
Tatiana Surazhsky
Applied Mathematics Department,

The Technion — Israel Institute of Technology,
Haifa 32000, Israel.

tess@cs.technion.ac.il

Gershon Elber
Faculty of Computer Science,

The Technion — IIT,
Haifa 32000, Israel.

gershon@cs.technion.ac.il

Abstract

In this work, a new method for the layout of text strings

over some given free-form parametric base curves is con-

sidered. Each letter of the string is represented by a col-

lection of cubic and linear Bézier curves. The layout of

the string over the free-form parametric curve is derived

as a symbolic composition of the string geometry (i.e. a

sequence of Bézier curves) and a free-form parametric sur-

face
���������
	

with the parameters
�����

between zero and one,

and
���������
	

is given by the base curve. This method has

proven to provide great flexibility and give high quality re-

sults in layout of text.

Keywords: Composition, free-form parametric curves

and surfaces, digital typography.

1 Introduction

The availability of a whole variety of electronic print-

ing tools and devices have changed the role of typography.

Nowadays, text manipulation functions are an integral part

of a large body of applications such as multi-media publish-

ing, computer animation and computer-aided design sys-

tems.

Computer aided font design tools have been created in

1960s (see [18]), but even today font design systems ne-

cessitate the tedious support of a human artist. There is a

whole body of work that introduced improvements and ex-

tensions into font design systems [5–7, 14, 17, 21] that in-

clude programmable parametric models [15]. Some work

investigated the extraction of strokes from the outline de-

scription of the fonts (see [8, 17]).

A font is typically defined as a set of printable or dis-

playable text characters of specific style and size. A design

of a set of fonts is called typeface. Popular type-faces in use

today are the True Type used by Microsoft Windows [2] and

the Adobe’s Type 1 fonts [3]. They are representatives of

scalable or vector fonts which are also called outline fonts.

Each character of such fonts is described by vector geom-

etry and can be scaled with ease. The curves between the

end-points of the vectors are usually specified by using ei-

ther cubic or linear Bézier spline curves. While the most ob-

vious relevance of text characters is for printing and publi-

cations, other applications such as computer animation and

computer aided design require text manipulation functions.

In [16], one may find a two dimensional morphing

method in which each elementary sub-screen shape is de-

fined by a letter shape toward half-toning. This technique

is applied in artistic screening which incorporates both full

size and microscopic letters into the image reproduction

process. In order to avoid counterfeiting, banknotes may

include half-toning images with intensity levels that are

produced by micro-letters of varying size and shape. To-

ward this end, the US treasury protects banknotes by us-

ing micro-printing techniques for generating letters along

curved contours. Many other computerized systems em-

ploy printing methods that layout text strings along smooth

lines and curves. Such algorithms could be found in systems

which employ outline fonts: for example the PostScript lan-

guage [1,4] and Microsoft Office (the “WordArt” package).

Existing work that allows text deformations, performs

the deformations using one of two methods. The first ap-

proach defines a best suited rigid motion transformation for

each symbol (see pages 171 – 173, “Program 11/Placing

Text Along an Arbitrary Path” in [1], for example). This

approach is also one of the methods used by the “WordArt”

package. The second common technique maps the control

points of the Bézier curves comprising the text symbols as

in [16]. This second method is better than the first one, since

it is more accurate and if the curve is approximated well

enough by its control polygon, i.e. when there are enough

control points, the deformed letters will look better. Never-

theless, both methods do not guarantee that the letters after

(a) (b)

Figure 1. Undeformed linear edges of some
character with a base line (thick line) are
shown in (a) and do not intersect each other.
The deformed base line with the mapped end
control points and edges are shown in (b).
The straight line edges intersect each other
in (b) and the shape even expands below the
base line. Note that the lengths of the dashed
lines (that are normal to the base line) are un-
modified.

(a) (b) (c)

Figure 2. Letter ‘A’: the original character is
shown in (a), with the mapping of the control
polygons in (b). The deformation of the sym-
bol using the presented algorithm is shown
in (c). Base lines are shown in thick lines.

the deformation will be intersection free. For the second

method such intersection artifacts are not frequent, but still

exist, see Figure 1 for example. There is another problem

with this second, control point mapping, approach. All the

linear segments of the symbol stay linear, with possible dis-

pleasing artifacts that affect the continuity of adjacent seg-

ments. A simple example of this disturbing behavior may

be seen in Figure 2. In (a), we find the original geome-

try of the letter ‘A’ that has several linear segments. In (b),

only the control points of the Bézier curves comprising the

symbol ‘A’ are mapped, as in [16]. Finally, (c) deals with

the complete geometry of the curves as is presented in this

work. None of the existing tools that the authors are aware

of, can produce character deformation with the quality and

precision that is presented in Figure 2 (c).

In [20], a free-form deformation technique is presented

for solid geometric models. Given a mapping ��� IR �����

2

IR � and object ��� IR � , � can be warped to follow �
as � � � 	

. � provides a precise control over the warp-

ing process. The technique of [20] resembles our method

presented herein, yet in a higher dimension; A volume is

deformed in [20], while a planar surface is deformed here.

A deformation is specifically applied to font and text design

and manipulation, in this work. This paper is organized as

follows. In Section 2, the basic algorithm is discussed. In

Section 3, some possible extensions and applications of the

described method are discussed. Examples may be found

in Section 4. In Section 5, the problem of feeding the re-

sult back into PostScript, creating a closure, is considered.

Finally, we conclude in Section 6.

2 Layout of text

Recall that outline font symbols are usually represented

by linear or cubic Bézier curves. Bézier curves are variation

diminishing and affine invariant [12], which makes them

suitable for geometric design purposes and ideal choice for

scalable font representation. One more attractive aspect of

Bézier spline curves is that they are defined by finite num-

ber of control points. Two points identify a linear spline and

four points are sufficient for the definition of a cubic Bézier.

Our goal is to layout text along a certain free-form para-

metric curve � ����	 , denoted the base curve. An exact solu-

tion that defines the space for the placement of the text and

precisely relocates the geometry of the symbols is presented

in Sections 2.1 and 2.2.

2.1 Deformation of text

A natural precise solution for text deformation is to use

symbolic composition [9, 10], that is to be calculated for

every spline curve � ����	��
	���
 ����	 �����
����	��
. Evaluate,

� ����	 ��� ��� � ����	�� � ����
 ����	 ����� ����	�	 �
(2.1)

while the original symbols lie in the parametric domain of

the surface
���������
	

.

We exploited the functionality of the IRIT [13] solid

modeler to carry out all the necessary symbolic composi-

tion computations between Bézier curves and surfaces, fol-

lowing [9]. Nevertheless, the base curve is defined as a B-

spline curve. One may convert a B-spline surface that is de-

rived from a B-spline base curve into a set of Bézier surfaces

by subdividing the B-spline surface at all its internal knots.

Further, by subdividing all the Bézier curves that prescribe

the geometry of the character at the corresponding knot val-

ues, one is able to complete the deformation process as a

composition between the groups of Bézier curves with the

corresponding subdivided Bézier patches.

All linear and cubic Bézier curves of the letters are in the

parametric space of
���������
	

and are to be subdivided at the

certain interior knot value
���

(or
���

) of
���������
	

. Subdivid-

ing a curve at the coordinate
�����
� � �����

equals to solving��� ����	�� ���
for all

�
that satisfy the equation. Herein, the so-

lution set may be found analytically, solving either a linear

or a cubic equation and considering only real roots in the

range
� � �����

.

2.2 The placement of the text

Let
���������
	

be a free-form parametric surface
���������
	

,

such that given a base line curve � ����	 ,
� � � � ����� ��� IR "!#� ����	$�
	�%�����	 �'& ����	�� �

(2.2)

then

� � � � �����)(*� � ����� ��� IR "! ���������
	$�
	�%��������
	 �'& �������
	�� !
(2.3)

���������
	$� � ��� 	,+ (2.4)

Note that � ��� 	 and
���������
	

need not be planar. Neverthe-

less, here we discuss curves located in the plane since we

are dealing with two dimensional printed pages.

Consider the bounding box that contains the text string

shown on Figure 3 (a) and let � ����	 be the base line to place

the text along (see Figure 3 (b)). We would like to map the

two dimensional rectangular area shown in (a) to a surface

defined by some function
���������
	

so that the base line unites

with � ��� 	$� ���������
	
. One result can be seen in Figure 4.

The composition function that provides flexibility on one

side and precision on the other has been discussed in Sec-

tion 2.1. Let us return to the definition of the mapping sur-

face
���������
	

. The base line � ����	 prescribes
���������
	

. Con-

3

(a)

PSfrag replacements
� ����	

(b)

Figure 3. Linear strip containing the given text
(a) and the base line � ��� 	$� ���������
	

of surfaces���������
	
in (b).

Figure 4. Layout of the string along the curve.

sider the upper boundary curve of
���������
	

, i.e.
��������� 	

.

With both curves characterized, one can define
���������
	

as

a ruled surface between them:

���������
	$� ���������
	 � � � �
	 � ��������� 	 ��+
(2.5)

One appealing option could be to choose
��������� 	

as an off-

set [11] of the given base curve � ��� 	 . Another option could

be a vertical translation of � ����	 .
Let � ����	 be a � � continuous curve and assume � ����	 is ei-

ther monotone with respect to some line or is closed. Then,

Proposition 2.1 Let �� ����	 be the offset curve of � ����	 . Sup-

pose that the curves �� ����	 and � ����	 are simple and mutu-

ally intersection free. Then, the ruled surface
���������
	 �

� ��� 	 � � � �
	 �
�� ��� 	 � is self intersections free as well.

The proof of this proposition may be found in [19], since the

tangent vectors of both curves � ��� 	 and �� ��� 	 are collinear

throughout the parametric domain of
�

. Thus, if the off-

set curve of �� ��� 	 is simple and do not intersect � ��� 	 , the

resulting text would have no fold-overs.

While rare, the constraint for � ����	 to be either closed or

monotone is sufficient but unnecessary. This constraint pre-

vents the singular case for which the end points of � ����	 and

PSfrag replacements � ����	

�� ����	

Figure 5. The self-intersecting planar ruled
surface between a base curve � ����	 and its
translated upward version,

�� ����	 .

the end points of �� ����	 are interleaved, resulting in two sim-

ple curves that do not intersect whereas the ruled surface

between the curves does self intersect.

The prevention of self intersections in the isoparamet-

ric curve
��������� 	

could also be materialized by selecting
��������� 	

to be a translated version of the base curve � ����	 . Of

course, this solution could yield self intersections in
���������
	

(see Figure 5 for example), and hence, to possible intersec-

tions in the composed text.

3 Possible Extensions

One application of the presented method has been de-

scribed earlier in Section 1, that is, to layout a text string

along a given parametric curve. Consider the surface
���������
	 � � ��� 	 ��� ���
	 where

� ���
	 � ��� � ���
	
is a verti-

cally oriented Bézier curve denoted the shape line, while

� ��� 	�� ���������
	
is the base line curve as before. In this

case, the base line of the given text follows � ��� 	 , but the

font’s shape is following
� ���
	

(see examples in Figure 6).

The selected base line for the text should be parame-

terized by its arc-length. Otherwise, the end result could

be a displeasing mapping of text with varying width (com-

pare Figure 4 with Figure 7). Since the arc-length is not a

rational function, we employ an approximation of the arc-

length, via a reparameterization of the base line curve, fol-

lowing [10].

In contrast, one could intentionally employ a non arc-

4

PSfrag replacements

� ��� 	
� ���
	

(a)

PSfrag replacements

� ��� 	
� ���
	

(b)

Figure 6. Font altering using a layout over dif-
ferent vertical shaping curves.

Figure 7. Layout of the string along the base
curve without arc-length reparameterization.
Compare with Figure 4.

length parameterization of the base line curve in order to

emphasize some substring in the given text. See Figure 8

for an example.

4 More Examples

Consider the following simple examples, illustrating the

applications of the presented technique. Figure 4 illus-

trated the application of the presented method to the case

described in Section 2.2 of an offset curve (Using the in-

put of Figure 3). The following three text strings, that are

Figure 8. An application of an intentional non
arc-length parameterization of the base line
curve, toward the possible emphasis of cer-
tain words. Compare with Figure 4.

(a)

(b)

(c)

Figure 9. Layout of the string along free-form
base curve using a vertical (a) and non verti-
cal ((b) and (c)) translation.

shown in Figure 9, represent the text mapping to the sur-

face
���������
	

where the isoparametric curve � ��� 	$� ���������
	

is the same base line, and
��������� 	

is its translated version.

In (a), the translation is in the vertical direction, in (b) the

translation is slightly shifted to the right, and in (c) to the

left, creating slanting effects.

The example in Figure 7 shows a simple version of the

layout presented in Figure 4 only without the arc-length

reparameterization of the base curve � ��� 	 � ���������
	
. The

pictures in Figure 6 and Figure 10 show the possibilities of

font shaping with the aid of different
� ���
	

function.

In Figure 11, one can examine the result of a highly

curved base line applied to the symbols ‘A’ and ‘C’ in (a)

and to the characters ‘A’ and ‘U’ in (b). Compare the shape

of the deformed letters with the original symbols in Fig-

ure 12 (a) and (b), respectively.

All the examples presented in this work were computed

in less than a second on a modern Pentium based machine,

except the helical abstract example in the first page that took

about a dozen seconds to compute on the same machine.

5

Figure 10. New font variation using a specific
shape line.

(a) (b)

Figure 11. String layout over highly curved
lines (a) and (b). Compare with the original
strings in Figure 12.

(a)

(b)

Figure 12. The original strings that appear de-
formed in Figure 11.

5 PostScript representation

In our work, we have used precise composition between

the linear or cubic Bézier curves and arbitrary Bézier/B-

spline surfaces. Thus, the order of the resulting curves

might be higher than � (cubic). Recall that PostScript lan-

guage supports either linear, or cubic Bézier curves. One

could approximate the geometry of the composed letters by

a set of cubic Bézier curves to an arbitrary precision [9], in

order to further use the composed letters in the PostScript

representation.

For example, in Figure 13, two representations of the

same string over the same curve are shown. The surface
���������
	

is cubic by linear resulting in composed curve of

degree
���

for cubic Bézier and of degree � for linear Bézier

curve segments. The curves in (a) are approximated by

piecewise linear segments whereas the same curves in (b)

are represented by cubic Bézier curves. The number of lin-

ear segments for each high order curve is equal to seven in

this example. The maximal number of cubic Bézier seg-

ments approximating a higher order curve that was received

as a result of the composition of the outline font representa-

tion with the surface patch is two.

6 Conclusions

In this work, we have introduced a precise technique for

layout of text along free-form parametric curves. In order

to achieve a nicely looking text deformation, the geometric

representation of the text (linear and cubic Bézier curves)

is symbolically composed with the parametric surface con-

structed along the given base curve. Moreover, this method

may be applied for the purpose of font shaping as well, as

was demonstrated in Sections 3 and 4.

We expect to use the described method for some related

applications. For instance, text may now be easily animated.

Since text could be mapped to any simple surface, it could

be mapped to each surface in a surface-morphing sequence

between, for example, two given key shapes. Alternatively,

the base line may be metamorphed and the text may be

placed along the curves of the metamorphosis sequence.

6

(a)

(b)

Figure 13. Two different representations of
the same string over the same curve. (a) is
approximated by piecewise linear segments,
(b) is represented by cubic Bézier curves.

References

[1] PostScript Language Tutorial and Cookbook. Adobe Sys-
tems Incorporated. Addison-Wesley Publishing Company,
1989.

[2] The True Type font format specification. Microsoft Corpora-
tion, 1990.

[3] Adobe type 1 font format: multiple master extensions.
Adobe Developer Support, 1992.

[4] PostScript language reference manual. Adobe Systems
Incorporated. Addison-Wesley Publisher Company, second
edition, November 1994.

[5] D. Adams and J. Andr é. New trends in digital typogra-
phy. Raster Imaging and Digital Typography, pages 14 –
21, 1989.

[6] H. Changyuan and Z. Fuyan. Automatic hinting of chinese
outline font based on stroke separating method. Proceedings
of the First Pacific Conference on Computer Graphics and
Applications – Pacific Graphics ’93, 1:359 – 368, 1993.

[7] P. Coueignoux. Generation of roman printed fonts, Ph.D.
thesis. 1975.

[8] M. J. Dürst. Structured character description for font design:
a preliminary approach based on prolog. Pacific Graphics
’93, 1:369 – 380, 1993.

[9] G. Elber. Free form surface analysis using a hybrid of sym-
bolic and numeric computation. Ph.D. dissertation. 1992.

[10] G. Elber. Symbolic and numeric computation in curve inter-
rogation. Computer Graphics forum, 14(1):25 – 34, March
1995.

[11] G. Elber and E. Cohen. Error bounded variable distance off-
set operator for free form curves and surfaces. Int. J. Coput.
Geom. Appl. 1, 1:67 – 78, March 1991.

[12] G. Farin. Curves and surfaces for computer aided geometric
design. Academic Press, Inc., third edition, 1993.

[13] IRIT. Irit 7.0 User’s Manual. Technion, Israel.
http://www.cs.technion.ac.il/

�
irit., Mar. 1997.

[14] P. Karow. Automatic hinting for intelligent font scaling.
Raster Imaging and Digital Typography, pages 232 – 241,
1989.

[15] D. E. Knuth. The METAFONT book. Adison Wesley, 1986.
[16] V. Ostromoukhov and R. D. Hersch. Artistic screening. SIG-

GRAPH ’95, pages 219 – 228, 1995.
[17] C. Ou and Y. Ohno. Font generation algorithms for kanji

characters. Raster Imaging and Digital Typography, pages
123 – 133, 1989.

[18] L. Ruggles. Letterform design systems. Technical report
STAN-CS-83-971, 1983.

[19] T. Samoilov and G. Elber. Self-intersection elimination in
metamorphosis of two-dimensional curves. The Visual Com-
puter, 14(8/9):415 – 428, 1998.

[20] T. W. Sedergerg and S. R. Parry. Free-form deformation of
solid geometric models. SIGGRAPH ’86, 20(4):151 – 160,
1986.

[21] A. Shamir and A. Rappoport. Extraction of typographic ele-
ments from outline representation of fonts. EUROGRAPH-
ICS ’96, 15(3):259 – 268, 1996.

7

