Portably Solving File TOCTTOU Races with Hardness

Amplification
Dan Tsafrir Tomer Hertz David Wagner Dilma Da Silva
IBM Research Microsoft Research UC Berkeley IBM Research
Yorktown Heights, NY Redmond, WA Berkeley, CA Yorktown Heights, NY
dants@us.ibm.com hertz@microsoft.com daw@cs.berkeley.edu dilmasilva@us.ibm.com
Abstract “if there exists a time interval between a validity-

check and the operation connected with that validity-

check [such that], through multitasking, the validity-
The file-system API of contemporary systems makes procheck variables can deliberately be changed during
grams vulnerable to TOCTTOU (time of check to time of this time interval, resulting in an invalid operation
use) race conditions. Existing solutions either help usergeing performed by the control prograni25]
to detect these problems (by pinpointing their locations
in the code), or prevent the problem altogether (by moBissecting a 1993 CERT adviso[y [7], Bishop was the first
ifying the kernel or its API). The latter alternative is noto systematically show that file-systems with weak consis-
prevalent, and the former is just the first step: prograf@ncy semantics (like Unix and Windows) are inherently
mers must still address TOCTTOU flaws within the limitgulnerable to TOCTTOU race§l[8] 4]: First, a program
of the existing API with which several important tasks caghecks the status of a file using the file’s name. Then, de-
not be accomplished in a portable straightforward mapending on the status, it applies some operation to the file,
ner. Recently, Dean and Hu addressed this problem atustifiably assuming the status has not changed since
suggested a probabilistic hardness amplification approéicyas checked. This error is caused by the fact that the
that alleviated the matter. Alas, shortly after, Borisoslet mapping between file names and file objects (“inodes”) is

responded with an attack termed “filesystem maze” tHat/table by design, and might therefore change between a
defeated the new approach. status check and a subsequent operation.

We begin by noting that mazes constitute a generic W@Besearchers have put a lot of effort ir_1to trying Fo splve
to deterministically win many TOCTTOU races (gone a aIIewa_te the prob_lem,_ (1) developing compile-time
the days when the probability was small). In the face quls to plnpqlnt locations in the source code that are sus-
this threat, we (1) develop a new user-level defense t tof s-uffermg from a TOCTTOU racH ELIZ] I 30],
can withstand mazes, and (2) show that our method is modifying the kernel to log all relevant system calls

; lyzing the log, postmortem, to detect TOCTTOU
defeated even by much stronger hypothetical attacks tﬁgfi ana e X
provide the adversary program with ideal conditions tacksl[2D. 16, 21.15.B9, 1], (3) having the kernel specu-

win the race (enjoying complete and instantaneous kno tively identify o_ffend_ing processes and temporarily-sus
edge about the defending program’s actions and be d them or fail their respectlve suspegteq systemlcalls
able to perfectly synchronize accordingly). The fact th ’BZ’I_ZYBBEZB]’ and flnlally (A.') designing new file-
our approach is immune to these unrealistic attacks S&égem interfaces to make it easier for programmers to
gests it can be used as a simple and portable solution @ 8'd the races[[8. 28, P4.,140].

large class of TOCTTOU vulnerabilities, without requir- None of the at?OVe helps programmers to safgly and
ing modifications to the underlying operating system. Portably accomplish a TOCTTOU-prone task erist-
ing systems, as kernels that prevent races are currently

an academic exercise, whereas new-and-improved file-
systems are unfortunately not prevalent (and certainly not
standard). Thus, regardless of how programmers become
aware of the problem, whether through compile-time tools
or just by being careful, they must still face the problem
The TOCTTOU (time of check to time of use) race condivith the existing API.

tion was characterized in 1974 by McPhee as the situatiorAt the same time, resolving a TOCTTOU race is not
which occurs as easy as, e.g., fixing a buffer overflow bug, because the

1 Introduction

§_g’_) 60 [a single “atomic” operation.
BE 40 B But the new and intriguing-race defense did not
€5 20 - stand the test of time. In 2005, Borisov et al. orchestrated
%E 0 %‘ : ’% o<1 R fesed IS 66 ‘ : ‘% theirfilesystem mazattack and showed that an adversary
s %O 900 ?,OO % 900 900 % ?,OO tcr?;t in fact wineveryrace (hence mal_<|ng the assumpuqn
QGG O p < 1wrong) [8]. Roughly speaking, the adversary is

year: &% %
able to slow down, and effectively “single step”, the pro-
Figure 1: NVD reports 450 “symlink attack” vulnerabilities, PoSed algorithm by feeding it with a carefully constructed
as of September 5, 2007. (In 2001 and 2005 there were 73 4i@ name (the “maze”) and polling the status of certain
106 reports, respectively; the associated bars are trued¢tat ~ components within the name. This induces perfect syn-
chronicity between the adversary and fkierace, thereby
enabling the adversary to win all racgs# 1). Indeed,
programmer must somehow achieve atomicity of two ofpr his on-line publication list, adjacent to his 2004 paper
erations using an API| that was not designed for such a pjiiZ], Alan Hu concedes that
pose. In fact, overcoming TOCTTOU races in a portable _
manner is notoriously hard, sometimes even for experts I N€ scheme proposed here has been beautifully and
(see Sectiof213). Hence, it is probably impractical tothoroughly demolished by Borisov, Johnson, Sastry,
expect average programmers to successfully accomplisfnd Wagner[[B]. The theory is, of course, still valid,
such tasks (or attempt them) on a regular basis. but it relles. on an assumption of Fhe attacker ha_wmg
Indeed, to date, TOCTTOU races pose a significanta non-negligible pro_bab|llt.y of losing races. Borisov
problem, as exemplified by Wei and Pu, which analyzede_t a_I. came up W.'th ingenious means (1) to force_the
CERT [36] advisories between 2000 and 2004 and foungd/'ctim to g0 to disk on each race, _thereby allowing
20 reports concerning the issue, 11 of which providedIOIenty of t,'me for t,he attacker to win races, gnd (2)
the attacker with unauthorized root accédss [39]. Fiflire 1tO Qetgrmlng precisely W_hat, prc_)tocol operatlop_the
shows the yearly number of TOCTTOU “symlink attack” victim is do!ng at any pointin time, thereby foiling
vulnerabilities reported by NVD (National Vulnerability th_e randomized delays. The_upshot is that they can
Database)[26]. These affect a wide range of mainstreanf’" th”ese TOCTTOU races with almost complete cer-
applications and tools (e.g., bzip2, gzip, FireFox, make,ta'nty' (2]
OpenOffice, OpenSSL, Kerberos, perl, samba, sh), envipean and Hu were only concerned with finding a way
ronments (e.g., GNOME, KDE), distributions (e.g., D&p correctly use thaccess system call; likewise, the ex-
bian, Mandrake, RedHat, SUSE, Ubuntu), and operatigicit goal of Borisov et al. was to prove thaccess
systems (e.g., AlX, FreeBSD, HPUX, Linux, Solaris). should never be used. But the consequences of the filesys-
We contend that the situation can potentially be greattym maze attack are much more general. In fact, mazes
improved if programmers are able to use some portahienstitute a generic way to consistently win a large class
standard, generic, user-modeeck_use utility function of TOCTTOU races. This is true because any 'check’ op-
that, given a 'check’ operation and a 'use’ operatioeration can be slowed down and single-stepped, if pro-
would perform the two as a kind of “transaction”, in a wayided with a filesystem maze as an argument. Conse-
that appears atomic for all relevant purposes. This pajgiently, the common belief that “TOCTTOU vulnerabili-
takes a significant step towards achieving such a goal. ties are hard to exploit, because they [...] rely on whether
The first step in this direction was taken in 2004 bipe attacking code is executed within the usually narrow
Dean and Hu, which implemented a transaction-tike window of vulnerability (on the order of milliseconds)”
cess_open routine that set out to solve a single raice [12[89] is no longer true: With filesystem mazes, the attacker
the one which occurs between thecess system call can often proactively prolong the vulnerability window,
(used by root to check if a user has adequate privilegihile simultaneously finding out when it opens up.
to open a file) and the subsequepen. Their idea (later ~ Motivated by the alarmingly wide applicability of the
termedK-race [B])) was to usehardness amplificatioas filesystem maze attack, we set out to search for an effec-
found in the cryptology literaturéJ#41], but applied to sygive defense, with the long-term goal of providing pro-
tem calls rather than cryptologic primitives. In a nutsheljrammers with a generic and portalaleeck_use util-
if an adversary has a probabilipy< 1 to win a race, then ity function that would allow for a pseudo-atomic trans-
the probabilityp” to win K races can be made negligiaction of the 'check’ and 'use’ operations. Importantly
ble by choosing a big enoughi. Indeed, by mandatingthis should work on existing systems, without requiring
attackers to wink' consecutive races before agreeing ®hanges to the kernel or the API it provides.
open the file,access_open seemingly accomplished its This paper is structured as follows: After exemplifying
“transactional” goal of aggregatiragcess andopeninto the TOCTTOU problem in detail, surveying the existing

root attacker root attacker root attacker

mkdir(“/tmp/etc”) Istat(“/mail/ann”) access(filename)
creat(“/tmp/etc/passwd” unlink(“/mail/ann”) unlink(filename)
readdir(“/tmp”) symlink(“/mail/ann”,“/etc/passwd”) link(sensitive,filename)
Istat(“/tmp/etc”) fd = open(“/mail/ann”) fd = open(filename)
readdir(“/tmp/etc”) write(fd,...) read(fd,...)

rename(“/tmp/etc”,“tmp/x”)
symlink(“/etc”,"/tmpl/etc”)
unlink(“/tmp/etc/passwd”)

(a) garbage collector (b) mail server (c) setuid

Figure 2: Three canonical file TOCTTOU examples. The Y-axis denotesirtte (future is downwards). The left-justified
operations, performed by root, suffer from a TOCTTOU vudbdity. The right-justified operations show how an attacken
exploit this vulnerability to circumvent the system’s priton mechanisms and to gain illegal access.

solutions, and pointing out their shortcomings and the elinrk. But as with all TOCTTOU flaws, this check is fruit-
siveness of a contemporary practical solution (Sefion Bss in casé t np/ et ¢ is manipulated just after.
we go on to explain how hardness amplification was ap-Another well known TOCTTOU example, initially
plied to solve file TOCTTOU races, and why it has failedocumented by Bishop, is that of a mail server which
(SectiorB). We then show how to turn this failure to sueppends a new message to the corresponding user’s In-
cess (Sectiofl4) and experimentally evaluate our solutioox file [3,[4]. Beforeopen-ing the Inbox, the server
by subjecting it to a hypothetical attack far more powerfigtat-s it to rule out the possibility the user has replaced
than filesystem mazes (Sectid§l5—6). We discuss hovittwith some symbolic link pointing to a file that lies else-
generalize our solution, its limitations, and how/when itghere. Figurd2b shows how the inevitable associated
probabilistic aspect can be eliminated (Sedfibn 7). FnalTOCTTOU race can be exploited to add arbitrary data to
we present our conclusions (Sectidn 8). the/ et ¢/ passwd file, providing the attacker with the

ability to obtain permanent root access.

A third example concerns theetuid bitthat Unix-like

2 Motivation systems associate with an executable to indicate it should
run with the privileges of itowner, rather than the user
g?atinvokedt (asisthe normal case). Of course just hand-

Much of the administrative and security-crucial tasks o _ ; S
Unix-like systems is performed by root-privileged pro'-ng off root privileges is not a good idea, which is why the

grams. Since such programs often interact with and aff8SEess system caII_ conveys setuid programs.the al:.)ility 0

the system by means of file manipulation, they are suscé eck whether an invoker has adequate privileges:

tible to TOCTTOU vulnerabilities. A successful exploita- j f (access(fil ename, R OK) == 0)

tion of these vulnerabilities would allow a non-privileged fd = open(filename, O RDONLY);

user to circumvent the system’s normal protection mech-

anisms and unlawfully execute some operation as rootAlas, the access/open idiom constitutes the archetypal,
and arguably the most infamous, TOCTTOU fﬂi\,ﬁig-
urel2c illustrates how this race can be exploited to access

2.1 Classic Examples any file; access was therefore deemed unusable, as e.g.
indicated by its FreeBSD manual, explicitly stating that

For example, many sites periodically delete files residifge access system call is a potential security hole due to

under the/ t np directory. If a file was not accessed foface conditions anshould never be usedP?]
a certain amount of time, the “garbage collection” script

deletes it. Maziéres and Kaashoek noted that this poligy, . .

might contain a TOCTTOU window between the 'checl?'2 Existing Solutions

statement (of the file access time) and the subsequent ' WSensiderable research effort have been put into providing
statement (the file removal); if a name/inode mappir@|utions for TOCTTOU vulnerabilities like the ones de-
changes within this window, the script can be tricked in&ribed above. In order to highlight the contribution of
deleting any arbitrary file, even if it attempts to prevent
this fro”.‘ h_ap_penlng by_exp_I|C|tIy ignoring symbolic IInksdoc:umentation of a file TOCTTOU vulnerabilitid[7]; it is de#med by
[24]. This is illustrated in FigurEl2a: The garbage collegmost all papers that address the TOCTTOU issue (see SE&T)
tor usedstat to verify that/ t np/ et c is not a symbolic when exemplifying the problem.

1This race was reported by what is believed to be the first forma

this paper we first survey this work, which can be subdiuspend any process that interferes with a “pseudo trans-
vided into four categories: action” (check/use pair that agree on the target file), such
that the worst outcome of a false-positive detection is a

Static Detection Some groundbreaking work has beetnempqra_ry suspension of the correspondmg process. Sev-
. . eral similar solutions followed [27,-85,28]; the latter of

done in recent years to statically analyze the source code . o .

o . L which, by Pu and Wei, was argued to be “complete”, be-

of programs and pinpoint the locations of nontrivial vull—n based on their aforementioned earlier wiH [39]

nerabilities and bug§ 14, 115,[2.113]. This type of anaIyS|sg '

is rooted in Bishop’s work, which used pattern match-

ing to locate pairs of TOCTTOU system calls in roofye ap| Al of the above are solutions that respect the
privileged programs on a per-function basis[[B, 4]. Thgsting file-system API so as to accommodate existing
toolsITS4 [37], Eau Claire [10], andMOPS [B,[3C] have 5y jications and operating systems. The complementary
later superseded Bishop’s work by being more gene@gproach is to augment or change the API, such that tasks
accurate, and scalable. that currently suffer from TOCTTOU issues are made eas-
ier to safely accomplish. For example, to resolve the ac-

Dynamic Detection Static analysis can be very effeccess/open race, Dean and Hu suggestecoipert would
tive and has the advantage of (1) not incurring runtin@gécept anO_RUID flag, which would instruct it to use
overheads, (2) covering all the code (in a reasonalfi€ real (rather than effective) user ID of the procEsk [12];
amount of time), and (3) locating the bugs before the syaternatively, Bishop suggested to add a ri@gcess sys-
tem is deployed. But the code is not always available, al@n call that would operate on a file-descriptor rather than
even if it is, the static doctrine is inherently missing ked file namel[Bfl Likewise, theO_NOFOLLOW flag sup-
information that is often only available at runtime, whicRorted by Linux and FreeBSD makegen fail if its argu-
might result in many false positives. To solve this, Ko af@ient refers to a symbolic link, which may help in certain
Redmond patched the kernel to log the required infornfi@ses (e.g. Figuld 2b). However, aside from being non-
tion and utilized it, postmortem, to feed a model that dgortable, it relates only to the last component of the file
tects TOCTTOU flaws[]20]. A similar approach was |atdyath: earlier components may still be symbolic links, and
adopted by many following projects 16,121 9] 8D, 1fience be juggled by an attacker (e.g. Figre 2a).
Notable of these is the work by Wei and Pul[39] that ex- To obtain a more general solution, a bigger change is
haustively enumerated all of Linux’'s TOCTTOU pirsneeded, such as replacing (or augmenting) Unix semantics
and the revolutionaryntroVirt tool by Joshi et al.[[19] with that of a transactional file-system[£9] 40]: Atomicity
that made ubiquitous virtual-machine checkpointing ameuld then insure that a check/use pair that was annotated
replaying a realistic alternative that can e.g. be usedly the programmer as a single transaction would be exe-
identify TOCTTOU attacks, postmortem. cuted with no interference.

A more radical approach was suggested by Maziéres
and Kaashoek24]. They proposed to use the fact that the

apply the principles of dynamic detection on-the-fly, hinding between file descriptors and inodes is immutable

discovering TOCTTOU attacks while they occur allow and thus C?‘””O‘ be exploited) t_o devise a safer program-
ming paradigm that would make it harder for the program-

for on-line prevention. This approach was first taken b . . :
Cowan et al. in 2001, when implementing “RaceGuarrﬁ%erto make mistakes. By this paradigm,

[LT]. Their technique tackles one TOCTTOU flaw that oc- 1
curs between (1) a check if a candidate name for a tempo-
rary file doesn’t match an exist file, and (2) the new file’'s
creation (stat/open). They modify the kernel to maintaina™
cache of files that have bestated and found not to exist;
if a subsequentpen finds an existing file, it fails.

In 2003, Tsyrklevich and Yee developed a more gen-
eral approach that was capable of generically preventing

most TOCTTOU attacks [34]. They patched the kermnel{ge contend that some of this vision can be realized in
ser-mode on current systems.

Dynamic Prevention The kernel can be modified to

all access checks would be done on file descriptors
rather than on names,

users would be given explicit control of whether
symlinks are followed when files are opened, and

3. each system call invocation would be provided with
the user credentials with which the system call
should operate.

2Wei and Pu (and later Lhee and Chafiinl[21]) augmented theidefilr'lI
tion of check/use TOCTTOU pairs to also refer to use/usespaivith
this, they found a bug irpm that (1) generated a script that was writable 3 We note in passing that even though this suggestion wasdraise
by all (first use ofopen), and (2) executed it with root privileges (sec-again by Dean and Hu , we contend it is impossible: the cooredipg
ond use obpen). While such bugs can be very hard to detect, they ameode can possibly be refereed to by multiple paths, amorignwgome
nevertheless very easy to fix and therefore are of no interéisis paper. are accessible to the user and some are not.

2.3 The Problem file; if successful, the child can then pass the open file de-
) - i scriptor across a Unix-domain socket aaxdt. Borisov et
Notice that all the eX|st_|ng SOIUt,'OnS surveyed abdee 5 [5] have mistakingly attributed the claim that this ver-
not he_Ip programmers in resolv_mg a knpwn TOC_TTOHon is portable, to Dean and HuJ12]. But the latter have
flaw within existing systemsStatic detection technlquesactua”y argued the contrary, stating that, with respect to

are invaluable in locating such flaws, but what are prgsa Unix-domain approach, “some of the above [user id

grammers to do iffonce they are aware of the vulnergyqjing] caveats still apply”. Indeed, as mentioned ear-

bility? Surely they caqnot wait gntil gll contempc_)ramer' dropping privileges is a non-portable operatibh [9].
kernels employ dynamic prevention (if ever, as signifiregardiess of whether it is being done by a parent or a
cant complexity and performance penalty might be i .yeq child.) Furthermore, we find that passing an open

volved). Likewise, programmers cannot wait until all COMgescriptor alone, even without dropping privileges, sisffe
temporary OSs portably support transactional file-systefs,, serious portability issudk

(or constructs like the aforementioned API suggested by o,rth failed attempt will be discussed next.
Maziéres and Kaashoek).
The fact of the matter is that, in order to achieve a
portable solution, programmers are bound to handlingtBe Failure of Hardness Amplification
matter with a decades-old API. Importantly, as mentioned
earlier, a portable user-mode solution to a given TOCjk 2004, noting that no prior art helps programmers
TOU race (if exists) is often much harder and more ely portably resolve TOCTTOU vulnerabilities on exist-
sive than e.g. fixing a buffer overflow bug: even experigg systems, Dean and Hu took the first step towards a
that explicitly target a specific TOCTTOU problem argortable solution[12], explicitly focusing their efforts
prone to getting it wrong. the aforementioned access/open TOCTTOU race.
Consider for example the access/open race depicted in
Figurel2c. Tsyrklevich and Yee suggested two solutionsto .
this flaw [34]. The first argues that “to avoid this race coé—'l TheK-Race Technique
dition, an application should change its effective id [witlTheir solution, termed K-race”, was inspired by the
setxuid system calls] to that of a desired user and thémrdness amplification technique that is commonly used
make theopen system call directly.” However, after carein cryptology contexts[I41]. The idea underlying hard-
fully evaluating this suggestion, Dean and Hu found thatess amplification is to use a problem which is compu-
tationally “somewhat hard”, in order do devise another
“Unfortunately, the setuid family of system calls is its computational problem that is “really hard”. In a TOCT-
own rats nest. On different Unix and Unix-like sys- TOU access/open scenario, the “somewhat hard” problem
tems, system calls of the same name and arguments timing and completing the attack (removing one file and
can have different semantics, including the possibil-jinking another) within the exact window of opportunity
ity of silent failure [9]. Hence, a solution depending delimited by theaccess andopen calls (see FigurEl2c).
on user id juggling can be made to work, but is gen- The “really hard” problem is requiring the attacker to suc-
erally not portable” [1Z] ceed in doing this fo2 K + 1 consecutive times.

The second suggestion by Tsyrklevich and Yee was “toThe K-race routine, shown in Figufd 3, starts with a
usefstat after theopen instead of invokingaccess”. standard call taccess, followed by anopen, followed

As the input offstat is a file descriptor, the latter is per—b.)'.K strengthening rounds=ach round cqn5|sts of an ad-
da{HonaI access check and a correspondiogen, which

manently mapped to the underlying inode and hence ¢ hen foll db tat t that verifies that th
never be abused by an attacker; the user is then expe@lrg en loflowed by a statement that veriies that the cur=

to inspect the ownership information returnedéiat and rently opened file is the same file that wapened in the

check if the invoker was indeed alloweddpen the file. previous round. Note that whelf = 0, the routine de-
But this will not work, as file access permissions can generates to the standard access/open TOCTTOU race.

be deduced in such a way; rather, they are the conjunc This is the result of changes related to theghdr structure, which
tion of all the (inode) permissions associated with eaghused by thesendmsg andrecvmsg system calls to pass an open
component in the respective path. For example, if a fil&tescriptor through a Unix domain socket. Specifically, (L}tie mid

i/ h that i lel ible by it 990s, POSIX replaced thmasg-accrights field with themsg_control
name IX/'y suc aK Is solely accessible by Iis Ownerarray (but commercial OSes such as Solaris and HPUX prefemriecep

then other users are forbidden from readyngven iffstat the earlier version as the default) and (2) more recentl; B542 de-
indicates it is readable by all (which may very well be thi@ed a set of macros to be exclusively used when accessingipma
case when root invokes trﬂstat) lating themsg_control array (but despite being mandated by OSes like

. . . Linux, some of the macros are not yet standalrd) [33]. The esdltris
A third alternative is tdfork a child that permanently ack of portability and source code that is littered wifttefs and condi-

drops all extra privileges and then attemptofzen the tional compilation tricks[[32. 42311 6].

#define DO _SYS(call) if((call)==-1) return -1 sentry—‘

#define DO CHK(expr) if(!(expr)) return -1 relative link
#define DO _CVP(X,Y) \ : :
(((x)->st_ino == (y)->st_ino) & \ L>§chain6/d/d/d/ ---/d/1lnk
((X)'>St _dev == (y)'>St _dev)) ’ absolute link : _I
| L chains/d/d/d/ - - - /d/1nk
|{nt access_open_2004(char *fname) Absolute ink ' _I
int fdi, fd2, i |—>§chain4/d/d/d/---/d§/lnk
struct stat si1, s2;) absolute fink : —|
/1 1- the access/open idiom L%chain:’)/d/d/d/ <. /d/lnk
DO_SYS(access(fname, R OK))) absolute ink ' —|
DO SYS(fdl = open (fname, O RDONLY)); I_» :
DO_SYS(fstat (fdl , &1)); chain2/d/d/d/- - -/d;/lnk—|
/'l 2- the strengthening rounds L> E—
for(i=0; i<K. i++) { -chainl/d/d/d/---/d/1lnk
DO _SYS(access(fname, R OK DR ’ absoiute ik : —|
DO SYS(fd2 = open (fname, O RDONLY)); |_> :
DO_SYS(fstat (fd2 , &s2)); -chain0O/d/d/d/---/d/1nk
DO _SYS(close (fd2))) absolute link i _‘
} m—CHK(EX)_CNP(&sl ! &s2)) { relative link to target file
return fdi;

}

Figure 3: The K-race routine employs hardness amplificaFigure 4: The structure of a six-chains filesystem maze. Ar-

tion to probabilistically solve a TOCTTOU race. Specifigain rows represents symbolic links. (Originally published ;[

each strengthening round, it checks that the caller stif la@- reprinted with permission.)

propriate access permissions and that the underlying fijled,

as represented by the inodet (no) and 10 device gt_dev), re-

mains the same. This attempts to provide programmers wittiace is significantly smaller than one. In fact, they have

way to invokeaccess andopen in an “atomic” manner. managed to effectively make it a certaingy£ 1). The
heart of the attack consists ofilesystem mazevhich, in
simple terms, is the longest and most nested filepath a user

To be successful, an attacker must indeed Win+ 1 can pass as an argument to a system call, without causing
races: This is true because, on each roundate®ss it to fail due to hardcoded kernel limits.

check must be applied to some user accessible file, or else
permission IS denied, Or_lthe othgrhand, e\mEn must onstructing a Maze The basic building block of a
be applied to the same inaccessible target file, or else

A . . © M&ze is achain defined to be (nearly) the deepest
verification that all file-descriptors refer to the same f'len'ested directory tree one can define without violating

e PATHMAX constraint imposed by the kernel on the

;jerll(t ratndo_m et\r/]entwnh ”som?) pl;(_)l_ktJabI]?:y; kl fo%he at- length of file paths (4KB is a typical value). Thugaing
acker to win, the overall probabllity OTNCKING8-Tace 14 nechai no/ d/ d/ d/ . . . 1 d such that the associ-

Isp**1. (Independence of events is supposedly obtaingt d number of characters is a bit less than PATAX.

by introducing short random delays between SUCCESSNE oo 1uins is chai nl/ d/ d/ di /d. etc

) . . . y 1 PR y .
system call invocations: as delays are ran_dom|zed, an alt, form a maze, the attacker connects chains by placing
versary Woulqln’t be able to synchronize with tF_ferace.) ymbolic link at the bottom affiain, that points to
After measuring several systems (aml ong which are Sl\z ain;. The final symlink, at the bottom eh.aing, points
systems), Dean and Hu concluded 7 is enough to to anexi t symlink which, in turn, points to the actual

make the probability of success negligible for all pradtic?arget file. Finally, the entry point to the mazent r y

PUrpOSEs. is a symlink pointing to the highest chain. This is illus-
trated in Figur&}.

3.2 Filesystem Mazes Unix systems impose a limit on the total number of
symlinks that a single filename lookup can traverse, e.g.,

In 2005, Borisov et al. defeated tlié-race techniqué]5]. Linux 2.6 limits this number to 40. This places a limit

They have done so by refuting the (then widely accepteat) the number of chains composing the maze. Still, even

assumption that the probabilityfor an attacker to win a with this limit, a maze can be composed of nearly 80,000

directories which may require loading about 300MB fromf events repeats itself until all the system calls compos-

the disk, just to resolve the associated name. ing the K-race complete, and the attacker has managed to
Importantly, if even one of the corresponding diredool the K-race and open the protected file.

tory entries is not found in-memory, in the filesystem

cache, the process that invoked the system call on belEthancements In order to increase the confidence that

of which the path resolution is performed would be put bme directory entries are not cached by the filesystem

sleep, blocked-waiting for 10. while the name resolution takes place, an attacker can run

in parallel various unrelated 10 intensive activities tei

The Attack We now describe how to trick th& -race ©Outthe cache. A recursive string search in the filesystem

routine (Figur€B) into opening a private inaccessible file. grep -r anystring /usr > /dev/null 2>&1

The routine invokesiccess andopen K+1 times. For

these total of Z+2 invocations, we createi2+2 directo- V&S found to be especially effective in this respect.
riesdirl dir2 di r 2K+2, each containing a new Finally, for completeness, Borisov et al. considered a

maze. We arrange thing such theti t points of odd K-race versgm that r.ahr?dorr]nly flips t?]e qrdelr of thﬁ. Cfd”S
mazes point to some public accessible file, wheeeas to access andopen within the strengthening loop (this is

points of even mazes point to the inaccessible protec?eMal'd and technically sound defense against their maze

file we are about to attack. Finally, we generate a né_WaCk)' They defeated this approach as well, by deduc-

symlink calledact i vedi r to point todi r 1 ing which system call is currently being executed with
The attack is started by invoking taecess_open K- the help of various kernel variables exported through the

race routine with the following filepath as an argument/ proc file-system. For example, in Solaris 9, any pro-
cess can read the current system call number of any other

activedir/sentry/lnk/Ink/.../Ink process front pr oc/ pi d/ psi nf o.

This filepath is then passed along to the init&lcess . p .
call, which forces the<-race routine into the first maze.4 Makmg Ampl|f|cat|on Work

As a result, two things occur . . i)
The maze attack is a generic way to systematically win

1. The kernel updates the atime (access time) of @@CTTOU races. By utilizing complex file names, an
ery symbolic link it traverses during the name resttacker can slowdown the victim application, effectively
olution, so by repeatedly examining the atime afingle-step it, and gain a decisive advantage, which allows
activedir/sentry the attacker can learn thait to defeat the probabilistié&-race approach. In this sec-
the respectivaccess invocation is already in flight. tion we show that this advantage is in faxit inherent.

2. As mentioned earlier, the filepath being resolved (tRefenders need not play by the rules that are dictated by
maze) is big enough to insure that the kernel woutlle attacker. Rather, they can impose new rules that make
have no choice but to fetch some of the relevant di-practically impossible for an attacker to win.
rectory entries from disk; whenever this occurs the The key observation is simple and well known: sys-
K-race routine would be suspended and put to sleégm calls likeopen, stat, chdir, access, chown etc. that
and the attacker would get a chance to run and pofjerate on a specified file name, are in fé¢t) algo-
the atime ofacti vedir/ sentry. rithms, wheren is the number of components composing

the name{ also embodies symlinks that are part of the

Upﬁn nkotlcmghtha';]thf(_e atime hhas tt:een updhated, thke Alime as well as the components of the soft links that must
tacker knows thatthe firsiccess has begun. The attackeg,q o0 rsjvely traversed). And so, in order to resolve-an

therefore switchesict i vedi r to point todi r 2, and
begins polling the atime afli r 2/ sent ry. The initial
access call is not affected by the changedet i vedi r

component name, the associated system call must sequen-
tially iterate throughn inodes. In the case of th&-race

b th read 4th fth h approach this is don& times, so the number of traversed
ecause it has already traversed that part of the path. ;e js actually: - K. The order in which the traver-

Eventually, the 10 operations complete and@iteess | s performed is crucial for the success of the maze at-

finishes successfully. When th€-race calls the S“bse'tack; assuming a file name of the forfif, / f>/ f5 (with

quentopen, the exact same scenario occurs: the kerngl symbolic links along the way) and assumikig= 2
updates the atime afi r 2/ sent ry, the K'-race routine i1is order would be: '

sleeps on IO when loading parts of the respective maze

that are not cached, the attacker consequently resumes and [y fis f2y fan /s fis fos fa

notices the updated atimedif r 2/ sent r y, the attacker

switchesact i vedi r to point todi r 3, and theK-race The general case is illustrated in Figlile 5 (left); due to
routine completes thepen successfully. This sequencehis type of a visualization we call this ordew-oriented

row-oriented traversal column-oriented traversal path ourselves when splitting it into atoms. For our pur-
poses, however, thehop_1st function (as listed in Figure
1)1 R @B) 7 1l | |1l /R)B) 7 - 1la) | @) was all that was needed in this respect. This function
gets a relative path and “chops off” the first component
1) &)) 1) |/)/@) /{7 /[| while returning the remainder to the caller. By repeat-
: : edly invoking this function (using the remainder of the
i=K path from the previous invocation as the input to the cur-
1)) i) 1la) | [70) 7))/ 1) | rentinvocation), we gradually consume the file path in a
column-oriented manner.
Figure 5: The original row-orientedK-race traversal sug- A second difficulty one faces when doing a user-level
gested by Dean and Hu (left) vs. our newly proposed columgath resolution is having to handle atom components that
oriented traversal (right). While Dean and Hu traverse tite e gre in fact symbolic links. To handle this caveat we used
tire path on each access/open invocation, we traverse thie pghe simpleis_symlink function (listed in Figurdd?7) that
compongnt by component, iterating through each specific eﬂf‘ets as input the atom that was just chopped off the prefix
menti times. of the full file path. Note that by applying thstat system
call upon the given atom we make sure that the invoker
The success of th& -race approach relies on the assumijs not forced to go through a maze. If this atom happens
tion that the rows remain identical from round to roundo be a symbolic link, theis_symlink copies the name of
In contrast, the principle underlying the file-maze attatke target file to the memory pointed to by the appropriate
is to maken so big such that the time period between twargument; this would be later processed recursively. How-
“consecutive visits” in the inode associated withwould ever, if the atom is a hard link (read: not a symlink), then
be relatively long; long enough to make it easy to violathe result of thdstat operation (as recorded by the given
the said assumption. stat structure) will be used as a reference point within the
Our approach contends that row-orientated traversalce, when inodes are compared, as described next.
while seemingly dictated by the system call API, is not Having dealt with all the low-level details, we go on to
carved in stone. There is aCtuaIIy no technical difﬁCU'Wonsider how a race would actua”y be conducted when
preventing us from doing a different inode traversal thathard link is finally encountered. Recall that the access
would better suit our needs. Specifically, column-orientggérmissions of a file are more than just the per-inode ac-
traversal is perfectly aligned with our intent to make Hess bits (user/group/all read/write/execute etc.): trey
harder for an adversary to win a race. This approachtfi& conjunction of all the permissions of each and every
illustrated in Figurd® (right). The idea is to resolve girectory component along the path. For example, even if
path one component at a time, atom by atom, such t@atinode indicates it is readable by all, if it nevertheless
on each step we effectively conduct a kind of “short raceasides within a private directory, then obviously no one
or “atom race”, as part of th&™-strengthening doctrine.should be able to access the associated file. Therefore,
This approach provides a clear advantage: an adverssgjore descending into the next directory component, the
no longer has control over the duration of the elapsed tiiagjorithm must verify that the invoker has the appropri-
between consecutive visits At e.g. the traversal order inate permissions. However, since this entails a TOCTTOU
the above example would be: vulnerability, each such check must Bestrengthened.
Figure[® shows how a per-atoii-race is conducted.
ol o T fe o s T Note that the security of our algorithm is reduced to the
Thus, the race is made “fair” again and the respective security ofatom_race (all other functions are completely
ode would most probably be continuously present in tisafe). The information encapsulated by #tat structure
cache throughout th& -race, and almost certainly at leasnhput was placed there by tlie symlink function that has
once during two consecutive iterations (which would Bast been invoked using the very same atom. Thus, it is
enough to defeat an attacker). The next section will shdikely that the inode (that is associated with the atom) is
that even under the theoretical scenario where the attackél in the cache. Further, since the atom is in fact an
is completelyandinstantaneouslgynchronized with the “atom” (one component file) that has just now been veri-
defender, the attacker would have to wait tens to milliofied to be a hard link, it is also likely that the initial call
of years in order to subvert& = 9 column-oriented de- to access and open would operate on the same inode.
fense. However, since there is a chance the attacker has managed
We will now describe our algorithm in a bottom-ugo (1) unlink the previouslystated atom, and to (Qym-
fashion @ll source code included, as an indication of itink it to a maze, strengthening steps are still required. The
simplicity). Doing a column-oriented traversal entails algorithm therefore continues intafé-loop that is almost
price, which is having to handle the parsing of the filielentical to the one suggested by Dean and Hu (Figure 3).

char* chop_1st(char =*path) int is_symink(const char +*atom

{ char target[],
/1 Find the end of the first conponent and struct stat =s,
/1 null-temnate it bool *answer)
char *p = strchr(path,’/"); {

int nb, |=PATH_MAX;
if(p == NULL)

return NULL; DO SYS(Istat(atoms));
*p++ = '\ 0" ;
if(S_ISLNK(s->st_node)) {

/1 Handl e nultiple consecutive occurrences DO SYS(nb = readlink(atomtarget,|));
/1 of '/'. This ensures that the remainder target[nb] = '\0";

/1 of the path is returned in a "relative" *answer = true;

/1 form (w thout preceding sl ashes) }

for(; »p =="/"; ++p) el se {

*answer = fal se;

}
/1 Returning NULL to indicate end of path
return *p ? p : NULL; return O;

} }

Figure 6: All the parsing is encapsulated in the above functidrigure 7: We retrieve the name of the target file in case an atom
which gets a relative path as input, chops of the first compnés a symbolic link. Otherwise, the atom is a hard link in which
and returns the reminder as a relative path. (A null returfuea case we record its inode information in the suppl&adt struc-
indicates the entire path was consumed and so there is notuee for future reference. The return value indicates whethe
minder.) Istat operations succeeded.

All the original operations are still present. The diffecen symlink through thesO stat structureatom_race is
is that now, on each iteration, the algorithm also verifies invoked withnyf i | e ands0 as arguments.

that the atom is still a hard link. This check is necessary irg. After the initialaccess in atom_race, the attacker
order for the defense to recover, if the attacker somehow must switchmyf i | e to be a symlink to the file he
managed to win the first race and to force the algorithm wishes to unlawfully access. (Race #1)

into a maze while doing thaccess andopen operations. 4. After the initial open in atom_race, the attacker
Since thdstating of an atom is an operation thatis notaf- must switch back to its original file. (Race #2)

fected in any way by the target that a symbolic link mights a|| the strengthening rounds can now execute with-
have, our algorithm is not vulnerable in this respect. The gyt any further effort from the attacker.
only other additions we have made are (1) to check that
fstating the initial file we openf@1) yields identical in-
formation to that pointed to bg0, as theK strengthen- We now have everything we need in order to implement
ing rounds utilizesO for the verification checks, and (2) toa column-orientedy-race traversal. Thaccess_open
check that théstated inode matches the initial inode, simprocedure we implement does this in a straightforward
ilarly to the original check with regard to the informatiomnanner, as is shown in Figuk 9. The first chunk of code
that is retrieved bystat. simply makes sure that the traversal is only conducted
Note that the two invocations @O_CMP within the with the help of relative names (that do not start with a
strengthening loop insures that all thistat structures are slash). The second chunk is the traversal per-se. This part
equal 60 = s1 = s2), a check that is needed for the folsimply iterates through the atom components, one com-
lowing reasons. By verifying thatl is equal tos2, we ponentat atime, and takes the necessary action according
know for a fact that théstated and theopened files are to whether the atom is a symbolic link or not. The latter is
one and the same, which means we deterministically fotbe simpler alternative: if the atom is a hard link, a short
an adversary to win a race involving a non-symlink atorafom_race is conducted and the atom is directigened.
on each round. This by itself, however, is not enougHpwever, if the atom is a symbolic link, the algorithm
as we must also make sure thsdt ands2 are equal to calls itself recursively to handle the newly encountered
s0: failing to do so would make th& -loop meaningless, composite path. In both cases, if a valid file descriptor is
allowing an attacker to unlawfully open the file after winreturned, the algorithm is allowed to continue to the next

ning only two races, as follows step afterfchdiring to the current directory component.
This strategy ensures us that there is a high probability
1. The attacker creates a non-symlink filgf i | e. that all relevant inodes reside in the cache during the time

2. After is_symlink determines thatyfi | e is not a in which this is critical: when thé(-race takes place.

int atomrace(const char *atom int access_open_2008(char *fnane)

struct stat *s0) {
{ int fd;
int i, node; char =*suffix, target[PATH MAX];
int fdi, fdz; struct stat s;
struct stat sl , s2; bool is_sym
/1 1- Handl e the case where ’'fnane’
nmode = S | SDI R(s0->st_node) /1 is an absol ute path.
? XK /* directory =/ if(*fname == "/’
: ROK /+* regul ar [DO _SYS(chdir("/"));
do { ++fnane; } while(*xfname == "'/");
if(*fname == '\0") // fnane is rootdir...
/1 1- The initial access/open return open("/", O_RDONLY);
DO_SYS(access(atom node)) }
DO SYS(fdl = open (atom O _RDONLY));
DO_SYS(fstat (fdl , &sl)) /1 2- 'fname’ is now relative
DO_CHK(DO CWP(s0O , &s1)) while(true) {

suffix = chop_1st(fnane);

/1 2- The k strengthening rounds DO _SYS(i s_symink(fnane,target, &s, & s_synm);
for(i=0; i<K; i++) {
DO SYS(fd = (is_sym

DO_SYS(Istat (atom &sil)) ? access_open_2008(target)
DO_CHK(I S I SLNK(sl.st_node)); atom race(fnane, &)));
DO_SYS(access (atom node))
DO SYS(fd2 = open (atom O RDONLY)); if(suffix) {
DO _SYS(fstat (fd2 , &s2)) DO _SYS(fchdir(fd));
DO _SYS(close (fd));

DO_SYS(close (fd2)) fname = suffix;
DO_CHK(DO CWP (sO , &si1)) }
DO_CHK(DO CWP (sO , &s2)) el se

} br eak;

}
return fdi; return fd,
} }

Figure 8: The given atom was jusitated and found to be a Figure 9: A one-component-at-a-time column-oriented traver-
hard link, thus it is unlikely that an attacker would managesét sal preventsaccess_open from being abused and insures a fair
things up such that above would be thrown into a maze. If thitom-race is conducted when necessary. The heart of the func
has nevertheless happened, an additidetdt upon each itera- tion is the “? :” construct that decides whether to recursesov
tion allows the algorithm to recover (compare with Figlite 3) the next component (symlink) or to consume it (hard link).

4.1 Implementation Notes Truncation is problematic as the firgpen would trun-
cate the file regardless of whether the real user has ade-

For brevity, the presented algorithm does not handle seprate permissions to do so; the solution is to access/open
eral minor details that should be addressed in a real ithe file withoutO_TRUNC and, if successful, tétrun-
plementation: cate the resulting descriptor. File creation raises other

First, it lacks a defense mechanism against circuldidependent and well-known) TOCTTOU issues that are
symbolic links. This can be easily incorporated within tHeommonly associated with the problem of creating tem-
procedure shown in Figuf@ 9 in the exact same mannePgsary files [11]; these are outside the scope of this paper.
it is done within the kernel, that is, by counting the num- Additional details that should be handled are (1) set-
ber of traversed symbolic links and aborting the proceduieg errno to EACCES when appropriate, namely, when
if the count violates some predefined threshold. DO_CMP andDO_CHK fail, (2) closing already opened

Second, our algorithm opens a file for reading oniffle descriptors (if exist) upon errors, e.g., wHetat fails
It does not allow the caller to specify other / additiond? Figure, and (3) saving and restoring the working di-
flags to be passed along tipen (such asO_RDWR, rectory before and after the invocation of access/open, to
O_APPEND, etc). There is no technical difficulty pre-undo the effect of usingehdir.
venting us from adding a “flags” parameter that allows The final item raises an important point we wish to
this, as long as we provide special treatment for file trumake explicit: our access/open implementation is inad-
cation O_TRUNC) and forbid file creation@_CREAT). equate for multithreaded applications if some other thread

10

(different than the one performing the access/open) re4n accordance to the column-oriented doctrine, the de-
quires the working directory to remain unchanged, as ttiender is operating on a file which is an atom, namely,
directory is shared by all threads. We note in passiagmposed of only one component that is arbitrarily called
that the relatively new system calpenat (which opens “target”. Upon each iteration, after the operation seqeenc
a filepath relative to a given directory file descripfarl[23]p over, the defender checks whether the attack was suc-
would solve this problem, as it will eliminate the need faressful, and if so increments its losses count to be printed
usingfchdir; openat is proposed for inclusion in the nextat the end of the run. The conditions that are asserted
revision of POSIXI[1B]. at theendof each iteration are identical to those that are
checkedn the flywithin Figurel®, with only one addition:
the defender is made aware beforehand of the inode of the
5 Crafting the Hypothetical Attack private file that the attacker wants to read; obviously, an
attack is successful only if it managed to fool the defender
It should come as no surprise that the rewveess_open into opening this file.
algorithm is completely immune from the maze attack,
as the latter completely lost its timing ability: the attack .
colossally fails to synchronize with the activities of tree d 5.2 Synchronized Attacker

fender, and has no clue about when it would be most b§a now go on to review the attacker’s code, as given in
eficial tounlink/link the targeted file in order to fool theFigureEIJ. Initially, the attacker must make sure that the
defense. Nevertheless, while we believe it is improbabige to pelstated is not a symbolic link. Additionally, since
it is still possible that somebody someday would comge defender is going to compare the inode ofltitated
up with some surprising approach that would allow an gfte to that of theopened file (which is the private file if
tacker to achieve synchronicity once again. Hence, W attacker gets his way), the 'target’ file should point
seek a much stronger result. to the private file at this point. The attacker then waits
To this end, we run an experimentin which the defendgftil the defender is ready fstat. As explained, the at-
is completely “exposed”: any attacker would be able fgcker's interest dictates that the defender would be able t
precisely knowwhich actions are taken by the defendegyccessfullystat the private file, and so the attacker must
andwhen In other words, our experiment fully reinstategjve it enough time to do so. This is also the reason for the
the synchronicity capabilities to potential attackerskenanext 'while’ loop that ends when the defender finishes the
these capabilities orders of magnitude more powerful aRght, or before, depending on the heuristic we have cho-
precise, and measures the probability attackers haveséd to prematurely terminate the busy-waiting: We have
win a single round in light of the new approach; the bigyaluated a wide range Gf1 values (see next section);
ger question being: Do file TOCTTOU races still poseMote that wheri'l = 0, the busy wait period continues
problem in the face of a column-oriented traversal? Anghtil the shared variable changes. But wHen> 0 wait-

if so, to what extent? ing may be shorter, 4&&1 bounds the number of busy-wait
iterations and so the smaller it is, the shorter the wait.
5.1 Exposed Defender After the defendelstats the private file, the real race is

on, as the defender is about to chexcess and so the
To answer this question we have implemented a defend#@acker must arrange things such that 'target’ will pantt
program that provides information regarding its actigtiean appropriate location. Additionally, the attacker aspir
to any interested party through a shared-memory integeslow down the defender by forcing him into a maze, in
variable (instated with the help of SysV IPC facilities)rder to have a better chance of winning future races. The
The code of the defender is listed in Figliré 10. It esseattacker thereforsymlinks the target to a maze. Much
tially does all of the defense-steps that are listed in Figuike with the initial Istat operation, the attacker must now
B, but now each step is executed only after the defendpeculate when thaccess operation is already in flight.
publishes (through the shared integer) the next actionQoce again, it may be advisable to end the busy waiting
be performed. Note that tH2O_SYS macro is redefined before the shared variable changes, and so another timer
to record a system-call failure (instead of returning).sThiimit— 72 —is employed; We allow for two different limits
is done so that the defender process will not terminage. as to maximize the chances of success. The attacker is
But it also means the defender maintains a fixed orderradw hopeful that the defender has been forced into the
operations and thereby simplifies the code of the attackeaze, which would mean he can safely prepare towards
(which is exempt from considering various corner caseff)e nextopen by linking to the private file. But even if
Importantly, an attacker may safely assume that the diee attacker was not successful, this is the correct thing
fender performs the same exact operations in the satmelo in preparation for the defender’s ndstat at the
exact order within each iteration. beginning of the next round.

11

bool sysfail; voi d synchronized_attacker()

#define DO _SYS(syscall) \ {
if((syscall)==-1)\ volatile int tinerl, tiner2;
sysfail = true

unlink("target" ;
link ("private", "target");
voi d exposed_defender(ino_t private)

{ while(true) {
struct stat sl, s2;
int fd; timerl = timer2 = 0;
sl eep(1); // grace period for the attacker /1l must wait for attacker to
/1 Istat private file
while(true) { whi |l e(*shared != LSTAT)
sysfail = fal se;

whi |l e(*shared == LSTAT)
; if(T1 && (++timerl >= T1))
; br eak;

*shar ed=LSTAT ; DO_SYS(|stat ("target"”, &sl
*shar ed=ACCESS ; DO_SYS(access("target"
*shared=OPEN ; DO _SYS(fd=open ("target"
*shar ed=FSTAT ; DO_SYS(fstat (fd

; /1 now we're really racing...
*shared=CLCSE ; DO_SYS(close (fd ;

/1 defender is about to access

o

g

4
NN NN
NN NN

unlink ("target");
/1 The attacker is victorious only if all the sym i nk("naze", "target");
/1 follow ng conditions hold
if((! sysfail) && whi | e(*shared == ACCESS)
(' S_ISLNK(sl.st_node)) && if(T2 && (++tinmer2 >= T2))
(sl.st_ino == s2.st_ino) && br eak;
(sl.st_dev == s2.st_dev) &&
(s2.st_ino == private)) unlink("target");
def ender _| oss++; link ("private", "target");
} }
} }
Figure 10: The defender publicizes the operations about to be perfdorme ~ Figure 11: The attacker achieves syn-
using a shared variable accessible to all. chronicity by polling the shared variable.
6 Experimenta| Results 1 second, 167 minutes, and 28 hours, respectively. We

approximatet andp by running the attack scenario and,
Our goal is to find out whether the column-oriented trave#pon termination, outputting (1) the duration of the attack
sal technique is effective against the above hypotheti€d) the number of rounds conducted, and (3) the number
attack. (If this turns out to be the case, we can be reasghrounds lost. (We setto be the average round duration,
ably sure that our solution would be effective in real-lifandp to be the ratio of rounds-lost to rounds-conducted.)

scenarios where the defender is not exposed.) In order to increase the attackers’ chances to win, we
run the experiments on multiprocessors only. This way,
6.1 Methodology attackers will have processors of their own to continu-

ously and repeatedly attempt to fool the defender. In an
We obtain our goal by quantifying the expected time thaffort to generalize the results, the experiments are con-
a hypothetical attack should run in order to achiewe®n- ducted on older and recent machines, from different ven-
secutive wins. Let this time be denotétl.. If p is the dors, running different operating systems, as follows
probability for an attacker to win one round (iteration)

- , .]) Processor Operating system CPUs Clock Mem
within the exposed defender’s loop, ands the time it ——ssareT Somis 8 7 ISz 7 GB
takes to conduct one round, then Pentium-II Linux 2.4.26 4 550 MHz 1 GB

Power4 AIX 5.3 8 1450 MHz 16 GB
B =t-p* (1) Dual Core AMD Linux 2.6.22 4 2200MHz 8GB
Intel Core 2 Duo Linux 2.6.20 2 2400 MHz 4GB

becausep” is the probability for “success”, and thus,
1/p* is the mean of the geometric random variable thatThe 'maze’ file we use is constructed to be the biggest
counts the number of trials until success is observed fbat is possible on the respective OS, considering the
the first time. For example, if a round takes one milliseaforementioned limits on the size of a filepath and the
ond (¢ = 1ms), and the probability to win a round is 1/1thumber of symbolic links it entails. Like Dean and Hu
(p = 0.1), then By, Bs, By, andBs are 100 millisecond, [IZ] and Borisov et al.[5] before us, we use a local file

12

Solaris 8 Linux 2.4.26 AIX 5.3 Linux 2.6.22 Linux 2.6.20

UltraSparc-11 448 MHz ~ Pentium-Ill 550 MHz Power4 1.450 GHz AMD 2.2 GHz Core Due 2.4 GHz
S 7 7 7 7 7
o 6 6 6 6 6
a0 5 5 5 5 5
>5 4 4 4 4 4
% <} 3 3 3 3 3
© 2 2 2 2 2 A 2
85 1 1 1 1 1
a 0 la 0 0 0 0
123456 123456 123456
number of simultaneous attackers
29" 12000 30 30
8 10000 25 25
23 8000 20 20 {2 A
SF 6000 15 15 &2
o
Z5 4000 10 & 10
@S 2000 5 5
'g <] 0 0 la I
123456
number of simultaneous attackers
0 1000 100 T 100 Ty 100 ey 100 B
cc
O o 1
<3 0 10 ¢ E 10 ¢ E
£2 10 f 10 ¢ j E
Eé 1 £ ' 1k & E 1k £ i E
—5 T . +
£3 04 et 1 : 0.01 Dot 0.1 Losmasndd 0.1 Lot
8 2 o -~ < o S 2 o - S 2 o - S 2 o -
© o [} S o e o e o
o o o o

probability p to win one round [%]

Figure 12:The probabilityp for a synchronized-attacker to win a single round withinlti@p executed by the exposed-defender
(top), the time it takes an exposed-defender to complete a single roundi(e)icand the connection between the two (bottom).

system for our experiments. These are the results ing the same file) on a multiprocessor system, dramati-
next describe; Afterwords, we also describe our additiorally increases the chance of a TOCTTOU attack to pre-
findings from when running the experiments across NF&il [38]. This technique turned out to be rather successful

All the machines we use have a relatively big merIgf_rom the attackers’ perspective) and is therefore explic-

ory (that is, relative to the size of mazes), which as 6{}')/ addressed below.

gued by Borisov et al., works against the attacker (more

inodes can reside in core). However, we had appropgi-2 Results

ate permissions to change the Linux kernel running on the

Pentium-lll machine to one that only utilizes 256MB oRecall that the synchronized attacker has two tunable pa-
the available memory. Other techniques we have expégéimeters —I'1 and7'2 — that place an upper bound on
mented with in an attempt to increase the chances of the two busy-wait loops the attacker must employ. We
attacker to win are to simultaneously run multiple recupave independently set each of these two values to be ei-
sivegrep-s during attacks in accordance to the suggestitirer zero (no upper bound) &t, wherej = 0,1, 2, ..., 20.

by Borisov et al.[[5], to launch attacks from within a hug&his means that we conduct 484 (=?22xperiments
directory that contains tens of thousands of files in accé® any specified number of simultaneous attacker (1-6),
dance to Maziéres and Kaashoek'’s suggesfioh [24], @jounting to a total of 2,904 runs, per machine.

to simultaneously run several exposed-defenders on the

same ”_‘a‘%h_‘”e- We found that none of these techniqy_%ﬁal FS The top of Figurdl2 shows the per-machine
had a significant affect on the results, and therefore We&%bability (expressed as percents) for multiple simulta-

not report them here. neous synchronized attackers to win a single round. This
Conversely, Wei and Pu have recently shown that &-plotted as a function of the number of attackers, such
multaneously running multiple identical attackers (dttacthat each point represents one of the aforementioned 2,904

13

Solaris 8 Linux 2.4.26 AIX 5.3 Linux 2.6.22 Linux 2.6.20
UltraSparc-1l 448 MHz Pentium-I11 550 MHz Power4 1.450 GHz AMD 2.2 GHz Core Due 2.4 GHz
16409 A 16409 T 1e+09 — 1e+09 & * 16409 A gk
16109 | EPren 16109 16109 i 1609 18 & R S B
ae b hiey de EREA Rl e Roaiil e il
~ | | £ 8 8] A
T 10000 10000 000 £2¢ 000 [10000
J 000 | 1000 1000 sii 1000 [& 1000
100 : 100 100 825 100 100
= ;i BEEMIME W ”
— LN
% 0001 [T T N | 0001 [T T N B | 0001 [TR T N B | 0001 [T T N B | 0%1 [R T N |
g 123456 123456 123456 123456 123456
w0 N N
16409 16409 16409 16409 16409
% 1e+og"=9§ 1e+0§""" 1e+ogmg§§§= 10408 24422 10408 REZZ4%
o 16106 | B 1610 e F 2888 16106 & 16106 &
S o 100000 B s 100000 100000 [£-& §-§-8 190000 190000
5 U Hooo g 1000 1000 48838 1000 1000
%) 100 2 100 100 27528 100 100
@ 10 10 10 k523 0 0
2 1 1 1 1 1
8 0001 1 1 1 1 1 1 0001 1 1 1 1 1 1 0001 1 1 1 1 1 1 0001 1 1 1 1 1 1 0001 1 1 1 1 1 1
e 123456 123456 123456 123456 123456
=
€ 1409 4 1e+09 1e+09 1e+09 1e+09
5 ler0g 8225 tes08 [T 1e+08 [FER les08 [T A te+08 F4 1A
o fes07 g 16407 fes07 R fe:07 16407
e+ -+ e+
E , 100000 | 100000 100000 . h 100000 100000
= @ 10000 g 10000 10000 [--4-8.2.8.1 10000 10000
J o000 1000 1000 A 1000 1000
1 1 100 100 100
" : s i i
000:11 1 1 1 1 1 1 000:11 1 1 1 1 1 1 000:11 1 1 1 1 1 1 000:1‘ 1 1 1 1 1 1 000:1‘ 1 1 1 1 1 1
123456 123456 123456 123456 123456

number of simultaneous attackers

Figure 13: The expected runtime of an exposed-defender loop &ntibnsecutive rounds are won by the attacke){ for k
values of 7 (top), 8 (middle), and 9 (bottom).

per-machine runs. Evidently, the probability can be quite Figure[IB assigns theandp values of each of our ex-
high, culminating at nearly 6% on Sparc/Solaris (witheriments into Equatidd 1 in order to finally compuig,
three attackers) and on Power4/AlIX (with two). Indeedamely, the expected number of years an attack should ex-
engaging more than one attacker appears beneficiale@ite untilk consecutive rounds are won, for three differ-
least for these two machines. entk values. When using = 7 (the value recommended

The probabilityp to win a round is only one of two by Dean and HulT12]) we see that a successful attack is
factors that determine the expected tifig until a suc- Ppotentially possible after a bit more than a month, in the
cessful attack, as shown in Equatidn 1; The other fac&ise of Power4/AIX. Increasing to be 8 and 9 raises
is the timet it takes to complete the round, such that tH8e minimal expected duration to be more than 2.5 and 53
biggert is, the longer it would take to accomplish a sud:ears, respectively, making the latter a safer choice in the
cessful attack. The middle of Figutgl12 plots the valu&ce of our theoretical attack.
of ¢t and shows that they too can be rather high with top
values typically at tens of milliseconds, and outragequsiFS Dean and Hu constrained théif-race evaluation
a few seconds in the case of Sparc/Solaris. to a local filesystem, saying that they did

Importantly, the time to complete a round and the prob-,
ability to win it are far from being independent variables. NES and observed substantial numbers of SUCCESSes.

In fact, as shown at the bottom of Figurd 12, there is @We chose not to continue these experiments, however,

distinct linear connection between the two, which means, .

) . : ecause NFS-accessed files are usually not the most
the bigger the probability to win the round, the longer securitv-critical. root privileges tvpically don't ex-
the round takes. Indeed, this makes perfect sense, as the Y ! P ges typically

. L . tend across NFS, the data displayed enormous vari-
prime objective of an attacker is to slow down the de- ance depending on network and fileserver logiiZ]
fender by throwing it into a maze. These are the two op-
posing side effects of the attacker’s actions: maximizingBut the set of attack experiments we conducted across
immediately translates to maximizirtgand so whatever NFS reveals that, while individual machines behave dif-
ends up happening, the attacker inevitably contributesféoently, the overall conclusion regarding the valuekof
some extent, to making;, larger. does not dramatically change. The following table com-

run some limited experiments attacking files across

14

500 Overhead Figure[T3 compares the overhead of the new
'S 450 1 access_open to that of Dean and Hu's, as a function of
9 400 the opened file’s number of components. The overhead is
g 350 unsurprisingly linear. Clearly the older version is faster
g 300 due to the fewer system calls it invokes. But we contend
@ 250 that this is tolerable, considering the older solution is un
& 200 safe and that no other portable alternative exists.
(8]
[
o 150
o 100 .
£ =0 7 Generalizing

0

0 1 2 3 4 5 6 7 8 9 10 A Check-Open Utility While the above ideas were
number of components in file name demonstrated through the access/open race, their appli-
cability is broader. The maze attack is a general method
Figure 14:Overheads odiccess_open (AMD / Linux 2.6). to deterministically win TOCTTOU races: given a check-
use pair, if an attacker can manipulate the filename be-
o) _ing checked (or any of its components), the attacker can
pares between minima; values devised when runningijjize a maze to (1) synchronize with and (2) slowdown
the attack on local and a networked filesystems (each §&s gefender, generating the ideal conditions for the lattac
ble entry is the minimal result obtained across the 2,94 ¢|,cceed. Conversely, the Column-orienf§eRace

respective runs; values denote years, and, if bigger thgikr) is a general method to prevent this from happening
1000, are rounded down to the closest power of ten): by executing the check-use pair “atomically”.

Nevertheless, programmers can not be expected to tai-
Platform Local FS NFS | f leaiti heck .
k=8 k=9 k=10| k=8 k=9 k=10 or a CKR for every legitimate check-use scenario. \We
SPARC Solaris8| 5.8 103 105 | 0.3 26 21 therefore aspire to devise a generic utility function that
P-ll Linux2.4|10° 10 10| 01 08 58 cane.g., beaddedto libc. Afirstimmediate step is to con-

8 11 13 . .
POA"x/Ieg‘ L';'EXSZSG 120'35 . 0543 1%%1 10710710 vert ouraccess_open into acheck_open function, by al-
intel Linux2.6| 106 10% 10°| 99 129 103 lowing the caller to pass the check operation as a pointer-

to-function argument (getting an atom hardlink filename

We see that machines can become less or more vuln@fzd returning zero upon success.) This operation would
ble to the hypothetical attack when it is conducted acrogplace the call taccess in Figure[, allowing program-
NFS. The Pentium-lll machine demonstrates the mdgers to pass alongccess, or stat, or any other conceiv-
notable change, being the least susceptible to the attabke filename check operation they may require.
within a local file system (see also Figurd 13) and be-Note that the focus oopen as the 'use’ operation is not
coming the most vulnerable with NFS. Conversely, withs limited as might initially seem: Recall that bindings of
the Power4 machine, it's exactly the opposite, as it trafile descriptors to file objects are immutable and therefore
sitioned from being the most vulnerable to being neardpmpletely immune from TOCTTOU attacks. Thus, once
the least, second to only the AMD machine for which na valid file descriptor is safely opened and returned, the
attacker wins were observed with NFS. programmer can securely use the wealth of system calls
that operate on file descriptors (fchown, fchmod, fchdir,
tat, ftruncate, etc.), rather than their respectivednse
OCTTOU-prone counterparts that operate on file names
fown, chmod, chdir, stat, truncate etc.).

Robustness We note that our evaluation methodolog
does not constitute a proof that the proposed solution’i
robust. Recall, however, that the attack described herd§
purely hypothetical, as defenders are not likely to pub-
lish their actions through shared memory for the sake AfCheck-Use Utility A completely different approach
helping attackers. We therefore argue that it is reasonabteuld be to converaccess_open into a general purpose

to expect that real attackers will not do better. The asheck_use utility. Here is how such an approach might
sumption underlying this rationale is the following: Unwork: Hardness amplification would be removed from the
der the newly purposed access/open idiom, where systeone algorithm and turned into a pluggable policy to be
calls are repeatedly applied to a single-component relssed by programmers at will. The part that remains is a
tive filepath, attackers will be unable to systematicallgt amser-mode path resolution traversal. As before, the algo-
consistently slow down the defender. If this assumptionrishm would consume one component at tinighdiring
true, then our method is robust, even in the face of sldvom component to component, and recursing on sym-
devices and multiple attackers. links. The algorithm wouldleterministicallymake sure

15

it fchdirs to atom hard-links only (never directly to sympotentially being more efficient than the probabilistic ap-

links), by Istating the next atom directorys(), opening proach, which involves a®(K) linear loop per filepath

it, fstating the returned file descriptos), and making component. We are currently in the process of evaluating

sure thes; andss point to the same file object. this alternative (as well as the one mentioned in the fol-
In addition to the filepathgcheck_use would get four lowing paragraph) and expect to publish the results in the

pointer-to-function argumentgdir, Flink = plast - and near future.

Flest The first three are 'check’ operations, respectively

use *

applied to each directory, symlink, and the last Compﬂading Credentials to the Interface
nent in the given filepath, at the time the associated at ess/open race that has a satisfactory probabilistic so-

component is consumed by the path resolution travers ion, the race depicted in Figu® 2b can only be solved

Their input arguments are the atom name and the resRgg e help of a deterministic user-moaecess (as was
tive 'stat’ structure and file descriptor (-1 for symlinks);

hei lue i ndi h h | _(%’ust described), since there is no system-call equivalent
their return value is zero to indicate the path-resolutiQq) . .~oss that a non-setuid program can sdndeed,

may continue, or nonzero to indicate it should fail. Th&efining Fdir and Flast to make use of the user-mode
Flast encapsulates the 'use’ operation, but otherwise chk chk

use ess and return 0 only if user “ann” has adequate per-

the same_lnput a“‘?' output aS_Of the Che‘?" Operat'or?ﬁission, would suffice. Alternatively, instead of requgin
All operations are invoked while the working dlrector)(he ‘check’ predicates to handle these detaiteck_use

of check_gse 1S tlfllat ﬁf the atom Itha(tn|fs clgrrent!y bhe'n%an be augmented to optionally get another parameter —
processed. Finally, the return valuedeckuse is the \\goriq — and fail the path resolution process when an

return value of the last operation that has failed, or thatg[fom that the user is not allowed to open is encountered
Flest if all other operations succeeded. '

use

With this design it is trivial to solve e.g., the race in

Figure[2a. The garbage collector defifé&” and Flest Summary By trading off some performance, we are

to always return OF'in% to always return -1, and’®s! able to devise a simple, yet powerful and expressive, inter-

to unlink the atom file; thus, any symlink that is encourface that enables programmers to intuitively and securely
tered along the way would malobeck_use fail, thereby combine a check-use pair into a single pseudo transaction,
insuring all deleted files are under thenp/ directory, executed atomically for all practical purposes. While the
as required. Importantly, it does not matter whether tg8tire implementation is straightforward portable user-
last (Unlinked) atom is juggled by the attacker (Symmode, we effectively accomplish the vision of Maziéres
link/hardlink to some sensitive file), as in this case trd Kaashoek (Sectiofi_2.2) regarding a new “flexible”
outcome would merely be that some link created by an ftesystem[[24]. Notably, programmers gain explicit con-

tacker is deleted, a fact that does not affect the target fil0l of whether symlinks are followed when a file is
opened, and are able to specify the credentials with which

relevant system calls would operate.
A facility similar to thecheck_use function suggested

In contrast to the

Eliminating the Probabilistic Aspect To reapply the

probabilistic access/open solution under diwck use above, if made a standard library function, would serve

i ; glink
design, one would simply defingj;;" to always return three purposes. First, it will allow programmers and

0, Fyi2" to retum the file descriptor it gets as input, angesi ners to make conscientious decisions regarding the
Fdir and Fl¢st to be (a slightly modified version of) 9 9 9

atom_race from Figure[8. Notice, however, that therr:)emme!1Cy §afet¥ tradeoff, €.g., betV\{eerj !nsecurely open
. : - : ing a file with a singlepen call, or doing it in user-mode,
is actually no technical difficulty preventing us from go- . i
. . - . component by component, while enforcing repeated cre-
ing the extra mile and providing programmers with a li5~ " ©)

. . L ential checks to avoid TOCTTOU races, or maybe mak-
brary function that fully implements a deterministic an

completely safeccess check, in user mode: While thend the effort to develop another alternative. Second, a

.) . s well-designectheck_use facility would encapsulate the
filepath is traversed, the associated 'stat’ structure ofiea . :)
T : } ! execution of vulnerable check-use pairs. When the time
component, which is handed to the 'check’ functions, con- : .
. s . comes and e.g. transactional filesystems (or other rele-
tains the user and group ownership information as well as .-)
e .~ vantimprovements) are made more prevalent, the internal
the user/group/world access permissions. Thus, given.an . . g
. e ar S implementation can be replaced with a more efficient al-
arbitrary user and an atom’s 'stat’ structure (which is aszo

ciated with an already opened file descriptor), we can ernative. Thirdly, the inclusion of eaheck_use routine

e-
terministically decide whether the user has appropriate ac

1N the standard API would serve educational purposes, as
cess permissions. While possibly a tedious task, portaﬁ%w programmers get familiar with the API and through
implementing such a routine is nonetheless straightfor-

ecome aware of the TOCTTOU problem.
ward; as a library function, a single implem_entation would san attacker can choose fink / mi | / ann to / et ¢/ passwd,
be shared by all and may have an additional benefitrather than teymlink. Thus, not following symlinks will not help.

16

Limitations
on already-existing-files only. The TOCTTOU problem
associated with creating new files (notably, when wanting
to create a new temporary file]11]) is still unresolved.

[8]
8 Conclusions

The POSIX APl is broken: Its semantics inherently profg]
mote TOCTTOU races between check-use operations and
make systems vulnerable to malicious attacks. Existi
solutions can help locate these problems, but otherwise
relate to future non-prevalent systems, leaving program-
mers to individually come up with solutions from scratch 1
to numerous variants of what is provably a hard and elu-
sive problem. We suggest to alleviate the situation by pro-
viding programmers with standard generic abstractions
that effectively bind check-use pairs into a single pseudaz]
atomic transaction. We further show that this goal can be
obtained, to a large extent, in a portable manner, in user-
mode, without changing the kernel. [13]

Acknowledgments

We thank the anonymous reviewers for their helpful con[11-4
ments and to Mary Baker, the shepherd of this paper. The
first author would also like to thank Nikita Borisov, Alan
Hu, Ethan Miller, Wietse Venema, and Erez Zadok fgys)
providing valuable and much appreciated feedback on ear-
lier versions of this manuscript.

References [16]

[1] A. Aggarwal and P. Jalote Monitoring the security
health of software systerhsin 17th IEEE Int'l Symp. on
Software Reliability Engineering (ISSRpp. 146-158,
Nov 2006.

K. Ashcraft and D. Engler, Using programmer-written
compiler extensions to catch security hdles IEEE
Symp. on Security and Privacy (S&PB) 143, May 2002.

M. Bishop, Race Conditions, Files, and Security Flaws;
or the Tortoise and the Hare Redukechnical

Report CSE-95-8, University of California at Davis, Sep
1995.

M. Bishop and M. Dilger, ‘Checking for race conditions
in file accessés Computing Systen®(2), pp. 131-152,
Spring 1996.

N. Borisov, R. Johnson, N. Sastry, and D. Wagner,
“Fixing races for fun and profit: how to abuse atimin
14thUSENIX Security Symmpp. 303—314, Jul 2005.

D. Boulet, “UNIX domain sockets URL
http://everything2.com/index.pl?nadé=955968, Oct
2002. (Accessed Sep 2007).

[17]

(2] [18]

(3]
[19]

(4]
[20]

(5]
[21]

(6]
[22]

17

Like the maze-attack, our approach workg7] CERT Coordination Center,CERT Advisory

CA-1993-17 xterm Logging Vulnerability URL
http://www.cert.org/advisories/CA-1993-17.html, Nov
1993. (Accessed Jun 2007).

H. Chen and D. Wagner MOPS: an infrastructure for
examining security properties of softwarén ACM Conf.
on Comput. & Communi. Security (CGPp. 235-244,
Nov 2002.

H. Chen, D. Wagner, and D. DearnSeétuid demystifietd
In 11thUSENIX Security Symgpp. 171-190, Aug 2002.

B. Chess, fmproving computer security using extended
static checking In IEEE Symp. on Security and Privacy
(S&P), p. 160, May 2002.

C. Cowan, S. Beattie, C. Wright, and G. Kroah-Hartman,
“RaceGuard: kernel protection from temporary file race
vulnerabilities. In 10th USENIX Security Symp.

pp. 165-172, Aug 2001.

D. Dean and A. J. Hu,Fixing races for fun and profit:
how to useaccess(2) In 13th USENIX Security Symp.
pp. 195-206, Aug 2004.

D. Engler and K. Ashcraft,RacerX: effective, static
detection of race conditions and deadldcks ACM
Symp. on Operating Syst. Principles (SOSP)

pp. 237-252, Oct 2003.

] D. Engler, B. Chelf, A. Chou, and S. HallenChecking

system rules using system-specific, programmer-written
compiler extensioris In USENIX Symp. on Operating
Syst. Design & Impl. (OSDJp. 1, Oct 2000.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf,
“Bugs as deviant behavior: a general approach to
inferring errors in systems codeln ACM Symp. on
Operating Syst. Principles (SOSBp. 5772, Oct 2001.

B. Goyal, S. Sitaraman, and S. Venkatesahyhified
approach to detect binding based race condition attacks
In Int'l Workshop on Cryptology & Network Security
(CANS) Sep 2003.

A. J. Hu, “On-line publication list. URL
http://lwww.cs.ubc.ca/spider/ajh/pub-list.html. (Assed
Jun 2007).

A. Josey, ‘The Open Group new API set proposaldRL
http://www.opengroup.org/ ...
austin/plato/uploads/40/9756/NARBVerview.txt, Feb
2006. (Accessed Dec 2007).

A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen,
“Detecting past and present intrusions through
vulnerability-specific predicatésin ACM Symp. on
Operating Syst. Principles (SOSPp. 91-104, Oct 2005.

C. Ko and T. Redmond,Noninterference and intrusion
detectiori. In IEEE Symp. on Security and Privacy
(S&P), pp. 177-187, May 2002.

K-S. Lhee and S. J. ChapinDétection of file-based race
conditions. Int'l J. of Information Security (131S¥#(1-2)
Feb 2005.

The access(2) manual, FreeBSDRL
http://www.freebsd.org/cgi/man.cgi?query=access.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

openat(2) — Linux man pag&RL
http://linux.die.net/man/2/openat.

D. Maziéres and F. Kaashoek$écure applications need [39]

flexible operating systerfisin IEEE Workshop on Hot
Topics in Operating Syst. (HOTQS) 56, 1997.

W. S. McPhee, Operating system integrity in OS/V32
IBM Systems Journdl3(3), pp. 230-252, 1974. URL
http://www.research.ibm.com/journal/sj/133/ibmsj3B0pdf.

“National vulnerability database (NVD)URL
http://nvd.nist.gov/. (Accessed Sep 2007).

J. Park, G. Lee, S. Lee, and D-K. KimRPS: an extension
of reference monitor to prevent race-attdcKkea 5th

Advances in Multimedia Information Processing (PCM) [42]

pp. 556-563, 2004. Lect. Notes Comput. Sci. vol. 3331.

C. Pu and J. Wei,A methodical defense against
TOCTTOU attacks: the EDGI approdcHn IEEE Int'l
Symp. on Secure Software Engineering (ISSE&)
2006.

F. Schmuck and J. Wylie Experience with transactions
in QuickSilver. In ACM Symp. on Operating Syst.
Principles (SOSR)pp. 239-253, 1991.

B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu,

G. Morrison, and J. WestModel checking an entire
linux distribution for security violatior’s In Ann.
Comput. Security Applications Conf. (ACSAQ). 13-22,
IEEE, Dec 2005.

T. Sirainen, fdpass.c — File descriptor passing between
processes via UNIX sockétsURL
http://code.softwarefreedom.org/projects/backports/
browser/external/standalone/dovecot/current/srédigass.c,
2002—-2004. (Accessed Dec 2007).

W. R. Stevens and B. Fenn&NIX Network
Programming Volume 1: The Sockets Networking.API
Addison Wesley, 3rd ed., Nov 2003. Section 15.7.

W. R. Stevens, M. Thomas, E. Nordmark, and T. Jinmei,
“RFC 3542 — advanced sockets application program
interface (API) for IPv6. URL
http://lwww.fags.org/rfcs/rfc3542.html, May 2003.
(Accessed Dec 2007).

E. Tsyrklevich and B. Yee,Dynamic detection and
prevention of race conditions in file accessda 12th
USENIX Security Sympp. 243—-256, Aug 2003.

P. Uppuluri, U. Joshi, and A. RayPreventing race
condition attacks on file-systethdn ACM Symp. on
Applied Comput. (SACpp. 346-353, Mar 2005.

“United states computer emergency readiness team
(US-CERT). URL http://www.kb.cert.org/vuls.
(Accessed Sep 2007).

J. Viega, J. Bloch, Y. Kohno, and G. McGrawTS4: A
static vulnerability scanner for C and C++ c6d Ann.
Comput. Security Applications Conf. (ACSAC)

pp. 257-267, IEEE, Dec 2000.

J. Wei and C. Pu,Multiprocessors may reduce system
dependability under file-based race condition attacks

18

[40]

[41]

37thIEEE/IFIP Ann. Int’l Conf. on Dependable Syst. &
Networks (DSN)Jun 2007.

J. Wei and C. Pu,TOCTTOU vulnerabilities in
UNIX-style file systems: an anatomical studyn 4th
USENIX Conf. on File & Storage Technologies (FAST)
pp. 155-167, Dec 2005.

C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok,
“Extending ACID semantics to the file systenACM
Trans. on Storage (TOS)2), p. 4, Jun 2007.

A. C. Yao, “Theory and applications of trapdoor
functions'. In 23rd IEEE Symp. on Foundations of
Computer Sciencgp. 80-91, 1982.

K. Zeilenga, H. Chu, and P. Masarati,
“libraries/libutil/getpeereuid’c OpenLDAP source code
URL http://www.openldap.org/devel/cvsweb.cgi,
2000-2007. (Accessed Dec 2007).

	Introduction
	Motivation
	Classic Examples
	Existing Solutions
	The Problem

	Failure of Hardness Amplification
	The K-Race Technique
	Filesystem Mazes

	Making Amplification Work
	Implementation Notes

	Crafting the Hypothetical Attack
	Exposed Defender
	Synchronized Attacker

	Experimental Results
	Methodology
	Results

	Generalizing
	Conclusions

