
Feasibility of Mutable Replay for Automated
Regression Testing of Security Updates

Ilia Kravets Dan Tsafrir
Department of Computer Science

Technion – Israel Institute of Technology
{ilia,dan}@cs.technion.ac.il

Abstract
Applying software patches runs the risk of somehow breaking the
system, so organizations often prefer to avoid updates or to defer
them until extensive testing is performed. But unpatched software
might be compromised, and extensive testing might be tedious and
time and resource consuming. We consider alleviating the problem
by utilizing a new type of “mutable” deterministic execution replay,
which would allow us to (1) run the software before and after
the patch and to (2) compare the behavior of the two versions
in a manner that tolerates legitimate differences that arise from
security patches. The potential advantages of this approach are that:
it is automatic; it requires no programming skills; it is language-
agnostic; it works without source code; and it can be applied while
the system is running and serving real production workloads. In this
work, we do not implement mutable replay; rather, we assess its
feasibility. We do so by systematically studying about 200 security
patches applied to the most popular Debian/Linux packages and by
considering how mutable replay should be implemented so as to
tolerate execution differences that such patches generate.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability

General Terms reliability, security

Keywords testing, record-replay, mutable replay

1. Introduction
After a software product is shipped, it typically goes into a mainte-
nance phase whereby related software updates are made available
form time to time [18]. Such updates should in principle have a pos-
itive effect, such as adding new features, improving performance,
fixing bugs, etc. But in reality they often place a heavy burden on
enterprise organizations, which need to worry about the possibil-
ity of updates somehow adversely affecting their systems. Indeed,
very many patches have been reported to be buggy in their first
release [13, 22, 23, 24]. Faulty software updates might translate,
for example, into money losses or noncompliance with regulations
[6], and so organizations often favor stability over the possible im-
provements brought by updates [6], preferring not to update if they
can help it, or defer the updates until they are thoroughly tested.

There are, however, software updates that are hard to decline,
notably fixes of critical bugs and security vulnerabilities. Leaving
deployed software outdated with respect to such updates might lead
to highly undesirable consequences [9, 14]. Nevertheless, many
systems are not patched against security vulnerabilities for long
periods of time [5, 7, 22]. And this state of affairs is worsened
by the fact that malware authors regularly use security updates to
reverse engineer system weaknesses and infer the corresponding

exploits [2]. (It has even been shown that such inference can be
automated [8].)

A standard procedure to lower the risks of upgrades is to have a
“staging environment” to which the update is applied first. The sys-
tem administrators are then responsible for ensuring that the stag-
ing environment operates correctly, in which case the update is also
applied to the production environment. Microsoft Windows Server
Update Services [19] supports this workflow [20], which is a rec-
ommended practice for update deployment [21]. The drawback of
this approach is that the act of testing is left in the hands of the
administrators, whereas testing is usually tedious, time consuming,
often requires manual work, is prone to human error, and is lim-
ited by the available resources (manpower, equipment, etc.). Other,
more advanced techniques for update testing have been proposed
[12, 23, 24], but they usually require special support from the soft-
ware vendor, such as source code or build environment access; we
are not aware of such systems being used in production environ-
ments.

Another approach for dealing with faulty updates is to take the
risk and later revert the update in case it is found to cause problems
[4, 21]. This approach has obvious drawbacks. First, it might be
initially hard to identify erroneous behavior, as the manifestation
of the problem might be subtle and illusive. A second drawback is
that it is not always possible to undo erroneous actions, and in some
cases the damage can be significant even if the system has been
successfully reverted. Finally, the revert procedure might induce
unacceptable downtime.

In this paper we explore the feasibility of mutable replay, a com-
plementary approach for testing security updates in an automatic
manner. The hypothesis underlying mutable replay is that security
patches tend to be small and unobtrusive. Therefore, in most cases,
we contend that it might be possible to leverage existing determin-
istic record-replay mechanisms [17] to automatically test whether
or not the security patches have introduced undesirable changes of
behavior. We address mutable replay both generally (Section 2) and
concretely as a possible extension of an existing deterministic re-
play system (Section 3). We note that the actual implementation of
mutable replay is work-in-progress and is not described in this pa-
per. Instead, in this work, we strive to keep the presentation generic
and independent of specific implementation details. Our major con-
tribution is a survey of more than 200 security updates that were
issued for the most popular Linux/Debian packages over a period
of more than two years. We utilize the results of this survey to iden-
tify what would be required from a deterministic execution record-
replay mechanism if it is transformed to tolerate differences aris-
ing from security patches (Section 4). Finally, we compare the pro-
posed approach to the related work (Section 5).

1



2. Utilizing Mutable Replay
2.1 Goal
When the behavior of two program versions—before and after a se-
curity patch is applied—diverges, then either (1) the old, unpatched
version is right (exhibits correct behavior) and the new, patched ver-
sion is wrong (exhibits incorrect behavior); or (2) the old version is
wrong and the new version is right; or (3) both are right.1 Counter-
intuitively, the focus of this paper is not the first and second cases.
Rather it is the third. This statement might be perceived as negat-
ing the paper’s main motivation of helping clients to protect against
faulty patches. But it does not.

The first aforementioned case means that a patch is faulty. And
the second case means that the system is under attack (which should
in principle be prevented by the patched version). We acknowledge
outright that we have no general automatic way to tell these two
cases apart, nor is it our goal to do so. Instead, we are satisfied by
the mere prospect of being able to automatically report to clients
that one of the cases 1–2 occurred, namely, that either their system
is under attack or the patch they have applied to it is faulty. Such
a report is expected to typically be highly valuable to clients, as
knowing that this type of events occurred is much preferable than
not knowing. Following such a report, clients would be able to
further investigate to determine the exact cause of the event and
then take the appropriate actions (initiate an intrusion mitigation
procedure or conclude that a patch is harmful and reject it).

The focus of the paper is the third case—when both patched
and unpatched versions are right—because detecting divergence
between two programs is easy, if not trivial; the real challenge is
determining whether a divergence is semantically meaningful and
being able to tolerate the divergence if it is not, without alerting
the user. Below we enumerate the most common changes caused
by security patches that trigger divergences but do not change
program semantics. We argue that a record-replay system that is
able to quietly tolerate these changes is sufficient for implementing
mutable replay that provides a valuable service to clients: reporting
if/when an attack occurred or the patch is discovered to be faulty,
or not reporting anything, which means the old and new versions
have the same semantics thus far.

2.2 Usage Model, Performance, and Overhead
A mutable replay system has several possible deployment scenarios
[10], including doing analysis at realtime, in an online manner. But
in the context of this paper, to simplify, we focus on the scenario
where the production (unpatched) system does not perform testing
on its own or actively participate in coordinating such testing.
Instead, it merely runs in recording mode, producing an activity
log to be used by the mutable replay testing mechanism elsewhere;
the log is then asynchronously transmitted to a different machine,
where the testing takes place.

The overhead of recording a server’s activity for the purpose of
deterministic replay varies based on workload. For example, non-
mutable recording can incur a 2.5% slowdown and generate an
activity log growth rate as high as 1.9 MB/s [17]. Mutable replay
might require more data to be logged and thus greater overhead.
This overhead may perhaps be reduced using techniques such as
multi-stage replay [11], which, in principle, can make the overhead
of recording for the sake of mutable replay comparable to that of
recording for non-mutable replay.

The performance of the testing machine might likewise vary de-
pending on the actual workload; as a reference, the speedup re-
ported for deterministic (non-mutable) replay in comparison to the
record phase ranges from ~1x faster for CPU-intensive workloads

1 The case where both are wrong is irrelevant here.

to 70x faster for interactive workloads (the result of not having to
wait for input) [17]. We note, however, that the performance of re-
playing is less of a concern in our usage model, because it is de-
coupled from the production environment. The cost of maintaining
a testing environment can be amortized by reusing the same hard-
ware to test several systems.

While mutable replay is likely most useful for organizations
that have resources to deal with its report, we believe it can also
be valuable in smaller setups. An organization with enough re-
sources might utilize mutable replay as an initial screening pro-
cess, directing human efforts to doing manual inspection for only
those patches that failed the automatic testing. If an organization
requires manual testing of certain specific scenarios, the latter can
be recorded and tested against an updated version, automatically,
through mutable replay. In smaller setups, e.g., when an individual
user lacks resources and expertise to overcome the reported prob-
lems on her own, mutable replay can be used to get a quick indica-
tion of whether the upcoming updates require special precautions,
such as performing a full backup, planning an additional downtime,
or postponing the update [6] and requesting support from the soft-
ware vendor.

3. Implementing Mutable Replay
As noted, the goal of mutable replay is to allow for automatic re-
gression testing under realistic workloads. A canonical way to per-
form regression testing is to run two versions of the program—
before and after the change—with the same input, and then exam-
ine the output. The testing procedure can be partitioned into three
tasks: determine the input, feed it to both versions, and compare the
output. In the context of mutable replay, the first and second tasks
are accomplished by recording all the nondeterministic aspects of
the execution of the unpatched program (e.g., input data, timing, or-
der of accesses to shared resources) and reconstructing them during
the execution of the patched version.

The problem is that the extensive work done on record-replay
thus far [15, 16, 17, 25] aims for replay that accurately reflects the
recording. Execution divergences of programs (as would inevitably
occur due to the patches) are irrelevant in those systems; they are
out of scope and are not allowed to occur by design. Conversely,
to enable the mutable replay approach that we advocate, we need a
system capable of tolerating some program behavior changes.

3.1 Extending SCRIBE, an Existing Replay Mechanism
Fortunately, we find that SCRIBE—an already existing determinis-
tic replay mechanism integrated into the operating system kernel
[17]—nearly meets our goals. We next provide a brief description
of SCRIBE, directing the interested reader to the original paper for
more details [17].

The SCRIBE mechanism allows its users to record and deter-
ministically replay the execution of one or more processes run-
ning under Linux. SCRIBE works by intercepting system calls, non-
deterministic hardware instructions (like RDTSC), and accesses to
shared resources. During the record phase, SCRIBE stores the in-
tercepted events in a log. Then, during replay, SCRIBE sequentially
reads the events from the log and replays them in order. During re-
play, SCRIBE keeps both application and kernel state compatible
with the associated recording. This property allows SCRIBE to re-
duce the log size by storing just enough information to steer the
program replayed execution such that all missing information is
supplied by the application or the kernel as the replay progresses.
In addition, maintaining up-to-date state allows SCRIBE to switch
to live execution at almost any point in the replay sequence, as most
parts of the kernel do not distinguish between replay or normal ex-
ecution mode.

2



1 #include <stdio.h>
2 #include <string.h>
3

4 int main()
5 {
6 char secret[] = "1337", buf[5];
7 char *msg[] = { "access granted\n",
8 "access denied\n" };
9 int err;

10

11 puts("Enter secret: ");
12 - scanf("%s", buf);

+ scanf("%4s", buf);
13 err = strcmp(buf, secret)!=0;
14 puts(msg[err]);
15 return err;
16 }

Figure 1. Version divergence due to the above simplistic security
fix can be be tolerated by SCRIBE, out of the box.

We note that the maintenance of updated kernel state is crucial
for mutable replay, as the execution of the patched version might
require some information that was not recorded in advance. Ad-
ditionally, in some cases, it might even be required to update that
state in order to proceed correctly.

SCRIBE ensures deterministic replay of asynchronous events
(such as signal delivery) by postponing them until the occurrence
of a synchronous event (such as a system call). When a pending
asynchronous event awaits the occurrence of synchronous event,
SCRIBE sets a timer to expire after a short, predetermined amount
of time. Upon timer expiration, if no synchronous event has yet
occurred, SCRIBE artificially generates one by taking a snapshot of
the execution context and logging an event holding the content of
the registers and a checksum of the writable memory. This event
is delivered during replay when the program reaches the same
exact state of the execution context. Alas, we suspect that such as
approach is inapplicable for mutable replay, as a match between
the recorded and the actual contexts might never occur due to the
difference between the program versions. We are currently unable
to propose a general solution with low overhead to this problem.

Since SCRIBE operates at the operating system abstraction level,
it can already tolerate—out of the box—differences arising from
trivial patches. Figure 1 demonstrates such a patch to a fictitious
authentication program. The patch changes are marked with a mi-
nus and plus signs. Before applying the patch, the application is
vulnerable to buffer overflow and consequently to arbitrary code
execution (or at least to unlawful authentication bypassing). Yet,
from SCRIBE’s perspective, as long as the input is legal (no at-
tack is launched), the events sequence remains the same, which
means the simple patch does not change the program behavior (as
viewed by SCRIBE), even though the memory content and execu-
tion are slightly different. Conversely, upon illegal input, the event
sequences will diverge and SCRIBE will issue an error message re-
porting this fact (which is the desirable behavior in such cases).

4. Surveying Security Updates
To assess the feasibility and applicability of mutable replay in
the presence of real security patches, we conduct a survey of the
security updates delivered to the users of the Debian GNU/Linux
distribution over a course of 2.5 years.

4.1 Methodology
We manually examine the source code of each patch and attempt to
identify (1) how the change it induces will affect an OS-level replay

130
135
140
145
150

1 2 3 4 5 6 7 8 9 101112 19 23 32
number of updates

0
5

10
15
20
25
30
35
40
45

pa
ck

ag
es

Figure 2. Histogram of packages based on the number of updates
they received.

mechanism and (2) how the mechanism should be modified so as
to tolerate the change. We do not conduct actual program runs.

Terminology Debian organizes applications and libraries in pack-
ages. Our analysis is performed on source packages, which can be
built and thereby generate one or more binary packages, which
in turn can be downloaded and installed by end users. A source
package consists of the upstream application/library source code
(as released by the original software developers), Debian-specific
patches, and build instructions and metadata such as the package
description, its dependencies, and a textual changelog tracking its
release history. It is not uncommon for Debian developers to in-
clude several patches in a single source package update, also de-
noted a “release”. From this point onwards, we interchangeably use
the terms “patch” to refer to an entire release or update; a package
can have more than one release, and we do not unify those.

Debian Security Patches We analyze the history of security up-
dates applied to Debian 5.0 (Lenny) from its release date in Febru-
ary 2009 until August 2011. Nearly all of this data is readily avail-
able on Debian’s web and ftp sites, including most of the per-
package releases (rather than just the most recent release). There
are 280 Debian 5.0 packages that are categorized as having secu-
rity updates. Of these, 81 (nearly 30%) have no other purpose but
encapsulating shared libraries, and an additional 27 (nearly 10%)
contain shared code to be used by other programs; thus an update
to these 81+28=108 packages can potentially affect more than a
single application or service. It is interesting to note that even in
this small data set we find 14 updates that fix regression problems
that were introduced by earlier releases, demonstrating the imper-
fection of the security update release process and supporting the
reluctance of some system administrators to apply the patches.

Figure 2 shows the frequency of package updates over the 2.5
years that we have analyzed. Most packages received a single up-
date, and only 21 packages received more than 5. Unsurprisingly,
we observe that the most frequently updated packages are quite
popular, including glibc and OpenSSL (libraries), Apache, Samba,
BIND, and PostgreSQL (servers), and PHP, OpenOffice.org, and
Firefox (desktop application). OpenSSL updates alone would, on
average, require system administrators to test all services depend-
ing on OpenSSL encryption (web, email, etc.) every 12 weeks.

Patch Selection Out of the aforementioned 280 packages, we
choose to manually inspect the 65 most popular. (Popularity is
determined based on the number of installations of the packages
as reported in the official Debian popularity contest website [1].)
The number of security updates associated with the chosen 65
packages is 220. We manually analyze each and asses its potential
to interference with mutable replay and cause a divergence.

3



Characterizing Divergence Likeliness Based on our inspection
of the code, we approximate the likeliness of each patch to trigger
a replay divergence. To this end, we associated a likeliness level
with each patch; we use three levels: “usual”, to denote that normal
program usage would likely trigger a divergence; “unusual” to
denote that normal program usage might trigger a divergence in
some uncommon cases; and “rare” to denote that normal program
usage is highly unlikely to trigger a divergence, unless specifically
crafting a triggering condition, notably, attacking the system. When
our level of understanding of the patch is insufficient to determine
the likeliness of divergence, we conservatively assign a “usual”
rating. An “unusual” divergence may involve running uncommon
combination of the program components, configuration, and input.
Arguably, “rare” divergences are of less interest because, if the
system is under attack, then we actually want a divergence to occur
and for the mutable replay mechanism to report it; otherwise, we
contend that users are unlikely to encounter these divergence and
that it is more important to focus on the common cases.

Characterizing Divergence Severity Orthogonally to the proba-
bility or likeliness of a patch to trigger a divergence, we would
like to assess whether it is possible to tolerate this divergence using
a mutable replay mechanism. Toleration might not be possible if
the patch is too big or too intrusive or introduces inherent changes
that make convergence impossible. Accordingly, we classify all the
patches to those that are likely to be tolerated by a sophisticated-
enough replay mechanism and those that probably deem replaying
impossible regardless of the degree of sophistication.

Characterizing Techniques to Tolerate Divergence Finally, fo-
cusing on the patches that are classified as triggering a tolerable
divergence, we would like to identify what it would take in order to
make a replay mechanism sophisticated enough (mutable enough)
so as to tolerate the corresponding divergence.

4.2 Results
Table 1 summarizes our findings regarding the severity of diver-
gences, quantifying how many patches generate tolerable and in-
tolerable divergences. We find that a mutable replaying mecha-
nism may, in principle, tolerate divergences triggered by 75% of
the patches, but would likely fail to do so for 4% of the patches
that drastically change the behavior of the program. Another 15%
of the updates are difficult to analyze due to their size, which is
too big; we can probably safely assume that they introduce intoler-
able divergences as well. We observe, however, that while they are
labeled and packaged by Debian maintainers as security patches,
in fact, these large updates are typically new versions of software,
and so the changes they introduce go far beyond what we would
normally characterize as a security fix. (It seems reasonable to ex-
pect that more enterprise-friendly distributions, like Redhat, would
not push such updates to clients as security patches.) The remain-
ing 6% of the updates are small, but we are still unable to deter-
mine their impact on overall program behavior from just reading
the code; for example, changing a mathematical computation deep
within the call hierarchy may result in both tolerable and intolerable
divergences.

We next go on to characterizing and grouping typical types of
divergences caused by security patches. To exemplify, we utilize
Figure 3 that shows an excerpt from a security fix of acpid — a dae-
mon handling ACPI events in Linux. The fix introduces a new func-
tion, acpid_close_dead_clients(), which is used to close stale
client connections that will no longer be used for communications.
The fix also includes periodic invocation of this function from the
server event loop (not shown), helping to reduce resource usage
(notably, of file descriptors) and thereby fixing a denial of service
vulnerability [3]. In the absence of an attack, from the user perspec-

tolerance updates % of total
tolerable 165 75%
intolerable 9 4%
unclear (large) 32 15%
unclear (logic) 14 6%
total 220 100%

Table 1. Severity of divergences cause by security patches.

1 // this function is called from the server event loop
2 void acpid_close_dead_clients(void)
3 {
4 struct rule *p;
5

6 // sigprocmask syscall: block HUP,TERM,QUIT,INT signals
7 lock_rules();
8

9 /* scan our client list */
10 p = client_list.head;
11 while (p) {
12 struct rule *next = p->next;
13 // poll syscall: check for POLLERR and POLLHUP events
14 if (client_is_dead(p->action.fd)) {
15 struct ucred cred;
16 // write syscall: add log output
17 acpid_log(LOG_NOTICE,
18 "client %s has disconnected\n", p->origin);
19 // no syscalls, just remove linked list element
20 delist_rule(&client_list, p);
21 // getsockopt syscall
22 ud_get_peercred(p->action.fd, &cred);
23 if (cred.uid != 0) {
24 non_root_clients--;
25 }
26 // close syscall: close unneeded file descriptor
27 close(p->action.fd);
28 // (s)brk syscall: free heap memory
29 free_rule(p);
30 }
31 p = next;
32 }
33

34 // sigprocmask syscall: allow HUP,TERM,QUIT,INT signals
35 unlock_rules();
36 }

Figure 3. Annotated excerpt from a patch to the acpid daemon.
The newly added acpid_close_dead_clients() function is called
from the daemon’s main event loop, periodically.

tive, the daemon continues to function as usual after the upgrade.
But the resulting changes are sufficient to cause several types of
divergence: new system calls are added, both for inspecting (poll
, getsockopt) and for modifying (sigprocmask, close) the kernel
state; log output may result in additional write system calls that
may occur unexpectedly due to application output buffering; and
freeing memory may likewise change the heap layout and hence
subsequent allocations performed by libc through brk or sbrk. We
group these and other observed possible divergences based on their
characteristics and, in some cases, we describe how to tolerate them
during replay:

Memory Layout Change An updated program has a some-
what different memory layout, prompting changes in the program
counter and in system call arguments that hold addresses, either
temporarily or throughout the entire execution. The change may

4



affect different memory segments, e.g., adding the function shown
in Figure 3 to acpid affects its code segment, and line 18 affects
its statically allocated data (even before it runs). The heap (line 29)
and the stack are affected dynamically during program execution.
In some cases memory allocation may change sufficiently to affect
the pattern of memory management requests, such as mmap and brk.

Memory layout changes are widespread: only one of the up-
dates that we analyzed was identified as completely preserving the
memory layout (the whole patch was limited to a single constant
change). Therefore, for a mutable replay mechanism, it is critical
to tolerate this type of change so as to avoid replay divergence.

Read-Only System Calls A patched version can add or remove
system calls querying kernel state (security updates more often add
than remove such calls). See, for example, Figure 3, lines 14 and
22. Maintaining an up-to-date kernel state is useful for tolerating
such changes. The kernel may also need to perform additional I/O
to query filesystem-related information. If the required information
is unavailable, the replay system can still try to emulate proper
system call execution. For example, if a program queries the time,
the returned value should be consistent with past and future queries.

Equivalent System Calls When interfacing with the kernel there
are often more ways than one to achieve the same goal. For exam-
ple, we can receive a socket message using either recv or recvmsg;
or we can change the mode of a file using chmod or open+fchmod
+close; or we can access the same inode using multiple file paths.
Security patches often replace one way of interacting with the ker-
nel with a different, seemingly equivalent way, because attackers
tend to exploit the uncommon case where the two ways lead to dif-
ferent results. But as long as the system is not under attack, mutable
replay mechanisms should be able to tolerate such changes.

Output Format Change Security updates often introduce a small
change in the program’s output, while preserving all other behav-
ior aspects; for example, when a web application is modified to
prevent a cross-site scripting attack. The replay mechanism cannot
automatically assess the “correctness” of such a change. But it can
certainly verify that the the associated divergence manifests itself
exclusively in one place and that convergence is achieved imme-
diately after. Combining this approach with a textual report that
visually presents the output difference seems like a reasonable way
to verify such patches. Albeit, meaningful differences can be pre-
sented only when the network connections are unencrypted.

Unimportant Output Change Certain types of output are often-
times considered by users as unimportant, notably when directed
at logs. See, for example, Figure 3, line 17. A mutable replay sys-
tem should be expressive enough to allow its users to specify which
I/O channels are unimportant and to silently ignore the associated
differences that occur while testing. Such a specification can be as
easy as generating a configuration file comprised of statements like
“/dev/null” or “all files under /var/log”.

Resource Name Change A patched application may utilize dif-
ferent resource names while keeping all other behavior aspects
intact. For example, the name of a a temporary file path can be
changed so as to reside in a safer location.

Temporary Change Security patches sometimes add system calls
pairs that change kernel state temporarily, notably for blocking
and unblocking signals, so as to prevent race conditions and other
undesirable corner cases. See, for example, Figure 3, lines 7 and 35.
While unlikely, if such a race occurs when recording the unpatched
version, then replay would probably diverge.

Synchronization Synchronization changes, notably involving
locks, may be considered as causing a temporary change in ker-
nel state as in the previous paragraph. But mutual dependence of

 0

 10

 20

 30

 40

 50

m
em

ory layout change

output form
at change

read only syscall

equivalent syscalls

unim
portant output change

resource nam
e change

tem
porary change

synchronization

close unneeded files

disk input change

 0

 5

 10

 15

 20

 25

 30

d
iv

e
rg

in
g

 u
p

d
a
te

s

d
iv

e
rg

e
n
ce

 p
e
rc

e
n
ta

g
e

usual
unusual
rare

27
23

18
13

10 8 6 4

46

31
28

24

18

12 10 8
5 4

Figure 4. Summarizing the likeness level of the 165 tolerable
patches. The X axis groups patches by the type of divergence they
cause, and, for each bar, the Y axis shows the number of remaining
patches that still cause divergence, assuming the type of divergence
of that bar (and the bars to its left) are tolerated.

threads upon the execution order might make replay support more
challenging so we separate the categories.

Closing Unneeded Files Security patches often improve upon the
unpatched version by closing file descriptors that are no longer
needed, thereby preventing resource exhaustion or data leakage.
See, for example, Figure 3, line 27. This type of divergences should
clearly be tolerated. The challenge for mutable replay arises due to
later descriptor allocations, which would be numerically different
than those recorded.

Disk Input Change Some security patches introduce changes not
to the program, but rather to static data files stored on disk. For
example, adding bogus certificates to a black list or comments to a
configuration file. The associated patches we have examined should
not create a divergence unless under attack.

Summary Figure 4 summarizes our findings regarding the 165
security patches labeled as tolerable (see Table 1). The X-axis
denotes the divergence tolerance type/technique enumerated above,
and the associated bars are ordered according to their contribution
to the overall divergence decline, which is denoted by the Y-axis.

When a replay mechanism expects the memory layout of the
patched and unpatched versions to be the same, without employing
any tolerance techniques, then almost all updates may trigger a di-
vergence. However, if the replay mechanism is modified to tolerate
memory layout changes, the number of divergences drops to 46,
which is comprised of 27 patches associated with a “usual” likeli-
ness level, 7 patches associated with “unusual” likeliness level, and
12 patches associated with a “rare” likeliness level.

If the mutable replay mechanism is modified to tolerate both
changes in the memory layout and in the output format, then the
number of divergences drops to 31, comprised of 23 usual patches,
4 unusual, and 4 that have rare likeliness.

When further adding toleration to read-only system calls, the
overall number of divergences is reduced to 28, yet, interestingly,
the number of patches that have rare likeliness level (within these
28) gets bigger in comparison to the previous bar. This growth
occurs because some updates that previously triggered divergences
in a non-rare cases, now only do so in rare cases.

Our analysis indicates that a full implementation of the three
first techniques (leftmost on the graph) is sufficient to tolerate 87%
of all tolerable divergences in non-rare cases.

5



5. Comparing Mutable Replay to Delta Execution
The closest study related to our work is the “delta execution”
project by Tucek et al. [24], which aims to solve the problem we too
attempt to solve, namely, to alert users if security patches change
the program behavior under normal (non-attack) conditions.

Briefly, when possible, delta execution simulates the execu-
tion of the two versions—patched and unpatched—using only one
“merged” execution context. As long as the two versions execute
the same code and access the same data, the delta execution mech-
anism runs only one merged version. When a different instruction is
encountered, or when the same instruction accesses different data,
the merged execution is split into two processes. Then, when the
two split processes return to run the same code, they are merged
again into one, while preserving data differences for a later split.

Delta execution has a two advantages over mutable replay. First,
it is implemented in user space, and hence it is more portable. And
second, in some workload/patch combinations, it may result in a
single physical execution process for most of the testing period,
thereby lowering the overhead. (On the other hand, the repeated
action of splitting the unified context, running in split mode, and
then merging again, might be expensive; and with delta execution
testing can only be performed in an online manner, requiring both
the production version and the test version to run on the same
machine, which adds overhead to the critical path.)

A main drawback of delta execution is that it requires that most
of the process’s memory image will remain the same across the
patched and unpatched versions. This means, for example, that:
(1) updates to macros, inline functions, and structure (e.g., adding
new struct member) are handled poorly or not at all; that (2) the ap-
proach is unfriendly to updates produced using a different compila-
tion process, e.g., when using different compilers, optimizations, or
debug/release mode; and that (3) the heap memory of both versions
needs to be similar, which, according to our survey, might not be
the case. Replacing the malloc and free functions might alleviate
the latter problem, but only partially.

Importantly, delta execution lacks knowledge about system call
semantics and hence will always declare divergence in the face of
changed system calls. It may be possible to extend the delta exe-
cution framework with appropriate wrappers for all system calls,
but doing so effectively translates to reimplementing much of the
suggested mutable replay functionality.

Finally, delta execution has a serious limitation in that it requires
source code access. The delta execution authors suggest that this
limitation can be eliminated using binary differencing techniques.

References
[1] Debian popularity contest. http://popcon.debian.org/.

[2] Hackers piggyback on windows patches. BBC, Feb. 2004.

[3] CVE-2009-0798. http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2009-0798, 2009.

[4] rPath. http://www.rpath.com/, 2011.

[5] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnera-
bility: a case study analysis. Computer, 33(12):52– 59, Dec. 2000.

[6] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack.
Timing the application of security patches for optimal uptime. In
Proceedings of 16th Systems Administration Conference, volume 2 of
LISA ’02, pages 233–242, 2002.

[7] H. K. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen. A trend
analysis of exploitations. In Proceedings of the 2001 IEEE Symposium
on Security and Privacy, page 214. IEEE Computer Society, 2001.

[8] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic Patch-
Based exploit generation is possible: Techniques and implications. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy,
pages 143–157. IEEE Computer Society, 2008.

[9] K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou. The economic
cost of publicly announced information security breaches: empirical
evidence from the stock market. J. Comput. Secur., 11(3):431–448,
Apr. 2003.

[10] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX 2008
Annual Technical Conference on Annual Technical Conference, pages
1–14, Boston, Massachusetts, 2008. USENIX Association.

[11] J. Chow, D. Lucchetti, T. Garfinkel, G. Lefebvre, R. Gardner, J. Ma-
son, S. Small, and P. M. Chen. Multi-stage replay with crosscut. In
Proceedings of the 6th ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments - VEE ’10, page 13, Pittsburgh,
Pennsylvania, USA, 2010.

[12] J. E. Cook and J. A. Dage. Highly reliable upgrading of components.
In Proceedings of the 21st international conference on Software engi-
neering, ICSE ’99, pages 203–212, New York, NY, USA, 1999. ACM.

[13] C. Cowan, H. Hinton, C. Pu, and J. Walpole. The cracker patch
choice: An analysis of post hoc security techniques. In Proceedings of
the 23rd National Information Systems Security Conference (NISSC),
pages 16–19, 2000.

[14] D. A. Dittrich. Developing an effective incident cost analysis
mechanism. http://www.symantec.com/connect/articles/
developing-effective-incident-cost-analysis-mechanism,
2002.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: enabling intrusion analysis through virtual-machine logging
and replay. In Proceedings of the 5th symposium on Operating sys-
tems design and implementation, OSDI ’02, pages 211–224, Boston,
Massachusetts, 2002. ACM.

[16] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek,
and Z. Zhang. R2: an application-level kernel for record and replay.
In Proceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 193–208, Berkeley, CA,
USA, 2008. USENIX Association.

[17] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight appli-
cation execution replay on commodity multiprocessor operating sys-
tems. In Proceedings of the ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems, SIGMET-
RICS ’10, pages 155–166, New York, NY, USA, 2010. ACM.

[18] B. P. Lientz and E. B. Swanson. Software Maintenance Management.
Addison-Wesley Longman Publishing Co., Inc., 1980.

[19] Microsoft. Windows server update services.
[20] Microsoft. Software update services deployment white paper, Jan.

2004.
[21] Microsoft. Update management process. phase 3 - evaluate

and plan. http://technet.microsoft.com/en-us/library/
cc700840.aspx, June 2007.

[22] E. Rescorla. Security holes... who cares? In Proceedings of the 12th
conference on USENIX Security Symposium - Volume 12, pages 6–6,
Berkeley, CA, USA, 2003. USENIX Association.

[23] S. Sidiroglou, S. Ioannidis, and A. D. Keromytis. Band-aid patching.
In Proceedings of the 3rd workshop on on Hot Topics in System
Dependability, Berkeley, CA, USA, 2007. USENIX Association.

[24] J. Tucek, W. Xiong, and Y. Zhou. Efficient online validation with
delta execution. In Proceeding of the 14th international conference
on Architectural support for programming languages and operating
systems, ASPLOS ’09, pages 193–204, New York, NY, USA, 2009.
ACM.

[25] M. Xu, R. Bodik, and M. D. Hill. A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay. In Proceedings of the
30th annual international symposium on Computer architecture, ISCA
’03, pages 122–135, San Diego, California, 2003. ACM.

6

http://popcon.debian.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0798
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0798
http://www.rpath.com/
http://www.symantec.com/connect/articles/developing-effective-incident-cost-analysis-mechanism
http://www.symantec.com/connect/articles/developing-effective-incident-cost-analysis-mechanism
http://technet.microsoft.com/en-us/library/cc700840.aspx
http://technet.microsoft.com/en-us/library/cc700840.aspx

	Introduction
	Utilizing Mutable Replay
	Goal
	Usage Model, Performance, and Overhead

	Implementing Mutable Replay
	Extending Scribe, an Existing Replay Mechanism

	Surveying Security Updates
	Methodology
	Results

	Comparing Mutable Replay to Delta Execution

