
Rendering Traditional Mosaics

Gershon Elber

Department of Computer Science
Technion, Israel Institute of Technology

Haifa 32000, Israel
gershon@cs.technion.ac.il

George Wolberg

Department of Computer Science
City College of New York / CUNY

New York, NY 10031
wolberg@cs.ccny.cuny.edu

Abstract

This paper discusses the principles of traditional mosaics, and describes a technique for implementing

a digital mosaicing system. The goal of this work is to transform digital images into traditional mosaic-

like renderings. We achieve this e�ect by recovering freeform feature curves from the image and laying

rows of tiles along these curves. Composition rules are applied to merge these tiles into an intricate

jigsaw that conforms to classical mosaic styles. Mosaic rendering o�ers the user 
exibility over every

aspect of this craft, including tile arrangement, shapes, and colors. The result is a system that makes

this wonderful craft more 
exible and widely accessible than previously possible.

Keywords: mosaics, nonphotorealistic rendering, o�set curves, Voronoi diagrams

1 INTRODUCTION

Nonphotorealistic rendering has enjoyed a surge of interest in recent years. Rendering algorithms have

been introduced to mimic various classical artforms, including engraving [22, 29], pen-and-ink illustrations

[27, 23], digital watercolors [3], line art drawing [7, 6, 15], expressive painting [19, 11], and Celtic art [10].

This paper addresses computer techniques to render one of the most ancient of classical artforms: mosaics.

Mosaics are designs and pictures formed from the juxtaposition of small tesserae (tiles) of stones,

terracotta, or glass. The ancient art of mosaic is among the oldest, most durable, and most functional

artforms. It was used in ancient Greece and Rome to adorn architectural surfaces. Intricate and fascinating

mosaics were prominent in 
oor pavements, wall murals, and vault (ceiling) decorations.

The durability of the materials used has allowed mosaics to survive the ravages of time far more

gracefully than paintings. As a result, there is much evidence that mosaics permeated many cultures and

periods. They played a central role in Greco-Roman, early Christian, Byzantine, Islamic, medieval, and

post-Renaissance art. Mosaics continue to be pervasive today in public buildings, plazas, subways, gardens,

and restaurants.

Mosaics derive much of their splendor from scale. Upon close scrutiny, the skillful placement of tiles

and the intricate tesselations that de�ne the work are prominently visible. At a larger scale, the tiles �t



Rendering Traditional Mosaics Elber & Wolberg 2

together like jigsaw pieces into an abstract puzzle, forming a unique and striking blend of colors, designs,

and images. The interplay between these di�erent levels of abstraction, and our ability to resolve the \big

picture" from the individual tiles, is what makes mosaics visually compelling.

It is important to distinguish the term \mosaic" from its uses in other �elds. In image processing

and computer vision, an image mosaic refers to a single large image stitched together from several smaller

images. This is necessary for panoramas and terrain imagery, where a single image is not adequate to

capture a su�ciently large �eld of view. In visual e�ects work for commercial advertising, photomosaics

has recently been used to piece together many small images to form a single composite image [25]. This

approach is more closely related to halftones where the true color of a region is approximated by an

appropriately chosen textured pattern. Carrying this analogy further, classical mosaics can be considered

to be generalizations of the uniform tessellation of digital images, whereby pixels (tiles) are not con�ned

to a rectilinear grid, but rather may be oriented along arbitrary curves.

This paper presents a technique for simulating the classical mosaic artform. Rendering mosaics is

essentially an exercise in establishing a tessellation that conforms to the principal features and strokes in

a digital image. Once feature curves are extracted from the image, we compute o�set curves to delimit

rows of rectangular mosaic tiles. Since the o�set curves may self-intersect, we trim them using Voronoi

diagrams that are computed using a Z-bu�er based approach. Finally, composition rules are applied to

merge these tiles into an intricate jigsaw that conforms to classical mosaic styles.

An early attempt at mimicking traditional mosaics was described in [11]. In that work, a Z-bu�er

approach is used to compute the Voronoi diagram of a set of points in the plane, i.e., Dirichlet domain.

This use of a Z-bu�er to compute the Dirichlet domain is also described in the OpenGL user manual [28].

The computed regions of the Dirichlet domain comprise a simple tiling of the plane that crudely mimics a

traditional mosaic. The method does not attempt to align mosaic tiles along prominent strokes, a property

common to classical mosaics.

There are several commercial software packages that claim to o�er mosaic-like renderings. The Adobe

Photoshop plug-in attempts to achieve this e�ect by tesselating the image into tiles. Unfortunately, the

tiles do not conform to the principal features and strokes in the image. More compelling visual e�ects

are possible in Painter from Metacreations through the use of hand-drawn strokes along which a trail of

mosaic tiles are rendered. The tile colors are sampled from an underlying image. Although the resulting

mosaics can be quite impressive, this manual approach is very tedious and cumbersome as the user must

draw all the strokes that constitute the rendering. Successive rows of tiles are due to painting successive

strokes, i.e., there is no attempt at inferring adjacent strokes from a few key hand-drawn strokes.



Rendering Traditional Mosaics Elber & Wolberg 3

Recent work has attempted to address the tile alignment problem. In [12], tiles are made to conform to

user-speci�ed image features. A centroidal Voronoi diagram (CVD) is used to create a point distribution

in the plane. A CVD is a Voronoi diagram with the property that each site is located at the centroid of

its region. An iterative algorithm is invoked by which a Voronoi diagram is computed from a set of site

points, and the site of each region is then moved to the region's centroid. Although no proof is given, the

regions of the resulting site points empirically converge to a nearly optimal tiling of the plane. The tiling

is hexagonal when minimizing a Euclidean distance metric. Since square tiles are desired, a Manhattan

distance metric is used. A gradient �eld derived from image feature curves is then used to orient the tiles

properly.

In this paper, a di�erent approach is taken. Examining the results of [12], we note that many of the

resulting tiles are misaligned, an artifact that is clearly present in regular domains where a uniform tile

placement is expected. In traditional mosaics, several rows of tiles are precisely placed along the feature

curves, a behavior that the gradient �eld of [12] cannot preserve. This paper overcomes these di�culties

as well as others by o�ering a more precise and geometrically oriented approach.

This paper is organized as follows. Section 2 reviews the history of the mosaic artform. Section 3

presents the algorithm, including the extraction of feature curves, trimmed o�set curves, and tile placement.

Examples are given in Section 4. Finally, Section 5 discusses conclusions and future work.

2 HISTORICAL BACKGROUND

The history of mosaics dates back several thousand years. Some of the earliest known mosaics adorn

the exteriors of buildings constructed during the third millennium BC at Uruk in Mesopotamia. There,

the Sumerians embedded long terracotta cones into walls to protect the underlying structures and to

decorate their surfaces with colorful geometric patterns [4]. In ancient China, mosaics made of pebbles

were important features in gardens and pavements. Pebble mosaic 
oors dating back to the eighth century

BC have also been discovered in Gordium, a town near Ankara, Turkey. The pebbles were arranged in

simple geometric patterns.

Mosaic art later 
ourished in ancient Greece and Rome, where its practitioners created some of the

most beautiful artworks in history. This golden period coincided with the introduction and widespread

adoption of a new mosaic material: natural stone cut into small tiles, called tesserae. Since tesserae were

cut into triangular, square, and rectangular shapes, they could be �t together more closely than pebbles,

and the resulting artwork process was re�ned. This advent began in the Hellenistic period, during the

reign of Alexander the Great (336-323 BC) and was later embraced by the Romans. Some of the earliest



Rendering Traditional Mosaics Elber & Wolberg 4

Roman works were created in Pompeii during the second or �rst century BC and were preserved in good

detail by the eruption of Mount Vesuvius in 79 AD.

Mosaics were popular for rendering geometric patterns, vegetal motifs, and �gure compositions used in

pavements from the fourth century BC to the early Christian period in the third century [17]. By this time,

mosaics moved from 
oors onto walls and depictions of scenes from the Old and New Testament became

prevalent. Glass smalti, which had been used sparingly in mosaics 
oors as early as the third century BC,

became increasingly popular and ultimately dominated the early Christian mosaics.

The Byzantine era, between the �fth and �fteenth centuries, saw the greatest growth of mosaic as an

artform. Mosaics were no longer con�ned to discrete panels but now covered entire walls and ceilings.

Immense �gures became important design elements and matched the scale of the surrounding architecture

[4]. Chief innovations during the Byzantine era included the use of glazed, silver, and gold tesserae. Their

re
ective qualities were enhanced by setting them at oblique angles to create an undulating surface that

exploited re
ection. Golden halos set in this manner appear to shimmer with light, in stark contrast with

the dull stone tesserae used for surrounding �gures [4]. The most well-known mosaics of this era are found

in Ravenna, Italy, the last Imperial capital of Italy.

The use of mosaics spread to mosques between the seventh and tenth centuries. Beautiful geometric

designs adorn the Great Mosques in Cordoba and Damascus, and the Dome of the Rock in Jerusalem.

The artform went through a period of decline after the Renaissance due to the rising in
uence of

paintings. The eighteenth and nineteenth centuries saw a revival. Mosaics are again popular for adorning

architectural surfaces and public spaces. Interested readers may consult [17, 2, 1, 26] for further background.

3 ALGORITHM

A key observation derived from traditional mosaics, is the fact that they emphasize feature curves of

importance in the picture. Rows of tiles are arranged along these feature curves. Here, two typical

arrangements can be found. The rows along feature curves continue throughout the picture, or alternatively

a small number of rows follows the feature curves whereas a background tiling covers the rest of the picture.

In order to emulate the placement of mosaic tiles along feature curves, we seek a model that is able to

compute arrangements of tiles along freeform curves. An algorithm that is capable of such a requirement

must obey the following steps:

� Detecting and extracting feature curves from the picture. This stage is described in Section 3.1.

� Computing the o�sets of these feature curves for all the rows of tiles that are expected to follow this



Rendering Traditional Mosaics Elber & Wolberg 5

Figure 1: Parallel curves to a given curve (in gray) can be computed as o�sets of the given curve.

feature curve. The o�set computation procedure is presented in Section 3.2.

� Trimming the o�set curves in self intersecting locations so the tiling is indeed proper. The problem,

as well as the computation of properly trimmed o�sets, is described in Section 3.3.

� The placement of the tiles of the mosaics. This process is presented in Section 3.4.

3.1 Extraction of Feature Curves

The automatic extraction of feature curves from an image is a computer vision problem [24] that is beyond

the scope of this work. In this work, we shall require the user to specify feature curves in much the

same manner that it is done for morphing [16] and digital facial engraving [22]. Herein, we emphasize

this feature extraction stage in the context of placement of mosaic tiles. Feature curves in real mosaics

are, almost exclusively, edges that delineate the foreground from the background. In that respect, they

are relatively simple to extract using image processing techniques. In practice, however, we found that

the semi-automatic approach is much more attractive and tools such as intelligent scissors [21] could be

employed toward the de�nition of the feature curves. In this application, we assume that the feature curves

were extracted and are least squares �tted into freeform B-spline curves. Hence, a set C = fCi(t)g
n�1
i=0 ,

t 2 [0; 1] of n feature curves in the original picture is the result of this stage.

3.2 O�set of Feature Curves

The mosaic tiles are to be arranged along parallel curves to the feature curve Ci(t) = (xi(t); yi(t)). Denote

by � the width of a square tile. Then, we seek to compute m parallel curves C
j
i (t), 0 � j � m� 1 to Ci(t),

� distance apart, as in Fig. 1.

Since Ci(t) is a planar curve, the unit tangent �eld, Ti(t) and the unit normal �elds, Ni(t), of Ci(t) are



Rendering Traditional Mosaics Elber & Wolberg 6

also planar. Let

Ti(t) =
(x0i(t); y

0

i(t))q
(x0i(t))

2 + (y0i(t))
2

;

be the unit tangent �eld of Ci(t). Di�erentiating with respect to the arc length parameter s yields

hT 0

i(s); Ti(s)i = �(s) hNi(s); Ti(s)i = 0, where �(s) is the scalar curvature �eld of Ci(t) and hTi(t); Ti(t)i = 1.

Ti(t) is orthogonal to Ni(t) in the plane, and hence we constructively have,

Ni(t) =
(�y0i(t); x

0

i(t))q
(x0i(t))

2 + (y0i(t))
2

;

Moreover, from the Frenet equations [5] we know that N 0

i(s) = ��Ti(s) for a planar curve. With this

di�erential geometry analysis we are ready to show that the o�set curves,

C
j
i (t) = Ci(t) + j � Ni(t);

0 � i � n� 1; 0 � j � m� 1;

= Ci(t) + j �
(�y0i(t); x

0

i(t))q
(x0i(t))

2 + (y0i(t))
2

; (1)

do indeed satisfy the parallel conditions. In other words, Ci(t) and C
j
i (t) are parallel for all j and t in the

domain. Two curves are said to be parallel if their tangent �elds point in the same direction:

C
j
i

0

(t) = C0

i(t) + j � N 0

i(t);

= �Ti(t) + �Ti(t);

= (�+ �)Ti(t);

= 
C0

i(t); (2)

for some scalars �; �; 
 2 IR.

Since Ni(t) is not rational, one cannot represent the o�set as a B-spline or a NURB curve, even if

Ci(t) is a B-spline curve. Numerous approximation methods were derived for rational o�sets of rational

curves and a recent survey can be found in [9]. Here, we only assume the availability of a robust o�set

approximation scheme of B-spline curves that provides an error bound on the approximation. In this

mosaic application, the error bound is selected to be in the order of a single pixel.

Unfortunately, even if we employ a robust o�set approximation scheme that creates a rational form,

the result can be invalid in many cases. If the curvature � of the curve is larger than 1

j�
, the o�set curve

will self intersect.

Examining Eq. (2), C
j
i

0

(t) might vanish if � = ��. Intrinsically, this condition occurs when j � � = 1.

If the o�set amount, j �, equals the radius of curvature, 1
�
, C

j
i

0

(t) vanishes into a cusp. Furthermore, when



Rendering Traditional Mosaics Elber & Wolberg 7

(a)

(b)

Figure 2: Local (a) and global (b) self intersections in an o�set of a freeform curve.

j � > 1

�
, the direction of the tangent vector of C1

i
0

(t) is reversed with respect to C0

i(t)! This type of self

intersection, which we denote as local, is seen in Fig. 2(a).

Self intersections in the o�set could also occur between two independent locations of the curve, a type

of self intersection we denote as global. Fig. 2(b) shows one such example.

3.3 Trimming the O�set

The elimination of the self intersection in o�set approximations is a very di�cult problem. In essence, we

seek the true o�set of the curve Ci(t). Recall that kC
j
i (t)� Ci(t)k = j �, 8t in the domain and up to the

o�set approximation accuracy. We seek all points C
j
i (t0) in curve C

j
i (t) such that kC

j
i (t0)� Ci(t)k � j �,

8t in the domain.

As demonstrated in Section 3.2, two reasons could require the trimming of the o�set curve: a local

and a global self intersection. Due to the distinctive intrinsic curvature property of local self intersections,

they are fairly simple to detect [8]. In contrast, global self intersections are far more di�cult to detect due

to the lack of any intrinsic behavior that could be analyzed beyond the computation of the intersections

themselves.

Requiring a highly robust trimming procedure for o�set curves, the traditional numeric approach is

di�cult to employ. However, the application at hand is discrete which suggests that a discrete solution

might be su�cient. In [14, 18], Voronoi diagrams are computed using a discrete image-based approach

that approximates the Euclidean distance. In [11], the use of a Z-bu�er approach to the computation of

a discrete Voronoi diagram of a set of points in the plane is introduced, an approach that is also cited in

the OpenGL user manual [28]. In [13] this approach is extended to employ graphics hardware. One can

exploit the Z-bu�er based computation of Voronoi diagrams to robustly trim the o�set curves, bene�ting



Rendering Traditional Mosaics Elber & Wolberg 8

Figure 3: A Voronoi diagram could be approximated discretely, using a Z-bu�er based approach. Feature

curves of the sun
ower drawing shown in Fig. 12.

from the inherent robustness of the Z-bu�er paradigm.

Interestingly enough, the application of mosaics is discussed in [11] as well as in [13], employing the

Voronoi cells as the tiles of the mosaics. A Voronoi cell of planar entity Ci(t) contains all the pixels that

are closer to Ci(t) than to any other planar entity Cj(t); j 6= i. In [11, 13], however, the Voronoi diagrams

are computed on a collection of points that are distributed more densely along edges in the image. They

do not attempt to compute o�set curves. Herein, we use Voronoi diagrams only to assist in trimming the

o�set curves.

Let the orthographic viewing direction be the +z direction. Then, for each point in Ci(t0) 2 Ci(t),

construct the cone z = +
p
(x� xi(t0))2 + (y � yi(t0))2 and render it into the Z-bu�er in a color that is

unique to entity Ci(t). Doing so for all n curves in the plane, one ends up with color coded Voronoi cells

such that the Voronoi cell of Ci(t) is uniquely painted with the color allocated to entity Ci(t). See Fig. 3

for an example.

In practice, Ci(t) is approximated by linear segments and the sweep of a cone along Ci(t) is approxi-

mated by small ravine-like shapes, such as the one presented in Fig. 4. Hence, the process of sweeping of a

cone along the interior of the curve can be approximated by linear segments and two quadrilateral polygons,



Rendering Traditional Mosaics Elber & Wolberg 9

Ci(tj) Ci(tj+1)

P1
i (tj)

P2
i (tj)

Figure 4: One interior segment of the piecewise linear approximation of Ci(t) contributes two quadrilaterals,

P1

i (tj) and P2

i (tj), to the cones swept along Ci(t).

P1

i (tj) and P
2

i (tj) emanating at 45 degrees from the opposite sides of each linear segment, (Ci(tj); Ci(tj+1)).

Again, see Fig. 4.

We are now ready to adapt the discrete, Z-bu�er based, Voronoi diagram computation scheme to our

aid. Before we present this adaptation, we must also realize a crucial di�erence. If point P is in the Voronoi

cell of curve Ci(t) it is clearly closer to Ci(t) than to any other curve. In other words, there exists Ci(t0)

such that kCi(t0)� Pk � kCk(t)�Pk; 8k; t. However, here one needs to �nd this t0 so as to align the tile

at P to be parallel to the curve Ci(t) at t0. Finding t0 in Ci(t), given a point P in the Voronoi cell of Ci(t)

is a query that the basic Z-bu�er approach to the computation of the Voronoi diagram cannot answer in

the forms presented by [11, 14, 13].

Let point Ci(t0) be denoted as the foot point of P . We need to extend this Z-bu�er approach to support

the e�cient detection of the foot points. Instead of giving a unique color to the entire Voronoi cell of Ci(t),

we are going to allocate a unique color to each pixel of Ci(t) as it is rendered in the image space. Let

(Ci(tj); Ci(tj+1)) be one linear segment approximating Ci(t) (Fig. 4). We then color vertex Ci(tj) with a

unique color index, Ci(tj), that equals to,

Ci(tj) = Ci(0) +

jX

k=1

kCi(tk)� Ci(tk�1)k;

having t0 = 0.

In other words, each vertex is assigned a color index that equals the chord length of the curve up to

that vertex. Having a typical color space of 24 bits and a typical chord length on the order of a thousand

pixels, one can allocate unique color indices to tens of thousands of curves before exhausting the entire

color space. But now we have assigned every rendered pixel of every curve with a unique color. Assign the

same colors of vertices Ci(tj) and Ci(tj+1) to the two other vertices of quadrilaterals, P1

i (tj) and P2

i (tj).

Then, rendering polygons P1

i (tj) and P2

i (tj) with the prescribed vertex colors would assign a unique color

for each pixel over all Voronoi cells. Given point P in the Voronoi cell of Ci(t), one needs to examine that

color under P and search for that color in Ci(t). Because the colors are assigned based on the chord length,



Rendering Traditional Mosaics Elber & Wolberg 10

Figure 5: The extended Voronoi diagram that assigns each pixel along the path a unique color. Compare

with Fig. 3.

this search becomes trivial. Moreover, as will be seen in the next section, tiles are placed consecutively,

and one could also exploit this spatial coherence as we march along an o�set curve and place one tile after

another.

Fig. 5 shows the same voronoi diagram of Fig. 3, but this time with the assignment of each pixel along

the path, with a unique color.

3.4 Placement of Mosaic Tiles

Having been able to compute parallel curves and properly trim them, the last stage is the placement of

the tiles. One can march along the parallel curves and place the tiles so that they are tangent to the curve

along one edge of the tile while packed as closely as possible against the adjacent tiles in this row. This

intuitive description is followed in the algorithmic approach taken. We place one tile at a time along a

row. The next tile is oriented to be tangent to the curve, while we \slide" the tile in until it comes into

contact with the previous tile (see Fig. 6).

While this simple algorithm works reasonably well in low curvature areas, near high curvature regions

of the curve, the gaps could be quite large (see Fig. 6). Even more disturbing are the artifacts that result



Rendering Traditional Mosaics Elber & Wolberg 11

Figure 6: Tile placement for the curve in Fig. 1.

near the trimmed zones. Here, the two fronts of two di�erent Voronoi cells of the curves meet and we must

decide what tile from what front to employ. Clearly, one can decide to break the tiles into non square or

even non rectangular shapes. Straight clipping all too clearly demarcates the meeting edges of the di�erent

Voronoi cells and these undesirable artifacts can be visible in the �nal result, as will be demonstrated in

the Section 4.

Superior results can be obtained by randomly allowing the penetration of tiles from one front into its

adjacent front, in an attempt to alleviate some of these artifact. Examples of this approach, as well as

others, can be found in the next section.

4 EXAMPLES

This section demonstrates the algorithm on various input images. Figures 7 through 9 depict several pairs

of input and output images. In Fig. 10, the feature curves used to place the tiles of Fig. 8 and Fig. 9

are shown. Notice that the tiles conform to image features. Furthermore, the composition of tiles across

wavefronts is well-behaved. Fig. 11 depicts the use of only a few lines of tiles along the features curves

and the use of either uniform squares or hexagonal tiles as background. Fig. 12 shows a similar example

of only few lines of tiles over a background formed of diamond and hexagonal tiles.

Tiles need not necessarily be of uniform color. Fig. 14 is a preliminary attempt to employ the bank of

images shown in Fig. 13, to tile a mosaic. In Fig. 14(a), a mosaic similar to that of Fig. 8 is shown except

that the tiles are now actual images. Fig. 14(b) shows a closeup of the photomosaic of the back of the

dinosaur head.



Rendering Traditional Mosaics Elber & Wolberg 12

Figure 7: An image of a dinosaur (left) and a mosaic reconstruction (right). Image from the Utah dinosaur

museum in Ogden.

Figure 8: An image of a dinosaur (left) and a mosaic reconstruction (right). Image from the Utah dinosaur

museum in Ogden.

5 CONCLUSIONS

We have presented a technique for rendering traditional mosaics. The proposed system exploits extracted

and drawn feature curves to generate a tessellation in which to lay down tiles. The colors of the tiles

are sampled from the underlying image. We reviewed the use of Voronoi diagrams to help trim the o�set

curves. A fast algorithm based on a hardware Z-bu�er was used for this purpose [13].

Although the use of Voronoi diagrams has been suggested in the literature to produce mosaic images, it is

important to note that we use Voronoi diagrams only as a means to trim o�set curves. The straightforward

application of Voronoi diagrams for tessellation, as is used in some commercial software, does not produce



Rendering Traditional Mosaics Elber & Wolberg 13

Figure 9: A butter
y picture (left) and mosaic reconstruction (right).

Figure 10: The feature curves used to place the tiles are shown for Fig. 8 (left) and Fig. 9 (right).

tile placement consistent with traditional mosaics.

While this paper lays out the basic approach to perform traditional mosaicing, a number of enhance-

ments are possible. Future work remains in implementing the ideas described below.

The presented approach leaves visual artifacts in the forms of virtual lines along the skeleton of the

feature curves, or the locus of singular points of the o�set curves. Further, due to the precise nature of

the proposed approach, the placement of the tiles seems too precise at times. One can expect that by

employing a gradient �eld, proposed by [12], this synthetic artifact can be mitigated. Here, tiles in the

neighborhood of the skeleton will be allowed to move under the in
uence of the gradient �eld, an amount



Rendering Traditional Mosaics Elber & Wolberg 14

Figure 11: Placement of few rows of tiles along feature curves. Small tiles and square background tiles

(left) and large tiles and hexagonal background tiles (right). Compare with Fig. 8.

Figure 12: Placement of few rows of tiles along feature curves. Diamond background tiles (left) and

hexagonal background tiles (right).



Rendering Traditional Mosaics Elber & Wolberg 15

Figure 13: Tiles could employ images instead of a uniform color. Presented here is a bank of images in

RGB space that is used in Fig. 14 to tile a mosaic.

(a) (b)

Figure 14: Generalized photomosaic of dinosaur. See also Fig. 8 and Fig. 11.



Rendering Traditional Mosaics Elber & Wolberg 16

that is a function of the distance to the skeleton, preserving the overwhole price placement of tiles.

Visually interesting e�ects are possible if we use tiles textured with another image. This idea is actually

a generalization of photomosaics [25]. In photomosaics, an abstract version of an image is generated by

packing a dense set of smaller images into a nonuniform upright grid. In mosaics, we may abandon the

rectilinear grid with intricately 
owing rows of tiles, each consisting of a small image.

Although traditional mosaics place tiles along rows that grow from designated feature curves, it seems

reasonable to consider other tile placement strategies. Indeed, the digital engraving system described in

[22] shares similar goals for orienting lines in response to image features. This suggests the use of engraving

lines, as produced by that system, for tile placement.

The mosaic image need not be constructed from 
at two-dimensional tiles. Instead, we can render

the image in 3-D with any desirable re
ection model. Interesting e�ects are possible if we integrate the

stone-generation algorithm of [20] to render the mosaic tiles. It is interesting to note that during the

Byzantine era, mosaic tiles were often set at oblique angles to achieve a shimmering e�ect. This e�ect can

be simulated easily once we impose specular re
ection on the 3-D tiles.

The proposed system deals primarily with rectangular and triangular tiles. A future enhancement will

permit the user to introduce other tile shapes, including hexagons, diamonds, and irregular shapes.

There are several bene�ts to a digital mosaic rendering system. Every aspect of the creative process can

now be edited and rendered at near real-time rates. The user may readily alter the set of feature curves,

edit the o�set curves, designate the composition rules, and control the tile shapes and colors. The result

is a system that makes this wonderful craft more 
exible and widely accessible than previously possible.

References

[1] Bertelli, C. Les Mosaiques. Bordas Publishers, Paris, 1993.

[2] Chavarria, J. The Art of Mosaics. Watson-Guptill Publications, New York, 1999.

[3] Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W., and Salesin, D. H. Computer-

generated watercolor. Computer Graphics (Proc. SIGGRAPH '97) (1997), 421{430.

[4] Dierks, L. Making Mosaics. Sterling Publishing Co., New York, 1997.

[5] do Carmo, M. P. Di�erential Geometry of Curves and Surfaces, 2nd ed. Academic Press, 1990.

[6] Elber, G. Line art rendering via a coverage of isoparametric curves. IEEE Trans. Visualization and

Computer Graphics 1, 3 (September 1995), 231{239.



Rendering Traditional Mosaics Elber & Wolberg 17

[7] Elber, G. Line art illustrations of parametric and implicit forms. IEEE Trans. Visualization and

Computer Graphics 4, 1 (1998), 71{81.

[8] Elber, G., and Cohen, E. Error bounded variable distance o�set operator for free form curves and

surfaces. International Journal of Computational Geometry & Applications 1, 1 (March 1991), 67{78.

[9] Elber, G., Lee, I.-K., and Kim, M.-S. Comparing o�set curve approximation methods. IEEE

Computer Graphics and Applications 17, 3 (May-June 1997), 62{71.

[10] Glassner, A. Celtic knotwork. IEEE Computer Graphics and Applications 19, 5 (September-October

1999), 78{84.

[11] Haeberli, P. Paint by numbers: Abstract image representations. Computer Graphics (Proc. SIG-

GRAPH '90) 24, 4 (1990), 207{214.

[12] Hausner, A. Simulating decorative mosaics. Computer Graphics (Proc. SIGGRAPH '01) (2001),

573{580.

[13] Hoff, K. E., Culver, T., Keyser, J., Lin, M., and Manocha, D. Fast computation of general-

ized voronoi diagrams using graphics hardware. Computer Graphics (Proc. SIGGRAPH '99) (1999),

277{286.

[14] Hoffmann, C. Computer vision, descriptive geometry, and classical mechanics. In Computer Graph-

ics and Mathematics, R. Falcidieno, I. Herman, and C. Pienovi, Eds. Springer Verlag, Berlin, 1992,

pp. 229{243. Also available as Technical Report, CSD-TR-91-073, Computer Science Department,

Purdue Univeristy, October, 1991.

[15] Lansdown, J., and Schofield, S. Expressive rendering: A review of nonphotorealistic techniques.

IEEE Computer Graphics and Applications 15, 3 (May 1995), 29{37.

[16] Lee, S., Chwa, K.-Y., Shin, S. Y., and Wolberg, G. Image metamorphosis using snakes and

free-form deformations. Computer Graphics (Proc. SIGGRAPH '95) (1995), 439{448.

[17] Ling, R. Ancient Mosaics. Princeton University Press, New Jersey, 1998.

[18] Mantanari, U. A method for obtaining skeletons using a quasi-euclidean distance. Journal of

Computing Machinery 16, 4 (1968), 534{549.



Rendering Traditional Mosaics Elber & Wolberg 18

[19] Meier, B. Painterly rendering for animation. Computer Graphics (Proc. SIGGRAPH '96) (1996),

477{484.

[20] Miyata, K. A method of generating stone wall patterns. Computer Graphics (Proc. SIGGRAPH

'90) 24, 4 (1990), 387{394.

[21] Mortensen, E. N., and Barrett, W. A. Intelligent scissors for image composition. Computer

Graphics (Proc. SIGGRAPH '95) (1995), 191{198.

[22] Ostromoukhov, V. Digital facial engraving. Computer Graphics (Proc. SIGGRAPH '99) (1999),

417{424.

[23] Salisbury, M. P., Wong, M. T., Hughes, J. F., and Salesin, D. H. Orientable textures for

image-based pen-and-ink illustration. Computer Graphics (Proc. SIGGRAPH '97) (1997), 401{406.

[24] Shapiro, L. G., and Stockman, G. C. Computer Vision. Prentice-Hall, Upper Saddle River, N.J.,

2001.

[25] Silvers, R. Photomosaics. Owl Books / Henry Holt and Co., Michael Hawley, New York, 1997.

[26] Vance, P., and Goodrick-Clarke, C. The Mosaic Book. Conran Octopus Limited, London, 1994.

[27] Winkenbach, G., and Salesin, D. H. Rendering parametric surfaces in pen and ink. Computer

Graphics (Proc. SIGGRAPH '96) (1996), 469{476.

[28] Woo, M., Neider, J., Davis, T., and Shriener, D. Open GL Programming Guide, Third Edition,

The O�cial Guide to Learning Open GL Version 1.2. Addison Wesley, Massachusetts, 1999.

[29] Y. Pnueli, A. B. Digid�urer { a digital engraving system. Visual Computer 10 (1994), 277{292.


