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Abstract

The performance of computer systems depends, among
other things, on the workload. Performance evaluations are
therefore often done using logs of workloads on current pro-
ductions systems, under the assumption that such real work-
loads are representative and reliable; likewise, workload
modeling is typically based on real workloads. We show,
however, that real workloads may also contain anomalies
that make them non-representative and unreliable. This is
a special case of multi-class workloads, where one class is
the “real” workload which we wish to use in the evaluation,
and the other class contaminates the log with “bogus” data.
We provide several examples of this situation, including a
previously unrecognized type of anomaly we call “workload
flurries”: surges of activity with a repetitive nature, caused
by a single user, that dominate the workload for a relatively
short period. Using a workload with such anomalies in ef-
fect emphasizes rare and unique events (e.g. occurring for a
few days out of two years of logged data), and risks optimiz-
ing the design decision for the anomalous workload at the
expense of the normal workload. Thus we claim that such
anomalies should be removed from the workload before it is
used in evaluations, and that ignoring them is actually an
unjustifiable approach.

1. Introduction

The performance of a computer system depends not only
on its design and implementation, but also on the workload
to which it is subjected [9]. Different workloads may lead to
different absolute performance numbers, and in some cases
to different relative ranking of systems or designs. Using rep-
resentative workloads is therefore crucial in order to obtain
reliable performance evaluation results.

The need to use representative workloads for system eval-
uations has long been recognized, and has led to the prac-
tice of monitoring existing systems and characterizing their
workloads for this purpose [11, 1, 6]. If current systems are
available that have a similar functionality to the system be-
ing evaluated, one can assume that the same workloads may
apply. One can then record the workloads on the current sys-
tems, and play back these recordings to drive a simulation of

the new system. Alternatively, the recorded workloads can
be used as the basis for constructing a workload model (e.g.
[13, 8, 16]). This has the benefit of allowing for more flexible
usage, e.g. by modifying model parameters so as to adapt it
to different system configurations.

However, using recorded workloads also has its problems.
Modeling is typically done by collecting workload traces,
and creating a statistical model based on fitting the distri-
butions of workload attributes [14]. But such an approach is
questionable if the data is not stationary. For example, Chi-
ang et al. analyze six non-consecutive months of data from
the NCSA Origin 2000 machine, and find that the workloads
in different months may be quite different from each other
[7]. It is also well known that workloads at different instal-
lations differ, and that workloads evolve with time as users
learn to better use the system [12].

This paper deals with another type of drawback: real
workloads may be multiclass, meaning that they are a mix-
ture of several different types of workload, some of which
are undesirable. In particular, undesirable classes include ab-
normal behaviors that, though they do in fact occur on rare
occasions, are not representative in general.

Previous work on computer workloads has focused on an-
alyzing the workload as a whole, and trying to determine
whether it is stationary and representative. We suggest a
complementary approach in which the data is “cleaned up”
by removing the non-representative or undesirable parts, and
only retaining part of the data for use in the evaluation. This
is not as far fetched as it may sound initially: for example,
removing outliers from data is a common practice in many
statistical analyses.

The following sections present several examples of mul-
ticlass workloads that we have encountered, from systems
spanning large-scale parallel supercomputers to Unix servers
staff at our department. These examples demonstrate the
wide variety of different anomalous behaviors that can ap-
pear in computer workloads. Regrettably, this means that itis
doubtful all such behaviors will ever be recognized automati-
cally. Our work therefore serves mainly to raise awareness to
the issue of workload sanitation. However, we also provide
important tips and observations regarding how to go about
spotting anomalous behavior in newly recorded workloads.



Inferno sessions

session duration
0 1m 5m 1h 10h 4d

nu
m

be
r 

of
 s

es
si

on
s

0

50

100

150

200
417 293

staff
modem
students

Figure 1. The distribution of session durations for different
classes of users. Only staff who have dedicated workstations
generate sessions longer than 10 hours. (Data truncated at
250 sessions; there are more sessions of 0 or 1 hour.)

2. Multiclass Workload Mixtures

Even without errors and abnormal events, it is often nec-
essary to filter the collected data. One example of such a
situation is when the workload is actually composed of mul-
tiple classes of workloads that have been merged together. If
we want to model or use just one of these classes, we need to
filter out the rest.

A common type of multiclass workload is the combination
of prime-time and non-prime-time workloads. Most users are
active during normal work hours: say 9 to 5 on weekdays.
This is when most of the workload is generated. During the
night, on weekends, and on holidays, much less work is sub-
mitted. In fact, it is not only the number of jobs that changes
from prime-time to non-prime time; the characteristics of the
jobs may also be different. For example, in systems that em-
ploy batch queueing systems, it is common to have different
queues active at different times of day [10]. During working
hours, only queues for relatively short jobs are active. Butat
night, queues that allow longer jobs become active. As a re-
sult, many long jobs tend to start execution when the system
shifts to non-prime mode.

The effect of the prime/non-prime dichotomy depends on
our goals. If we are interested in modeling the characteristics
of prime-time load, we should focus on prime-time data, and
filter out data that is generated at other times. Conversely,if
we are interested in non-prime load, the data relating to prime
time should be filtered out. If we want a full workload, we
should include both, and in particular, retain the daily cycle.

As another example, consider the modeling of interactive
user sessions. Data can be collected from a Unix server using
the last command, which lists all user logins and the lengths
of the ensuing sessions. Fig. 1 shows the results of doing so
on a shared server called “inferno” in our department. The
data contains many short and intermediate sessions, and a
few extremely long ones. The longest sessions seem impos-
sible, as they extend for several days. This mystery is solved

by noting that the workload is actually composed of three
classes:

1. Students working from student terminal labs. These ses-
sions are of limited duration because of rules regulating
the sharing of the terminals, and also because students
need to leave the terminals to eat and sleep.

2. People accessing the server via remote dial-up network-
ing. In this case sessions are automatically terminated
if no activity has occurred for a certain amount of time,
again limiting the maximal length of sessions.

3. Staff members working from their offices. As staff have
private terminals that are connected to the server by a
LAN, there is no a-priori limit on the length of sessions
for this class of users.

To summarize, the first two classes logoff immediately when
they complete their work, and are responsible for the bulk of
the data. This is the data that truly characterizes interactive
sessions. The third class, that of university staff, simplyopen
windows to the server on their desktop machines, and leave
them open for days on end. This data is not representative of
interactive work, and should be filtered out.

Incidentally, it may also be the case that this dataset
should be cleaned due to non-representative items. In par-
ticular, the large number of 0-length and 1-hour modem ses-
sions may reflect connection problems and automatic termi-
nation of non-active sessions, respectively, rather than the
real lengths of user sessions. Notably, the interactive student
sessions do not have these modes.

3. System Personnel Activity

Large-scale systems often require continuous support
from the vendors that installed them. In some cases, a vendor
employee is even stationed at the installation site, so as tobe
on hand in case of need. Such employees also perform mon-
itoring tasks and take preventative measures to avert failures
before they happen.

Given the presence of such system staff, the workload ob-
served on the system is actually a mixture of two classes of
workload: work submitted by real users (the systems “pay-
load”), and work submitted by the system personnel as part
of performing their tasks. As noted above, what we do about
this depends on our goals. If we are only interested in user
activity, system staff activity should be filtered out. But if we
are interested in the complete system, then monitoring and
maintenance tasks should be left in, because they are indeed
part of what the system has to do.

However, sometimes system staff generate extraneous
workload that is obviously bogus. One striking example was
reported in the analysis of the workload on the NASA Ames
iPSC/860 hypercube [10]. The histogram of job sizes on that
128-node machine indicated that more than half of the jobs
were serial; moreover, most of the serial jobs were flagged
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Figure 2. Histogram of job sizes from the NASA Ames
iPSC/860, showing abnormally many single-node system
jobs.
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Figure 3. Daily arrival pattern on 5 parallel supercomputers,
showing abnormal spike at 3:30 AM on the SDSC Paragon.

as being run by the system support staff (Fig. 2). This turned
out to be a result of an ad-hoc method used to verify that the
system was operational and responsive by running the Unix
pwd command on a single node. Overall, a full 56.8% of the
trace (24025 jobs) were such check-runs. This type of activ-
ity was not observed on any other parallel system. Thus it is
quite obvious that these jobs should be removed if the trace
is used to analyze parallel workloads or to evaluate parallel
job schedulers.

4. Robot Activity

Another example is shown in Fig. 3. This compares the
daily arrival cycle on 5 different parallel supercomputers. All
display the expected periodic behavior, with load peaking
during work hours and lower loads at night. But the SDSC
Paragon machine has an additional and much higher peak
between 3:30 and 4:00 AM. Upon investigation, it turned out
that a set of 16 jobs with a distinct profile was executed dur-
ing this time slice every day. While specific information is
not available, it is reasonable to assume that these jobs served
some system administration function and were executed au-
tomatically. It is again obvious that they should be removed
when using the log for evaluations, so as to reduce the danger
of optimizing for this abnormal behavior.

Robot activity, defined to be the automatic execution of

programs, also occurs on desktops and departmental servers.
Many enterprise networks use automatic scripts to update the
software on all the machines, typically at night when this
activity will not cause undue interference with user work.
Backups are also often done in this way. A salient feature
of this type of activity is its predictability: the scripts always
run at the same time, and do the same thing.

An extreme example is shown in Fig. 4. This shows
the activity at a departmental server called “pita” during 3
days towards the end of 1998 (the full dataset covers about
2 weeks). Remarkably, this includes two distinct types of
robot activity, which together constitute a large fractionof
the workload. Thus the complete workload actually has three
classes:

1. A set of over 400 jobs submitted automatically by a root
script each morning at 04:15AM. These are all Unix
rm commands, most probably issued by a maintenance
script as noted above.

2. Massive activity by user 1301, starting in the evening
hours of December 22. Upon closer inspection, this was
found to consist of iterations among half a dozen jobs,
totaling about 200, that are submitted every 10 minutes.
In subsequent days, this started each day at 6:40AM,
and continued until 2:50AM the next day.

3. Normal behavior by other users, with its fluctuations
and daily cycle.

A different type of robot activity occurs on the web. Here
the term “robot” refers to software agents that roam the web
and search for specific information. In some cases, this is just
all the information that is available at a site, and it is collected
for indexing purposes. Such robot activity may account for
a large fraction of a site’s activity. But in most cases this
is considered legitimate activity that the site should support,
and therefore it should not be filtered out indiscriminatingly.
Rather, it can be modeled as a separate class of workload, as
we suggest below.

5. Singular Activity (Workload Flurries)

Many of the classes of workload mentioned in the previ-
ous sections have been noted already in the past. In this sec-
tion we introduce a new type of workload pattern which we
believe has not been identified before. We call these patterns
“workload flurries”.

We define a workload flurry to be a pattern of activity with
the following characteristics:

1. It causes a level of activity that is significantly higher
than usual, thus dominating the workload

2. It exists for a limited period of time

3. It significantly changes the distributions of workload at-
tributes

4. It is caused by a single user.
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Figure 4. Arrival pattern to a departmental server showing two distinct robot activities.
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Figure 5. Arrivals per week on six parallel supercomputers, showing flurries of activity due to single users.



We have observed workload flurries in a wide variety of
computer systems. Fig. 5 shows the job load (the number
of jobs submitted) as a function of time, at the granular-
ity of weeks, from six logs of activity on large-scale par-
allel supercomputers available from the Parallel Workloads
Archive [17]. These logs come from different places, dif-
ferent machine types, and different times: the 512-node IBM
SP2 installed at Cornell Theory Center (CTC), the 1024-node
Thinking Machines CM-5 installed at Los Alamos National
Lab (LANL), the DAS2 cluster at Utrecht University, and
three machines from the San Diego Supercomputer Center
(SDSC): the 400-node Intel Paragon, the 128-node IBM SP2,
and the 144-node Blue Horizon machine (also an IBM SP,
but with 8-way SMP nodes). The CTC and DAS logs are
one year long, the Blue Horizon log is2 1

2
years long, and the

other three cover two years each. Together, these logs span
the period from 1995 to 2003.

In all six logs, large flurries are observed. They range in
size from double the average activity to 10 times the average
activity, are caused by a single user, and extend from a few
days to several weeks. The flurries in the CTC log and the
Blue Horizon log seem similar to normal fluctuations, but
nevertheless turn out to have an important effect (at least for
CTC), as shown in Fig. 11.

It should be noted that this dataset includes all the long
logs in the Parallel Workloads Archive. Flurries were not
observed in the shorter logs, including the NASA Ames
iPSC/860 (3 months), the KTH SP2 (11 months), the LLNL
T3D (4 months), and the LANL Origin 2000 Cluster (5
months). Indeed, periods several months long with no flurry
occur also in the logs that do include flurries.

Fig. 6 illustrates the process load on two of the machines,
showing that job flurries do not necessarily correspond to
process flurries (on parallel supercomputers a job can be
composed of dozens of processes). In the Blue Horizon log,
the largest process flurry is even much more distinctive than
any job flurry. In fact, what exactly constitutes a flurry de-
pends on the context in which the question is asked. “High
load” can also be defined in terms of CPU utilization, mem-
ory usage, disk operations, or network bandwidth consumed.
But here we focus only on job and process flurries, for which
data is available, and which can be identified unequivocally.

Flurries are not unique to parallel supercomputers. For
example, we have observed a case where 539,253 of 661,452
jobs (82%) submitted to a departmental server over a 30 hour
period in March 2003 were all invocations of the Unixps
command by the same user. This turned out to be the re-
sult of a bug in implementing an exercise in the operating
systems course1. A large flurry was also observed in the ses-
sion log for March 2004 of a Unix server used by students
(Fig. 7). In this case it turned out to be the result offtp’ing

1Indeed, it is possible that some of the flurries on supercomputers are
also the result of runaway scripts rather than being intentional. However, this
does not detract from the importance of the phenomenon. On the contrary,
situations in which flurries are unintentional add motivation to the need to
identify them before using the workload as representative of normal work.
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Figure 6. Process arrivals per week also display flurries,
which may be different from the job-arrival flurries.
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Figure 7. A flurry in the sessions on a Unix server.
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a large directory structure by a certain student one afternoon;
the implementation automatically opened a new ftp session
for each directory, and this was logged as a distinct user ses-
sion. Obviously, this data does not represent normal user ses-
sions, and would cause misleading results if used as the basis
of a model of interactive user sessions. A third example is
the activity on our authentication server (Fig. 8). In this case
data covering a long period was available, and several distinct
flurries were observed. Two of them consisted of failed au-
thentications. In particular, the flurry attributed to userT was
traced to a bug in Windows, where an authentication failure
led to an infinite loop of retries.

A generalization of flurries is to consider any unique high-
volume event. There are many accounts of such flurry-like
events on the Internet. For example, new releases of soft-
ware by Microsoft have caused the “midnight madness” phe-
nomenon, where users flocking to download the new ver-
sion (typically released at midnight) saturate the network
overwhelming the servers [18]. Other examples include the
surge of activity on CNN’s servers on September 11, 2001.
Ari et al. model such unique activity, which they call “flash
crowds”, with the aim of evaluating schemes to survive them
[2]. This is especially important for sites set up specifi-
cally to cover one-time events, such as the Olympic games
or the World Cup finals [3]. Targeted attacks on specific web
servers, especially denial of service attacks, are also unique
high-volume events. In this case, an analysis of the attack
workload patterns is not only useful for evaluation of servers,
but also as a tool in identifying such attacks [5].

Singular events lead to unique traffic patterns. We claim
that it would be wrong to use workload data including such
singular events to analyze the performance of web servers
under normal conditions, just as it would be wrong to use
normal data for an evaluation of how systems would behave
under unique conditions. Of course, in these particular cases
the unique high-load conditions may be more important and
meaningful than the normal conditions; but the main point,
of distinguishing between two workload classes, remains.

6. The Importance of Workload Sanitation

The examples from the previous sections demonstrate
that many real workloads are actually mixtures of different
classes of workloads. Moreover, in many cases the main di-
chotomy is between just two classes, which may be labeled
as a “normal” workload and an “abnormal” workload. When
we perform workload modeling and system evaluation, we
typically want to use a normal workload — one that is gen-
erally representative of what systems will encounter during
normal usage. But our results show that in practice using
logs from real systems runs the risk of unwittingly using a
mixture of normal and abnormal workloads.

Systems are usually evaluated for one of two reasons: to
guide a purchase decision, or a design decision. In both cases
using the wrong workload means that the decision may be
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optimized for the wrong conditions. This implies that it is im-
perative that multiclass workloads be identified as such, and
that they be sanitized by removing the abnormal workload
component before being used for modeling or in evaluations.

To justify this approach, we now present some examples
of the effect that abnormal data may have. The most obvious
effect is on statistical workload modeling. Such modeling
attempts to generalize from specific workloads by finding in-
variants that are common to workloads from similar settings
[4]. The presence of an abnormal workload class interferes
with this endeavor by modifying the workload statistics. A
couple of examples have been shown already above: the dis-
tribution of job sizes on the NASA Ames iPSC/860 has many
bogus serial jobs due to the actions of system personnel (Fig.
2), and arrivals to the SDSC Paragon have a strange peak at
3:30 AM, probably due to robot activity (Fig. 3).

Additional examples are provided by workloads with flur-
ries. Due to their repetitive nature, these flurries tend to
modify the workload distributions by adding modes. Focus-
ing on the LANL CM-5 interarrival times as an example,
we find that the distribution for the whole log is distinctly
modal, with several values that are extremely common and
each come from a different flurry (Fig. 9). After the flurry-
related data is removed, the underlying distribution can easily
be characterized as lognormal.

The fact that flurries are not only different from the normal
workload but also different from each other leads to severe
non-stationarity. This is demonstrated in Fig. 10. This com-
pares the distributions of four different workload attributes
in the 1995 and 1996 portions of the LANL CM-5 log. For
example, in 1996 the log contained a large flurry of activity
by user 38 as seen in Fig. 5. The flurry consisted of jobs that
were about 10 seconds long, arrived about 12 seconds apart,
ran on 128 nodes, and used either very little memory or about
1.84 MB per node. This accounted for 12,344 (29%) of the
total of 42,702 jobs in this part of the log, and thus had a de-
cisive effect on the distributions of these workload attributes.

For comparison, during 1995 the log contained two other
flurries, by users 31 and 50, which accounted for 71,161
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(58%) of that year’s total of 123,058 jobs. By comparing the
1995 and 1996 distributions in Fig. 10, we see that the work-
load seems to be non-stationary, as the distributions for the
two years are quite different (dashed lines). But if the flur-
ries are removed, we find that in reality the base workloads
are actually quite similar to each other (solid lines). Thusthe
major differences between 1995 and 1996 are actually the re-
sult of flurries introduced by 3 users out of a total population
of 213. Including the flurry data gives the actions of these 3
users significant sway over the results.

Abnormal workload classes do not only affect workload
statistics. They may also have an effect on the results of eval-

uations. For example, simulations of parallel job schedul-
ing can be extremely sensitive to the exact workload condi-
tions. An example is given in Fig. 11, using the CTC work-
load trace. This is a simulation of the performance of EASY
backfilling [15], showing how it depends on the system’s of-
fered load (i.e. the fraction of the machine’s capacity thatis
used). The way to create different offered load conditions is
to multiply the job interarrival times by a constant. For ex-
ample, if the original offered load isρ, multiplying all arrival
times by a factor ofρ/0.8 will change the offered load to
0.8. Naturally, this causes the produced schedule to change,
as the space available for backfilling is changed. As Fig. 11
shows, such changes to the schedule cause large fluctuations
in the performance results as measured by the bounded slow-
down metric. It would be ludicrous to take such effects at
face value, and claim that, say, the expected performance at
a load of 0.77 is much better than at a load of 0.76. In fact,
these fluctuations are caused by an interaction between the
flurry of activity of user 135 and other jobs that appear ear-
lier in the log (for a detailed examination of this interaction,
see [19]). If the 2000-job flurry of activity by user 135 is re-
moved (this is 2.5% of the total of 78,500 jobs in the log) the
result becomes a smooth curve similar to those produced in
queueing analysis.

7. Identifying Abnormal Workload Classes

Our thesis is that when new workload data is collected, it
should be subjected to a test of whether it is actually a mix-



ture of normal and abnormal workloads. If this is indeed the
case, the abnormal workload can then be filtered out, leaving
only the normal workload for use in system evaluations. The
question is how to perform this test and identify abnormal
workloads.

The principle of the “normal workload” test is simple. Ob-
serving the examples given above, it is evident that abnormal
workload classes tend to be unique. For example, in Fig. 3
we saw the daily arrival pattern to 5 different parallel super-
computers. All of them include a daily cycle, with more jobs
arriving during work hours than at night. Only one had an ad-
ditional sharp peak of numerous jobs that arrive at 3:30 AM.
If we look only at this log, we cannot say that this peak is
abnormal. But comparing this log to the other four, we find
that this is indeed the case. Thus searching for abnormalities
is the flip side of searching for invariants [4], which lies at
the base of all workload modeling.

The problem is that there is no a-priori way to anticipate
where abnormalities will show up. The only way to find them
is to investigate the workload at hand from various angles,
and compare it with other workloads and with experience.
This may include one or more of the following actions, which
we have used to find the abnormalities reported in this paper:

• Many workloads are actually a time series, with arrivals
that occur over some span of time. This can be visual-
ized by tabulating arrivals per unit time, as was done in
Figs. 5 and 6. Such a visualization may identify suspi-
cious events of high activity (like flurries) or low activity
(like holidays or down time).

• The same data may be re-drawn as an average per time
unit, based on a known cycle like the daily cycle. This
leads to graphs like those of Fig. 3. Such graphs are
especially useful for identifying repetitive robotic work,
such as scripts that are fired at the same time each day.

• Workloads typically have a relatively small number of
main attributes. For example, parallel jobs have their
size (degree of parallelism, or number of processors
used) and runtime; packets and files have their size (this
time measured in bytes); and user sessions have their
duration. The distributions of such attributes should be
tabulated in the form of a histogram or a CDF, as was
done in Figs. 1 and 2. This can then be used to search
for events that don’t make sense, such as interactive user
sessions that are more than a day long, or a prepon-
derance of parallel jobs that only use a single proces-
sor. Finding such anomalies provides the analyst with a
starting point for further investigation.

A certain difficulty with the approach outlined above is
that it is labor intensive: one has to display the data in various
forms and inspect them for unexpected patterns. The ques-
tion is whether this process can be automated. The answer
is that full automation is probably impossible, as the iden-
tification of abnormalities requires judgment regarding what

should be regarded as normal. However, partial automation
is possible and beneficial.

For example, the identification of the flurries portrayed in
Figs. 5 and 6, and the claim that such flurries do not appear in
some other logs, used an automated analysis that performed
the following steps:

1. Partition the log data into weeks, and count the number
of jobs submitted in each week.

2. Sort the weeks by the level of activity in them, and fo-
cus on the most active weeks (the exact number depends
on the length of the log). These naturally include those
weeks that have abnormally high loads.

3. Tabulate the number of jobs submitted by each user in
each of the high-activity weeks.

4. For each user, find the maximal number of jobs submit-
ted in any of the high-activity weeks.

5. Sort the users according to their maximal activity, and
focus on the 6 to 10 most active users. These are the
users that were the most active in the weeks with ab-
normally high levels of activity, and are therefore good
candidates for having generated flurries.

6. Create data for graphs like Fig. 5: for each week in the
log, output the level of activity of those users who were
the most active users in one of the high-activity weeks.

Another example is the automated identification of out-
lier days suggested by Cirne and Berman [8]. They noticed
that workload logs may contain periods that are highly ab-
normal, and suggested that such periods be deleted. Their
methodology was to partition the log into days, and charac-
terize each day’s workload by a vector of lengthn (specif-
ically, this was applied to modeling the daily arrival cycle,
and the vector contained the coefficients of a polynomial de-
scribing it). The days were then clustered into two clustersin
Rn. If one of the clusters turned out to contain a single day,
that day was deleted, and the process was repeated. Note,
however, that this approach would not catch some of our ex-
amples: both the NASA Ames iPSC system activity and the
SDSC Paragon activity at 3:30 AM span their respective logs,
and are not confined to a single day. Flurries on parallel su-
percomputers are also typically longer than a single day, but
this can be handled by modifying the Cirne and Berman pro-
cedure to also delete short spans of consecutive days.

8. Discussion and Conclusions

Exploratory data analysis is a field of statistics that deals
with exploring new data sets in order to unravel the informa-
tion that they contain. An important part of this is to detect
and remove outliers — observations that lie an abnormal dis-
tance from others in a random sample. While some statistical
tests have been devised for this, they are typically limitedto
cases where the assumed model is simple and well-defined,



e.g. when samples come from a normal distribution. In other
cases, visual techniques such as scatter plots are employed.

A similar situation occurs when using measured computer
workloads for performance evaluation. Such workloads of-
ten contain a mixture of two or more types of workloads,
where one is the “main” workload that reflects normal usage
and conditions, and others are various anomalies and spe-
cial cases. By using the workload as it was recorded the
analyst runs the risk of optimizing the system to these un-
known anomalous workload components, which may never
be repeated. This motivates the need to identify and remove
singular and unrepresentative workload components.

We have found numerous examples of workloads mix-
tures like this, including

• System personnel who created a large volume of bogus
work as a test that the system was functional

• Scripts that are run automatically at night to perform
cleanup and maintenance tasks, and are not representa-
tive of normal user activity

• Flurries of intense activity by individual users that dom-
inate the workload for a limited time (in one case, from
a Unix server, this was identified as a bug)

• Unanticipated mixtures of several workload types, e.g.
data regarding login sessions that included sessions left
open and unused for long periods

Importantly, these examples were not hard to find. In fact,
a large fraction of measured workloads we looked at were
easily found to contain such anomalies. For example, the
two datasets from our department’s Unix servers (inferno
and pita) were originally collected as an exercise in a per-
formance evaluation course, with the goal of showing a sim-
ple example of collecting data regarding a local workload. In
both cases, this example turned out to be much more involved
than intended.

The existence of such workload mixes raises the question
of how to identify them. We have used the methods of ex-
ploratory data analysis: investigate the data from many dif-
ferent angles, with an eye for phenomena that seem extraor-
dinary. Of course, “extraordinary” is subjective, and may
also depend on your experience with similar workloads. It
is therefore desirable to compare the suspect workload with
other similar workloads, or with other segments of the same
workload trace, to verify that the suspect phenomenon indeed
violates the invariants seen elsewhere.

An important question for future work is how to take steps
toward the automation of this process. We have identified
one promising approach, that of tabulating levels of activ-
ity in successive time slices, and focusing on high-activity
slices. Cirne and Berman have proposed a related technique,
in which the descriptions of the workloads in different slices
are clustered, in order to identify those that are unique and
different [8]. However, much more work will be needed to
fully explore the options for automating such analyses. An-
other approach is to search for deviations from an assumed

statistical model of how the workload should look, where the
model is based on previous observations. For example, the
deviations from the lognormal distribution in Fig. 9 could be
detected if the lognormal model was known.

Once abnormal workload components are identified, the
question remains of what to do about it. We have suggested
that the abnormal activity be deleted from the record, a pro-
cess we call “workload sanitation”. This is in line with re-
moving outliers, which is common practice in statistical anal-
ysis, and with the proposal of Cirne and Berman [8]. How-
ever, our approach may be considered as more radical, as it
may involve larger fractions of the recorded workload. For
example, in the LANL CM-5 workload, the three flurries we
have identified amount to 39% of the total jobs that appear in
the log. This raises the question of whether removing such a
large fraction of the workload is ever justified.

We claim that removing anomalies is justified for several
reasons. First, the anomalies we have found are all unique.
For example, we have identified nearly a dozen different flur-
ries in parallel supercomputer workloads, but all of them are
different from each other in terms of the characteristics of
the jobs in them. Thus using the recorded logs as-is amounts
to using workloads with unknown large-scale perturbations.
Removing the anomalous flurries may be expected to lead to
more reliable results, as the remaining workload is closer to
workloads as observed at other sites and at other times —
thus better reflecting observed workload invariants.

Another argument is that in some cases the anomalous ac-
tivity actually originates from a subset of users that is of no
interest. The system personnel activity on the NASA Ames
iPSC, the daily maintenance activity on the SDSC Paragon
and the pita server, and the staff sessions on the inferno
server, all reflect (relatively small) groups of users that are
disjoint from the main group. If we are interested in genuine
user activity, the additional work generated by these users
constitutes troublesome interference.

A third argument is that the anomalies are often generated
by a very small fraction of the user population. For exam-
ple, the flurries are each generated by a single user, while the
rest of the workload on those same systems reflects the com-
bined activity of hundreds of users. The same holds for the
pita server data, where one user continually submitted setsof
about 200 jobs every 10 minutes. In such situations, a very
large fraction of the activity is due to a vanishingly small
fraction of the users; using the data as is risks optimizing for
the activity of these users, at the expense of others.

Removing anomalies is especially justifiable in cases
where they are actually unintentional, and arise due to run-
away scripts or other bugs in the workload creation process.
But it is also justifiable if they represent real work. The heart
of the matter is that anomalies are rare and unique. Using
a workload with some anomaly may emphasize the rare and
unique event at the expense of the normal conditions. To ar-
gue for evaluations based on workloads with anomalies, one
must argue that the activity of a specific user during a short



time should indeed dominate the evaluation results. Also,
one must be satisfied with results that may change consider-
ably if the span of time covered by the evaluation is shifted
such that the anomaly happens to be excluded. Thusleaving
the anomaly inis actually the unjustifiable approach.

Based on all this, we suggest that workloads should be
separated into “normal” workload and anomalous workload
components. Modeling and evaluation of the normal work-
load may be expected to lead to reliable and consistent results
that are applicable most of the time — that is, all the time dur-
ing which anomalies are not present. Comparing evaluation
results using the cleaned log with results based on the origi-
nal log will identify whether the removed anomalies actually
have a significant effect in the specific case being studied.
Indeed, an interesting question is how to model or evaluate
the effect of anomalies on a system designed and optimized
for the more common normal workload. As anomalies are
unique, it is doubtful whether using known anomalies can
predict the effect of other potential anomalies. Importantfu-
ture work is therefore to develop methods to extend and gen-
eralize the results obtained with specific anomalies, and try
to derive bounds on the effects of other potential anomalies.

An important byproduct of our work has been to identify
a new type of workload anomaly: workload flurries. The
essence of flurries is a huge surge of activity, due to a single
user, which dominates and changes the workload for a lim-
ited period of time. It is dangerous to use logs with unknown
flurries, because this may significantly reduce the reliability
of the results. Specifically, flurries may amplify performance
effects, thereby causing the evaluation to be very sensitive
to fine details of the input, to the point of obscuring the ef-
fects related to the system issues being studied [19]. How-
ever, there are also smaller peaks of activity that are caused
by single users; how do we decide when they qualify as a
“flurry”? In the present paper we have used subjective judg-
ment to pick out only the largest flurries, but this issue also
begs for further research.

To summarize, it is extremely important to use real data
regarding the workload on computer systems. But it is
equally important to ensure that this is high-quality and rep-
resentative data. Using measured workloads indiscriminat-
ingly risks the introduction of unknown anomalies that may
lead to unknown effects. As finding anomalies is not triv-
ial, this information should be shared together with the orig-
inal data. In other words, when workload data is made
available, it should be accompanied by all the accumulated
knowledge regarding problems with its use, and specifically,
with information regarding anomalies that occur in it. As a
first step, we have added our data to the parallel workloads
archive [17], from which much of our original data comes,
and which is used by many researchers for studies of parallel
job scheduling.
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