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Abstract

The performance of computer systems depends, among
other things, on the workload. This motivates the use of real
workloads (as recorded in activity logs) to drive simulations
of new designs. Unfortunately, real workloads may contain
various anomalies that contaminate the data. A previously
unrecognized type of anomaly is workload flurries: rare
surges of activity with a repetitive nature, caused by a sin-
gle user, that dominate the workload for a relatively short
period. We find that long workloads often include at least
one such event. We show that in the context of parallel job
scheduling these events can have a significant effect on per-
formance evaluation results, e.g. a very small perturbation
of the simulation conditions might lead to a large and dis-
proportional change in the outcome. This instability is due
to jobs in the flurry being effected in unison, a consequence
of the flurry’s repetitive nature. We therefore advocate that
flurries be filtered out before the workload is used, in order
to achieve stable and more reliable evaluation results (anal-
ogously to the removal of outliers in statistical analysis). At
the same time, we note that more research is needed on the
possible effects of flurries.

1 Introduction

The performance of a computer system depends not only
on its design and implementation, but also on the workload
to which it is subjected [9]. Different workloads may lead to
different absolute performance numbers, and in some cases
to different relative ranking of systems or designs. Using
representative workloads is therefore crucial in order to ob-
tain reliable performance evaluation results.

One way to obtain representative workloads is to use real
workloads from productions systems. One can record the
workload on an existing system, and play back the record-
ing to drive a simulation of a new system. If the existing
system has a similar functionality to the new system be-
ing evaluated, one can assume that the same workload may
apply. Likewise, if a new system design is shown to pro-

duce good results when applied to a wide range of such
“recorded” workloads, one can claim the results are truly
general and representative. Indeed, numerous papers have
used this methodology, exploiting the many workload logs
that are freely available, for example, in the Parallel Work-
load Archive [19]. Alternatively, the recorded workload can
be used as the basis for constructing a workload model (like
[14,7, 17]), later to be used to generate input for a simulator
of a new system. This has the benefit of allowing for more
flexible usage, e.g. by modifying model parameters so as to
adapt it to different system configurations.

However, using recorded workloads also has its prob-
lems. For example, it is well known that workloads at differ-
ent installations differ, and that workloads evolve with time
as users learn to better use the system [13]. This paper deals
with a different type of drawback: real workloads may con-
tain abnormal behaviors that, though they do in fact occur
on rare occasions, are not representative in general. Work-
load flurries are such events. They consist of rare, huge
surges of repetitive activity by single users that dominate
the workload for a limited time.

Workload flurries have two types of effects on perfor-
mance evaluation [23, 11]. One is in the context of work-
load modeling, and specifically the fitting of statistical dis-
tributions to workload data. The existence of a flurry
may alter workload statistics, leading to the use of un-
representative values by an unwary analyst. The other is
an effect on performance evaluation results when using the
workload trace to drive a simulation. Flurries may cause a
simulation to be very sensitive to fine details of the system
configuration or workload, because the whole flurry reacts
to a change en masse and thereby amplifies its effect. Hence
extremely small modifications may lead to large effects that
are not reliable predictors of real performance.

In this paper we focus on the second effect, that is, the ef-
fect flurries may have on performance evaluation. We start
with a detailed example concerning a real workload trace
that spans two years and records 67,667 parallel jobs. We
show that shortening the runtime of a single 18-hour job by
a mere 30 seconds results in an 8% change in the average



slowdown of all the jobs, solely due to the effect it had on
a subsequent 375-job flurry that was submitted by a single
user over a period of 10 hours. This motivates the study of
flurries as unique and important events in computer work-
loads in Section 3. Due to the rare and unique characteris-
tics of flurries, we suggest that the appropriate way to deal
with them is to filter them out of the workload before using
it. We argue that this is similar to removing outliers in statis-
tical analysis, and to removing abnormal data from parallel
workloads (e.g. by Cirne and Berman in [7]). “Cleaning”
the workload by removing the flurries leads to more stable,
reliable, and consistent results, as illustrated in Section 4.

2 A Case Study of Instability

In this section we present a case study showing how the
presence of a flurry leads to unstable results: very small
changes to the workload are amplified by the flurry and lead
to an unexpectedly large change in the results. This example
uses the SDSC SP2 log: a listing of 67,667 jobs' submitted
to the 128-node IBM SP2 installed at the San-Diego Super-
computer Center, from May 1998 to April 2000. All logs
used in this paper are later described in Table 1.

2.1 Background: EASY Scheduling and
Bounded Slowdown

The case study involves the popular EASY backfilling
scheme [16], which is the most commonly used method for
batch scheduling parallel jobs at the present time [8] and
serves as the default setting of prominent schedulers like
Maui, Moab, and the IBM Load-Leveler. Specifically, this
scheme is employed by many IBM SP2 machines that gen-
erated some of the logs that are used in this paper [19].

The basic scheduling scheme is first-come first-serve
(FCES): jobs are kept in a queue in order of arrival, and
whenever there are enough free processors for the first
queued job, it is allocated the processors it needs. The prob-
lem is that this may lead to fragmentation. If the first queued
job requires many processors, it may have to wait a long
time until enough processors are freed. During this time,
processors are left idle as they accumulate.

To solve this problem, the following optimization is em-
ployed: Whenever the system status changes (job arrivals or
terminations), the scheduler scans the queue of waiting jobs
in order of arrival. Upon reaching the first queued job that
can’t be started immediately (not enough free processors),
the scheduler makes a reservation on the job’s behalf. This
is the earliest time in which enough free processors would
accumulate and allow the job to run. The scheduler then

I'The full log actually contains 73,496 jobs, but 5829 are recorded as
having used zero processors, and having been canceled before they started
to run; they are therefore not used in our simulations.
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Figure 1: Left: FCFS scheduling (jobs numbered in order of ar-
rival). Right: FCFS with backfilling. Note that it would be im-
possible to backfill job 4 had its length been more than 2, as the
reservation for job 3 would have been violated.

continues to scan the queue for smaller jobs (require less
processors) that have been waiting less, but can be started
immediately without interfering with the reservation. The
action of selecting smaller jobs for execution before their
time is called backfilling, and is illustrated in Fig. 1.

Note that backfilling mandates the scheduler to know in
advance how long each job will run: to compute the start
time of the job that has been waiting the longest (need to
know the runtime of job 2 to determine when will job 3 be
started) and to know if smaller jobs are short enough to be
backfilled (need to make sure job 4 will not delay job 3).
The user must therefore provide a runtime estimate upon
job submittal. Running jobs that exceed their estimates are
killed by the system to make sure waiting jobs will indeed
start on time.

One of the most useful metrics used to evaluate job
schedulers is the average bounded slowdown. Slowdown is
response time normalized by running time, L= where
T, and T, are the job’s runtime and waiting time, respec-
tively. Bounded slowdown eliminates the emphasis on very
short jobs due to having the running time in the denomina-
tor [10]; a threshold of 10 seconds is commonly used in the
context of parallel job scheduling. The definition is

bsld = max <1 , Lo +1r >

max (10, 7))

2.2 Example of a Butterfly Effect

The largest user runtime estimate appearing in the
SDSC-SP2 trace is 18 hours. This is a limit imposed by the
site administrators (different sites may have different lim-
its). Consequently, the longest jobs in this trace are limited
to 18 hours (since a job that exceeds its runtime estimate is
killed by the system). However, in a real system, it takes
some time to propagate the instruction to kill a job to all the
nodes?. Therefore the trace indicates that some jobs run for
a bit more than 18 hours. Of the 67,667 jobs in the trace,
only 619 (less than 1%) have runtimes longer than 18 hours.

2In a simulation this is of course not the case. To maintain the logged
runtimes we therefore increase the estimates given in the log to match the
actual runtimes.
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Figure 2: Average bounded slowdown (obtained by simulating
EASY on the SDSC-SP2 trace) as a tunction of the simulated run-
time of the specified job. The job’s original runtime is 18:00:30
and so an offset of +1 means the simulated runtime is 18:01:30.

In a simulation it is possible to change the irregular run-
times to be exactly 18 hours. We found that the aver-
age bounded slowdown is surprisingly sensitive to such a
change. The following is a striking example that demon-
strates this phenomenon: The attributes of job 64,241 are
listed in the left of Fig. 2. In our simulation, we have trun-
cated this job’s runtime by a mere 30 seconds, and set it
to be exactly 18 hours (a modification of 0.0463%). This
was the only change we’ve made, that is, we have modified
one job out of 67,667 (0.00148%). Remarkably, as a result,
the average bounded slowdown of all the jobs in the trace
changed from 88.16 to 81.38 — that is, by about 8%! More-
over, the effect turned out to be dependant on exactly how
much the runtime of this job was changed. Fig. 2 shows
the effect of different changes to the runtime of job 64,241
on the overall average. Note that counter intuitively, the
average may change by roughly the same amount both by
enlarging and by reducing the runtime of the job.

2.3 The Role of a Flurry in Causing the
Effect

In a nutshell, the mechanism leading to the above effect
has two components. First, the backfilling algorithm prop-
agates the small modification to a single job and influences
many other jobs. Second, a whole flurry of similar jobs are
affected en masse, and their combined weight leads to the
observed change in the global average.

In a batch system, a reduction of 30 seconds in the run-
time of a job has the obvious immediate (minor) effect of
allowing other waiting jobs to obtain the required resources
sooner, possibly allowing them to start earlier by up to 30
seconds. But in the context of a backfilling scheduler, a
more important effect is that a modification of 30 seconds
is enough to make the difference regarding a backfilling de-
cision: by terminating 30 seconds earlier, a slightly larger
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Figure 3: Shortening job 64,241 by 30 seconds had an effect for
more than a simulated month, causing 2,024 subsequent jobs to
start earlier or later by up to nearly 60 hours. Only these jobs are
shown. The Y-axis indicates the difference between the start time
of jobs in the original and truncated simulations (negative values
indicate jobs that started earlier due to the truncation).

window is opened, and a job that was previously consid-
ered too long to be backfilled may now fit into the available
space. This causes a modification of the schedule down the
road. Such a chain of modifications allows the effect of
one truncated job to accumulate. In our simulation, exactly
2024 jobs were affected by the truncation of the runtime of
job 64,241 (in terms of changed start time). The changes
in start time are depicted in Fig. 3, where each affected job
is represented by a single point. The rest of the schedule
remained unchanged.

According to the figure, many of the affected jobs have
almost zero difference in start time, and probably reflect the
fact that 9 processors became available 30 seconds earlier.
The bigger differences between the original and modified
schedules are focused in two areas: between days 560-570
(10 days after job 64,241), and between days 580-585 (a
month after), and reflect changes in backfilling decisions.
Nevertheless, the 8% change in the average bounded slow-
down actually stems from start-time differences associated
with a group of jobs submitted on the 581st day. This can be
seen in Fig. 4, that compares between the running averages
of the bounded slowdowns obtained by the two schedules.
(The running average at time 7' is defined to be the aver-
age of bounded slowdowns experienced by jobs that were
submitted prior to 7".) From this figure it is evident that the
major difference in overall average performance was due
to changes associated with jobs that were submitted at the
581th day, and that all the other changes (e.g. between days
560-570) had a negligible effect.

A closer inspection of the data revels that the perceived
change is due to a flurry composed of 375 similar jobs that
were submitted sequentially over a period of about 10 hours
in the 581st day (exactly one month after the truncated job
was submitted). All these jobs were submitted by user 328,
required 32 nodes, were estimated to run five minutes, and
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Figure 4: Running average of the bounded slowdown obtained by the EASY sched-
uler on the SDSC SP2 trace with/without the 30-second truncation of job 64,241.
Left: full trace. Right: zoom in on the part where start-time differences occur.

ran for about one to two minutes; this is the biggest flurry
shown in the right of Fig. 8. The running average of the
bounded slowdown of the original and the “truncated” runs
were quite similar when the first job of this flurry was sub-
mitted (about 1% difference). By the time the last job of the
flurry was submitted, the difference was as high as 9%.

Fig. 5 shows the start-time differences associated with
the jobs of the flurry (this is a subset of the data displayed in
Fig. 3). The jobs’ profile similarity along with the fact that
they were submitted sequentially, explains their tendency to
be effected in the same way by changes to the schedule (in
terms of wait time). Note that the effect of shortening the
wait time of a job with runtime of around one minute by 30
hours is a reduction of 1800 in its bounded slowdown. This
is a huge figure compared to the average bounded slowdown
of the entire trace (less than 90), a fact that explains the
considerable difference between the slowdown averages of
the truncated and original runs.

2.4 Explaining the Sensitivity

Truncating the runtime of job 64,241 (which was sub-
mitted 30 days before the flurry) is only one of many triv-
ial modifications we have identified that resulted in a sig-
nificant change in the average bounded slowdown. These
modifications may involve more than one job, and may be
applied to jobs with different runtimes, different runtime es-
timates, and different sizes. However, all these modifica-
tions have an effect only when the flurry identified above is
scheduled. No other flurry in this log displayed this type of
sensitivity. In particular, similar modifications in the neigh-
borhood of the huge flurry identified at the beginning of the
log (see Fig. 7) didn’t produce similar effects, even though

job submission time [hour of day]

Figure 5: Start-time differences of the spec-
ified flurry jobs by user 328 (X-axis denotes
hours on that day).

this flurry is an order of magnitude bigger than the flurry
above (in terms of the number of jobs composing it).

The reason that the 375-job flurry is so sensitive is that
it induces a very high process-load on the system. The pro-
cess load at time 7' is defined to be the total number of run-
ning or waiting processes (not jobs) that are present in the
system at that time instant, divided by the size of the ma-
chine. For example, if a machine with 10 nodes is currently
running 8 processes (leaving 2 nodes idle), while two jobs
of size 6 are waiting in the queue, then its process load is
(84+6+6) /10 = 2. The left of Fig. 6 displays the evo-
lution of the process load associated with the SDSC SP2
trace. The unequivocal peak in the weekly-average line oc-
curs in the week that contains the 581st day. The right of
Fig. 6 shows that this is also reflected in the state of the
waiting-queue.

We note in passing that the long-term average process
load grows continuously across the trace. This explains the
growth trend of the average bounded slowdown (as seen in
the left of Fig. 4). It is tolerated by the users because the
majority of the jobs still enjoy a fairly reasonable quality of
service, as indicated by the bounded slowdown median of
the SDSC SP2 trace which is 1.8.

Finally, it should be noted that the effect described above
depends on the existence of the flurry, but not only on it. It
also depends on the metric being used. When measuring the
actual response time, for example, the difference caused by
the flurry jobs is not significant enough to change the over-
all average, because the average response time is dominated
by long jobs [9]. By contrast, the average slowdown is dom-
inated by short jobs (that typically have higher slowdowns),
so a flurry of short jobs may have a large effect.
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Figure 6: Evolution of the SDSC SP2 process load and the waiting-queue length when simulating EASY on the original trace.

Installation Abbrev. | Machine | Start End |CPUs| Jobs

Los Alamos National Lab | LANL [ CM-5 Oct 94 (Sep 96| 1,024|201,387
San Diego Supercomp. Ctr | SDSC | Paragon [Jan 95|Dec 96| 400|115,595
Cornell Theory Ctr. CTC |sP2 Jul 96[May 97| 512| 79,302
San Diego Supercomp. Ctr. | SDSC | SP2 May 98 |Apr 00| 128| 73,496
San Diego Supercomp. Ctr. | SDSC | Blue Apr 00 |Dec 02| 1,152]250,440
Utrecht Univ. DAS Feb 03 [Dec 03 64| 33,795

Table 1: Job logs used in the study.

3 The Phenomenon of Workload Flurries

Having seen the effect that workload flurries may have
on performance evaluations, we now turn to the phe-
nomenon of workload flurries themselves. We define a
workload flurry to be a pattern of activity with the following
characteristics:

1. it causes a level of activity that is significantly higher
than usual, thus dominating the workload,

2. itexists for a limited period of time,

3. it significantly changes the distributions of workload
attributes, and

4. itis caused by a single user.

The name “workload flurry” derives from the first and sec-
ond attributes, and from the fact that the items constituting
the flurry are typically lightweight, because otherwise the
system would be overwhelmed by their numbers.

The above definition is derived from observations of
such phenomena in the long-term workloads experienced by
large-scale production parallel supercomputers, as demon-
strated now. However, we believe that the phenomenon of
workload flurries is much more wide spread, and indeed we
have also found such flurries in other system types [23].

Workload data from several large-scale parallel super-
computers is available in the Parallel Workloads Archive
[19]. We use data (including job arrivals, runtimes, sizes,
etc.) from six different installations as summarized in Ta-
ble 1. Dozens of research papers have used these and a
few other logs as the basis of their evaluations of schedul-
ing mechanisms, oblivious to the fact they contain flurries
that might significantly distort the results.

Fig. 7 shows the job arrival rate at the granularity of
weeks. In all six logs, large flurries are observed. They
range in size from double the average activity to 10 times
the average activity, are caused by a single user, and extend
from a few days to several weeks. The flurries in the CTC
log and the Blue Horizon log seem similar to normal fluctu-
ations, but nevertheless turn out to have an important effect
(at least for CTC), as shown in Section 4.

It should be noted that this dataset includes all the long
logs in the Parallel Workloads Archive. Flurries were not
observed in the shorter logs, including the NASA Ames
iPSC/860 (3 months), the KTH SP2 (11 months), the LLNL
T3D (4 months), and the LANL Origin 2000 Cluster (5
months). Indeed, periods several months long with no flurry
occur also in the six logs that do include flurries.

Fig. 7 shows an especially prominent flurry in the SDSC
SP2 data. But this is not the flurry that caused the instability
described in Section 2. Rather, that flurry is a process flurry,
i.e. itincludes very many processes but not so many jobs (on
parallel supercomputers a job can be composed of dozens
of processes). Fig. 8 illustrates the weekly process arrival
rate on two of the machines, showing that process flurries
do not necessarily correspond to job flurries. In fact, what
exactly constitutes a flurry depends on the context in which
the question is asked. The ‘“high level of activity” (men-
tioned as part of the definition of flurries) can in principle
also be defined in terms of memory usage, disk operations,
or network bandwidth consumed.

The statistical nature of the observed flurries is explored
in Fig. 9 (representative for other logs as well). This shows
the joint distribution of two major attributes of parallel jobs:
the number of processors they use, and their runtime. The
flurries tend to correspond to specific locations in these scat-
ter plots, indicating that they are largely composed of jobs
with fixed characteristics. In particular, the jobs compos-
ing the flurries identified here tend to be small, using few
processors and/or running for a relatively short time, as wit-
nessed by the fact that they concentrate near the axes (note
that both axes use a logarithmic scale).
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Figure 7: Job arrivals per week on six large-scale parallel machines. All exhibit flurries of activity due to single users.
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Figure 10: Simulation of EASY backfilling on
CTC. Flurries tend to be sensitive to exact sim-
ulation conditions, leading to instabilities. Sim-
ulations using a cleaned log are smoother.

4 Impact of Flurries on System Evaluation

As we’ve seen, simulations of parallel job scheduling
can be extremely sensitive to the exact workload conditions.
This may also happen in normal evaluations, without any
targeted modifications such as the truncation of job 64,241
as described above.

An example is given in Fig. 10, using the CTC work-
load trace. This is again a simulation of the performance
of EASY backfilling, this time showing how it depends on
the system’s offered load (i.e. the fraction of the machine’s
capacity that is used). The way to create different offered
load conditions is to multiply the job interarrival times by
a constant. For example, if the original offered load is p,
multiplying all arrival times by a factor of p/0.8 will change
the offered load to 0.8. Naturally, this causes the produced
schedule to change, as the space available for backfilling is
changed. As Fig. 10 shows, such changes to the schedule
cause large fluctuations in the bounded slowdown results
when using the raw log. It would be ludicrous to take such
effects at face value, and claim that, say, the expected per-
formance at a load of 77% is much better than at a load of
76%. In fact, these fluctuations are again examples of am-
plifications by a flurry: if the 2000-job flurry of activity by
user 135 shown in Fig. 7 is removed (this is 2.5% of the to-
tal of 78,500 jobs in the log) the result becomes a smooth
curve similar to those produced in queueing analysis.

Given that results such as these are hard to predict and
correlate with the modifications used to change the offered
load, they can also sway the results of evaluations. An ex-
ample is given in Fig. 11. This shows a study comparing
EASY backfilling with conservative backfilling (a version
in which reservations are made for all skipped jobs, rather
than only for the first one [18]). The study in question dealt
with the effect that the accuracy of user runtime estimates
have on the performance of the two backfilling schemes [9].
The results shown in Fig. 11 (left) were obtained by simu-
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Figure 11: Comparison of EASY and conservative backfilling, using the CTC
log and accurate user runtime estimates. Left: using the complete log leads to
inconsistent results. Right: removing the user 135 flurry leads to consistent results
showing conservative backfilling is preferable for this scenario.

lating the CTC workload using accurate runtime estimates,
rather than real user estimates. The results were inconsis-
tent, showing that conservative backfilling produce higher
slowdown values for an offered load of 85% but lower val-
ues for 90% and 95%. This inconsistency was traced to the
same flurry identified above: rerunning the simulations on a
modified workload where the flurry was removed led to the
cleaner results shown on the right.

However, the results still seem not to be statistically sig-
nificant as the 90% confidence intervals (computed using
the batch means approach) still overlap. We therefore per-
formed a more sophisticated analysis of these results, us-
ing the common random numbers?® variance reduction tech-
nique [15]. In this analysis, we first compute the difference
in slowdowns between the two schedulers on a per-job ba-
sis, which is possible because we are using the same work-
load trace. We then compute confidence intervals on these
differences using the batch means approach. This shows
that the flurry indeed makes a big difference in the quality
of the results. When it is present, we cannot say anything
definite for most offered loads, as the confidence intervals
for the difference include 0. When it is removed, the advan-
tage of conservative over EASY is clear across the whole
range of offered loads.

A third example is given in Fig. 12. This is again part of
the study of the effect of user runtime estimates, this time
by randomly shuffling the estimates in the log among the
jobs [22]. As a result, the average bounded slowdown is
different in each run. The figure shows the histogram of
these averages over 2000 runs. When flurries are present,
the standard deviation is larger, thereby enlarging the confi-
dence intervals characterizing the result.

3The name is somewhat of a misnomer in this case, as we use a logged
workload rather than generating it using a random number generator.
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Figure 12: With randomization, simulation results become non-deterministic. Flurries make them spread out more, reducing the accuracy

with which results can be reported.
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Figure 13: Weekly arrival pattern on 16 paral-
lel computers, showing abnormal spike on Sat-
urday on the DAS-cluster.

5 Generalizing

The focus of this paper is the instability induced by flur-
ries on the process of parallel systems evaluation. However,
this phenomenon has a broader effect that transcends both
the domain of performance evaluation through simulation,
and the supercomputers domain.

First, the fact flurries have statistical properties that are
different from the “normal” background distributions (Fig.
9) has significant implication on workload modeling. A
simple example that demonstrates this is given in Fig. 13,
which shows the weekly cycle of all 16 logs available
through the Parallel Workload Archive [19]. Naturally,
more work is being done on weekdays than on weekends.
In fact, this is also true within the DAS cluster log, with the
single exception of 4,297 jobs submitted by user 26 on Sat-
urday Aug 16 (the major part of the DAS flurry shown in
Fig. 7). Indeed, when deleting this flurry, the weekly cycle
of the DAS cluster becomes similar to that of the other logs.
Obviously, it is erroneous to base a workload model that
takes into account the weekly cycle on the DAS-cluster raw
log, as in all Saturdays but one the load is relatively low.
Many example and further discussion about the dire impact
of flurries on workload modeling can be found in [23, 11].

Figure 14: A flurry in the sessions on a
Unix server diverts from users’ normal
working patterns.

Figure 15: Flurries of activity on an
authentication server are two order of
magnitude bigger than the average.

Second, flurries are not unique to parallel supercomput-
ers. Once we became aware of the phenomenon and began
to look for it, it was rather easy to find it in other systems.
For example, a large flurry was observed in the session log
for March 2004 of a Unix server used by students (Fig. 14).
This turned out to be the result of ftp’ing a large directory
structure by a certain student one afternoon; the (MS Win-
dows) implementation automatically opened a new ftp ses-
sion for each directory, and this was logged as a distinct
user session. Obviously, this data does not represent normal
user sessions, and would cause misleading results if used as
the basis of an attempt to optimize for interactive user ses-
sions. Another example is the activity on our departmental
authentication server (Fig. 15). In this case data covering
a long period was available, and two distinct flurries were
observed. These were traced to a bug in Windows, where
an authentication failure led to an infinite loop of retries.*.

An important generalization of flurries replaces the
source component of their definition: instead of being work

“Indeed, it is possible that some of the flurries on supercomputers are
also the result of runaway scripts rather than being intentional. This does
not detract from the importance of the phenomenon. On the contrary, sit-
uations in which flurries are unintentional add motivation to the need to
identify them before using the workload as representative of normal work.
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Figure 16: Activity on a departmental NetApp filer.

generated by a single user, we can consider work generated
by a singular event. Two examples are shown in the file
server data of Fig. 16. The first high-load event, in Septem-
ber 2002, is attributed to a massive copying due to a hard-
ware upgrade. The second, during September to December
2003, is attributed to a bug in a new release of the GNU
C library’ [21]. Installing the new version is the event that
triggered this flurry of activity, and fixing it ended the flurry.
There are many accounts of flurry-like events on the In-
ternet, provided we generalize the notion of source from a
single user to some singular event that attracts many users
(but still a small subset of all Internet users, and for a lim-
ited time). For example, new releases of software by Mi-
crosoft have caused the so called “midnight madness” phe-
nomenon, where users flocking to download the new ver-
sion (typically released at midnight) saturate the network
and overwhelm the servers [20]. Other examples include
the surge of activity on CNN’s servers on September 11,
2001, and the usage of sites set up especially to cover sport-
ing events such as the Olympic games or the World Cup fi-
nals [3]. All of these events are singular, and lead to unique
traffic patterns. We claim that it would be wrong to use
workload data including such singular events to analyze the
performance of web servers under normal conditions, just
as it would be wrong to use normal data for an evaluation
of how systems would behave under unique conditions. Of
course, in these particular cases, high-load conditions may
be more important and meaningful than normal conditions;
if this is the case, they should be the focus of study rather
than being eliminated as suggested below. For example, Ari
et al. model such activity, which they call “flash crowds”,
with the aim of evaluating schemes to survive them [2].
Targeted attacks on specific servers also qualify as flur-
ries. In many cases, the nature of the attack is to flood the
server and overwhelm it with a load that is much higher
than its capacity. This load is generated by a small group

SThe bug is that the d_off field in the dirent structure isn’t maintained
correctly by the auto-mount daemon. Specifically, the 64-bit offset is either
0 or a garbage value. When using a 32-bit file system interface (like the
libc readdir routine), getdents verifies that only 32 bits are actually used,
and therefore fails if the garbage contains more bits. In trying to handle this
error it attempts to seek to the beginning of the erroneous entry, identified
using the offset of the previous one. But this is also a garbage value. And if
it is 0, we end up with an endless loop of repeatedly reading the first entry,
which is what caused the surge of activity seen in Fig. 16.

of machines (relative to the whole Internet), and lasts for a
limited, well-defined time. In this case, an analysis of the
attack workload patterns is not only useful for evaluation of
servers, but also as a tool in identifying such attacks [4].

6 Discussion and Conclusions

Workload characterization and modeling have been ad-
vocated and practiced for many years [12, 1, 5]. This is
typically done by collecting workload traces, and creating a
statistical model based on fitting the distributions of work-
load attributes [15]. But such an approach is questionable
if the data is not stationary, as seems to be the case in the
context of parallel supercomputers. For example, Chiang
et al. analyze six months of data from the NCSA Origin
2000 machine, and find that their load conditions may be
quite different from each other [6]. We identify flurries as a
specific type of deviations from stationarity that have to be
taken into account when creating a workload model.

We suggest that the flurries phenomenon cannot be ig-
nored, as they might lead to large effects on workload
modeling and on performance evaluations using real work-
loads. Instead, the workload needs to be separated into
“normal” workload and “flurries”. Modeling and evaluation
of normal workloads can then be performed using current
methodologies. This may be expected to lead to reliable
and consistent results that are applicable most of the time
(during which flurries are not present). Comparing evalua-
tion results using the cleaned log against those based on the
raw log will identify whether the removed flurries actually
have a significant effect in the specific case being studied.

The main justification for removing flurries steams from
the fact they are rare and unique: Using a workload with
a flurry in effect emphasizes the rare and unique event at
the expense of normal conditions. Thus leaving the flurry
in is actually the unjustifiable approach. To argue for eval-
uations based on workloads with flurries, one must argue
that the activity of a specific user during a short time should
indeed dominate the evaluation results. Also, one must be
satisfied with results that may change considerably if the
span of time covered by the evaluation is shifted such that
the flurry happens to be excluded.

The question is then how to identify and remove the flur-
ries. The methodology we have used is to plot activity lev-
els as a function of time. In the case of parallel jobs, this
means job or process arrivals per unit time. In other con-
texts, other workload attributes would be appropriate. For
example, when analyzing Internet traffic one can tabulate
packets and flows; for storage systems, one can look at I/O
operations and at bytes transferred.

Once a period of time with exceptionally heavy load is
identified, this load should be checked for uniformity and
source. The flurries we have identified were all composed of



numerous repetitions of the same type of work. Identifying
this is the key for removing the flurry from the workload, as
the combination of the time frame and the flurry’s specific
attributes often provide an effective filter. As finding flur-
ries is not trivial, this information should be shared together
with the original data. In other words, when workload data
is made available, it should be accompanied by all the ac-
cumulated knowledge regarding problems with its use, and
specifically, with information regarding flurries that occur
in it. As a first step, we have added our data to the Paral-
lel Workloads Archive [19], from which our original data
comes, and which is used by many researchers for numer-
ous studies of parallel job scheduling.

We view this as a first step because, somewhat surpris-
ingly, computer systems analysts rarely verify the integrity
of the data on which they rely for their analysis, and the
overwhelmingly common case is to use the data “as is” (e.g.
consider all the papers that fit distribution against log files
without even considering whether some sanitation is in or-
der [11]). This is in disagreement with what is routinely
done in every statistical analysis, where data is throughly
validated, outliers are removed when necessary, etc. Rare
studies that do attempt to sanitize, tend to have a “local” or
“specific” nature, targeting a single attribute or concept in-
stead of providing a generalization like we do in this paper.
For example, in an attempt to model the daily cycle of the
jobs submittal process, Cirne and Berman clustered days,
and excluded clusters populated by only one day from par-
ticipating in the evaluation [7] . The flurries phenomenon
suggests this approach is problematic because (1) “normal”
jobs are also needlessly excluded, and (2) flurries may span
more than one day and thus be erroneously included.

Of course, just eliminating flurries is also not a good so-
lution, as flurries do in fact occur. An open question is how
to model or evaluate the effect of the flurries on a system
designed and optimized for the more common non-flurry
workload. An obvious first step is to use specific flurries
that occur in recorded workloads and study their effect. But
it is doubtful whether this can predict the effect of other
potential flurries. Important future work is therefore to de-
velop methods to extend and generalize the results obtained
with specific flurries, and try to derive bounds on the effects
of other potential flurries.

To summarize, it is extremely important to use real data
regarding the workload on computer systems. But it is
equally important to ensure that this is high-quality and
representative data. Using measured workloads indiscrim-
inately risks the introduction of unknown anomalies that
may lead to unknown effects. Workload flurries are such
an anomaly, and should be handled with care.
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