The Murky Issue of Changing Process ldentity:
Revising “Setuid Demystified”

Dan Tsafrif DilmaDaSilvd David Wagnet

TIBM T. J. Watson Research Center °University of California at Berkeley
P. O. Box 218 387 Soda Hall
Yorktown Heights, NY 10598 Berkeley, CA 94720
{dants, dilmasilva} @us.ibm.com daw@cs.berkeley.edu
Abstract

Dropping unneeded process privileges promotes secuadtysmotoriously error-prone due to con-
fusing setid system calls with unclear semantics and subtle portglidsues. To make things worse,
existing recipes to accomplish the task are lacking, rélatanuals can be misleading, and the associated
kernel subsystem might contain bugs. We therefore prodlaégnsystem as untrustworthy when it comes
to the subject matter, and suggest a defensive easy-t@lugma that addresses all concerns.

1 Introduction

Whenever you run a program, it assumes your identity and god It all your power: whatever you're
allowed to do, it too is allowed. This includes deleting ydilgs, killing your other programs, changing
your password, retrieving your mail, etc. Occasionallyy yeed to write programs that enhance the power
of others. Consider, for example, a Mahjongg game that miaisita high-score file. Of course, making
the file writable by all is not a very good idea if you want to eresthat no one cheats, so Mahjongg must
somehow convey to players the ability to update the file inraroled manner. In Unix systems this is done
as follows: when a game ends, if the score is high enough, daghjtemporarily assumes the identity of the
file’s owner, makes the appropriate modifications, and swidack to the identity of the original player.

Many standard utilities work this way, includimsswd andchsh (which updatéetc/passwd), xterm
(updatesutmp usage information)su (changes useryudo (acts as root)X (accesses interactive devices),
and so on. The common feature of these tools is that they kheir tteal identity is of a non-privileged
user, but have the ability to assume a privileged identitenvhequired. (Note that “privileged” doesn’t
necessarily mean root; it merely means some other idertit has the power to do what the real user
can’t.) Such executables are collectively referred asutdgirograms”, because (1) they must be explicitly
associated with a “setuid bit” (through tlmamod command), and (2) they pull off the identity juggling
trick through the use of set system callsgetuid(2), setreuid(2), and all their friends).

There’s another, often overlooked, type of programs thatidntity juggling but donot have an asso-
ciated setuid bit. These start off as root processes andatisd system calls to change their identity to
that of an ordinary non-privileged user. Examples inclddedgin program, thecron deemon (which runs
user tasks at a specified time), deemons providing servieaote users by assuming their identisghd,
telnetd, nfs, etc.), and various mail server components.

Both types of programs share a similar philosophy: in ordeetluce the chances of their extra powers
being abused, they attempt to obey the principle of leasilgge, which states that “every program and

every user of the system should operate using the least pavidéges necessary to complete the jdb”|[16].
For setuid programs this translates to

1. minimizing the number and duration of the time periods hictv the program temporarily assumes
the privileged identity, in order to reduce the negativeefthat programming mistakes might have
(e.g., mistakenly removing a file as root can have far grewgative implications than doing it when
the non-privileged identity is in effect), and

2. permanently giving up the ability to assume the privitbgkentity as soon as it's no longer needed, so
that if an attacker gains control (e.g., through a bufferte® vulnerability), he can't exploit those
privileges.

The principle of least privilege is a simple and sensible.riut when it comes to identity-changing
programs (in the immortal words of The Esselx [7] or anybody wber tried to lose weight[14]) it's easier
said than done. Here are a few quotes that may explain whatitsast as hard as doing a diet: Chen et al.
said that “for historical reasons, the uid-setting systaits@re poorly designed, insufficiently documented,
and widely misunderstood” and that the associated manaedssften incomplete or even wron@’ [2]. Dean
and Hu observed that “the setuid family of system calls isits rats nest; on different Unix and Unix-like
systems, system calls of the same name and arguments cadliffierent semantics, including the possibility
of silent failures” [3]. Torek and Dik concluded that “mangars after the inception of setuid programs,
how to write them is still not well understood by the majoritypeople who write them[17]. All these
deficiencies have made the setuid mechanism the source gfsaaurity vulnerabilities.

It has been more than 30 years since Dennis Ritchie intradthes setuid mechanism_[15], and more
than 20 years since people started publishing papers abautchcorrectly write setuid programs| [1]. The
fact that this article has something new to say serves as fantumate testament that the topic is not yet
resolved. Our goal in this paper is to provide the equivatéatmagical diet pill that effortlessly makes you
slim. (Or at least lay the foundations for this magic.) Sfieaily, we design and implement an intuitive
change-identity algorithm that abstracts away the marflisit confusing details, operating system specific
behavior, and portability issues. We build on and extendatherithm proposed by Chen et &ll [2], which
neglected to factor in the role that supplementary grougg ol forming an identity. Our code is publicly
available[18]. It was extensively tested on Linux 2.6.2&dBSD 7.0-STABLE, OpenSolaris, and AlX 5.3.
We warn that, given the history of subtle pitfalls in thesggtsyscalls, it may be prudent for developers to
avoid relying upon our algorithm until it has been subjeataceful review by others.

2 User Identity vs. Process Identity

Before attempting to securely switch identities, we needdfine what the term “identity” means. In this
context, we found it productive to make a distinction betwégo types of identities: that of a user, and
that of a process. The user’s credentials include the usduitl), the user’s primary group (gid), and an
additional array of supplementary groups (sups). Coltebtj they determine which system resources the
user can access. In particular, a zero uid is associatedhvetsuperuser (root) who can access all resources.
We define thaicred_t type to represent a user by aggregating these three fieltts|@gs:

t ypedef struct suppl enentary_groups {
gid_t =list; // sorted ascending, no duplicates
i nt size; // nunber of entries in 'list’

} sups_t;

t ypedef struct user_credentials {
uid t uid;

gid t gid;
sups_t sups;
} ucred_t;

Things are a bit more complicated when it comes to the cooredipg process credentials. Each process
has three user IDs: the real (ruid), effective (euid), angddsuid). The real uid identifies the “owner” of
the process, which is typically the executable’s invokene Effective uid represents the identity in effect,
namely, the one used by the OS (operating system) for mossaatecisions. The saved uid stores some
previous user ID, so that it can be restored (copied to the) eisome later time with the help of said
system calls. Similarly, a process has three group IDs;, egdl, and sgid. We define thpered_t type to
encapsulate the credentials of a process:

typedef struct user_ids { uid_t r, e, s; } uids_t;
typedef struct group_ids { gid_t r, e, s; } gids_t;

typedef struct process_credentials {
uids_t uids; // uids.r = ruid, uids.e
gids_t gids; /1 gids.r =rgid, gids.e
sups_t sups;

} pcred_t;

sui d
sgid

euid, uids.s
egid, gids.s

Supplementary groups can be queried with the help of#igroups system call. The ruid, euid, rgid, and
egid of a process can be retrieved wgistuid, geteuid, getgid, andgetegid, respectively. The ways to find
out the values of suid and sgid are OS-specific.

In Linux, each process has also an fsuid and an fsgid, whechsed for access control to the filesystem.
Normally, these are equal to the euid and egid, respectivalgss they are explicitly changed[11]. As this
rarely used feature is Linux-specific, it is not includedhe Bbove data structures. To ensure correctness,
our algorithm never manipulates the fsuid or fsgid, engutirat (if programs rely only upon our interface
for manipulating privileges) the fsuid and fsgid will alwsgnatch the euid and egid.

The benefit of differentiating between user and procesdittenis that the former is more convenient
to work with, easier to understand, better captures theepéiom of programmers regarding identity, and
typically is all that is needed for programmers to specifyatvkind of an identity they require. In other
words, the notions of real, effective, and saved IDs are mgirtant in their own right; rather, they are
simply the technical means by which identity change is maaksible. Note, however, that “user” isn't
an abstraction that is represented by any kernel primitive:kernel doesn’t deal with users; it deals with
processes. It is therefore the job of our algorithm to iraélynuse pcred_t and provide the appropriate
mappings.

3 Rules of Identity Juggling

Identity Propagation and Split Personalities The second thing one has to consider when attempting to
correctly switch identities is the manner by which procesadially get their identity. When a useik logs
in, thelogin program forks a procesB and sets things up such that (@)s three uids holdik’s uid, (2)
P’s three gids holdik’s primary group, and (3P’s supplementary array is populated with the gids of the
groups to whiclrik belongs. The process credentials are then inherited alossThey are also inherited
acrossexec, unless the corresponding executabldnas its setuid bit set, in which case the effective and
saved uids are set to be that 8% owner (but the real uid remains unchanged). Likewisdy is setgid,
then the saved and effective groups of the new process dgnadwith £’s group.

Conversely, the supplementary arrayalsvays inherited as is, even iE’s setuid/setgid bits are set.
Notice that this can lead to a bizarre situation wheris running with a split personality: the effective user

3

and group are ofs’'s owner, whereas the supplementary groups arg’sfinvoker. This isn’t necessarily
bad (and in fact constitutes the typical case), but it's irtgtt to understand that this is what goes on.

User ID Juggling Since access control is based on the effective user ID, agsogains privilege by
assigning a privileged user ID to its euid, and drops prgel®y removing it. To drop privilege temporarily,
a process removes the privileged user ID from its euid bugsti in its saved ID; later, the process may
restore privilege by copying this value back to the euid. fapdorivilege permanently, a process removes
the privileged user ID from all three uids. Thereafter, thecess can never restore privilege.

Roughly speaking, there typically exists some technicafl fea a process to copy the value from one
of its 3 uids to another, and thus perform the uid juggling as yust described. If the process is non-root
(uid£0), then that's all it can do (juggle back and forth betweenrtral and saved uids). Root, on the other
hand, can assume any identity.

Primary Group Juggling The rules of changing gids are identical, with the exceptita egid=0 doesn’t
convey any special privileges: only if euid=0 can the precst arbitrary gids.

Supplementary Groups Juggling The rules for changing supplementary groups are much simila
process has euid=0, it can change them however it likes ghrtlue setgroups system call. Otherwise,
the process is forbidden from usisgtgroups, and is stuck with the current setting. The implications for
setuid programs are interesting. If the setuid programgipopileges (assuming the identity of its invoker),
then the supplementary groups will already be set appiapyiaOn the other hand, until that happens, the
program will have a split personality. A setuid-root pragraan set the supplementary groups to match its
privileged identity, if it chooses. However, non-root sétprograms cannot: they will suffer from a split
personality for as long as they maintain their privilegeehitty, and there’s simply no way around it. As a
result, non-root setuid programs might run with extra peiyes that their creators did not anticipate.

Messiness of Setuid System CallsSeveral standard seédl system calls allow programmers to manipulate
the real, effective, and saved IDs, in various ways. To destnate their problematic semantics, we focus
on only setuid(2) through an example of a vulnerability found in a mainstreawgmm. Googling the
words “setuid” with “vulnerability” or “bug” immediately bngs up many examples that are suitable for this
purpose. But to also demonstrate the prevalence of thegmble attempted to find a new vulnerability.
Indeed, the first program we examined contained one.

Exim is a popular mail server that is used by default in many syst&h Figure[l shows the function
exim uses to drop privileges permanently, taken from the lateistion available at the time of this writing
[6]. It implicitly assumes that callingetuid will update all three uids, so that all privileges are pereraly
relinquished. This assumption indeed holds for some OSgsFeeeBSD. But if the effective ID is nonzero
(which may be the case according to the associated docutioatthen the assumption doesn't hold for
Linux, Solaris, and AlX, as the semanticssgftuid under these circumstances dictate that only the euid will
be updated, leaving the ruid and suid unchanged. Consdyuérmxim is compromised, the attacker can
restoreexim’s special privileges and, e.g., obtain uncontrolled ast¢esll mail in the system.

While this particular vulnerability isn’t nearly as dangas as some previously discovered setuid bugs,
it does successfully highlight the problematic systemloaliavior, which differs not only between OSes but
also according to the current identity.

This function sets a new uid and gid permanently, optionally calling
initgroups() to set auxiliary groups. There are some special cases when
running Eximin unprivileged nodes. In these situations the effective

* uid will not be root; [...]

* F X *

*/
void eximsetugid(uid_t uid, gid_t gid, BOOL igflag, uschar *nsQ)
{
uid_t euid = geteuid();
gid t egid = getegid();
if (euid == root_uid || euid !'=uid || egid !=gid || igflag) {
if (igflag) {
/+* do sone suppl ementary groups handling here */
}
if (setgid(gid) <0 || setuid(uid) < 0) {
[+ PANICl */
}
}
}

Figure 1:Exim's code to permanently change identity contains a vulnerability.

4 Safely Dropping Privileges

Equipped with a good understanding of the subject, we go alevelop an algorithm to safely drop priv-
ileges permanently. We do so in a top-down manner, and makefuthe ucred_t and pcred_t types as
defined above. Figufd 2 shows the algorithm. Its input pat@nspecifies the target identity; the algorithm
guarantees to permanently switch to the target identitglearly indicate failure. The algorithm works by
first changing the supplementary groups, then changingitise gnd changing the uids (in that order), and
finally checking that the current identity matches the thigentity.

Error Handling There are two ways to indicate failure, depending how therasd2O_CHK andDO_SYS
are defined:

#i fdef LIVI NG ON_THE_EDGE

define DO SYS(call) if((call) ==-1) return -1 /x* do systemcall */
define DO CHK(expr) if(! (expr)) return -1 /+* do bool ean check =/
#el se
define DO SYS(call) if((call) ==-1) abort() /+* do system call */
define DO CHK(expr) if(! (expr)) abort() [+ do bool ean check x/
#endi f

But while reporting failure through return values is possilwe advise against it, as it might leave the
identity in an inconsistent state. Thus, when an identitgngje fails in the middle, programmers should
either abort, or really know what they’re doing.

Input Check Theucred_is_sane function checks the validity of the input parameter. It iplemented as
follows:

I ong nm = sysconf (_SC_NGROUPS_MAX) ;

return (nm>= 0) && (nm >= uc->sups. si ze) && (uc->sups.size >= 0) &&
uc->uid !'= (uid_t)-1 &&
uc->gid !'= (gid_t)-1;

int drop_privil eges_permanentl|ly(const ucred_t *uc /*target identity*/)

{

uid t u = uc->uid;
gid_t g = uc->gid;
pcred_t pc;

DO _CHK(ucred_is_sane(uc));
DO _SYS(set_sups(&uc->sups));
DO SYS(set_gids(g/*real*/, g/ +effectivex/, g/*savedx/));
DO _SYS(set_uids(u/=*real=*/, ul/+effectivex/, ul/=*savedx/));

DO _SYS(get_pcred(&pc));
DO CHK(eql _sups (&pc.sups , &uc->sups));
DOCHK(g == pc.gids.r &% g == pc.gids.e && g == pc.gids.s);
DO CHK(u == pc.uids.r &% u == pc.uids.e && u == pc.uids.s);
free(pc.sups.list);

#if defined(__linux_)

DO SYS(get fs_ids(&u, &))
DO CHK(u == uc->uid && g == uc->gid);
#endi f

return 0; /* success */

Figure 2:Permanently switching identity, and verifying the correctness of the switch.

The maximal size of the supplementary groups may differ betwsystems, but can be queried in a standard
way. We also check that the user and group IDs aren't -1, lsectis has special meaning for severakisiet
system calls (“ignore”).

Verification The first chunk of code in Figulld 2 is responsible for settimg supplementary groups to
uc—sups, the three gids tg, and the three uids to. Setting the uids last is important, because afterwards
the process might lose its privilege to change its groupstingesupplementary groups before primary
groups is also important, for reasons to become clear latefTbe reminder of the function verifies that
all of these operations successfully changed our credentidhe desired identity. This policy is required
in order to prevent mistakes in the face of the poorly desigsekid interface (e.g., this policy would
have prevented thexim vulnerability), to protect against possible related kelmms [2] or noncompliant
behavior (see below), and to defend against possible fleneel changes. These reasons, combined with
the fact that having the correct identity is crucial in terofssecurity, provide good motivation for our
untrusting approach.

Querying Process Identity The get_pcred function we implement fills the memory pointed to by the
pcred_t pointer it gets. We get the ruid, rgid, euid, and egid with tiedp of the standard system calls
getuid, getgid, geteuid, and getegid, respectively. Unfortunately, there’s no standard wayetieve
saved IDs, so we use whatever facility the OS makes avajlablshown in FigurEl3. Thgetresuid and
getresgid nonstandard system calls are the easiest to use and the oposdpamong OSes. AlXgetuidx
andgetgidx also have easy semantics, whereas with Solaris the proggamiunst resort to using Solaris’s
/proc interfacel[10].

The supplementary groups are retrieved with the help of tdredardgetgroups system call. In order
to allow for easy comparison of supplementary arrays, wenatize the array by sorting it and by removing
duplicate entries, if exist. The arraynslloced, and should therefore lireed later on.

int get_saved_ids(uid_t *suid, gid_t =sgid)
{
#if defined(__linux_) || defined(__HPUX) [] \
defined(__FreeBSD_) || defined(__OpenBSD__) || defined(__DragonFly_)
uid_t ruid, euid,;
gid_t rgid, egid;
DO _SYS(getresuid(&uid, &euid, suid));
DO SYS(getresgid(&gid, &egid, sgid));

#el i f defined(_Al X)
DO _SYS(*suid = getuidx(lD_SAVED));
DO SYS(*sgid = getgi dx(!D_SAVED));

#elif defined(__sun__) || defined(__sun)

prcred_t p; /* prcred_t is defined by Solaris =/
int fd;

DO SYS(fd = open("/proc/self/cred", O RDONLY));
DO CHK(read(fd, &p, sizeof(p)) == sizeof(p));
DO _SYS(cl ose(fd));
*suid = p.pr_suid,

*sgid = p.pr_sgid,

#el se
error "need to inplenent, notably: _ NetBSD_ , _ _APPLE , _ CYGAN__"
#endi f
return O;
}

Figure 3:Getting the saved uid and gid is an OS-dependent operation.

Linux Filesystem IDs The fsuid is supposed to mirror the euid, as longeifsuid isn’t explicitly used
[L1], and the same goes for fsgid and egid. However, therdobes at least one kernel bug that violated
this invariant [2]. Therefore, in accordance to our defemsipproach, the algorithm in Figurk 2 explicitly
verifies that the fs-invariant indeed holds. As there argyetfsuid or getfsgid, our implementation of
get_fs_idsis the C equivalent of

grep Uid /proc/self/status | awk '{print $5}’ # prints fsuid
grep Gd /proc/self/status | awk '{print $5}’ # prints fsgid

Setting Uids and Gids The POSIX-standard interfaces for setting IDs are trickg;d@®pendent, and offer
no way to directly set the saved IDs. Consequemibnstandard interfaces are preferable, if they offer
superior semantics. This is the design principle undeglyinr implementation odet_uids andset_gids. The
implementation is similar in spirit to the code in Figlile 8t s complicated by the fact that non-privileged
processes are sometimes not allowed to use the preferabttaae, in which case we fallback on whatever
is available.

Specifically, all OSes that suppayetresuid (see Figur€l3) also suppagtresuid andsetresgid. These
offer the clearest and most consistent semantics, and cageleby privileged and non-privileged processes
alike. (Of course the usual restrictions for non-privildgarocesses still apply, namely, each of the three
parameters must be equal to one of the three IDs of the prydcksSolaris, only root can use the /proc
interface for setting 1D<[10], so with non-root processesnaively useseteuid andsetreuid (and their
gid counterparts) and hope for the best: the verification ipaFigure[2 will catch any discrepancies. In
AlX, setuidx and setgidx are the clearest and most expressive, and can be used byneaioa-root
processed [13]. However, AIX is very restrictive: a nontrpmcess can only change its effective IDs, so

int set_sups(const sups_t =*target_sups)

{

sups_t targetsups = xtarget_sups;

#i fdef _ _FreeBSD__
gid_t arr[targetsups.size + 1];
mencpy(arr+1, targetsups.list, targetsups.size * sizeof(gid_t));
target sups. si ze = targetsups.size + 1;
targetsups.|list arr;

targetsups. |ist[0] getegid();
#endi f
if(geteuid() ==0) { // allowed to setgroups, let’'s not take any chances
DO _SYS(setgroups(targetsups.size, targetsups.list));
}
el se {
sups_t cursups;
DO _SYS(get_sups(&cursups));
if(! eqgl _sups(&cursups, & argetsups)) // this will probably fail... :(
DO _SYS(setgroups(targetsups.size, targetsups.list));
free(cursups.list);
}
return O;
}

Figure 4: Setting supplementary groups, while trying to avoid failure of non-root processes, and accommodating
noncompliant behavior of FreeBSD.

dropping privileges permanently is impossible for nontrpmcesses; also, root processes are allowed to
set euid, euid/ruid, or euid/ruid/suid, but only to the saalee.

Supplementary Groups Caveats Recall that non-root processes are not allowed toseaddjroups. There-
fore, to avoid unnecessary failuregtgroups is only invoked if the current and target supplementary sets
are unequal, as shown in Figuie 4. (Disregard the FreeBSbkobiucode for the moment.) Additionally,
recall that after setting the supplementary groups in E@Liwe verify that this succeeded by querying the
current set of supplementary groups and checking that itleatthe desired value. In both cases the current
and target supplementary sets must be compared. But umédely, this isn't as easy as one would expect.

The POSIX standard specifies that “it is implementationrafiwhetheigetgroups also returns the
effective group ID in the grouplist array’l[9]. This seemipdparmless statement means that if the egid is in
fact found in the list returned byetgroups, there’s no way to tell whether this group is actually a membe
of the supplementary group list or not. In particular, thisreo reliable, portable way to get the current list
of supplementary groups. As a result, our code for compdhagurrent and target supplementary sets (see
egl_sups in Figure[®, which is used in Figul@ 2 and Figliie 4) assumdsthiesr match even if the current
supplementary set contains the egid and the target supplargeset doesn’t. This isn't completely safe, but
it's the best we can do, and it's certainly better than notganmg at all.

Noncompliant FreeBSD Behavior Kernel designers might be tempted to internally repredenegid as
just another entry in the supplementary array, as this careadat simplify the checking of file permissions.
Indeed, instead of separately comparing the file's groujnagél) the egid of the process and (2) its sup-
plementary array, only the latter check is required. Theesfentioned POSIX rule that allovgetgroups

to also return the egid, reflects this fact. But POSIX alsdieitly states that “setf]gid function[s] shall not

bool eql _sups(const sups_t =*cursups, const sups_t =*targetsups)

{
i nt i, j, n = targetsups->size;
i nt diff = cursups->size - targetsups->size;
gid t egid = getegid();
if(diff >1 || diff <0) return false;
for(i=0, j=0; i < n; i++, j++)
if(cursups->list[j] != targetsups->list[i]) {
if(cursups->list[j] == eqgid) i--; // skipping j
el se return fal se;
}
/1 1f reached here, we’'re sure i==targetsups->size. Now, either
/'l j==cursups->size (skipped the egid or it wasn't there), or we didn't
/1 get to the egid yet because it’'s the last entry in cursups
return j == cursups->size ||
(j+1 == cursups->size && cursups->list[j] == egid);
}

Figure 5:When comparing the current supplementary array to thetarget array, we must ignorethe egid if it' sincluded
in the former.

affect the supplementary group list in any way”[12]. Andelivise,setgroups shouldn’t affect the egid.
So such a design decision, if made, must be implemented waith ¢

The FreeBSD kernel has taken this decision, and designlagefirst entry of the supplementary array
to the egid of the process. But the implementors weren’tfahenough, or didn't care about POSIX
semantics([4]. When trying to understand why the verificatiode in Figur&l2 sometimes fails in FreeBSD,
we realized that the kernel ignores the aforementioned R@3es and makes no attempt to mask the
internal connection between egid and the supplementaay.aifhus, when changing the array through
setgroups, the egid becomes whatever happens to be the first entry afthg Likewise, when setting the
egid (e.g., througlsetegid), the first entry of the array changes accordingly, in clealation of POSIX.
The code in the beginning of Figuté 4 accommodates this mopkant behavior. Additionally, whenever
we need to set the egid, we always make sure to do it aftengékte supplementary groups, not before (see
Figurel2).

Temporarily Dropping and Restoring Privileges Our implementation also includes functions to tem-
porarily drop privileges and to restore them. They are simib Figure[R in that they accept a “target
identity” ucred_t argument, they treat supplementary groups identicallg, tary verify that the required
change has indeed occurred. When dropping privileges tearijypwe change only the euid/egid if we can
help it (hamely, if the values before the change are presdheireal or saved IDs, which means restoration
of privileges will be possible). Otherwise we attempt toygtpe current values to the saved IDs before mak-
ing the change. (Unfortunately, this will fail on AIX for nemot processes.) The algorithm that restores
privileges performs operations in the reverse order: fstaring uids, and only then restoring groups; saved
and real IDs are unaffected.

Caution! Identity is typically shared between threads of the samdiagtipn. Consequently, our code
is not safe in the presence of any kind of multithreading:coorent threads should be suspended, or else
they run the risk of executing with an inconsistent identitikewise, signals should be blocked or else the
corresponding handlers might suffer from the same defigienc

The algorithms described in this article dot take into account any capabilities system the OS might
have e.g., “POSIX capabilities” in Linux][8]. Capabilitisgstems, if used, should be handled separately.

5 Conclusion

Correctly changing identity is an elusive, OS-dependemnbrgrone, and laborious task. We therefore feel
that it is unreasonable and counterproductive to requiegyeprogrammer to invent his/her own algorithm
to do so, or to expect programmers to become an expert onpitéks. We suggest that the interests of the
community would be better served by a unified solution for agamg process privileges, and we propose
the approach outlined in this article as one possible basisuch a solution. Our code is publicly available
[18]. We welcome suggestions, bug reports, and extensions.

References

[1] M. Bishop, “How to write a setuid prograin USENIX ;login 12(1), Jan/Feb 1987.
[2] H.Chen, D. Wagner, and D. DearSeétuid demystified In 11th USENIX Security Symp., pp. 171-190, Aug 2002.

[3] D.Dean and A. J. Hu, Fixing races for fun and profit: how to usecess(2)”. In 13th USENIX Security Symp., pp. 195206,
Aug 2004.

[4] R. Ermilov, R. Watson, and B. EvangCFR] ucred.crgid”. Thread from the freebsd-current mailing list, URL
http://www.mail-archive.com/freebsd-current@freebsgimsg28642.html, Jun 2001.

[5] “Exim internet mailer. URL http://www.exim.org/. (Accessed Mar 2008).

[6] “Exim-4.69/src/exim.t Source code of Exim 4.69, URL ftp://ftp.exim.org/pubitexexim4/exim-4.69.tar.gz. (Accessed
Mar 2008).

[7] W. Linton and L. Huff, “Easier said than dohePerformed by “The Essex”. YouTube URL
http://www.youtube.com/watch?v=tgJ1ssTJtnA, Jul 198&cessed March 2008).

[8] “Man capabilities(7) — Linux man page — overview of Linux dajides”. URL http://linux.die.net/man/7/capabilities.
(Accessed Mar 2008).

[9] “Man getgroups(2) — the open group base specifications issg€&E Std 1003.1, 2004 editibnURL
http://www.opengroup.org/onlinepubs/000095399/fiorit/getgroups.html, 2004. (Accessed Mar 2008).

[10] “Man proc(4) — Solaris 10 reference manual collectionRL
http://docs.sun.com/app/docs/doc/816-5174/procet@a=view. (Accessed Mar 2008).

[11] “Man setfsuid(2) — Linux man palieURL hhttp://linux.die.net/man/2/setfsuid. (Accesdddr 2008).

[12] “Man setgid(2) — the open group base specifications issuest; fEd 1003.1, 2004 editibonURL
http://www.opengroup.org/onlinepubs/000095399/fioret/setgid.html, 2004. (Accessed Jan 2008).

[13] “Man setuidx — AlX technical reference: base operating systad extensions, volumé .2
http://publib.boulder.ibm.com/infocenter/systemgitécom.ibm.aix.basetechre f/doc/basetrf2/setuid.{thecessed Mar
2008).

[14] Nerd Gurl, “Why can't | ever achieve my goals?Yahoo! Answers URL
http://answers.yahoo.com/question/index?qid=2008048342AAQ1jbO, Jan 2008. (Accessed March 2008).

[15] D. M. Ritchie, “Protection of data file conteritsPatent number 4135240, URL
http://www.google.com/patents?vid=USPAT4135240, 813 (Accessed Mar 2008).

[16] J.H. Saltzer and M. D. Schroedefl e protection of information in computer systémpBroc. of the |EEE 63(9),
pp. 1278-1308, Sep 1975.

[17] C. Torek and C. H. Dik, Setuid mess URL http://lyarchive.net/comp/setuichess.html, Sep 1995. (Accessed March 2008).

[18] D. Tsafrir, D. Da-Silva, and D. WagnerChange process identityURL
http://www.research.ibm.com/change-process-identityttp://code.google.com/p/change-process-identity/

10

	Introduction
	User Identity vs. Process Identity
	Rules of Identity Juggling
	Safely Dropping Privileges
	Conclusion

