Reducing Performance Evaluation Sensitivity and

Variability by

Dan Tsafrir
Dept. Computer Science
The Hebrew University, Jerusalem, Israel
and IBM T. J. Watson Research Center
Yorktown Heights, NY 10598
Email: dants@cs.huji.ac.il

Abstract—Simulations sometimes lead to observed sensitivity
to configuration parameters as well as inconsistent performance
results. The question is then what is the true effect and what is a
coincidental artifact of the evaluation. The shaking methodology
answers this by executing multiple simulations under small
perturbations to the input workload, and calculating the average
performance result; if the effect persists we can be more confident
that it is real, whereas if it disappears it was an artifact. We
present several examples where the sensitivity that appears in
results based on a single evaluation is eliminated or considerably
reduced by the shaking methodology. While our examples come
from evaluations of scheduling algorithms for supercomputers,
we believe the method has wider applicability.

Index Terms—Performance evaluation, Simulation, Workload
trace, Workload perturbations, Variability, Instability, Sensitivity

I. INTRODUCTION

Performance evaluations are routinely done by simulating
how a system would work with a given workload. In the
interest of obtaining reliable and representative results, the
workload is often taken from a trace of events that were
recorded on a real system in production use. The evaluation
results may then be influenced by unique interactions between
the system and the specific trace used.

As an example, consider the following simulation of a
backfilling parallel job scheduler. Backfilling amounts to using
small jobs from the queue of waiting jobs to fill in holes in
the schedule. This requires estimates of job runtimes to be
available. The scheduler in question obtained these estimates
by averaging the runtime of the last £ jobs submitted by the
same user. Simulations using a specific workload trace then
showed that changing the number of jobs k from 12 to 13 led
to a major reduction of 29% in the average bounded slowdown
measured for all jobs in the trace. If this is a real effect, and
13 is indeed the magic number to use, this would be a major
breakthrough. But if it is an artifact of unique conditions that
occurred in this specific simulation, it is a distraction that
should be ignored. In fact it turns out to be an artifact; this
and other examples are detailed in Section VI.

Our solution is to ‘“shake” the input workload: perform
multiple runs with small random variations in the workload,
and calculate the average of the results. For example, we can

Dept. Computer Science

The Hebrew University

Jerusalem 91904, Israel
Email: ouaknine @cs.huji.ac.il

Input Shaking

Dror G. Feitelson
Dept. Computer Science
The Hebrew University
Jerusalem 91904, Israel
Email: feit@cs.huji.ac.il

Keren Ouaknine

cause jobs to arrive a few minutes earlier or later than they do
in the original workload trace. If an effect is real, it should be
robust to such small variations. But if the effect is the result of
a unique coincidence, there is a good chance that the shaking
will change the conditions enough to eliminate the spurious
effect. The shaking is the mechanism that creates multiple
workloads when initially we have only one, thus enabling us to
perform multiple measurements to characterize the distribution
of results, and to calculate an average and confidence interval.
Details of the methodology are described in Sections IV and
V.

Section II elaborates on our motivation, and III discusses
related work.

II. SENSITIVITY OF PERFORMANCE EVALUATION

All our examples are from simulations of the EASY sched-
uler [1], which is currently the most common method for
parallel job scheduling. We found several cases of noisy or
inconsistent performance results, where very small modifica-
tions to the workload or to a system parameter — that were
expected to have little or no effect on the evaluation results
— actually caused a large effect.

For example, in the SDSC workload (see Table I), job
64,241 was estimated to run for 18 hours and ran for 18 hours
and 30 seconds. Running another simulation in which the extra
30 seconds were truncated, which represents a modification of
0.046%, resulted in a change of 8% in the average bounded
slowdown of all the jobs in the trace [2]. Moreover, other
minor modifications caused different changes (e.g. adding 10
seconds resulted in a change of 3.5%). This is obviously an
undesirable sensitivity.

Another example appears in Fig. 1, which shows the average
bounded slowdown of jobs from the CTC workload as a
function of the load on the system (higher loads are achieved
by consistently reducing the interarrival times between jobs).
As in queueing theory, we would expect the curve to be smooth
and continuous, growing asymptotically as we approach satu-
ration. But the actual results show strong irregularities, where
small changes to the load lead to jumps in the average bounded
slowdown. Moreover, applying small random perturbations to
the workload (the arrival times of some jobs are modified by up

80

60

Bounded slowdown

40

20 vv

0
05 055 06 065 07 075 08 08 09 095
Utilization

Fig. 1. Bounded slowdown as a function of utilization, CTC log.

to 5 minutes) changes these irregularities, which now appear
at other loads. Thus the irregularities do not have a real signifi-
cance, and are just artifacts of unique interactions between the
workload and the system. If we were to compare schedulers
based on these evaluations, we could have concluded wrongly
that one scheduler is better than the other, while in actuality,
each single evaluation is simply not representative.

A well-known problem with using workload traces is that a
trace provides only a single data point. It is therefore impos-
sible to say with certainty whether a result is real or bogus.
With workload models, in contradistinction, one can generate
multiple workloads that are statistically identical and observe
the effect of variability on the evaluation results. Shaking
attempts to achieve the same utility with a given workload
trace, by generating multiple closely related workload variants.

It should be emphasized that the purpose of shaking is not to
solve irregularities but to circumvent them. Each case has its
own reasons for why irregularities arise. These can be very
hard to track down [2], and are usually a combination of
unfavorable circumstances. Our purpose is not to resolve them,
but to prevent their influence on the performance evaluation.

III. RELATED WORK

Instability in performance evaluations has not been studied
in depth. Our work is a followup to that of Tsafrir and
Feitelson [2], who traced an instability to workload flurries.

In another study on job scheduling, England et al. [3] ex-
plain that performance evaluations are affected by the presence
of large deviations and that robust systems should withstand
these disturbances and maintain stable performance results.
They present a methodology to measure the robustness of a
system by determining the degradation in performance with
the Kolmogorov-Smirnov test [4] to quantify the maximal
difference between the CDFs with and without perturbations
added to the system.

In a paper by Lawson and Smirni [5], the system adapted
its backfilling parameters to the workload fluctuations. Some
of the presented results seem to exhibit large localized fluctu-
ations, e.g. the measured slowdown for successive weeks on
four workloads (Section 3, Figure 4 of their paper). Thus it

seems that multiple-queue backfilling may also be sensitive to
unique circumstances in the simulation.

Alameldeen and Wood presented the variability of results of
architectural simulations of multi-threaded workloads in [6],
and presented a methodology for reducing the probability of
reaching incorrect conclusions. The methodology is based on
a technique of injecting random perturbations to create a space
of runs and using the mean as the performance result. This is
very similar to our shaking methodology. They also presented
the WCR (Wrong Conclusion Ratio) metric to quantify the
risk of reaching an incorrect conclusion in the comparison of
two different system configurations.

IV. THE SHAKING METHODOLOGY

Shaking consists of performing small perturbations on a
specific parameter of the workload, executing simulations
under these perturbations, and finally calculating the average
of the performance results. In other words, the same simulation
is run repeatedly, but before each run, one characteristic is
modified by a small amount. The results of the multiple
repetitions are then summarized to produce the final outcome.
Fig. 2 shows a flow diagram of the shaking steps.

Workload trace

|

Y

Shaking
Y
Simulation

Y

Performance results
—— | Shake result

Flow diagram of the shaking methodology.

[

Fig. 2.

The cost of applying shaking is a multiplication of the
runtime: if simulations are repeated 100 times, this will take
approximately 100 times more than a single simulation. While
this is a significant increase, it can be done as witnessed by
multiple examples shown in Section VI. Of course if fewer
repetitions are used the cost is reduced.

The main methodological questions are what parameters to
shake, and to what degree. The main consideration is how
much one can modify a workload without changing its nature.
The level of shaking is defined by the amount of perturbation,
the attribute chosen, and the percentage of jobs shaken.

In the context of parallel job scheduling, workloads include
many thousands of jobs, each having (1) an arrival time, (2)
a size (number of processors used), (3) a runtime, and (4) an
estimate of the runtime provided by the user. These attributes
have different properties in terms of their distributions, e.g.
whether they are continuous or discrete. They also have dif-
ferent effects on how the job may interact with the scheduler.
All these are considerations regarding how to shake them.

For example, the arrival time is a function of when users
arrive at work, perform their tasks, take breaks, etc. Therefore,
modifying the arrival time by a few minutes shouldn’t affect
neither the scheduler’s strategies nor the overall results of the
performance evaluation. But user estimates are often short and
come from a restricted repertoire of different values [7], so
changing them by a few minutes may completely change the
behavior of the scheduler.

Once we select the workload attribute to shake, the degree
of perturbation is applied using the following formula:

(1

This increases or decreases the original value with the same
probability. The maximal modification is given by the pertur-
bation value. The random factor assures a uniform distribution.

The degree of shaking denotes the maximal magnitude of
the perturbation performed on the jobs. The shaking becomes
stronger as the degree increases. This can be absolute or
relative. Absolute shaking is performed as is using the degree
that was given as a parameter to the shaking procedure.
Relative shaking, on the other hand, also takes into account
the relationship with the original value:

new_val = orig_val + pert x rand

pert = min{pert, rel_pct x orig_val}

)

Thus relative shaking performs smaller changes than absolute
shaking: we use the minimum between the degree of shaking
given and the relative percentage of the original value to
shake. For example, if shaking the size with a perturbation
of 5 processors and a relative percentage of 10% is applied
to a job using 21 processors, then the applied perturbation is
pert = min{5,10% x 21} = 2.1, which is rounded to 2 (the
size is an integral number of processors). Here, the relative
factor limited the perturbation.

Turning next to the workload attributes, we note that shaking
the arrival time directly may lead to considerable modifica-
tions to the structure of the workload in terms of burstiness
and the sequence of jobs that are submitted. We therefore
prefer to shake the interarrival time, i.e. the time between two
consecutive jobs. Thus, a job’s arrival time is shaken relative
to the time elapsed since the previous job’s arrival time. Given
an arrival time t;, the interarrival time is a; = ¢; — ¢t;—1. This
is modified to a; = a; £ pert, and the new arrival time is set
to t; = ti—1 +aj.

Note that the modified interarrival is applied the original
previous arrival, so as to avoid accumulation of perturbations.
As a result some localized jobs can be interchanged. For
example, in Fig. 3 the modification to the relatively long
interarrival between job 1 and job 2 is enough to change the
order of job 2 and job 3.

Shaking the runtime changes the job duration, thus is
considered a stronger perturbation than interarrival. It may also
change the predictability of the workload, as real workloads
often include repeated executions of the same job [8]. Shaking
the user estimate or job size are considered even stronger, and
therefore less desirable. Modifying the estimated runtime does
not change the actual runtime of the job. However, given that

i 23 il
C
ARRNN

P ‘ ‘ arrival time [sec]

|
arrival time [sec] ‘
12

N
‘ I
gigler_arri\;al:zo selcl 9 inter—arrival=22 sec!

Fig. 3. Example of job interchange as a result of shaking.

estimates tend to be modal (e.g. 5 minutes, 15 minutes, or
2 hours [7]), shaking may actually give the scheduler more
information by making the jobs distinct from each other. This
risks affecting the behavior of the scheduler.

The size attribute is obviously discrete, and shaking it may
affect the workload considerably. For example, given a job
of one processor shaking by +1 will either cancel or double
the job. In most workloads size requests are predominantly
for powers of two, and shaking them will create new values
which may influence the fragmentation. The same applies in
workloads where allocations are node-based, e.g. multiples of
8 processors. For these reasons, shaking size is considered
a strong perturbation, leaving the interarrival time as the
preferred attribute to shake.

The percentage of jobs denotes the fraction of jobs that are
shaken. For example, setting the percentage to 50% means
that half of the jobs in the workload will be shaken. Shaking a
lower percentage of jobs stays closer to the original workload,
but we need to shake enough to get an effect.

V. VARIATION OF PARAMETERS

Shaking has two important numerical parameters: the degree
of shaking, and the percentage of jobs to shake. Setting
these parameters to different values has an effect on the
performance result. The experiments in this section contribute
to our understanding of the impact of shaking, and to our
ability to set ranges of reasonable shaking values.

Fig. 4 shows the pdf of the bounded slowdown metric
when shaking the interarrival attribute by different degrees
for a percentage of 1% and 10%. The X axis units are
bounded slowdown relative to the original result (with no
shaking at all), so the original result always appears at 100.
Each curve represents 100 runs of the same configuration
but with different random seeds. The figure shows that as
the perturbation degree increases, the distributions of results
depart from the original. In general, simulations configured
with small degrees of perturbation did not spread much, and
thus were not effective for avoiding irregularities.

The percentage has a similar effect: when only 1% of the
jobs are shaken, the results remained relatively close to the
original, and the span of results was in the range of 98-105.
When 10% of the jobs were shaken, the range grew to 96—112:
the percentage of jobs shaken increased, and so, more results
spread away from the original evaluation. With 100% of jobs
shaken, the span did not grow, but results spread away from
the original evaluation.

Similar results were obtained for other workloads and
attributes; overall, millions of simulations were performed to

100

degreé:1 p—
80 degree=10 —— ||
£ degree=30 -
£ degree=60
g ®0 degree=300 A
g 40
@
T 20
96 98 100 102 104 106 108 110 112
Bounded Slowdown [% of original]
100 ‘
degree=1 ———
80 degree=10 — ||
3 degree=30
B degree=60
g % / \ degree=300 5
8 40
|
* 20 -

96 98 100 102 104 106 108 110 112
Bounded Slowdown [% of original]

Fig. 4. distribution of bounded slowdown when shaking interarrivals of 1%
(top) or 10% (bottom) of the SDSC jobs (original=93.37).

collect and compare the results. To obtain a better view of how
shaking the parameters impacts the evaluation, we turn to 3D
plots in which we modify both the degree and the percentage.
The degree of shaking for the interarrival time attribute was set
to 1, 10, 30, 60, and 300 seconds. The percentage of jobs was
varied by 1, 3, 10, 30, and 100 percent. The measures adopted
for evaluating the effect of shaking are presented in Fig. 5.
We used three main measures: (1) the span of results, (2) the
distance between the original evaluation and the shaking result,
and (3) the concentration around the original evaluation.

1) The Span: The span is the interval which includes all the
results. However, we use a more restrictive definition of the
interval from the 5th percentile to the 95th percentile, in order
to reduce the sensitivity to outliers. This shows the impact of
shaking on the dispersal of the results. The main importance
of the span is that it characterizes the degree of confidence we

Mean of the results

Histogram

one single evaluation

span 5-95%

Performance metric

Fig. 5. Metrics used to quantify the effect of shaking.

can have in the results. If the span is relatively small despite
aggressive shaking, we know that the results are robust. In
most cases, stronger shaking increases the span. To avoid the
issue of units, we express the span as a deviation from the
original value in percents, as in Fig. 4.

5-95 Span [%]

12
10

oNn kO ®

pert. [sec]

Fig. 6. Span of bounded slowdown when shaking interarrivals, BLUE log.
Fig. 6 shows the effect of shaking on the span. We see that
a minimal percentage of 10% and a degree of 10-30 seconds
are required to get a real impact. Less then that is not effective,
and more perturbation doesn’t make a difference. Similar
measurements for the runtime and estimate attributes required
a minimal percentage of 30% and a degree of 60 seconds to
have an impact on the performance results. By comparing the
results on four different workloads, with different degrees and
percentages, we see that as we perform stronger shaking, the
span of results increases. Importantly, one single result can
be any of the points in the span, and so we need to use the
average of all these points to get a representative result.

Distance Avg-Orig [%]

1.2

o000
[STSENY N

pert. [sec]

Fig. 7. Distance of average wait time from original, shaking interarrivals on
the BLUE log.

2) The Distance: Another way to quantify the influence
of shaking is to measure the distance between the original
evaluation and the average shaken results (again, the units
are percents of the original value). A small distance shows
that the single evaluation was close to the shaken result. Fig.
7 shows that as we perform stronger shaking, the distance
tends to increase. Thus strong perturbations may change
the workload significantly and remove similarities with the

original evaluation. To reach reliable conclusions, one can use
the results based on a combination of the span and the distance.

3) The Concentration: The concentration measures the
deviation of the shaken results from the original evaluation.
The purpose is to observe whether the shaken results were
within +£1% of the original evaluation. If the results are
concentrated, it means that the impact of the shaking results
was minor. However, shaking might still be effective since one
can circumvent the instability with very minor changes, as will
be illustrated in the next section.

0
. 30 : pert. [sec]
jobs [%]

Fig. 8. Concentration of the wait time metric when shaking interarrivals,
SDSC log.

100

0 pert. [sec]

30]

jobs [%]

Fig. 9. Concentration of bounded slowdown when shaking interarrivals,
BLUE log.

Fig. 8 shows the concentration of results when shaking the
interarrival attribute, based on the SDSC log. The figure shows
that, even with the most aggressive shaking, 65% of the results
were in the interval of 99—101%. Thus, most results remain
close to the original evaluation. In Fig. 9, the concentration
decreases to 40%. To resume, strong shaking creates new
evaluation results which are included in the shaking average,
and these are responsible for the change of the outcome. If the
perturbations are too small the overall effect is reduced and
the original result prevails.

The purpose of shaking is to yield reliable performance
evaluations without applying a major change on the workload.
Considering that and the above results, we can suggest a
default minimal configuration for shaking in the context of
parallel job scheduling: a minimal percentage of 10% and

a degree of at least 60 seconds on the interarrival or the
runtime attribute. Specific studies may however require further
adjustments depending on the case parameters to which it is
applied, e.g., the log, the performance metric, etc.

Note that these suggested values are very modest: 90% of
the trace data remains without change, and for those jobs that
do change, the modification is small — up to one minute,
when many interarrival times and runtimes are originally much
longer. We claim that even more aggressive shaking, e.g.
shaking all the jobs by up to 5 or even 15 minutes, is also still
reasonable. However, this is not a formally proven fact, as we
cannot know what is the “correct” result of an evaluation, and
when the workload is changed too much. Rather, the claim is
based on an intuitive understanding of the domain: a parallel
supercomputer typically serves several hundred jobs a day,
these jobs are typically submitted by human users, and it is
therefore reasonable to claim that we want the performance
to be robust to small changes like a specific user submitting
a specific job a couple of minutes earlier or later. We would
not make such a claim for much larger values: if many users
submit their jobs several hours earlier or later, this would
be a change that we would feel uncomfortable with. Indeed,
we tried simulations with such large values, but this led to
questionable results due to bursts of activity that existed in
the original trace but were spread out due to the aggressive
shaking. In other domains, the values would be different. For
example in networking, shaking the arrival times of packets
may be expected to be on the scale of milliseconds rather than
minutes.

VI. SHAKING APPLIED TO SENSITIVE TEST CASES

In this section, we discuss several examples of performance
evaluations, where similar simulations lead to very different
results. All the examples relate to parallel job scheduling, us-
ing logs from the Parallel Workloads Archive (Table I), which
represent real parallel production environments. Specifically,
we present five such evaluations, and study the impact of
shaking on each.

TABLE I
LOGS USED IN OUR EXAMPLES, AVAILABLE FROM [9].

source duration jobs file

CTC SP2 1996-7 79,302 CTC-SP2-1996-2

SDSC SP2 1998-0 73,496 SDSC-SP2-1998-2.1-cln
Blue Horizon 2000-3 250,440 SDSC-BLUE-2000-2.1-cln

A. The Butterfly Effect

The butterfly effect refers to the sensitivity of the outcome
on the initial conditions, especially where tiny variations in a
specific attribute produce large variations in the performance
results. An example is described in [2], where job 64,241
of the SDSC workload was estimated to last 18 hours and
turned out to run for 18 hours and 30 seconds. To correct this,
the job was shortened by 30 seconds in the simulation. This
modification truncated a single job by 0.046%. Surprisingly,

TABLE II
BOUNDED SLOWDOWN WITH AND W/O THE 30-SECOND TRUNCATION.

Original shake Imn shake Smn shake 15mn
w/o trunc. 88.15 86.82 86.99 87.04
with trunc. 81.38 86.62 87.01 86.91
abs diff 8.31% 0.23% 0.02% 0.14%

it resulted in a change of 8.3% in the average bounded
slowdown of all the jobs in the trace (79,302 jobs), which
is an undesirable sensitivity to the initial conditions.

Table II compares the original evaluation with the shaking
result of the performance evaluation with and without the 30
second truncation. The input to these two simulations is nearly
identical: all job arrivals and attributes are the same, except for
a 0.046% difference in the runtime of one job out of 79,302.
The first column of the table shows the 8.3% difference of
the original evaluation (no shaking). The other columns show
results for various relative shaking degrees on the interarrival
time attribute. Even a small degree of one minute on all jobs
removes the instability yielding a 0.2% difference with and
without the truncation.

B. Simultaneous Job Arrivals

When several jobs in the trace have the same arrival time, it
is natural to schedule them in the order that they appear. But
a simulator that inserts arrival events into the first appropriate
location in the event queue will end up reversing this order.
This is an implementation detail that should not have a large
impact on results. But an evaluation on the SDSC log with and
without the reversal of simultaneous jobs led to a surprisingly
high 6.7% performance difference, which casts a shadow
on the whole simulation methodology. Running the same
simulation using the shaking methodology with a degree of 5
minutes (thereby creating different sets of jobs that happen to
have the same arrival times) reduced the difference to 0.47%.

C. Load Variations

The load on the system can be varied by modifying the
interarrival times. Effectively, we linearly increase the arrival
rate of jobs in the system to increase the load. Note that with
this modification we preserve the statistical characteristics of
the arrival pattern in the original trace, except that the same
jobs now arrive faster. As shown in Fig. 1, this leads to
surprising irregularities in the results.

To investigate this more closely, we performed simulations
of all loads in the range [0.5..0.95] with a resolution of 0.001,
and compared the original evaluation with the shaken results.
Fig. 10 shows the bounded slowdown as a function of the
load on the CTC workload. The curve of the single evaluation
is very noisy, and even minute differences of 0.001 in the
load can lead to large changes in the results. The curves of
the shaking results are much smoother and show the expected
trend. Thus all the variations in the original evaluations are
artifacts of using this specific workload trace.

120 —
orig
shaken 60 sec A
100 [|shaken 5min |
c shaken 15 min M
§ 80
g [
S e 1L
g n
[}
s W
=1 40 WA
g Ll
20 i F\‘P%ﬁ.ﬁ
w 'TJ
[
0
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Utilization

Fig. 10. Bounded slowdown as a function of load variation, with and without
shaking, using the absolute version.

D. The Prediction Window

The first sensitivity example in Section I concerned the
prediction of job runtimes by averaging the runtimes of the
last k jobs by the same user [10]. k is called the predication
window. Changing its value from 12 to 13 when simulating the
SDSC workload led to a high peak at size 12, and an abnormal
low at size 13. These variations created a major difference of
29% in the bounded slowdown.

S 9% ‘ .
g 9 AT orig o
= 85 J\ AR 4k \‘_J N P shaken 60 sec
5 g5 Lo LU S A s YA |, A shaken 5 min

@ LT TN N A shaken 15 min

8 75 \ ‘: ‘\\’H ! \V ¥ o U

2 70 ‘M,/“V‘

3 65 3

m 60

1 10 20 30 40 50 60 70 80 90 100
Window size

Fig. 11. Reducing instability by relative shaking for the prediction window

size example.

Fig. 11 extends these results by showing the bounded slow-
down for all values of k& from 1 to 100, and how it is effected
by relative shaking. The shaking curves are much smoother
then the single evaluation curve, and in particular, there is
no real threshold between 12 and 13. The reduced variability
also clearly exposes the trend of degraded performance as the
window size grows to 40.

E. The Estimation Factor

A simple way to study the effect of inaccurate runtime esti-
mates is to assume that a job’s estimate is uniformly distributed
within [R, (f + 1)R], where R is the job’s real runtime, and
f is a “badness” factor (so called because estimates become
increasingly inaccurate as f grows, while f = 0 implies
that the estimates are identical to the runtimes) [11]. A very
surprising result was that, in terms of performance, inaccurate
estimates seemed preferable to accurate ones. However, a
more thorough investigation shows that the result is very
sensitive to the precise value of f used [12]. In Fig. 12 we
see a comparison between the shaken result and the original
evaluation. Without shaking, the performance is noisy and

=
g orig ——
2 = Sl shaken 60 sec
3 b TN - shaken 5mn -
%)) ”1 M‘Wﬂﬁ”‘ T e L"'_‘J shaken 15mn ——
e}
g il
c |
>
R 23
1 10 20 30 40 50 60 70 80 90 100
Badness factor
6700 e orig ———
] shaken 60sec

£ 6500 [fi | . : :udl:lﬂku: shaken 5mn -
= 6300 nfﬂﬁj ["1 shaken 15mn ——
= 6100 bl 4{ [

5900

1 10 20 30 40 50 60 70 80 90 100
Badness factor
Fig. 12. Bounded slowdown (top) and wait time (bottom) as a function of

the badness factor. SDSC log.

unstable. Relative shaking has a smoothing effect for both the
bounded slowdown and the wait time metrics.

VII. CONCLUSIONS

Our first contribution in this paper is to draw attention to the
possible sensitivity of simulations based on a single workload
trace, where circumstances unique to the trace cause large
apparent performance fluctuations as some input parameter or
system configuration parameter is changed.

The second contribution is to propose a methodology
that enables us to verify whether this sensitivity is a really
meaningful effect, or an artifact. The methodology, called
“shaking”, is based on executing multiple simulation runs
each with a small modification to one selected attribute of the
workload. This generates multiple closely related workloads
that serve as multiple equally-valid samples from the workload
space. Averaging the performance results obtained with all the
shaken workloads was found to be much more stable than the
original simulation result.

In order to assess the effect of shaking, we applied the
methodology on four workloads, four job attributes, several
perturbation degrees, and also several different job percent-
ages. It appears that the best attribute to shake is the interarrival
time of a job, for at least 10% of the jobs in the workload
and a minimal perturbation of 1 minute. We applied this and
slightly more extreme configurations to several examples of
unstable evaluations, and found that it significantly improved
the quality of the performance results and allowed the true
system behavior to be identified.

Our experience with multiple examples indicates that rela-
tive shaking is more robust than absolute shaking: it retains
the characteristics of the original workload more closely, and
therefore the results do not depend so much on the specific
degree of shaking used. As a result, it is sufficient to use a
relatively low degree of shaking, e.g. 1 to 5 minutes. Note that
even with shaking, the simulation results are never perfectly
smooth. However, it would be wrong to use more aggressive
shaking to completely smooth out the results, as this risks the
elimination of true effects.

The shaking methodology is easy to understand and easy to
apply, and we hope it will be further used for performance
evaluations of scheduling algorithms, and perhaps in other
domains.

ACKNOWLEDGMENTS

This research was supported in part by the Israel Science
Foundation, grant no. 167/03. Our simulations were run on the
Mosix [13] campus grid at the Hebrew University.

REFERENCES

[1] L. Malinowsky and P. Oster. Scheduling of a parallel workload:
Implementation and use of the Argonne EASY scheduler at PDC. In
Applied Parallel Computing, pp. 309-314. LNCS vol. 1541, Springer-
Verlag, 1998.

[2] D. Tsafrir and D. G. Feitelson. Instability in parallel job scheduling

simulation: The role of workload flurries. In Intl. Parallel & Distributed

Proc. Symp., Apr 2006.

D. England, J. Weissman, and J. Sadagopan. A new metric for robustness

with application to job scheduling. In 14th High-Performance Distrib.

Comput., July 2005.

T. Gonzalez, S. Sahni, and W. R. Franta. An efficient algorithm for

the Kolmogorov-Smirnov and Lilliefors Tests. ACM Trans. Math. Softw.

3(1):60-64, 1977.

[5] B. G. Lawson and E. Smirni. Multiple-queue backfilling scheduling
with priorities and reservations for parallel systems. In Job Scheduling
Strategies for Parallel Processing, pp. 72-87. LNCS vol. 2537, Springer
Verlag, 2002.

[6] A.R. Alameldeen and D. Wood. Variability in architectural simulations
of multi-threaded workloads. In 9th High-Performance Comput. Arch.,
Feb 2003.

[7]1 D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling user runtime
estimates. In Job Scheduling Strategies for Parallel Processing, pp. 1-35.
LNCS vol. 3834, Springer-Verlag, 2005.

[8] D. G. Feitelson. Locality of sampling and diversity in parallel system
workloads. In 21st Intl. Conf. Supercomputing, Jun 2007.

[9] Parallel workloads archive. www.cs.huji.ac.il/labs/parallel/workload.

[10] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling using system-
generated predictions rather than user runtime estimates. IEEE Trans.
Par. Dist. Syst. 18(6), Jun 2007.

[11] D. G. Feitelson and A. Mu’alem Weil. Utilization and predictability in
scheduling the IBM SP2 with backfilling. In 12th Intl. Parallel Processing
Symp., pp. 542-546, Apr 1998.

[12] D. Tsafrir and D. G. Feitelson. The dynamics of backfilling: solving
the mystery of why increased inaccuracy may help. In IEEE Intl. Symp.
Workload Characterization, Oct 2006.

[13] A. Barak, A. Shiloh, and L. Amar. An organizational grid of federated
MOSIX clusters. In 5th IEEE Intl. Symp. Cluster Computing & Grid, pp.
350-357, May 2005.

3

—_

[4

=

