Specialized Execution Environments

Maria Butrico, Dilma Da Silva, Orran Krieger:r Michal Ostrowski! Bryan Rosenburg,

Dan Tsafrir, Eric Van Hensbergen, Robert W. Wisniewski, Jimi Xenidis

IBM Research

Virtualization has become popular (again) as a means of

consolidating multiple operating systems (OSes) onto a smaller

set of hardware resources. The roles of OSes in such envi-
ronments have changed. Whereas normally an OS provides
balance between the demands of application and hardware
support, in the world of virtualization it can be beneficial to
split these roles. One OS may support a particular applica-
tion set and use other OSes to interact with physical hard-
ware. The hypervisor, or virtualization layer, provides com-
munication facilities for the inter-OS communication needed
to support such a deployment model.

OSes can now be (1) dedicated to service specific applica-
tions, (2) detached from the underlying hardware, and (3)
releaved from the need to provide the entire legacy support
normally required of a generic OS. A benefit is that the
OS can be saved, restored, and migrated. Further, the OS
can be customized to needs of that particular application
without the need to support legacy interfaces. Conversely
OSes bound to physical hardware for the sake of providing
virtual I/O services do not need to support application envi-
ronments. This split enables deploying the right OS for the
right task. It allows innovation in the kernel because the OS
responsible for providing the application environment is not
required to provide legacy support. Instead a side OS can
be called upon for such non-performance critical functional-
ity. OSes can be updated and maintained independently; an
OS security or bug fix update needed by a particular appli-
cation need not affect OSes that are dedicated to providing
hardware support.

We argue that this separation of responsibilities should be
encouraged and that the next step is not just to deploy of
the right OS for the right task, but also to develop the right
specialized OSes/programs to fulfill these tasks. We envision
specialized programs that replace general purpose OSes in
these roles. Taken a step further, the overall performance
of a system may be improved if these specialized programs
can be made to run in execution environments that are less
complex and demanding than those needed to run general-
purpose multi-tasking OSes. Increased simplicity would also
have positive implications on security and reliability issues.
We envision the existence of a small hypervisor running
a combination of partitions and dedicated programs inside
specialized execution environments (that are something less
than a full OS partition). No single label applies to all parts

of this vision. “Virtualization”, “monolithic kernel”, “micro

fCurrently at VMware.

106

kernel”, and “exo-kernel” all have their places. Our vision is
pragmatic in that it permits a system to be a melting pot
of all of these ideas, choosing the right model for each task.
Below we present four examples from our own work that
provide evidence and motivation for deploying specialized
execution environments. While the results from these four
efforts are still evolving, the performance and functionality
advantages we have observed demonstrate the value of such
environments.

High Performance Computing Applications

The original motivation for using specialized execution envi-
ronments for high-performance applications came out of our
work on the DARPA High Productivity Computer Systems
program. During our analysis of HPC workloads, we often
observed that the applications ran significantly faster when
run stand-alone in our simulation environment than when
they were executed on top of an operating system in the
same simulation environment. We reasoned that if we could
“push the operating system out of the way” during execu-
tion, we could increase the performance and reliability for
certain applications. To test our hypothesis, we ran a sparse-
memory benchmark on an extremely thin stand-alone kernel
within a partition on hardware. The stand-alone kernel was
single threaded and used a flat address space, communicat-
ing results over a shared-memory segment to a peer partition
running Linux. As reported in [6], the overhead of virtualiza-
tion results in better run times for Linux at small workload
sizes, but as the size of the workload grows, the stand-alone
application kernel demonstrates an increasing performance
advantage for the same operations. The use of specialized
execution environments to control OS-related performance
perturbation has dramatically improved performance, as re-
ported in [5].

Commercial Workloads

Many applications have components that do not require
the full-fledged support provided by general-purpose oper-
ating systems. By offloading the execution of performance-
critical components onto specialized execution environments
we may find opportunities to accelerate applications and
simplify system management. Acceleration is enabled by
tailoring operating system services to match application-
specific characteristics, exploring performance optimization
opportunities that are not present with general-purpose ser-
vice implementations. Management simplification arises from
the ability to exploit additional hardware resources without
incurring the costs of managing additional general-purpose



operating system images.

Many middleware applications and environments provide
duplicate implementations of operating system services. For
instance, Java Virtual Machines provide their own imple-
mentations of scheduling, networking, and memory man-
agement. Databases often include their own storage and
network ”drivers” as well as their own authentication facil-
ities and file systems. Specialized execution environments
can be used to avoid duplicated functionality in the system
software stack, allowing application code to run at a level
much closer to the underlying hardware.

We demonstrated the suitability of this software structuring
approach in achieving performance and management advan-
tages by implementing a specialized execution environment,
called J9/Libra, to run Java-only (non-JNI) applications on
a cluster of blades [1]. The J9/Libra execution environ-
ment offers the JVM the mechanisms it needs to enforce its
own resource management policies, eliminating issues such
as JVM safe-point scheduling and double virtualization (ad-
dress translation done first by hardware and software, and
then by JVM read/write barriers). We also specialized the
execution environment to meet the requirements of our tar-
get application, the Nutch open-source search engine [3].
With our initial J9/Libra prototype the performance of the
Nutch query server is 30% better than the same codebase
running on a Linux 2.6.17 Xen environment. The recent
product announcement from BEA [4] is further evidence of
ongoing work on pursuing JVM optimizations by taking the
operating system out of the picture. Recently the Libra ex-
ecution environment has been ported to x86 and extended
to support C/C++/glibc environments.

Driver Partitions

When one considers virtualized environments based on the
IBM Power Hypervisoror Xen [2], each piece of I/O hard-
ware is assigned to a single OS (unless the hardware itself is
self-virtualizing). Such OSes may then be tasked with pro-
viding virtual I/O services to other OSes that do not have
physical device access using communication services facili-
tated by the hypervisor.

A device driver in a general-purpose OS (e.g. Linux) must
gracefully co-exist with a multitude of competing OS ser-
vices. Supporting such generality requires that the OS be
structured to allow for preemption, multi-threading, and
scheduling priorities, all of which represent overhead code
that is not actually necessary to run the intended services.

On the other hand, the functionality inherent in device drivers
and virtual device services does not depend on a full OS en-
vironment. The role of such code is to relay and transform
requests and completions between a virtual-device service
and a device driver. Simplistically, one could implement
such a service using a single, non-preemptible thread that
polls (and potentially blocks on) an event notification inter-
face and thus can be implemented in an environment that
does not have all of the preemption and MMU management
features required of a general purpose OS. (As demonstrated
by user-space device drivers.)

Writing the code for such dedicated “OS”es or programs does
not necessarily require recreating device drivers. Most de-

107

vice drivers in Linux depend on a relatively small set of in-
terfaces, and our previous work in this space leads us to be-
lieve that it is feasible to re-use Linux device drivers in code
bases other than the Linux kernel proper, without substan-
tial device driver changes [7]. Once we have such dedicated
programs and services, it becomes reasonable for the hyper-
visor to provide a specialized environment to run them. By
limiting the functionality available in a device-support en-
vironment, it becomes possible to take advantage of CPU-
specific features to lessen memory and/or TLB footprints
and lower context switch costs.

Our ongoing investigation in this space (on PowerPC) show
that these two techniques combined can eliminate 70% per-
cent of the CPU overhead that I/O virtualization introduces.

Scalability and Hardware Support

Application software stacks have not been designed to achieve
the level of scalability to be offered by future multicore archi-
tectures. Specialized execution environments can help solve
this problem by using a partition with the exact resources re-
quired for optimal execution of a specific application. These
customizations may not be feasible in a general purpose OS
that must simultaneously support the large-scale application
in question alongside other generic processes. In essence, the
specialized execution environment can be viewed as an ac-
celerator where the cores used to execute the application are
not explicitly known or managed by the originating OS.

Conclusion

This paper presents our vision, as well as some of our experi-
ences and ideas related to virtualization-enabled specialized
execution environments. While the results are still prelimi-
nary, the performance and functionality advantages we have
observed have convinced us of the fundamental value of such
environments. Specialized execution environments provide
an exciting venue for OS research that has long been stifled
by the complexity of introducing any innovation into general
purpose OS stacks. The specialized execution environment
approach also introduces new challenges related to identi-
fying the proper interfaces, communication primitives, and
interactions between independently developed and deployed
special-purpose OSes.

References

[1] G. Ammons et al. Libra: a library operating system for
a jvm in a virtualized execution environment. In VEE
’07: Proceedings of the 3rd international conference on
Virtual execution environments, 2007.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield. Xen
and the art of virtualization. In Proceedings of the
Symposium on Operating System Principles, Bolton
Landing, New York, U.S.A., 2003.

M. Cafarella and D. Cutting. Building Nutch: Open
source search. Queue, 2(2):54-61, 2004.

G. Clarke. BEA adopts virtual strategy with VMware.
The Register, December 2006.

E. V. Hensbergen. The effect of virtualization on OS
interference. In Proceedings of the 1st Annual Workshop
on Operating System Interference in High Performance
Applications, August 2005.

E. V. Hensbergen. Partitioned reliable operating
system environment. Operating Systems Review, 40(2),
April 2006.

O. Krieger et al. K42: Building a complete operating
system. In Proceedings of EuroSys’2006, pages 133—145.
ACM SIGOPS, April 2006.

(2]





