
Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Explicit Surface Remeshing
Vitaly Surazhsky and Craig Gotsman

Center for Graphics and Geometric Computing
Department of Computer Science

Technion—Israel Institute of Technology

Abstract
We present a new remeshing scheme based on the idea of improving mesh quality by a series of local modifications
of the mesh geometry and connectivity. Our contribution to the family of local modification techniques is an area-
based smoothing technique. Area-based smoothing allows the control of both triangle quality and vertex sampling
over the mesh, as a function of some criteria, e.g. the mesh curvature. To perform local modifications of arbitrary
genus meshes we use dynamic patch-wise parameterization. The parameterization is constructed and updated on-
the-fly as the algorithm progresses with local updates. As a post-processing stage, we introduce a new algorithm
to improve the regularity of the mesh connectivity. The algorithm is able to create an unstructured mesh with a
very small number of irregular vertices. Our remeshing scheme is robust, runs at interactive speeds and can be
applied to arbitrary complex meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction
The ubiquity of 3D models used in applications ranging from
Internet shopping and cinematography to heavy industry and
scientific visualization cannot be denied. However, most ex-
isting 3D models can hardly be called satisfactory. The root
of this problem lies mostly in the 3D model acquisition pro-
cess. Whether this is done using interactive solid modeling
software or semi-automatically using a scanning device, it
remains a tedious and error-prone procedure. Despite the re-
cent advances, e.g. [11, 17, 19], the process of simplifying
scanned models with hundreds of millions of points is pri-
marily concerned with preserving geometry and topology
and does not emphasize sampling or the quality of triangles.

Models generated by CAD software usually reflect the
regular sampling of the underlying parametric domain in-
stead of the model features. Therefore, the resulting models
are usually not sampled properly, and may contain a large
number of redundant vertices. As an attempt to fix this, CAD
software may produce a large number of badly shaped long
triangles to better approximate flat or developable regions.

As a result, most existing meshes can be considerably im-
proved in terms of their size, vertex sampling and triangle
quality. The process that corrects the given mesh geome-
try and connectivity, while providing decent fidelity, is com-
monly known as remeshing, see Figure 1. Over the years,
remeshing has become a fundamental component of the dig-
ital mesh processing field.

Highly regular meshes, both in terms of their connectivity
and geometry, are necessary for engineers performing nu-
merical computations, such as finite element analysis. These

original (8,268 vertices) remesh (9,240 vertices)

Figure 1: A remeshing example for the Venus model.

meshes are used, for instance, to calculate mechanical stress,
solve heat and flow differential equations or simulate various
processes. A high-quality mesh provides good conditioning
of the system, and minimizes numerical errors and singular-
ities that might otherwise arise. Hence, within the commu-
nity of engineers the emphasis is on the quality of the mesh
elements—mostly triangles or quads.

The computer graphics and modeling community, on the
other hand, is concerned with another aspect of remeshing.
Their focus is on the tradeoff between the visual quality of
the result, the speed of the remeshing operation, and the op-
timization of the number of polygons in order to achieve in-
teractive rendering speeds.
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1.1. Related Works
Over the last decade, an abundance of remeshing algorithms
have been proposed. One group of algorithms, e.g. [6,13,18],
is based on partitioning 3D meshes into patches, and treating
each patch separately, usually with subdivision techniques.
While these techniques yield reasonable results, they are
very sensitive to the patch structure, and the vertex sampling
is difficult to control.

More recent remeshing algorithms, e.g. [2, 12, 16] are
based on global parameterization of the original mesh, and
then a resampling of the parameter domain. Following this,
the new triangulation is “projected” back into 3D space, re-
sulting in an improved version of the original model. The
main drawback of the global parameterization methods is
the sensitivity of the result to the specific parameterization
used, and to the cut used to force models that are not iso-
morphic to a disk to be so. Embedding a non-trivial 3D
structure in the parameter plane severely distorts this struc-
ture, and important information, which is not specified ex-
plicitly, may be lost on the way. Even if the parameteriza-
tion minimizes the metric distortion of the 3D original in
some reasonable sense, it is impossible to eliminate it com-
pletely. Moreover, methods finding a global parameteriza-
tion are slow, usually involving the solution of a large set
of (sometimes nonlinear) equations. Recent progress may
accelerate the process to almost linear time even for large
meshes, using multi-resolutional approaches, e.g. [22], in-
spired by multi-grid methods together with good precondi-
tioning. Unfortunately, when dealing with extremely large
meshes, or meshes with severe isoperimetric distortion (like
sock-shaped regions) numerical precision issues may arise.
In such cases, a global parameterization is almost impossible
to perform without using multi-scale or precise arithmetic
representation of the parametric domain.

The main alternative to global parameterization is to work
directly on the surface and perform a series of local modi-
fications on the mesh. This approach is also known as the
mesh adaptation process and is the one we use in this work.
Remeshing algorithms using this approach [9, 10, 14, 15, 21,
28] usually involve computationally expensive optimizations
in 3D or more efficient but less accurate optimization in the
tangent plane. Another difficulty of this approach is that the
mesh vertices during the adaptation process must remain on
the original mesh. In Section 3.2 we discuss this problem
and present our solution.
1.2. Contribution and Overview
In this paper we present a remeshing method which we call
explicit. By explicit we mean that we operate directly on the
mesh surface and apply local modifications to it, instead of
working on some “indirect” representation of the surface,
e.g. on a global parametric domain. The components of our
remeshing algorithm are natural and straightforward ways
to improve a mesh. Our scheme is close in spirit to those
in [10, 14] performing a series of local modifications on the
mesh. However, we use local parameterization to reduce the
problem of local mesh optimizations to 2D.

Our remeshing algorithm incorporates a number of novel
techniques, each of independent interest. The central tech-
nique is the area-based mesh optimization described in Sec-
tion 3, which manipulates the areas of triangles in order to
achieve a uniform or otherwise specified vertex sampling.
A novel overlapping parameterization technique presented
in Section 4 dynamically builds a local parameterization of
the surface using a set of patches, which may overlap. This
parameterization technique allows to apply 2D mesh opti-
mization methods to 3D meshes in an efficient and precise
manner. Section 5 presents a novel regularization technique
that performs local modifications to the mesh connectivity,
resulting in a mesh whose connectivity is extremely regular.

When combined, our techniques provide an accurate and
robust remeshing algorithm that can be applied to meshes
of arbitrary genus. Our remeshing scheme is very efficient,
allowing remeshing at interactive rates for meshes of up to
tens of thousands of vertices.

2. Geometric Background
The input of our remeshing scheme is a 2-manifold (except
at boundaries) 3D mesh MO with arbitrary genus and possi-
ble holes. We consider MO to be a piecewise linear approx-
imation of a smooth surface, which is C1-continuous except
at boundaries and a set of curves specified by feature edges.
These feature edges can be provided by the user or com-
puted automatically as edges whose dihedral angle is less
than some threshold angle. More advanced feature detection
techniques [31] may also be used.

Surface reconstruction requires normal information at the
mesh vertices. If the normals at the mesh vertices are not
given, we use a method similar to [20,21] to define them. Ev-
ery vertex is assigned a normal defined as the weighted av-
erage of the normals of the faces adjacent to it. The weights
are proportional to the angles of the corresponding faces at
the vertex and sum to unity. Normals of a vertex lying on
feature edges are not the same within all its adjacent faces.
They are also defined by the weighted average of the face
normals but as if the mesh was cut along the feature edges at
the vertex.

2.1. Surface Reconstruction
We perform an estimate of the smooth surface in the vicin-
ity of a mesh triangle. This may be obtained by reconstruct-
ing an approximation of the surface using triangular cubic
Bézier patches for every face of MO. Vlachos et al. [29] pre-
sented a simple and efficient yet robust and accurate method
to construct such curved patches called PN triangles. The
triangle vertex normals together with vertex coordinates are
used to construct a PN triangle. PN triangles usually main-
tain a G1-continuous surface along adjacent triangles when
their common vertices have identical normals. The normal
of any point within a PN triangle is defined as an efficient
quadratic interpolation of the normals at the triangle vertices.
Walton and Meek [30] presented a more complex and com-
putationally expensive method to create triangular patches
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that guarantees G1-continuity on the patch boundaries. Nev-
ertheless, we use PN triangles as a good tradeoff between
accuracy and efficiency.

Given a point q inside a triangular face f = (q1,q2,q3),
the corresponding point on the surface of the PN triangle of
f as well as the normal at this point can be uniquely defined
by the barycentric coordinates of q with respect to f . The
barycentric coordinates are the triplet (b1,b2,b3) such that
b1, b2, b3 are positive and satisfy: q = b1q1 + b2q2 + b3q3.
(b1,b2,b3) are uniquely defined by:

b1 =
A(q,q2,q3)
A(q1,q2,q3)

, b2 =
A(q,q3,q1)
A(q1,q2,q3)

, b3 =
A(q,q1,q2)
A(q1,q2,q3)

,

where A is the area of a triangle given its three vertices. Note
that if A is the signed area (see (3) in Section 3.3.2), then
barycentric coordinates with respect to f are well defined
for any point in the plane but are not necessarily positive.

2.2. Controlling Fidelity
To ensure fidelity of the new mesh to the geometry of the
original mesh two error measures are used to evaluate the
distance between the two meshes. Our measures are concep-
tually similar to those of Frey and Borouchaki [10] and are
defined for a face instead of an edge. Let f = (v1,v2,v3) be a
face whose error is to be estimated. The first measure Esmth
captures the degree of smoothness and should not exceed
some threshold angle θsmth:

Esmth( f ) = max
i∈{1,2,3}

〈Nf ,Nvi〉 < cos θsmth. (1)

Nf and Nv are unit normals of f and its vertex v, respec-
tively; 〈·, ·〉 denotes the dot product. Nv is taken from the
original surface. Intuitively, Esmth describes how well f co-
incides with tangent planes of the surface at the vertices of
f . The second measure Edist captures the gap between f and
the surface:

Edist( f ) = max
i∈{1,2,3}

〈Nvi ,Nvi+1〉 < cosθdist . (2)

Vertex indices are modulo 3; θdist is a threshold angle. A
greater value of the maximal angle between the normals of
two face vertices corresponds to a more curved surface above
face f , and thus, to a bigger distance.

The beauty of these two measures is that they involve
only normal directions. In addition to the computational ef-
ficiency, being used together these two measures are also ro-
bust and accurate.

3. Remeshing
The focus of our remeshing scheme is on maximizing the
angles of all triangles of the mesh. Remeshing of the given
mesh MO is performed by a series of local modifications.
The most well-known and commonly used local modifica-
tions are edge-flip, edge-collapse, edge-split and vertex re-
location. Modifications are applied sequentially in order to
achieve desirable mesh characteristics. We apply local mod-
ifications on the new mesh M, while the original mesh MO
provides a reference to the geometry of the original mesh.

Before remeshing M is initialized to MO. To ensure fidelity
we apply a modification only if all faces created or affected
by the modification satisfy the error conditions defined in
Section 2.2.

The main stages of our remeshing scheme are as fol-
lows:

1. Adjust the number of vertices of M;
2. Apply the area-based remeshing procedure on M;
3. Regularize M using the algorithm of Section 5;
4. Apply the angle-based smoothing procedure on M.

Edge-collapse and edge-split are used to change the number
of mesh vertices. Edge-flip and vertex relocation improve the
quality of the mesh triangles. The area-based remeshing pro-
cedure is the heart of our remeshing scheme and produces
a mesh with high quality triangles and the required vertex
sampling. Another two stages improve the mesh quality fur-
ther. The regularization stage improves the regularity of the
mesh connectivity leaving only a small number of irregular
vertices. The angle-based smoothing then polishes the mesh
to obtain the optimal mesh geometry without changing its
connectivity.

We apply edge-flips if the minimal angle between all the
angles of the triangles adjacent to the edge is increased.
The area-based remeshing and the angle-based smoothing
involve the most critical and difficult operation—vertex re-
location.

3.1. Vertex Relocation
Let v be a vertex having location x(v) and whose neighbors
are v1, . . . ,vk with locations x(v1), . . . ,x(vk), respectively,
and k is the vertex degree. We want to find a new location
xnew(v) satisfying some condition, e.g. improving the angles
of the triangles incident on v. A solution to this problem that
directly finds xnew(v) in 3D usually involves solving a dif-
ficult optimization problem, which may be non-convex and
have non-linear constraints. We overcome this problem by
mapping faces incident on v into the plane and solving the
problem there. The location computed in the plane is then
brought back to the original surface.

Let S(v) be a sub-mesh of M containing only v, v1, . . .,vk
and faces incident on v. We map S(v) into the plane us-
ing a natural and simple method approximating the geodesic
polar map [23], as described, for example, by Welch and
Witkin [32] and Floater [7]. Let p, p1, . . . , pk be the posi-
tions of vertices v, v1, . . . ,vk within the resulting mapping
SP(v). p is mapped to the origin. p1, . . . , pk satisfy the fol-
lowing conditions: the distances between p and its neighbors
are the same as the corresponding distances in M, namely,
‖p− pi‖ = ‖x(v)− x(vi)‖ for 1 ≤ i ≤ k. The angles of all
triangles at p are proportional to the corresponding angles in
M and sum to 2π.

The next step is to find a new location pnew of p. A method
commonly used to move p in order to improve the angles of
the adjacent faces is Laplacian smoothing. pnew is taken to be
the average of p1, . . . , pk. Being the most efficient method,
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Laplacian smoothing has several serious drawbacks. The so-
lution is a gross approximation, and may produce inverted
(invalid) triangles. In our work, we use a method due to
Surazhsky and Gotsman [25] called weighted angle-based
smoothing. This method is simple and accurate and almost
as efficient as Laplacian smoothing.

3.2. Back to the Original Surface
After the new vertex location in the plane (pnew) has been
found, we need to find its corresponding location on the
original surface, namely, to find xnew(v). Existing remesh-
ing methods, e.g. [10, 15, 21] solve this problem by find-
ing the vertex projection onto the original surface. Project-
ing the vertex involves a computationally expensive and not
always accurate computation that without special care may
even lead to topological errors during the remeshing process.
In his pioneering work, Turk [28] introduced a technique to
keep track between meshes on different level of details of the
model to allow smooth transition between the levels. Un-
fortunately, this technique assumes that the meshes on dif-
ferent levels are static, each of them has already undergone
the remeshing process. In our case, one of the meshes (M)
is constantly changing by local modifications, and thus we
need a dynamic tracking mechanism.

First, we need to reference every vertex of M with its
exact position on the original surface. If we could assume
that M is always an oversampled version of MO, then
the above references would be sufficient to efficiently lo-
cate xnew(v). However, in a typical remeshing scenario M is
down-sampled. To be independent of the required sampling,
parameterization techniques are used.

In order to find xnew(v) precisely and efficiently, we use
a novel patch-wise parameterization technique that we call
overlapping parameterization. This technique aims to over-
come both the problems of global parameterization (see
Section 1.1) and the remeshing problems that usually arise
near the patch boundaries when parameterizing based on
mesh segmentation. Since our parameterization technique
is patch-wise, similarly to techniques based on mesh seg-
mentation, we are also able to deal with meshes of arbitrary
genus and boundaries. The construction of the overlapping
parameterization is described in Section 4.

3.2.1. The Algorithm
For every vertex v′ of M, we maintain its exact position
on the original surface as a pair ( f ,b), where f is a face
of MO and b are barycentric coordinates. A point on the
reconstructed surface is uniquely defined by b and the PN
triangle corresponding to f ; see Section 2.1.

Let f2D be the face in the mapping SP(v) containing pnew,
and bM = (b1

M,b2
M,b3

M) the barycentric coordinates of
pnew with respect to f2D. Let u1, u2, u3 be the vertices of
the triangle of M corresponding to f2D. The corresponding
original surface positions of u1, u2, u3 are ( f1,b1), ( f2,b2)
and ( f3,b3). Our goal is to find ( fnew,bnew) corresponding
to pnew. We solve this using a parameterization of a region of
the original mesh MO containing f1, f2 and f3. Let P be a

(a) (b) (c) (d)

Figure 2: Vertex relocation. (a) The new position of the ver-
tex in the 2D mapping. (b) The triangle containing the new
position in M. (c) The colored vertices in (b) correspond to
three faces of the original mesh MO. (d) A patch contain-
ing all these vertices is constructed and then parameterized.
The position in the patch is computed using the correspond-
ing barycentric coordinates of the 2D mapping.

2D mesh defining such a parameterization. The boundary of
P is convex. See Figure 2. In Section 4 we show how to con-
struct such a parameterization very efficiently. Next we find
q1, q2, q3 (the locations of u1, u2, u3 in P), using barycentric
coordinates b1, b2, b3 and the faces in P corresponding to f1,
f2 and f3. We define q to be a point in a parametric domain P
of MO corresponding to pnew: q = b1

Mq1 +b2
Mq2 +b3

Mq3.
The last step is to find a triangle in P containing q. This

can be done using a method described by Owen et al. [20].
We start from an arbitrary face f ′ and analyze the barycen-
tric coordinates b′ of q with respect to f ′. If all the com-
ponents of b′ are positive, then q lies in f ′. Otherwise,
we advance to the next face in the direction correspond-
ing to a negative component of b′. The efficiency of this
search depends on the starting face. Taking into account the
fact that pnew is usually close to p, we start from the face
of MO that contained v before relocation. If this face is
not in P, we choose a face fi from { f1, f2, f3} such that
bi = max{b1

M,b2
M,b3

M}, namely, the face closest to q. This
reduces the average number of faces that we test during the
search to about 1.2 faces, which is essentially constant time.

3.3. Controlling Sampling and Triangle Quality
The idea of varying the mesh vertex density according to
the curvature dates back to Turk [28]. The mesh adapta-
tion remeshing techniques, e.g. [10, 21], typically use edge-
collapse and edge-split operations to control the sampling
rate. The disadvantage of this approach is that it is difficult to
control the resulting number of vertices. Alliez et al. [2] use
a half-toning technique to resample a discrete (pixel grid)
representation of the parametric domain. The shortcoming
of this extremely fast technique is that it can be applied only
to meshes isomorphic to a disk, and is not suitable for mod-
els with significant isoperimetric distortion. In a subsequent
work, Alliez et al. [1] use a weighted centroidal Voronoi tes-
sellation to precisely sample very large meshes isotropically.
However, since it is applied to the global parametric domain,
the technique is still limited to meshes isomorphic to a disk.

This work presents a novel technique for sampling 3D
meshes. It is based on the area equalization technique in-
troduced in [25]. We show how to apply this 2D remeshing
technique to arbitrary complex 3D meshes and extend it to
deal with a density function, e.g. the mesh curvature.
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(a) (b) (c) (d)

Figure 3: Area-based remeshing: (a) The original mesh.
(b) The areas of triangles are equalized. (c) Discarding the
edges reveals the uniform vertex sampling. (d) A series of
alternations between Delaunay edge-flips and area equal-
ization results in a close to regular mesh.

3.3.1. Area-based Remeshing
The concept of triangle areas has never been used as a cen-
tral factor in mesh generation. Triangle areas are usually
used to assist, analyze or control meshing. The reason for
this is that by using triangle areas alone we cannot ob-
tain meshes of reasonable quality. A mesh optimization that
equalizes the areas of the mesh triangles or brings triangle
areas to specified (absolute or relative) values will, in most
cases, result in many long and skinny triangles. Neverthe-
less, Surazhsky and Gotsman [25] discovered that a 2D tri-
angulation having triangles with equal (or close to equal)
areas has globally uniform spatial vertex sampling; see Fig-
ure 3(b, c). They presented the following remeshing scheme
that exploits this: Alternate between area equalization and a
series of angle-improving (Delaunay) edge-flips. Applying
this simple scheme results in a 2D mesh with a very uniform
sampling and well-shaped triangles. See Figure 3(d).

It is important to mention that this alternation process
does not usually converge. After a uniform sampling rate is
obtained, the process begins to oscillate, producing different
but similar uniform vertex distributions. However, this oscil-
lation is not a problem for our remeshing algorithm, since
subsequent steps of our remeshing algorithm improve qual-
ity of the mesh further by regularizing and smoothing it.

3.3.2. Area-based Vertex Relocation

Area equalization is done iteratively by relocating every ver-
tex such that the areas of the triangles incident on the vertex
are as equal as possible. In this work we extend this method
to relocating vertices such that the ratios between the areas
are as close as possible to some specified values. To define
this formally, we return to the definitions of point p and its
neighbors p1, . . . , pk from Section 3.1. Let (xi,yi) be the co-
ordinates of pi. Our goal is to find p = (x,y) such that the ra-
tios of the triangle areas are as close as possible to µ1, . . . ,µk.
All µi’s are positive and sum to unity. Denote by Ai(x,y) the
area of triangle p, pi, pi+1:

Ai(x,y) =
1
2

∣
∣∣
∣
∣
∣

xi yi 1
xi+1 yi+1 1

x y 1

∣
∣∣
∣
∣
∣
. (3)

Let A be the area of polygon (p1, . . . , pk), which may be
computed as ∑k

i=1Ai(0,0). Now the location of p is defined

as follows:

(x,y) = argmin
(x,y)

k

∑
i=1

(Ai(x,y)− µiA
)2

. (4)

This reduces to solving a system of two linear equations in x
and y, which has a unique solution. Thus, area-based reloca-
tion is almost as efficient as Laplacian smoothing.

3.3.3. Curvature Sensitive Remeshing
We now show how to use area-based vertex relocation to
produce a mesh reflecting the curvature of the original mesh.
Intuitively, more curved regions of M will contain small tri-
angles and a dense vertex sampling, while almost flat regions
will have large triangles with more sparse vertices. The idea
is to specify ratios between triangle areas depending on cur-
vature.

Let Ψ be a density function defined over MO. For every
vertex v of MO that does not lie on the boundary of MO or
on a feature edge, we define Ψ(v) as 1/(α|K(v)|+βH2(v)),
where H(v) and K(v) are approximated discrete Gaussian
and mean curvatures, respectively. α and β are user-defined
values, which are positive and sum to unity. Usually we use
α = β = 0.5. We compute H(v) and K(v) using the method
described in [5], where the Gauss-Bonnet (also known as an-
gle deficit) method is used for K(v). This method is the best
tradeoff between efficiency, accuracy and robustness. For a
comparison of existing techniques to approximate discrete
curvature, see the survey of Surazhsky et al. [24]. For a ver-
tex v lying on the boundary, Ψ(v) is defined as the average
of Ψ at the neighbors of v, ignoring other vertices on the
boundary. For vertices that lie on the feature edges the aver-
age is taken in a manner similar to defining normals for these
vertices (see Section 2).

Since Ψ is defined using discrete curvature approximation
its values may vary considerably. Ψ is also very sensitive to
noise in either the geometry or connectivity of MO. To al-
leviate this, we truncate all extreme values of Ψ. However,
the values of Ψ at adjacent vertices may still be too differ-
ent to prescribe the density of vertex sampling. We apply
a signal processing approach similarly to [2]. In signal pro-
cessing terms, Ψ contains high frequencies. To remove them,
we apply Laplacian smoothing on Ψ as the simplest possible
approximation of a low-pass filter. A user-defined parame-
ter ksmooth, roughly describing the threshold of the low-pass
filter, is the number of times we apply a single iteration of
Laplacian smoothing. Also it is useful to allow the user to
control the contrast of Ψ. Our contrast function is defined as
a simple gamma function g(ψ, γ) = ψγ. Now after we have
defined Ψ for all vertices of MO, we define Ψ for any point
located on a face f of MO to be the linear interpolation of
Ψ at the vertices of f .

The last step is to define the triangle area ratios that we
use in vertex relocation. We return to the notations of Sec-
tions 3.1 and 3.3.2. Define µ′i for 1 ≤ i ≤ k as the aver-
age between Ψ(vi) and Ψ(vi+1). The value µ′i describes the
required density of the corresponding triangle (v,vi,vi+1).
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Note that vertices v, vi, vi+1 are of M, and to obtain Ψ
for the corresponding positions on the original surface, we
use the original vertices together with the corresponding
barycentric coordinates that are stored in v,vi,vi+1 (defined
in Section 3.2). µ′1, . . . ,µ

′
k are then normalized to obtain valid

µ1, . . .,µk, namely µi = µ′i/∑k
j=1 µ′j .

3.4. Implementation Notes
Area-based remeshing: The procedure is controlled by two
parameters: nstep and narea. We alternate nstep times between
curvature sensitive area equalization and a series of Delau-
nay edge-flips. Area equalization consists of narea iterations
of applying area-based vertex relocation for every vertex of
M. Edge-flips are performed until a Delaunay edge-flip can
no longer be applied. nstep and narea are usually small. There
is no need to bring the triangle areas as close as possible
to some required ratios to change vertex sampling. A very
small number (1 to 3) of narea iterations is enough to move
vertices in the proper direction towards the required vertex
sampling. nstep is usually between 5 and 10 and is sufficient
to produce a mesh with vertex sampling very close to the
required one.
Angle-based smoothing: The parameter mstep of this pro-
cedure defines how many iterations of weighted angle-based
smoothing are performed. Each iteration relocates once ev-
ery vertex of M. mstep is also small and usually somewhere
between 5 and 10.
Adjusting the number of the mesh vertices: To obtain
a mesh with the number of vertices specified by the user,
we apply local refinement or simplification operations to
the mesh. Until the required number of vertices is achieved
we perform a series of edge-collapse or edge-split modifi-
cations (depending on the required size) such that the edges
affected by the modifications are an independent edge set.
Edges whose faces have minimal/maximal error metrics are
simplified/refined first. Before every series of modifications
we apply the area-based remeshing procedure with nstep = 1
to maintain a fair vertex sampling.
Small handles and other problematic regions: When we
apply local modifications on the mesh, we check that the
modifications do not result in violation of the fidelity criteria
of Section 2.2. However, some regions of the initial mesh
may violate them. To alleviate this we refine these regions
prior to the area-based remeshing. For example, see Figure 8,
where the “nose” part of the helmet model was refined prior
to the main remeshing algorithm.

Some regions of the mesh may initially have regions with
a very large “error” according to our error measures. We do
not remesh such regions and consider them as “special fea-
tures”. Refining these regions may result in the addition of
a very large number of vertices. Since the error measures
will prevent applying any local modification in these regions
anyway, we do not need to handle these regions explicitly.
For example, see Figure 7(e) for the remeshed triceratops
model, where the very tips of the horns have a small number
of vertices that were not affected by remeshing.

4. Overlapping Parameterization
In contrast to previous works that are based on mesh seg-
mentation to build an atlas of disjoint patches isomorphic to
a disk, our parameterization scheme uses patches that over-
lap each other. Since we use mesh parameterization for lo-
cal operations on the mesh, we do not need to minimize
the number of patches. Building overlapping patches, the
patch boundaries can be chosen independently for every
patch. The freedom to choose the shape and the size of the
patches can considerably reduce the error (distortion) caused
by mapping a 3D mesh with an arbitrary genus and holes
to the 2D parametric domain. Moreover, using overlapping
patches we avoid difficulties that usually arise near the patch
boundaries when parameterizing based on mesh segmenta-
tion. Another advantage of the overlapping parameterization
is that the small size of every patch allows us to construct its
parameterization very quickly. Thus, the total computational
cost is even smaller than that of a global parameterization.

The overlapping parameterization is constructed dynam-
ically when a specific region of the original mesh is to be
parameterized to perform a local operation on the mesh. For
this region we create a patch containing it and parameter-
ize the patch. For our set of local operations on the mesh,
we need only construct a patch of the mesh containing three
faces. Before creating a new patch that includes the three re-
quired faces, we first check if such a patch already exists. We
show how to find such a patch very efficiently in Section 4.3.

4.1. Patch Construction
Given three arbitrary faces f1, f2 and f3 of the original mesh,
we must find a patch of the mesh that is isomorphic to a disk
and contains the faces. Intuitively, for every face fi we find a
circular neighborhood Ni of minimal radius that contains the
other two faces. The patch is taken to be the union of N1, N2
and N3. Taking the union of the neighborhoods as a patch for
f1, f2 and f3, results in a patch that is small enough to have
small distortion yet large enough to be reused for another
triplet of faces.

To construct the union of N1, N2 and N3 we do the
following: Begin with an empty patch. From each face fi,
i ∈ {1,2,3}, initiate a breadth-first search over the faces of
the mesh. All faces visited during the search are added to
the patch. Check that adding a new face preserves the patch
topology, which should be isomorphic to a disk. The search
terminates when the other two faces fi+1 and fi+2 are vis-
ited. Face indices are modulo 3.

As a post-processing step of the patch construction, we
smooth the boundary of the patch by trimming all triangles
which have all three vertices on the patch boundary. Such
triangles are usually called ears. We remove all faces that
are ears, ignoring the input faces f1, f2, f3. This results in a
more "circular" boundary and in less distortion of the patch
parameterization.

4.2. Patch Flattening
After the patch is constructed, we embed it into the plane.
The boundary of the patch is embedded as a convex polygon,
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whose vertices lie on the unit circle. The distances between
the vertices on the circle are proportional to those of the 3D
patch. Numerous works over the last decade have presented
different techniques to embed a mesh inside a polygon with
a fixed boundary, e.g. [6, 7]. The technique of choice is the
conformal mapping [6]. This technique minimizes local an-
gle deformation of the 3D mesh, and thus, better preserves
its geometric properties. Unfortunately, this technique has
one serious drawback. It cannot guarantee that the embed-
ded mesh is free from foldovers. The only techniques that
can analytically guarantee foldover-free embedding are the
shape-preserving [7] and mean-value coordinates [8] tech-
niques developed by Floater. We use the latter since it is
more efficient, produces a parameterization with properties
close to the conformal mapping yet is always valid.

4.3. Finding an Existing Patch

Our overlapping parameterization scheme maintains a pool
of patches. Before creating a new patch that parameterizes
a mesh region containing faces f1, f2 and f3, we first try
to find such a patch in the pool of existing patches. We do
this very efficiently using the following simple data struc-
ture. For every face f in the original mesh we maintain a list
L( f ) of pairs (p, fp), where p is a patch that parameterizes a
region of the original mesh containing f , and fp is the face
corresponding to f within p. The implementation of the list
actually contains pairs of pointers. When a patch is created,
all faces of the original mesh corresponding to that patch are
updated, and a new pair is added to the front of L for these
faces.

Now given f1, f2 and f3, our goal is to find a patch con-
taining all the faces, or report that there is no such patch. The
following search is performed: For each pair (p1, ·) in L( f1),
we search for pair (p2, ·) in L( f2) such that p2 = p1. If we
succeed, we search for pair (p3, ·) in L( f3) such that p3 = p1.
If the last search is successful, p1 is a patch containing f1,
f2 and f3. In any other case, failure is reported. The search
performs at most |L( f1)| · (|L( f2)|+ |L( f3)|) comparisons,
where |L| is the length of L. Thus, the time complexity of
the search is O(k2), where k is the maximal length of the
lists. Note that statistically the average length of L for all
faces of the original mesh is about 3.5 for all meshes, with a
maximal length of 5. Thus, the time complexity of O(k2) is
actually O(1) in practice.

However, this efficiency can be improved even further due
to the space coherence of the local mesh operations. If the
search was successful we move pairs containing the result-
ing patch to the front of the lists. Thus, in most cases the
first element of lists L( f1), L( f2) and L( f3) will refer to a
patch that will be found. Hence, in most cases we will find a
patch by only two pointer comparisons. The mesh space co-
herence can be improved dramatically using a locality pre-
serving vertex sequence, as described by Bogomjakov and
Gotsman [3].

4.4. Removing Unused Patches
As long as our remeshing algorithm performs local opera-
tions, some patches may become unused. For example, if a
low curvature region of the mesh has a dense vertex sam-
pling in the original mesh, after the curvature sensitive area-
based remeshing the vertices of this region will be more
sparse. Hence, patches created by early operations may be-
come too small to be used for later operations performed on
larger triangles. By removing such unused patches we guar-
antee that memory consumed by the overlapping parameter-
ization is bounded.

To preserve efficiency we use a simple and efficient tech-
nique to remove unused patches. We associate a timer with
every patch. If a patch was not used for a predefined period
of time (a signal event), the patch is removed. The timer of
a patch is reset every time the patch is accessed. A single
clock tick corresponds to accessing any single patch in the
pool. The initial timer value, namely, the time that a patch
is kept unused in the pool, is a small constant factor (0.1–
0.3) obtained experimentally, times the number of faces in
the resulting mesh. This technique is based on simulating
multiple timers with a single clock in operating systems. We
use a queue (list) of timers ordered by the time at which
they are to signal. To prevent updating all elements of the
queue, the deltas (differences) between the times of signals
are used [26].

5. Connectivity Regularization
Another component of our remeshing scheme is an effective
yet simple and efficient algorithm to improve the mesh qual-
ity by regularizing its connectivity. The algorithm performs
a series of local operations that modify the mesh connectiv-
ity, namely, edge-flips, edge-collapses and edge-splits. For-
mally, improving regularity means minimizing the following
function:

R(M) = ∑
v∈M

(
d(v)− dopt(v)

)2
, (5)

where d(v) is the degree (or valence) of vertex v and dopt (v)
its optimal degree. Vertices on the boundary have dopt = 4,
and for the rest of the vertices dopt = 6. We do not define this
formally, but during the mesh regularization we allow only a
small change in the total number of mesh vertices and vertex
sampling along the mesh.

We call an edge-flip basic if it decreases R(M). In their
elegant work, Alliez et al. [2] proposed to randomly ap-
ply basic edge-flips to regularize mesh connectivity. This
straightforward method results in some improvement. How-
ever, it still leaves too many irregular vertices even when
basic edge-flips can no longer be applied; see Figure 5(b).
The reason for this is that R has many local minima with
respect to basic edge-flips. The intriguing question is how to
continue from such a local minimum.

It is theoretically possible to apply stochastic methods
similar to simulated annealing that will allow R to escape
from local minima and obtain the global minimum or at
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(a) (b) (c) (d) (e)

Figure 4: Types of edges: (a) A long edge. (b) A short edge.
(c) A drifting edge. (d) The drifting edge moved two steps to
the right. (e) After angle-based smoothing.

least a very good local minimum. However, our experiments
have shown that the distance between local minima is large,
hence, simulated annealing will converge very slowly to a
good solution. During a large number of connectivity tar-
geting modifications we can easily lose the curvature sen-
sitive vertex sampling. Fortunately, we discovered a simple
and intuitive method that minimizes R(M), applying mod-
ifications in a smart manner.

We pose this problem as a puzzle. The player can click an
edge to flip, collapse or split it. We call an edge easy if we
can apply a basic edge-flip on it. The game starts with a mesh
without easy edges, namely, when R(M) is at a local min-
imum. The goal of the game is to minimize R(M) further
with a small number of mesh modifications. To visualize, we
color vertices according to their degree. A vertex v is black
if d(v) < dopt (v) and white when d(v) > dopt(v). The vertex
is not colored when d(v) = dopt (v), namely, the player has
solved the puzzle for v. See Figure 5(a). When solving the
puzzle we discovered that there are three types of edges that
are actually interesting, and for every type there is only one
specific local modification to apply.
Long edges: An edge is a long edge if both its vertices are
white. The definition of a long edge is based on the connec-
tivity alone. However, optimizing the mesh geometry using
the angle-based smoothing reveals that long edges are ac-
tually geometrically longer than their nearby edges. Thus,
the natural modification for this edge is to refine it. See Fig-
ure 4(a).
Short edges: An edge is a short edge if both of its ver-
tices are black. Short edges are actually shorter than other
nearby edges if the mesh has been optimized using the angle-
based smoothing procedure. Thus, we collapse short edges.
See Figure 4(b).
Drifting edges: An edge is a drifting edge if one of its end-
points is a white vertex and the other is black. Every drifting
edge e has the following nice property: If we flip an edge e′
incident on the white vertex that belongs to one of the faces
adjacent to e, then e ‘disappears’ (loses its drifting property)
and reappears as the opposite to e within the quad defined
by e′. Thus, we say that we have moved a drifting edge. This
allows us to move a pair of white and black vertices of a
drifting edge across a regular region of the mesh; see Fig-
ure 4(c–e). If a drifting edge does not lie on the boundary,
we can move it in two opposite directions.

Note that when we move a drifting edge and all its neigh-
boring vertices are regular, R(M) does not change. Also,
we do not change R(M) when we split a long edge or col-

Figure 5: Regularizing the mesh. Black vertices have va-
lence < 6 and white vertices > 6. Top: The mesh after apply-
ing area-based remeshing. Middle: All possible easy edge-
flips have been performed. Bottom: Our regularization al-
gorithm results in a mesh with a small number of irregular
(colored) vertices.

lapse a short edge and then perform all possible basic edge-
flips.

5.1. Solving the Puzzle

To every edge among long, short or drifting edges, we apply
only its corresponding operation. The central idea in solv-
ing the puzzle is to cause a drifting edge to migrate until
it meets irregular vertices, and thus, an easy, long or short
edge may appear. We perform operations on these edges,
until only drifting edges are left. Then we choose an arbi-
trary drifting edge as the next edge to move. We proceed this
way, until no drifting edge is left. This condition means that
there are no easy, long and short edges as well, and the al-
gorithm terminates. Consequently, the algorithm results in
a mesh that has all irregular vertices surrounded by regular
vertices. The number of such isolated irregular vertices is
usually very small. See Figure 5(c).
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5.2. Implementation Notes
We do not perform any sort of global analysis of the mesh,
but only local modifications corresponding to the edge type.
Thus, the implementation of our algorithm is very simple.
All easy, long, short and drifting edges are stored in a pri-
ority queue. Easy edges have the highest priority, drifting
edges have the lowest priority. The priorities of long and
short edges are equal, but may be different to favor edge-
split or edge-collapse in some rare cases. The algorithm pro-
cesses the first edge in the queue until the queue empties.
After each modification the queue is updated.

The regularization algorithm we described so far consid-
ered only the connectivity of the mesh. Applying it to 3D
meshes, we perform only the operations that satisfy the er-
ror condition defined in Section 2.2. Also, after each opera-
tion we apply a single iteration of angle-based smoothing on
the region of the mesh affected by the modification. Other-
wise, the error condition will sometimes prevent performing
operations.

5.3. Possible Improvements
It is possible to move an isolated irregular vertex v. This can
be done by flipping an edge incident on v such that v will
become regular. By doing so we move a black/white vertex
and produce a new drifting edge that can be moved away
from v. This operation completes the set of operations nec-
essary to obtain the connectivity of some regular or almost
regular mesh from the given mesh. Future work will include
global analysis of the mesh in order to produce a mesh that
has a semi-regular structure, namely, with subdivision con-
nectivity.

6. Experimental Results
We have implemented the algorithms described here in an
interactive software system. The user is able to remesh mod-
els at interactive rates, and control the results using a small
number of parameters. The most significant parameters are
the number of vertices (or faces) in the result, and the con-
trast. The contrast determines how the local vertex density is
affected by the surface curvature.

The traditional way of measuring the quality of a
remeshed model is by measuring the geometric properties
of the resulting triangles and the combinatorial properties of
the mesh. The two are obviously related. For the geometry,
statistics are usually collected on the minimal angle of the
triangles. Obviously this value is anywhere between 0◦ and
60◦. For a high-quality mesh, the minimum of these values
should be no less than 10◦, and the average should be no less
than 45◦. For the connectivity, the distribution of vertex va-
lences is an important factor. Of great interest are the number
of irregular vertices, which is also a key for successful mesh
compression.

Table 1 shows the statistics of the remeshes of some pop-
ular 3D models. The examples on the first page are of the
Venus model. Figure 6 shows remeshes of the cow model
with different values of the contrast parameter. Figure 7
shows some other commonly available models. Figure 7(e)

Model Vertices Irreg Min∠ Ave∠ Error Time TG Conn Geom
(%) (deg) (deg) (10-3) (sec) (kB) (bpv) (bpv)

Venus (original) 8,268 74.9 0.25◦ 34.7◦ — — 23.9 2.83 20.9

Venus (uniform) 9,240 4.4 25.8◦ 53.3◦ 3.5 15.4 15.3 0.47 13.1

Venus (non-uniform) 8,705 6.7 25.9◦ 52.4◦ 2.7 16.5 17.4 0.72 14.8

Cow (original) 2,904 38.1 2.8◦ 30.1◦ — — 7.89 1.89 20.4

Cow (a) 4,551 9.5 8.1◦ 48.8◦ 5.8 8.2 8.95 0.93 15.2

Cow (b) 4,984 10.2 12.5◦ 49.6◦ 5.0 8.9 9.67 0.95 14.9

Cow (c) 5,249 10.3 11.1◦ 49.2◦ 4.8 9.3 11.3 0.94 14.0

Feline (original) 49,864 63.8 3.8◦ 40.0◦ — — 100 2.38 14.2

Feline 10,825 13.8 7.4◦ 48.3◦ 6.4 74 21.3 1.09 15.1

Horse (original) 19,851 64.5 1.7◦ 35.9◦ — — 46.0 2.34 16.6

Horse 5,695 10.3 9.1◦ 50.1◦ 6.1 28.4 11.0 0.97 14.8

Triceratops (original) 2,832 59.3 0.02◦ 29.6◦ — — 7.68 2.17 20.0

Triceratops 2,758 13.3 5.6◦ 42.2◦ 8.4 12.3 5.93 1.2 16.4

Fan disk (original) 5,051 20.6 16.8◦ 43.0◦ — — 9.12 1.03 13.7

Fan disk 5,135 8.43 16.8◦ 49.1◦ 0.4 17.3 9.03 0.58 13.8

Helmet (original) 496 63.9 2.33◦ 34.5◦ — — 2.12 2.94 32.1

Helmet 2,728 6.08 14.8◦ 47.8◦ 8.9 17.7 5.46 0.67 15.7

Table 1: Statistics on the remeshed models: number of ver-
tices, percentage of irregular vertices, minimal angle, av-
erage angle, error measured by Metro normalized to the
bounding box diagonal, remeshing time, file size compressed
by the Touma-Gotsman algorithm, connectivity and geome-
try compression in bits per vertex.

demonstrates remeshing of the fan-disk model, in which the
creases, corners and the shape of the boundary are preserved.
All example have very good aspect ratios, and only a few
lack in respect to the minimal angle. On a Pentium 4 PC
(2.4 GHz) with 512 RAM, the remeshing operations run at
interactive rates for most of the models.

Another important factor in remeshing is fidelity to the
original mesh. Table 1 presents the remeshing errors. The
error is the Hausdorff distance normalized by the bounding
box diagonal, obtained using the Metro tool [4]. These errors
show a relatively high fidelity with respect to the number of
the mesh vertices together with the main goal of our remesh-
ing scheme for the triangle quality.

The models were compressed using the commonly avail-
able Touma-Gotsman algorithm [27] with 12 bit for geome-
try quantization (per coordinate). The improvement in con-
nectivity compression is obvious—almost all remeshes con-
sume less than one bit per vertex for connectivity. Compres-
sion of geometry is also superior to the original models.

7. Conclusion
This paper has introduced a systematic remeshing scheme
whose main advantage over the existing ones is its robust-
ness and speed, without sacrificing any quality in the results.
In fact, in many cases, the results are even superior to others,
mostly due to a novel mesh regularization algorithm.

The reason the remesher is so fast and robust is that it is
built on a series of highly efficient local operations. Hence,
we manage to avoid the pitfalls of previous techniques: those
that are mostly based on global operations, such as parame-
terization of the entire model, and those that perform com-
putationally expensive 3D optimizations. Despite the opera-
tions being local, we are able to avoid error accumulation by
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(a) (b) (c)

Figure 6: The cow model with different curvature contrasts.

(a) (b) (c)

(d) (e) (f)

Figure 7: (a) The horse model. (b) The feline model. (c) Zoom in on the “tail” part. (d) The curvature adapted remesh of the
venus model. See also Figure 1. (e) The triceratops model. (f) The fandisk model with sharp features.

comparing to a smooth approximation of the original geom-
etry throughout the entire process.

A number of the components of our remeshing scheme
are of independent interest to the meshing community. The
most significant one, in our opinion, is the connectivity reg-
ularizing technique. This is able to transform the connectiv-
ity into a very regular mesh, with very few isolated irregular
vertices, while not changing significantly the total number of
vertices during the process. Our technique to locally param-
eterize the mesh in a operation-sensitive manner allows us
to take advantage of a variety of existing 2D meshing algo-
rithms. Future work will include generalization of our tech-
niques to quad-based meshes.

Open questions: The drawback of the area-based remesh-

ing technique is its inability to control vertex sampling be-
yond the boundaries defined by feature edges. One possible
solution is to relax error conditions on the feature edges and
then to restore them in a post-processing stage using an ap-
proaches similar to [15].
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(a) (b) (c)

Figure 8: The helmet model. (a) The original model. (b) The remesh. (c) Zoom in on the “nose” part.
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