
Using Disk Add-Ons
to Withstand Simultaneous Disk Failures with Fewer Replicas

Eitan Rosenfeld Nadav Amit Dan Tsafrir
Technion – Israel Institute of Technology

Abstract
Contemporary storage systems that utilize replication

often maintain more than two replicas of each data item,
reducing the risk of permanent data loss due to simulta-
neous disk failures. The price of the additional copies is
smaller usable storage space, increased network traffic,
and higher power consumption. We propose to alleviate
this problem with SIMFAIL, a storage system that main-
tains only two replicas and utilizes per-disk “add-ons”,
which are simple hardware devices equipped with rela-
tively small memory that proxy disk I/O traffic. SIM-
FAIL can significantly reduce the risk of data loss due to
temporally adjacent disk failures by quickly copying at-
risk data from disks to their add-ons. SIMFAIL can fur-
ther eliminate the risk entirely by maintaining local par-
ity information of disks on their add-ons (such that each
add-on holds the parity of its own disk’s data chunks).
We postulate that SIMFAIL may open the door for cloud
providers to reduce the number of data replicas they use
from three to two.

1 The Price of Faster Recovery
Storage systems often employ data replication to defend
against disk failures. The data is partitioned into small
contiguous units, and each unit is stored on more than
one disk. If one replica happens to reside on a failing
disk, the system can utilize another replica to recover.

A key parameter of replicating systems is the number
of copies to maintain for each data unit. This parameter
reflects a tradeoff between safety and efficiency. Storing
fewer replicas increases the risk of simultaneously losing
all the copies of a data unit due to several temporally ad-
jacent disk failures. Conversely, storing additional repli-
cas has the following drawbacks: (1) it reduces the ef-
fective storage size, as k replicas translate to 1/k usable
space; (2) it induces higher network traffic, as more disks
have to be synchronized upon data changes; and (3) it
translates to greater energy consumption, because write
operations induce additional disk/network activity, and
because systems must utilize a higher number of disks to
attain the same effective storage space.

In practice, maintaining only two replicas for each
data unit might not be enough: (1) because disk fail-
ures exhibit temporal correlation, so if one disk fails,
there is a higher chance a second disk will soon fail

too [22]; (2) because there is a nonnegligible probability
to encounter bad disk sectors while reading the surviving
replicas during the recovery [18]; and (3) due to the man-
ner by which contemporary replicating systems recover
from disk failures, which further increases the risk, as
discussed next.

Reconstructing a failing disk by copying all its data
from replicas to a new disk takes a long time. For exam-
ple, assuming a typical disk throughput of 50 MB/s, re-
constructing a 2 TB disk would take more than 11 hours.
During this interval, the system is vulnerable to addi-
tional failures that might cause data loss. Contemporary
systems therefore employ a different recovery scheme,
whereby, instead of reconstructing a new disk, they repli-
cate the vulnerable data across all the remaining disks
in a distributed manner. The scheme strips every disk
across all other disks, thereby allowing many disks to
participate in the recovery by reading/writing a relatively
small portion of the data. This procedure can dramati-
cally reduce the recovery time. For example, by utilizing
a dense network, Microsoft’s new FDS (Flat Datacenter
Storage) is capable of replicating nearly 100 GB in about
50 seconds across a 100 disk system [16].

The price of the much faster recovery time is an in-
creased risk of data loss due to multiple disk failures. The
risk is greater because every disk is striped across every
other disk, which means any two simultaneously failing
disks would have a nonempty intersection that would be
permanently lost. Importantly, the probability to experi-
ence double disk failure when each disk is striped across
all others is proportional to size of the system. Namely,
more disks imply a greater risk. In contrast, more tradi-
tional storage systems arrange disks in, e.g., small sub-
clusters of RAID5 configurations, such that data loss can
occur only if the double disk failure happens in the same
sub-cluster, an event with a much lower probability.

For these reasons, contemporary replicating storage
systems typically choose to sacrifice another sizable por-
tion of their storage capacity and opt to employ three,
rather than two, replicas. Such systems include the
Google File System [10], Windows Azure Storage [1],
Microsoft’s FDS [16], HDFS [2], and OpenStack’s [17]
Swift [24].

1

2 But How Fast is the Recovery Really?
Let us carefully consider the duration of the procedure to
recover from a single disk failure in replicating systems
that stripe each disk in small chunks across many other
disks. This duration is largely determined by two factors:

1. Network Bandwidth – Recovery is made fast be-
cause many pairs of disks simultaneously exchange
relatively small chunks of data in parallel. But si-
multaneous exchanges are possible only if the net-
work is powerful enough to avoid congestion in the
face of the overwhelming surge of communication.

2. Recovery Bandwidth – System designers aspire to
reduce the interference of background recovery ac-
tivity with regular activity to avoid degrading the
performance of foreground workloads. The re-
covery procedure can go unnoticed if it is throt-
tled to consume only a fraction of the available
disk/network bandwidth.

Notably, the aforementioned quick recovery of the
experimental FDS (nearly 100 GB in 50 seconds) was
made possible only: (1) because the recovery procedure
was allowed to consume all available bandwidth, while
no regular application activity was present in the sys-
tem; and (2) because FDS employs a very dense network
comprised of many switches that provides full bisection
bandwidth, allowing all disks in the system to simultane-
ously send or receive their entire bandwidth [16].

Not all systems enjoy such a powerful network, in
which case recovery might be slower, possibly signifi-
cantly. But even as they do enjoy such a network, pro-
duction systems (rather than experimental ones) would
likely allow for a much smaller recovery bandwidth.

Consider, for example, the IBM XIV storage sys-
tem, which maintains two replicas for each data unit and
stripes each disk across all other disks. (XIV utilizes
180 x 3TB SATA disks and enough Infiniband switches
to allow for a full bisection bandwidth, similarly to FDS.)
The XIV book specifies that recovery from one disk fail-
ure can take up to 50 minutes [6], even though the task
could be accomplished in about 11 minutes if utilizing
all the bandwidth.1

Interestingly, this vulnerability window of 50 minutes
(during which the system is exposed to a second disk fail-
ure and hence to permanent data loss) is the main argu-
ment XIV’s industrial competitors use against it [3].

1Because each surviving disk keeps at most 3TB/179 ≈ 16GB of
data from the failing disk. Conservatively assuming a 50 MB/s disk
bandwidth, it takes 2 × 16GB / 50 MB/s ≈ 11 minutes to send and then
receive 16GB between a pair of disks. Note that most I/O operations
are serial because XIV keeps data in chunks of 1MB.

3 Layout of SIMFAIL

We have explained why replicating systems that stripe
each disk across many other disks suffer from a greater
risk of experiencing data loss. We have further explained
why the faster recovery times such systems may theoret-
ically enjoy can in fact be quite longer. Equipped with
these understandings, our goal is to come up with a sys-
tem design that would require only two replicas (as in
XIV) but would eliminate the risk to experience data loss
due to simultaneous disk failures.

Like the systems it models, SIMFAIL strips each disk
on many other disks. But unlike existing systems, SIM-
FAIL does it in a coarse-grained, deterministic man-
ner (namely, data units are of the size of GBs, and no
randomization is involved in their placement on disk).
Specifically, if the system is comprised of N disks of
size S, then we divide each disk to N−1 contiguous data
units of the size S/(N − 1). We call these units super-
chunks. For example, if the system has 101 x 1TB disks,
then each superchunk is of the size 1TB / 100 = 10GB.
We then associate each superchunk on one disk with a
superchunk on another disk, such that every superchunk
is associated with a different disk. This association de-
termines how data is replicated on the disks in SIMFAIL.

Superchunk association changes are rare. Associa-
tions can change only when: (1) disks fail (or are re-
moved from the system for some other reason); when
(2) disks are added to the system (in place of failing
disks, or if we want to increase capacity); or when (3) we
choose to proactively balance load across disks in reso-
lution of superchunks (in case some disks store signifi-
cantly more data than others). Regardless of any associ-
ation changes, throughout its lifetime, SIMFAIL consis-
tently maintains two important invariants:

• 1-mirroring, whereby every superchunk is mirrored
by another superchunk on another disk, and

• 1-sharing, whereby no two disks share more than
one superchunk.

Table 1 gives an example of how superchunks could be
laid out in a 7-disk system, such that the above two in-
variants are satisfied. The superchunks association func-
tion in this case is:

f(i, j) =

{
(i+ 1 , (j + i

2 + 1)%N) , even i

(i− 1 , (j − i−1
2 − 1)%N) , odd i

where j is the index of the disk (column), i is the index
of the superchunk on that disk (row), and N = 7.

Note that SIMFAIL does not impose any constraints re-
garding how storage systems should manage data within
the superchunks. In particular, replicating systems like
GFS, HDFS, FDS, Azure, and Swift set the granularity of

2

D1 D2 D3 D4 D5 D6 D7

S1 1 2 3 4 5 6 7
S2 7 1 2 3 4 5 6
S3 8 9 10 11 12 13 14
S4 13 14 8 9 10 11 12
S5 15 16 17 18 19 20 21
S6 19 20 21 15 16 17 18

Table 1: Example for a superchunk layout that satisfies 1-
sharing and 1-mirroring. Columns are disks. Rows are super-
chunks within disks. Numbers are IDs of superchunks. IDs in
bold correspond to superchunks that mirror disk D1.

Power

Disk

I/
O

C

o
n

tr
o

ll
e
r

SATA/SAS

LSTOR

Drive

Figure 1: LSTOR interposes between a drive and its controller.

their data units to typically be a few MBs [1,2,10,16,24].
They still can and should do that on their own. Combined
with such systems, the SIMFAIL superchunk layout is
merely a meta-structure that determines the placement of
copies. For example, assume the storage system utilizes
1 MB data units (as is the case in XIV). Given such a
unit on some disk, SIMFAIL simply determines the loca-
tion of its replica (and nothing else). The superchunk of
the replica is decided by the aforementioned association,
and the offset of the replica (within its superchunk) is set
to be identical to the offset of the original unit.

4 Fault Tolerance in SIMFAIL

As noted, the goal of SIMFAIL is to mitigate the risk
of experiencing permanent data loss due to temporally
adjacent disk failures, while still employing only two
replicas. SIMFAIL achieves this goal by augmenting the
storage system with disk “add-ons”, which we denote as
LSTORs (that stand for “local storage”).

An LSTOR is a small, simple device that has just
enough computational power to understand the I/O traf-
fic that flows to/from the disk to which it is attached, and
just enough memory to allow it to store one superchunk.
LSTORs interpose the I/O between their disk and its con-
troller, as illustrated in Figure 1. We envision the size of
an LSTOR to be similar to, e.g, a pinkie-sized SATA-to-
USB converter that is sold by Amazon under $10. We
further envision that LSTORs could be made part of disk
drive enclosures. A critical property we require is that
disk failures occur separately from LSTORs failures, such
that LSTORs remain accessible after their disks fail.

In the simpler version of SIMFAIL, denoted
SIMFAILs, LSTORs typically do nothing but ob-
serve the traffic that flows from the I/O controller to
the disk. When SIMFAILs identifies that some disk D
has failed, it labels the replicas of D’s superchunks as
risky superchunks. It then sends a “message” to all the
LSTORs, informing them to copy the risky superchunk
that resides on their disk onto their LSTOR memory;
recall that 1-sharing ensures us that each surviving disk
will hold one risky superchunk at most. (A “message” is
a write of information that allows the LSTOR to identify
that the data was sent to it rather than to its disk.)

Assuming a disk size of 1TB, a superchunk size of
10GB, and a disk bandwidth of 50 MB/s, SIMFAILs can
replicate all the content of D in under 3.5 minutes, if the
recovery bandwidth is not constrained. Once D resides
on the LSTORs, the risk for losing data is eliminated.

The appealing property of SIMFAILs is that it repli-
cates without accessing the network, thereby providing
cost-effective fast recovery capabilities to storage sys-
tems that do not enjoy an expensive, all-powerful net-
work with full bisection bandwidth.

Of course, SIMFAILs is not a full solution, because
the risk still exists for some short period of time, which
can be much longer if recovery bandwidth is constrained.
SIMFAILs further does not provide any defense against
occasional bad sectors that the system might encounter
while recovering using the surviving replicas.

In order to provide a risk-free solution that is immune
to occasional bad sectors, we configure SIMFAIL such
that each LSTOR continuously maintains the parity (xor)
of the superchunks on its corresponding disk (illustrated
in Figure 2). Let us now assume that a double disk fail-
ure has occurred. Seemingly, such a failure means that
we have lost the data residing in the “intersection” of the
two failing disks, as there is no other replica in the system
that holds it. But 1-sharing assures us that the lost inter-
section is comprised of only one superchunk. In addition,
1-mirroring assures us that all the other superchunks of
the failing disks are still available elsewhere. Lastly, the
LSTORs of the two failing disks are still accessible to us,
so we also have the superchunk parity of the failing disks
at our disposal. Consequently, by utilizing the surviving
superchunks and the parity, we can easily reconstruct the
lost superchunk and recover.

For example, suppose D2 and D3 in Figure 2 failed,
then block e is “lost” because both of its replicas are
gone. But e can be recomputed in either of two ways: (1)
L2 ⊕ b1 and (2) L3 ⊕ d0. This flexibility gives SIMFAIL
the ability to avoid hotspots during a reconstruction.

Notice that the full SIMFAIL solution helps in coping
with occasional bad sectors as well. Assume that one
disk D fails and the system is now busy in replicating D’s
risky superchunks so as to restore 1-mirroring. Further

3

LSTORs

Disk

D
0

D
1

D
2

D D
3 4

a a

d b

c

c

e e

b d

cxor(a,d) xor(b,e) xor(d,e)xor(a,b,c)

L L L L0 L1 2 3 4

 {

{Drives

Figure 2: SIMFAIL full solution. Each superchunk appears
twice, no two disks share more than one superchunk, and every
disk’s superchunks are xor-ed in the LSTOR.

assume that, during the replication, SIMFAIL encounters
a bad sector in one of those risky superchunks. SIMFAIL
can then utilize the parity information in the LSTOR to
reconstruct the bad sector.

Moreover, assume that two disks fail and SIMFAIL en-
counters a bad sector while reconstructing their lost in-
tersection superchunk. Since there are two failing disks,
there are two different LSTORs and two different sets of
risky superchunks to use in order to reconstruct the lost
intersection. So if one set does not work due to a bad
sector, SIMFAIL can utilize the other set.

5 Recovery and Load Balance in SIMFAIL

A consequence of all failures is that many chunks are
left unmirrored. It is critical that these risky superchunks
quickly be duplicated onto other disks, because the next
disk failure may require a costly chunk reconstrunction
or result in data loss. We refer to the set of disks tasked
with transferring risky superchunks as senders.

We have two goals when duplicating superchunks in
a recovery: maintain 1-sharing and minimize load im-
balance between disks. 1-sharing must be maintained
throughout a recovery because it ensures that any lost
data in a double disk failure is recoverable using the
LSTOR. Keeping disks load balanced prevents a situa-
tion where some disks may become hotspots after being
on the receiving end of many superchunk transfers. Load
balancing goes hand in hand with ensuring that all trans-
fers happen in parallel in order to quicken the recovery
process. Thus, no disk should be on the receiving end of
more than one superchunk transfer per failure recovery.

Optimally, a recovery will match each sender with a
receiving disk according to the above criteria. We ini-
tially frame the recovery process as a maximum match-
ing problem between sender disks and receiver disks, for
which all senders must be matched with a receiver disk.
There are readily available algorithms that efficiently
provide a solution for maximum matchings [9, 11].

Figure 3 depicts the failure of disk D1, and the graph
in Figure 4 depicts each sender disk (left) with an edge

a

D
0

D
1

D
2

D D
3 4

d b

c

c

e e

b daa

Figure 3: Disk D1 fails in a 5 disk array. To recover, disks D0,
D2, and D4 must duplicate the now risky superchunks that they
shared with D1.

1

D0

D4

D0

D2

D4

D3

D2

1

2

2
2

2

2

Figure 4: Senders (left) have edges to the disks which do not
share a block with the sender (right). Each receiving disk on the
right side may only receive one risky superchunk per recovery.

to each receiving disk that it can be matched with (right),
for now disregarding the numerical value on each edge.

This formulation provides that all senders will be
matched, and no receiver will be matched with more than
one sender. Unfortunately, a basic matching algorithm
might provide a matching such that D0 sends a chunk
to D2, and D2 sends a chunk to D0. Such a match-
ing is unacceptable because D0 and D2 would violate
1-sharing. This example is intended to illustrate that the
assignment is a nontrivial task due to 1-sharing. Another
shortcoming of the current formulation is that it does not
take the load on a disk into account, which means lightly
loaded disks may be neglected in favor of heavily loaded
ones in a matching. Such a recovery is sub-optimal.

We amend the formulation to the one pictured in Fig-
ure 4, where we assign costs to edges according to the
amount of load on disk, and apply a “minimum-cost”
matching algorithm that finds the smallest total cost for
the assignment [14]. In addition, we use a dynamic al-
gorithm which allows us to remove edges (and update
costs) after each assignment. Mills-Tettey et al. pro-
vide a dynamic version of the Hungarian Algorithm that
achieves an optimal matching [15]. Due to space con-
straints, we avoid elaborating on this algorithm further.

5.1 Proactive Load Balance

When there is a load difference greater than two super-
chunks between the heaviest and lightest loaded disks,
the system can be load balanced. Superchunks can be
transferred from heavier disks to lighter disks, provided

4

that 1-sharing and 1-mirroring are maintained. result of
the transfer.

1-sharing is at risk of being violated when a heavily
loaded disk has a superchunk which is mirrored on a disk
that the lighter disk already shares with. Transferring
such a superchunk to the lighter disk results in the lighter
disk sharing two superchunks with another disk in the
system. Fortunately, such a transfer is avoidable because
the heavier disk has at least 2 more superchunks than the
lighter disk; thus there are at least 2 superchunks which
do not violate 1-sharing upon transfer. The final restric-
tion is that if the heavier disk mirrors one of the lighter
disk’s superchunks, the heavier disk must not send the
shared superchunk. Otherwise, both copies will reside
on the same disk, violating 1-mirroring. These principles
are directly applied when adding a disk to the system.

5.2 Internal Fragmentation

As data gets erased, unused data regions form within su-
perchunks. If this space is neglected, it impacts the per-
formance of the system in terms of computing XORs and
chunk transferrs, and also reduces the usable storage.

Fragmentation can be reduced by periodic data scrub-
bing and realignment in affected chunks, or maintaining
a table of fragmented data segments that can be written
to during subsequent writes to the system.

6 Trade-offs and Overheads
Performance vs. Safety – Maintaining parity informa-
tion on each LSTOR is costly. Each write to a disk re-
quires reading the old data prior to writing the new data
to keep the LSTOR parity up to date.

We set out to investigate the performance overheads
of adding an additional read before each write, and ran
several tests on a 5400 RPM 1 TB Samsung HD103S1
disk. We also ran a Sysbench test on random reads (9
ms) and writes (22 ms) to sanity-check our test results.

We performed sets of 2000 requests on blocks of 512
bytes to simulate reading a 1 MB file. We found that on
average, each write of a 512 byte block took 18 ms, and
preceding it with a read to the same block added another
6 ms (33% overhead). We made sure to disable any hard-
ware or software optimizations that could minimize the
read overhead by disabling disk caching, read lookahead,
and performing an fdatasync after every write.

The I/O overheads associated with keeping parity up
to date are well-documented as the “small write prob-
lem” [4]. Encouragingly, there is considerable prior
work on solving the small write problem and minimiz-
ing performance degradation due to parity [5,13,21,23].
This work can be applied to how parity data is writ-
ten to LSTORs. Two such examples are delaying par-
ity updates until there is a lull in other contending work-

loads [23] and logging small parity updates until they can
be batched into more efficient large accesses [21].

Replication vs. Erasure Coding – Thus far, this re-
search has only considered replicated storage systems
when evaluating SIMFAIL. However, erasure coding can
provide resilience to more simultaneous failures with
a much smaller storage overhead. For example, the
Reed-Solomon (6,3) erasure code splits a block of data
into 6 uniformly-sized blocks and computes 3 additional
blocks for parity. The original 6 data blocks can be re-
constructed using any 6 of the 9 total blocks. As a result,
Reed-Solomon (6,3) tolerates up to 3 failures while only
incurring a 50% storage overhead [12, 19].

Despite the advantages in storage efficiency and fail-
ure tolerance, erasure codes are not the primary method
of storing newly written data in systems such as Win-
dows Azure and GFS. Both systems replicate data ini-
tially. Windows Azure encodes data only after it is in
a read-only state [1, 12], and GFS specifically mentions
read-only data as a candidate for erasure coding [10].

Avoiding mutable data for erasure codes can miti-
gate costly overheads such as network bandwidth and
computation to maintain updated parity blocks. Fan et
al. discuss the overheads surrounding parity updates for
small writes in DiskReduce, another system which repli-
cates data prior to encoding it [7]. Also, reconstruct-
ing lost blocks may require relocating the requisite data
and parity blocks to the same node. This requirement
can adversely affect the network and reduce storage effi-
ciency [20].

Replicated systems have the added advantage of re-
quiring fewer failure domains when arranging the data
in a manner that prevents data loss from correlated fail-
ures. For example, storing 3 replicas of an object in
different racks or datacenters requires fewer failure do-
mains than distributing the 9 blocks associated with a
Reed-Solomon (6,3) erasure code across the same level
of storage granularity [8]. Indeed, the erasure codes
available in Windows Azure are limited by the number
of failure domains available in the clusters [12].

Additionally, replicating data allows for immediate
hotspot avoidance by directing traffic to a storage node
experiencing less load. In contrast, avoiding a hotspot
in an erasure coded system may first require a resource-
intensive reconstruction [12].

SIMFAIL encompasses advantages from both repli-
cated and erasure coded storage. Hotspot avoidance is
achieved by storing two replicas in different failure do-
mains. The network overhead required to maintain parity
data is eliminated by each LSTOR’s proximity to the disk
for which it is storing parity data. Finally, the LSTOR
enables improved storage efficency versus 3-replication
because it allows SIMFAIL to recover from two simulta-
neous disk failures.

5

Recovery vs. Application I/O – Optimally, a super-
chunk can be written to an LSTOR in the time it takes
to read it from the disk at peak bandwith. However, re-
construction throttling is a common practice during re-
construction because monopolizing disk bandwidth neg-
atively impacts other workloads [26].

Conversely, throttling bandwidth when there are no
competing workloads needlessly extends the vulnerabil-
ity window. Thus, one of our challenges is throttling the
recovery bandwidth no more beyond what is needed to
avoid adversely impacting other disk requests.

Capacity vs. 1-sharing –SIMFAIL’s current design al-
lows each disk to mirror one superchunk from the other
N − 1 disks in the system. However, after a disk fail-
ure each disk will hold an extra superchunk due to still
having N − 1 allocated superchunks, despite only N − 2
other remaining disks in the system.

Disks can instead be split up into N−k chunks, where
k > 1. Such a layout results in the same size disk being
split up into fewer superchunks of greater size. Conse-
quently, for each disk there are at least k − 1 disks that
the disk cannot share a block with. While this is a better
use of disk space, it has the trade-off of requiring more
storage on the LSTOR and larger block transfers during
recovery.

Failure Domains – When an N -disk SIMFAIL array
is split up into N − 1 data blocks, every disk can share
with every other disk in the system. This increases the
chance that multiple failed disks will have overlapping
replicas.

Alternatively, the N−k layout discussed above lowers
the risk that simultaneous failures will result in data loss,
because each disk has no overlap with k − 1 other disks.

We have assumed that LSTORs are accessible after a
disk failure. In reality, LSTORs and their disks are in the
same failure domain, and this is indeed a drawback of
SIMFAIL. Still, the severity of this issue is lessened by
there being two LSTORs, potentially in different failure
domains, which can be used to recover.

Constructing LSTORs– Prototyping the LSTOR re-
mains a major challenge. Each LSTOR will act as a proxy
to and from the disk it is attached to, which means it re-
quires a I/O protocol-aware controller (eg. SATA).

There are trade-offs between the memory options for
the LSTOR. DRAM, though fast, is expensive and is sen-
sitive to fluctuations in power due to its volatility. Flash
memory is cheaper, but deteriorates over time [25].

One alternative to constructing an LSTOR is to repur-
pose a data block on each disk to store parity for a differ-
ent disk, eliminating the need for new hardware. How-
ever, using a second disk adversely affects throughput
because it imposes a burden on the network and requires
an additional disk’s participation for each write request.

7 Conclusions
SIMFAIL is a performant storage solution that offers fast
recovery, tolerates simultaneous failures, and provides
cost savings versus other systems. The introduction of
the LSTOR allows for significantly reduced data transfer
times and communication overheads. We are optimistic
that our design can bring about a paradigm shift in how
failure tolerance is built into data centers. Our continued
research will show the system’s benefits and attempt to
resolve the open issues outlined throughout this paper.

References
[1] B. CALDER ET. AL. Windows Azure Storage: a highly

available cloud storage service with strong consistency. In
ACM Symp. on Operating Syst. Principles (SOSP) (2011),
pp. 143–157.

[2] BORTHAKUR, D. HDFS architecture guide. The Apache
Software Foundation, 2008.

[3] BURKE, B. A. Something you should know (about XIV).
http://thestorageanarchist.typepad.
com/weblog/2008/09/1025-something.
html, Sep 2008. Blog post by Chief Strategy Officer for
the Symmetrix & Virtualization Product Group at EMC
Information Infrastructure Products.

[4] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ,
R. H., AND PATTERSON, D. A. Raid: high-performance,
reliable secondary storage. ACM Comput. Surv. 26, 2
(June 1994), 145–185.

[5] DHOLAKIA, A., ELEFTHERIOU, E., HU, X.-Y., IL-
IADIS, I., MENON, J., AND RAO, K. A new intra-disk
redundancy scheme for high-reliability raid storage sys-
tems in the presence of unrecoverable errors. Trans. Stor-
age 4, 1 (May 2008), 1:1–1:42.

[6] DUFRASNE, B., PARK, I. K., PERILLO, F., SAUT-
TER, H., SOLEWIN, S., AND VATTATHIL, A.
IBM XIV Storage System Gen3 Architecture, Imple-
mentation, and Usage, 5 ed. IBM Redbooks,
Jul 2012. http://www.redbooks.ibm.com/
abstracts/sg247659.html (Accessed: Jan 2013).

[7] FAN, B., TANTISIRIROJ, W., XIAO, L., AND GIBSON,
G. Diskreduce: Raid for data-intensive scalable comput-
ing. In Proceedings of the 4th Annual Workshop on Petas-
cale Data Storage (2009), ACM, pp. 6–10.

[8] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY,
M., TRUONG, V.-A., BARROSO, L., GRIMES, C., AND

QUINLAN, S. Availability in globally distributed storage
systems. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation (2010),
USENIX Association, pp. 1–7.

[9] FORD JR, L., AND FULKERSON, D. Maximal flow
through a network. Canadian Journal of Mathematics 8
(1956), 399–404.

[10] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The
Google file system. In ACM Symp. on Operating Syst.
Principles (SOSP) (2003), pp. 29–43.

6

[11] HOPCROFT, J., AND KARP, R. An nˆ5/2 algorithm for
maximum matchings in bipartite graphs. SIAM Journal
on Computing 2, 4 (1973), 225–231.

[12] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER,
B., GOPALAN, P., LI, J., YEKHANIN, S., ET AL. Era-
sure coding in windows azure storage. In USENIX con-
ference on Annual Technical Conference, USENIX ATC
(2012).

[13] HWANG, K., JIN, H., AND HO, R. Raid-x: A new dis-
tributed disk array for i/o-centric cluster computing. In
Proceedings of the 9th IEEE International Symposium on
High Performance Distributed Computing (Washington,
DC, USA, 2000), HPDC ’00, IEEE Computer Society,
pp. 279–286.

[14] KUHN, H. The hungarian method for the assignment
problem. Naval research logistics quarterly 2, 1-2 (2006),
83–97.

[15] MILLS-TETTY, G. A., STENTZ, A. T., AND DIAS,
M. B. The dynamic hungarian algorithm for the assign-
ment problem with changing costs. Tech. Rep. CMU-RI-
TR-07-27, Robotics Institute, Pittsburgh, PA, July 2007.

[16] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOFMANN,
O., HOWELL, J., AND SUZUE, Y. Flat datacenter stor-
age. In USENIX Symp. on Operating Syst. Design & Im-
plementation (OSDI) (2012), pp. 1–15.

[17] OpenStack open cloud computing software. http://
www.openstack.org. (Accessed: Jan 2013).

[18] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A.
Failure trends in a large disk drive population. In USENIX
Conf. on File & Storage Technologies (FAST) (2007),
pp. 17–28.

[19] REED, I. S., AND SOLOMON, G. Polynomial codes over
certain finite fields. Journal of the Society for Industrial
& Applied Mathematics 8, 2 (1960), 300–304.

[20] RODRIGUES, R., AND LISKOV, B. High availability in
dhts: Erasure coding vs. replication. In Peer-to-Peer Sys-
tems IV. Springer, 2005, pp. 226–239.

[21] SAVAGE, S., AND WILKES, J. Afraid: a frequently re-
dundant array of independent disks. In Proceedings of
the 1996 annual conference on USENIX Annual Techni-
cal Conference (Berkeley, CA, USA, 1996), ATEC ’96,
USENIX Association.

[22] SCHROEDER, B., AND GIBSON, G. A. Disk failures in
the real world: what does an MTTF of 1,000,000 hours
mean to you? In USENIX Conf. on File & Storage Tech-
nologies (FAST) (2007).

[23] STODOLSKY, D., GIBSON, G., AND HOLLAND, M. Par-
ity logging overcoming the small write problem in redun-
dant disk arrays. In Proceedings, the 20th annual Interna-
tional Symposium on Computer Architecture: May 16-19,
1993, San Diego, California (1993), IEEE, p. 64.

[24] Swift 1.7.6-dev documentation – Swift archi-
tectural overview. OpenStack, LLC http:
//docs.openstack.org/developer/swift/
overview_architecture.html. (Accessed: Jan
2013).

[25] THATCHER, J., COUGHLIN, T., HANDY, J., AND

EKKER, N. Nand flash solid state storage for the enter-
prise: An in-depth look at reliability. Solid State Storage
Initiative (SNIA) (2009).

[26] WU, S., JIANG, H., FENG, D., TIAN, L., AND MAO, B.
Workout: I/o workload outsourcing for boosting raid re-
construction performance. In Proccedings of the 7th con-
ference on File and storage technologies (Berkeley, CA,
USA, 2009), FAST ’09, USENIX Association, pp. 239–
252.

7

