ chances to win, we run the experiments
on multiprocessors only. This way, attackers will have processors of their own
on which to continuously and repeatedly attempt to fool the defender. In an
effort to generalize the results, the experiments are conducted on older and
recent machines, from different vendors, running different operating systems,
as listed in Table 1.

The maze file we use is constructed to be the biggest that is possible on the re-
spective OS, considering the aforementioned limits on the size of a file path and
the number of symbolic links it entails. Like Dean and Hu [2004] and Borisov
et al. [2005] before us, we use a local file system for our experiments. These
are the results we next describe; afterwards, we also describe our additional
findings from running the experiments across NFS.

All the machines we use have a relatively big memory (i.e., relative to the size
of mazes), which, as argued by Borisov et al., works against the attacker (more
inodes can reside in core). However, we had appropriate permissions to change
the Linux kernel running on the Pentium-III machine to one that only uti-
lizes 256MB of the available memory. Other techniques we have experimented
with in an attempt to increase the chances of the attacker to win are to si-
multaneously run multiple recursive grep-s during attacks (in accordance with
the suggestion by Borisov et al. [2005]), to launch attacks from within a huge
directory that contains tens of thousands of files (in accordance with Maziéres
and Kaashoek’s suggestion [1997]), and to simultaneously run several exposed-
defenders on the same machine. We found that none of these techniques had a
significant effect on the results, and therefore we do not report them here.

Conversely, Wei and Pu [2007] have recently shown that simultaneously run-
ning multiple identical attackers (attacking the same file) on a multiprocessor

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:22 o D. Tsafrir et al.

Solaris 8 Linux 2.4.26 AIX 5.3 Linux 2.6.22 Linux 2.6.20

UltraSparc-Il 448 MHz ~ Pentium-IIl 550 MHz Power4 1.450 GHz AMD 2.2 GHz Core Duo 2.4 GHz
£ 7 7 7
oL 5 5 5
;g 4 4 4
% < 3 3 3
© O 2 2 2
85 1 1 1
o 0 0 0
123456 123456 123456
number of simultaneous attackers
22" 12000 20 30 30
28 10000 25 A 25
2% 8000 20 B 20
SE 6000 15 15
:; 4000 10F & A 10
25 2000 5 5
=0 0 0 0
123456 123456

number of simultaneous attackers

o 1000 g 100 S — L — B —
Bty

gg F 10 | c i

53 " e 10 £ E 10 £ E

2 10 ¢ j 1F 1

£5 01 Lowtirin T Y RE—— [N p— (AR g

= 9 s =T ° — - — s T2 s @2 cSs= T @2
83 T g ° 83 ~ 83 T 83
o o o o

probability p to win one round [%]

Fig. 12. The probability p for a synchronized attacker to win a single round within the loop
executed by the exposed defender (top); the time ¢ it takes an exposed defender to complete a single
round (middle); and the connection between the two (bottom).

system dramatically increases the chance of a TOCTTOU attack to prevail. This
technique turned out to be rather successful (from the attackers’ perspective)
and is therefore explicitly addressed next.

6.2 Results

Recall that the synchronized attacker has two tunable parameters, 71 and
T2, that place an upper bound on the two busy-wait loops the attacker must
employ. We have independently set each of these two values to be either zero
(no upper bound) or 27, where j =0, 1,2, ...,20. This means that we conduct
484 (= 222) experiments for any specified number of simultaneous attackers
(1-6), amounting to a total of 2,904 runs per machine.

Local FS. The top of Figure 12 shows the per-machine probability (ex-
pressed as percents) for multiple simultaneous synchronized attackers to win
a single round. This is plotted as a function of the number of attackers, such
that each point represents one of the aforementioned 2,904 per-machine runs.
Evidently, the probability can be quite high, culminating at nearly 6% on
Sparc/Solaris (with three attackers) and on Power4/AIX (with two). Indeed,
engaging more than one attacker appears beneficial, at least for these two ma-
chines.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:23

Solaris 8 Linux 2.4.26 AIX 5.3 Linux 2.6.22 Linux 2.6.20
UltraSparc-1l 448 MHz ~ Pentium-lIl 550 MHz Power4 1.450 GHz AMD 2.2 GHz Core Duo 2.4 GHz
16409 16+09 16409 16409 16409
1e+08 [£ fe+08 frA-T-E T 1e+08 [4 ter08 [H5-E 5T ier08 3 EER§
1e+07 1e+07 1e+07 1e+07 & .} 1e+07 f N
406 & 1e+0 1e+06 4 6 % 1e+06 >4
100000 10000 100000 100000 100000
W 10000 1000 10000 00 10000
N 00 700 00 000 1000
100 10 100 100 100
10 1 10 10 10
— 1 1 1 1
g o by P i o b o by o b
o 123456 123456 123456 123456 123456
(2]
1e+09 1e+09 1e+09 1e+09 1e+09
£ 1608 [---F-E &K 1608 [Tl LT 16108 [~ ter08 [H2-& 5K 1er08 [2 RAT LA
H 16407 16407 16407 16407 16407 4 A
° 1640 0406 106
2 100000 10000 100000 100000 100000
= 9 10 0000 000
= 100 1000
[100 100 100 100 100
2 10 0 10 " 10 10
c
0.1 0.1 0.1 0.1 0.1
8 P T —— Foy.] i —ra——" Foy S i —r——" POy D i ——— Py Ff i ———
~ 123456 123456 123456 123456 123456
=
€ 16409 16409 16409 16409 16409
E te+08 [R A &L 1e+08 [t T LT 1e+08 [tes0s [§-TT LA tes08 [L.l LA
[} 1e+07 A 1e+07 1e+07 1e+07 Fy 1e+07
I +06 1e+06 1e+06 1e+ e+06
£, 100000 100000 100000 100000 100000
= @ 10000 10000 0000 100 000
< 00 000 7000
100 100 100 10 10
1? 19 19 10 10
o by o b P P i o by
123456 123456 123456 123456 123456

number of simultaneous attackers

Fig. 13. The expected runtime of an exposed-defender loop until 2 consecutive rounds are won by
the attacker (By), for £ values of 7 (top); 8 (middle); and 9 (bottom).

The probability p to win a round is only one of the two factors that determine
the expected time B, until a successful attack, as shown in Eq. (1). The other
factor is the time the ¢ it takes to complete the round, such that the bigger
the ¢, the longer it would take to accomplish a successful attack. The middle of
Figure 12 plots the values of ¢ and shows that they too can be rather high, with
top values typically at tens of milliseconds and (outrageously) a few seconds in
the case of Sparc/Solaris.

Importantly, the time to complete a round and the probability to win it
are far from being independent variables. In fact, as shown at the bottom of
Figure 12, there is a distinct linear connection between the two, which means
the bigger the probability to win the round, the longer the round takes. Indeed,
this makes perfect sense, as the prime objective of an attacker is to slow down
the defender by throwing it into a maze. These are the two opposing side-effects
of the attacker’s actions: Maximizing p immediately translates to maximizing
t, and so whatever ends up happening, the attacker inevitably contributes, to
some extent, to making By, larger.

Figure 13 assigns the ¢ and p values of each of our experiments into Eq. (1)
in order to finally compute B;,, namely, the expected number of years an attack
should execute until 2 consecutive rounds are won, for three different £ values.
When using £ = 7 (the value recommended by Dean and Hu [2004]) we see
that a successful attack is potentially possible after a bit more than a month, in
the case of Power4/AIX. Increasing & to be 8 and 9 raises the minimal expected
duration to be more than 2.5 and 53 years, respectively, making the latter a
safer choice in the face of our theoretical attack.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:24 o D. Tsafrir et al.

Table II. Modeling By, Values, in Years

Platform Local FS NFS

£=8 k=9 k=10 | k=8 %k=9 k=10

SPARC Solaris 8 5.8 103 103 | 0.3 2.6 21
P-III Linux2.4 | 10° 10 108 | 0.1 0.8 5.8

Power4 AIX5.3 2.5 53 951 | 10® 101t 103
AMD Linux2.6 | 103 10% 10° 00 00 00
Intel Linux26 | 106 108 10° | 9.9 129 103

NFS. Dean and Hu constrained their K-race evaluation to a local file-
system, saying that they did

“run some limited experiments attacking files across NFS and ob-
served substantial numbers of successes. We chose not to continue
these experiments, however, because NFS-accessed files are usually
not the most security-critical, root privileges typically don’t extend
across NFS, the data displayed enormous variance depending on net-
work and fileserver load.” [Dean and Hu 2004]

But the set of attack experiments we conducted across NFS reveals that while
individual machines behave differently, the overall conclusion regarding the
value of £ does not dramatically change. Table II compares the minimal By,
values devised when running the attack on local and networked file systems
(each table entry is the minimal result obtained across the 2,904 respective
runs; values denote years, and, if bigger than 1000, are rounded down to the
closest power of ten).

We see that machines can become less or more vulnerable to the hypothetical
attack when it is conducted across NF'S. The Pentium-III machine demonstrates
the most notable change, being the least susceptible to the attack within a local
file system (see also Figure 13) and becoming the most vulnerable with NFS.
Conversely, the Power4 machine transitioned from being the most vulnerable
to being nearly the least, second to only the AMD machine for which no attacker
wins were observed with NFS.

Figure 14 presents the results of our analysis somewhat differently: Instead
of showing B; values, it presents the & values that are required in order to
make the expected time of the attack bigger than a hundred years.

Robustness. We note that our evaluation methodology does not constitute
a proof that the proposed solution is robust. Recall, however, that the attack
described here is purely hypothetical, as defenders are not likely to publish
their actions through shared memory for the sake of helping attackers. We
therefore argue that it is reasonable to expect that real attackers will not do
better. The assumption underlying this rationale is the following: Under the
newly proposed access/open idiom, where system calls are repeatedly applied to
a single-component relative file path, attackers will be unable to systematically
and consistently slow down the defender. If this assumption is true then our
method is robust, even in the face of slow devices and multiple attackers.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:25

12
S local FS &=
10 NFS /=3

3

XX
KK
RRRRZLKY

57
K
X

050
<
s

minimal k for B, > 100 years
o

I

0 4 A A S,

“% (/}7(/ 440 (/}7 @’)/,Z//b Oh/@)y, ’°c 'OQro
. U, 1y 0/s,..

86‘ *9.@ /'7(/*34 4//\’5 2 a’/S‘g

Fig. 14. The k values needed to make the attack expected time bigger than 100 years.

500
450
400
350
300
250
200
150
100
50
0

time to access/open [usec]

0 1 2 3 4 5 6 7 8 9 10
number of components in file name

Fig. 15. Overheads of access_open (AMD / Linux 2.6).

Overhead. Figure 15 compares the overhead of the new access_open to that
of Dean and Hu’s, as a function of the opened file’s number of components. The
overhead is unsurprisingly linear. Clearly, the older version is faster, due to the
fewer system calls it invokes. But we contend that this is tolerable, considering
the older solution is unsafe and that no other portable alternative exists.

7. GENERALIZING

A check-open utility. While the preceding ideas were demonstrated through
the access/open race, their applicability is broader. The maze attack is a general
method to deterministically win TOCTTOU races: Given a check-use pair, if an
attacker can manipulate the file name being checked (or any of its components),
the attacker can utilize a maze to (1) synchronize with and (2) slow down the
defender, generating the ideal conditions for the attack to succeed. Conversely,
the column-oriented K-Race (CKR) is a general method to prevent this from
happening by executing the check-use pair “atomically.”

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:26 o D. Tsafrir et al.

Nevertheless, programmers cannot be expected to tailor a CKR for every
legitimate check-use scenario. We therefore aspire to devise a generic utility
function that can, for example, be added to libc. A first immediate step is to
convert our access_open into a check_open function, by allowing the caller to
pass the check operation as a pointer-to-function argument (getting an atom
hardlink file name and returning zero upon success.) This operation would re-
place the call to access in Figure 8, allowing programmers to pass along access,
stat, or any other conceivable file name check operation they may require.

Note that the focus on open as the “use” operation is not as limited as might
initially seem: Recall that bindings of file descriptors to file objects are im-
mutable and therefore completely immune to TOCTTOU attacks. Thus, once a
valid file descriptor is safely opened and returned, the programmer can securely
use the wealth of system calls that operate on file descriptors (fchown, fchmod,
fchdir, fstat, ftruncate, etc.), rather than their respective insecure TOCTTOU-
prone counterparts that operate on file names (chown, chmod, chdir, stat, trun-
cate, etc.).

A check-use utility. A completely different approach would be to convert
access_open into a general-purpose check_use utility. Here is how such an ap-
proach might work: Hardness amplification would be removed from the core
algorithm and turned into a pluggable policy to be used by programmers at will.
The part that remains is a user-mode path resolution traversal. As before, the
algorithm would consume one component at-a-time, fchdiring from component
to component, and recursing on symlinks. The algorithm would deterministi-
cally make sure it fchdirs to atom hard-links only (never directly to symlinks),
by Istating the next atom directory (s1), opening it, fstating the returned file
descriptor (s3), and making sure that s; and sp point to the same file object.

In addition to the file path, check use would get four pointer-to-function
arguments Fa Flink plast and Flst The first three are check operations,
respectively applied to each directory, symlink, and the last component in the
given file path, at the time the associated atom component is consumed by
the path resolution traversal. Their input arguments are the atom name and
the respective “stat” structure and file descriptor (—1 for symlinks); their return
value is zero to indicate the path-resolution may continue, or nonzero to indicate
it should fail. The F.% encapsulates the use operation, but otherwise has the
same input and output as of the check operations. All operations are invoked
while the working directory of check_use is that of the atom that is currently
being processed. Finally, the return value of check_use is the return value of the
last operation that has failed, or that of F'%! if all other operations succeeded.

With this design it is trivial to solve, for example, the race in Figure 2(a).
The garbage collector defines F&7 and FL@ to always return 0, F/i"* to always
return —1, and F.% to unlink the atom file; thus, any symlink that is encoun-
tered along the way would make check_use fail, thereby insuring all deleted
files are under the /tmp/ directory, as required. Importantly, it does not matter
whether the last (unlinked) atom is juggled by the attacker (symlink/hardlink
to some sensitive file), as in this case the outcome would merely be that some
link created by an attacker is deleted, a fact that does not affect the target file.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:27

Eliminating the probabilistic aspect. To reapply the probabilistic ac-
cess/open solution under the check use design, we would simply define Fcl,‘;’,;k
to always return 0, F!%! to return the file descriptor it gets as input, and
Fair and Flat to comprise (a slightly modified version of) atom_race from
Figure 8. Notice, however, that there is actually no technical difficulty prevent-
ing us from going the extra mile and providing programmers with a library func-
tion that fully implements a deterministic and completely safe access check,
in user mode: While the file path is traversed, the associated “stat” structure
of each component, which is handed to the “check” functions, contains the user
and group ownership information as well as the user/group/world access per-
missions. Thus, given an arbitrary user and an atom’s “stat” structure (which
is associated with an already opened file descriptor), we can deterministically
decide whether the user has appropriate access permissions. While possibly a
tedious task, portably implementing such a routine is nonetheless straightfor-
ward; as a library function, a single implementation would be shared by all
and may have an additional benefit of potentially being more efficient than the
probabilistic approach, which involves an O(K) linear loop per file-path com-
ponent. We are currently in the process of evaluating this alternative (as well
as the one mentioned in the following paragraph) and expect to publish the
results in the near future [Tsafrir et al. 2008b].

Adding credentials to the interface. In contrast to the access/open race that
has a satisfactory probabilistic solution, the race depicted in Figure 2(b) can only
be solved with the help of a deterministic user-mode access (as just described),
since there is no system-call equivalent to access that a nonsetuid program
can use.’ Indeed, defining F47 and F/%! to make use of the user-mode access,
and to return 0 only if user “ann” has adequate permission, would suffice. Al-
ternatively, instead of requiring the “check” predicates to handle these details,
check_use can be augmented to optionally get another parameter (a user id)
and fail the path resolution process when an atom that the user is not allowed
to open is encountered.

Summary. By trading-off some performance, we are able to devise a sim-
ple, yet powerful and expressive interface that enables programmers to intu-
itively and securely combine a check-use pair into a single pseudotransaction,
executed atomically for all practical purposes. While the entire implementa-
tion is straightforward portable user-mode, we effectively accomplish the vision
of Maziéres and Kaashoek (Section 2.2) regarding a new flexible file system
[Maziéres and Kaashoek 1997]. Notably, programmers gain explicit control of
whether symlinks are followed when a file is opened, and are able to specify the
credentials with which relevant system calls would operate.

A facility similar to the check use function suggested earlier, if made a
standard library function, would serve three purposes. First, it would allow
programmers and designers to make conscientious decisions regarding the
efficiency-safety tradeoff (e.g., between insecurely opening a file with a single

5An attacker can choose to link /mail/ann to /etc/passwd, rather than to symlink. Thus, not following
symlinks will not help.

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:28 o D. Tsafrir et al.

open call) or doing it in user mode, component by component, while enforcing
repeated credential checks to avoid TOCTTOU races, or maybe making the ef-
fort to develop another alternative. Second, a well-designed check_use facility
would encapsulate the execution of vulnerable check-use pairs. When the time
comes and, for example, transactional file systems (or other relevant improve-
ments) are made more prevalent, the internal implementation can be replaced
with a more efficient alternative. Thirdly, the inclusion of a check_use routine in
the standard API would serve educational purposes, as new programmers get
familiar with the API and through it become aware of the TOCTTOU problem.

Limitations. Like the maze attack, our approach works on already existing-
files only. The TOCTTOU problem associated with creating new files (notably,
when wanting to create a new temporary file [Cowan et al. 2001]) is still unre-
solved.

8. CONCLUSIONS

The POSIX API is broken: Its semantics inherently promote TOCTTOU races
between check-use operations and make systems vulnerable to malicious at-
tacks. Existing solutions can help locate these problems, but otherwise relate
to future nonprevalent systems, leaving programmers to individually come up
with solutions from scratch to numerous variants of what is provably a hard
and elusive problem. We suggest to alleviate the situation by providing pro-
grammers with standard generic abstractions that effectively bind check-use
pairs into a single pseudo-atomic transaction. We further show that this goal
can be obtained, to a large extent, in a portable manner, in user-mode, without
changing the kernel.

ACKNOWLEDGMENTS

Many thanks are due to the anonymous reviewers for their helpful comments,
and to M. Baker, the shepherd of this article. The first author would also like
to thank N. Borisov, A. Hu, E. Miller, W. Venema, and E. Zadok for providing
valuable and much appreciated feedback on earlier versions of this manuscript.

REFERENCES

AGGARWAL, A. AND JALOTE, P. 2006. Monitoring the security health of software systems. In Proceed-
ings of the 17th IEEE International Symposium on Software Reliability Engineering (ISSRE),
146-158.

AsHCRAFT, K. AND ENGLER, D. 2002. Using programmer-written compiler extensions to catch se-
curity holes. In Proceedings of the IEEE Symposium on Security and Privacy (S&P), 143-159.
Bisnor, M. 1995. Race conditions, files, and security flaws; or the tortoise and the hare Redux.

Tech. Rep. CSE-95-8, University of California at Davis. September.

Bisuor, M. aAND DiLGeR, M. 1996. Checking for race conditions in file accesses. Comput. Syst. 9, 2
(Spring), 131-152.

Borisov, N., JounsoN, R., SASTRY, N., AND WAGNER, D. 2005. Fixing races for fun and profit: How
to abuse atime. In Proceedings of the 14th USENIX Security Symposium, 303—-314.

Bourer, D. 2002. UNIX domain sockets. http:/everything2.com/index.pl?node_id=955968.
(Accessed Sept. 2007).

CERT CoorpiNaTioN CENTER. 1993. CERT advisory CA-1993-17 xterm logging vulnerability. URL
http://www.cert.org/advisories/CA-1993-17.html. (Accessed Jun. 2007).

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

Portably Solving File Races with Hardness Amplification . 9:29

CHEN, H. AND WaGNER, D. 2002. MOPS: An infrastructure for examining security properties of
software. In Proceedings of the ACM Conference on Computer Communications Security (CCS),
235-244.

CHEN, H., WAGNER, D., AND DEAN, D. 2002. Setuid demystified. In Proceedings of the 11th USENIX
Security Symposium, 171-190.

Cuess, B. 2002. Improving computer security using extended static checking. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 160.

Cowan, C., BEarTig, S., WrRIGHT, C., AND KroaH-HarRTMAN, G. 2001. RaceGuard: Kernel protection
from temporary file race vulnerabilities. In Proceedings of the 10th USENIX Security Symposium,
165-172.

DEean, D. anp Hy, A. J. 2004. Fixing races for fun and profit: How to use access(2). In Proceedings
of the 13th USENIX Security Symposium, 195-206.

ENGLER, D. AND AsHCRAFT, K. 2003. RacerX: Effective, static detection of race conditions and
deadlocks. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP),
237-252.

ENGLER, D., CHEN, D. Y., HaLLEM, S., CHOU, A., AND CHELF, B. 2001. Bugs as deviant behavior: A
general approach to inferring errors in systems code. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP), 57-72.

EncrEr, D., CHELF, B., CHou, A., aND Harrem, S. 2000. Checking system rules using system-
specific, programmer-written compiler extensions. In Proceedings of the 4th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 1-16.

GovaL, B., SiTARAMAN, S., AND VENKATESAN, S. 2003. A unified approach to detect binding based
race condition attacks. 3rd International Workshop on Cryptology and Network Security (CANS).

Hu, A.J. 2005. On-Line publication list. http://www.cs.ubc.ca/spider/ajh/pub-list.html. (Accessed
Jan. 2008).

Josey, A. 2006. The open group new API set proposals. http://www.opengroup.org/
austin/plato/uploads/40/9756/NAPI overview.txt. (Accessed Dec. 2007).

JosHl, A., King, S. T., Dunrap, G. W., anp CHEN, P. M. 2005. Detecting past and present intru-
sions through vulnerability-specific predicates. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP), 91-104.

Ko, C. anp ReEpmonp, T. 2002. Noninterference and intrusion detection. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 177-187.

LHEE, K.-S. AND CHAPIN, S. J. 2005. Detection of file-based race conditions. Int. J. Inf. Secur. 4, 1-2
(Feb.).

Man access(2). 2001. The FreeBSD system calls manual. http://www.freebsd.org/cgi/man.cgi?
query=access. (Accessed Jan. 2008).

MaN oPENAT(2). 2006. Linux programmer’s manual. http://www.kernel.org/doc/man-pages/online/
pages/man2/openat.2.html. (Accessed Jan. 2008).

Mazigres, D. anp KaasHoek, F. 1997. Secure applications need flexible operating systems. In
Proceedings of the 6th IEEE Workshop on Hot Topics in Operating Systems (HOTOS), 56-61.
McPuEE, W. S. 1974. Operating system integrity in OS/VS2. IBM Syst. J. 13, 3, 230-252.

http://www.research.ibm.com/journal/sj/133/ibmsj1303D.pdf.

NVD. 2008. National vulnerability database. http://nvd.nist.gov/. (Accessed Jan. 2008).

Parxg, J., LEE, G., LEE, S., anD Kiv, D.-K. 2004. RPS: An extension of reference monitor to prevent
race-attacks. In Proceedings of the 5th Advances in Multimedia Information Processing Confer-
ence (PCM). Lecture Notes in Computer Science, vol. 3331. Springer, 556-563.

Py, C. aND WEL J. 2006. A methodical defense against TOCTTOU attacks: The EDGI approach. In
Proceedings of the 1st IEEE International Symposium on Secure Software Engineering (ISSSE).

ScHMUCK, F. AND WYLIE, J. 1991. Experience with transactions in QuickSilver. In Proceedings of
the 13th ACM Symposium on Operating Systems Principles (SOSP), 239-253.

ScuwaRz, B., CHEN, H., WAGNER, D., LiN, J., Tu, W., MorgisoN, G., AND WEsT, J. 2005. Model check-
ing an entire Linux distribution for security violations. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), IEEE, 13-22.

Stramven, T. 2002-2004. fdpass.c—File descriptor passing between processes via UNIX sockets.
http://code.softwarefreedom.org/projects/backports/browser/external/standalone/dovecot/current
/src/lib/fdpass.c. (Accessed Dec. 2007).

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

9:30 o D. Tsafrir et al.

StevENS, W. R. aAND FENNER, B. 2003. UNIX Network Programming Volume 1: The Sockets Net-
working API, 3rd ed. Addison Wesley, Section 15.7.

StEVENS, W. R., THOMAS, M., NORDMARK, E., AND JInmMEI, T. 2003. RFC 3542—Advanced sockets
application program interface (API) for IPv6. http:/www.fags.org/rfcs/rfc3542.html. (Accessed
Dec. 2007).

TSAFRIR, D., DA Sitva, D., AND WAGNER, D. 2008a. The murky issue of changing process identity:
Revising “setuid demystified”. USENIX ;login 33, 3 (Jun.), 55—66.

TsAFRIR, D., HERTZ, T., WAGNER, D., AND DA-Stiva, D. 2008b. Portably preventing file race attacks
with user-mode path resolution. Tech. Rep. RC24572, IBM T. J. Watson Research Center, York-
town Heights, New York.

TsyrLEVICH, E. AND YEE, B. 2003. Dynamic detection and prevention of race conditions in file
accesses. In Proceedings of the 12th USENIX Security Symposium, 243-256.

UppuLuri, P, Josar, U, aND Ray, A. 2005. Preventing race condition attacks on file-systems. In
Proceedings of the 20th ACM Symposium on Applied Computing (SAC), 346-353.

US-CERT. 2005. United States computer emergency readiness team: Vulnerability notes
database. http://www.kb.cert.org/vuls. (Accessed Jan. 2008).

ViEca, J., Brocs, J., Konno, Y., AND McGraw, G. 2000. ITS4: A static vulnerability scanner for C
and C++ code. In Proceedings of the Annual Computer Security Applications Conference (ACSAC),
IEEE, 257-267.

WE, J. anDp Py, C. 2007. Multiprocessors may reduce system dependability under file-based race
condition attacks. In Proceedings of the 37th IEEE/IFIP Annual International Conference on
Dependable Systems and Networks (DSN).

WEeL J. anp Py, C. 2005. TOCTTOU vulnerabilities in UNIX-style file systems: An anatomical
study. In Proceedings of the 4th USENIX Conference on File and Storage Technologies (FAST),
155-167.

WricHT, C. P., SPILLANE, R., SIVATHANU, G., AND ZADOK, E. 2007. Extending ACID semantics to the
file system. ACM Trans. Storage 3, 2 (Jun.), 4.

Yao, A. C. 1982. Theory and applications of trapdoor functions. In Proceedings of the 23th IEEE
Symposium on Foundations of Computer Science (FOCS), 80-91.

ZEILENGA, K., CHu, H., AND MasaraTi, P. 2000-2007. libraries/libutil/getpeereuid.c. OpenLDAP
source code. http://www.openldap.org/devel/cvsweb.cgi. (Accessed Dec. 2007).

Received February 2008; accepted August 2008

ACM Transactions on Storage, Vol. 4, No. 3, Article 9, Publication date: November 2008.

