
Submission to GMP 2014

High-Precision Continuous Contact Motion for Planar Freeform Geo-

metric Curves

Submission number: 057

Abstract

This paper presents an e�cient algorithm for generating a con-
tinuous precise contact motion between planar geometric mod-
els bounded by piecewise polynomial C1-continuous parametric
B-spline curves. A system of algebraic constraint equations is
formulated and then e�ciently solved for the two/three-contact
con�guration between two planar B-spline curves. The result is
essentially the same as the generation of con�guration space ob-
stacle for a moving curve (with translation and rotation) against
a stationary curve. The two-contact motion can be character-
ized as the intersection curve in the boundary of the con�gura-
tion space obstacle.

The topology of the reconstructed solution is guaranteed
to be correct up to a prescribed tolerance and we demonstrate
the e�ectiveness of the proposed approach using several test
examples of continuous contact motion among planar freeform
smooth geometric models.

Keywords: Con�guration space obstacle, contact motion,
freeform geometric models, B-spline curves.

1 Introduction

The geometric concept of con�guration space is one of
the most important tools for reasoning about planning in
robotics and automation [8, 11, 19, 20, 22, 23, 24, 28]. Nev-
ertheless, the construction of explicit con�guration spaces
has been limited to those for low-dimensional cases such
as translational motion in 2D or 3D and planar motion
with three degrees of freedom (i.e., translation and rota-
tion in the plane). Furthermore, in the motion planning
of non-polygonal curved objects, the con�guration space
is usually bounded by high-degree curves and surfaces, an
e�cient and precise construction of which has been a non-
trivial problem.

Industrial objects are mostly designed with Non-
Uniform Rational B-Spline (NURBS) curves and surfaces,
which are the de facto industry standard for 3D modeling.
Consequently, the contact motion analysis for numerically
controlled (NC) milling machines with respect to NURBS
models has been one of the main research topics in com-
puter aided design and manufacturing [14]. Because of the
requirement of high-precision in manufacturing, solutions
based on the polygonal approximation of NURBS models
are often not acceptable. It is also a common practice that
the NC tool-paths are approximated with NURBS curves
in the planning stage.

In this paper, we consider a general contact motion
analysis for a planar freeform smooth curve C(u) with re-
spect to a similar but static curve D(v) in the plane. As
the moving curve has two degrees of freedom in trans-
lation (x, y) and one degree of freedom in rotation θ,
the con�guration space is a three-dimensional space (i.e.,
the xyθ-space). The moving curve can be represented as
C(u, x, y, θ) = Rθ(C(u)) + (x, y), where Rθ is the planar
rotation by angle θ.

The con�guration space (C-space) obstacle can be
bounded by implicit surfaces of the form F (x, y, θ) = 0,

(a) (b) (c)

C(u)

D(v)

Figure 1: Continuous contact motion between two planar non-
convex curves: (a) the contact motion in the work space, (b) the
corresponding motion as computed in this work on the boundary
of the con�guration space obstacle in the xyθ-space (see the pink
edge in (b)) and (c) the whole boundary of the C-space obstacle.
Note that the angle θ is periodic and the top of the network is
continuously connected to the bottom.

which correspond to the contact con�gurations between
C(u, x, y, θ) and D(v) but with no interpenetration to each
other. The boundary of the C-space obstacle consists of
many patches of these implicit surfaces, the exact represen-
tation of which is quite complicated. Moreover, these sur-
face patches are bounded by intersection curves with other
similar such patches. The intersection curves correspond to
two-contact con�gurations between C(u, x, y, θ) and D(v),
i.e., the two curves contact tangentially at two di�erent lo-
cations: C(ui, x, y, θ) = D(vi), for i = 1, 2, where u1 6= u2

and v1 6= v2. The intersection curve segment has two
endpoints, each of which typically corresponds to a three-
contact con�guration between C(u, x, y, θ) and D(v). The
C-space obstacle boundary thus has a layout which can be
represented in a graph structure, where each vertex corre-
sponds to a three-contact con�guration and certain pairs
of these vertices are connected with edges (representing
two-contact continuous motions).

Figure 1 shows an example of a continuous contact mo-
tion and the corresponding point moving along an edge on
the C-space obstacle boundary. Compared with the non-
trivial shape complexity of the whole C-space (Figure 1(c))
of the two given planar curves, the two/three contact ar-
rangement of C-space (Figure 1(b)) has a relatively simple
network structure of two-contact motion curve segments.
The edges and vertices in this graph are two/three-contact
points, which can be computed by solving a system of
equations of the form: Fi(x, y, θ) = 0, for 1 ≤ i ≤ K,
where K = 2 or 3. Though the C-space obstacle bound-
ary is composed of high-degree curves and surfaces, we
have developed a highly stable algorithm for computing
the two-contact motion curves based on a geometric con-
dition that can guarantee the topological structure of the
C-space curve arrangement.

One may consider an alternative approach using polyg-
onal approximations of the two planar curves C(u) and
D(v). Then the C-space obstacle boundary will be ap-
proximated with a large number of ruled surface patches

1

(a)

(b)

Figure 2: Piecewise linear approximation of input smooth
curves and the corresponding C-space obstacle boundary: (a)
two circles and their C-space obstacle boundary, (b) piecewise
linear approximations of two circles (by an octagon and a 32-
gon) and the corresponding C-space obstacle boundary com-
puted by the algorithm of Avnaim et al. [1]. The piecewise lin-
ear approximation produces two-contact con�gurations on the
C-space boundary, which don't exist on the C-space boundary
of original input curves.

and their intersection curves [1]. This straightforward ap-
proach will be a highly ine�cient solution that produces
low-precision results. More seriously, it is extremely di�-
cult to preserve the contact con�gurations under the piece-
wise linear approximation of the two curves. Figure 2
shows a typical example of such problem. Even though
the original input curves (two circles) clearly have no two-
contact con�guration, the piecewise linear approximations
of the two circles, using an octagon and a 32-gon, produce
eight two-contact motion curves on the C-space obstacle
boundary. These redundant solutions from the piecewise
linear approximation makes it di�cult to �nd the proper
contact con�gurations on the original C-space obstacle
boundary. Thus it is important to develop an algorithm
that can directly deal with the given freeform geometric
models without a polygonal approximation.

The rest of this paper is organized as follows. In Sec-
tion 2, we brie�y review related previous work. Section 3
establishes the algebraic conditions for the contact con�gu-
rations between two planar B-spline curves. Sections 4 and
5 discuss the construction of the C-space obstacle bound-
ary and the two-contact motion planning strategy, respec-
tively. Experimental results are reported in Section 6 and
the paper will be concluded in Section 7.

2 Related Previous Work

Lozano-Pérez and Wesley [24] and Lozano-Pérez [22, 23]
introduced the concept of Con�guration space obstacles to
robotics as a useful tool for planning collision-free paths

of a polygonal or polyhedral object moving amidst polyg-
onal or polyhedral obstacles. For the rotational degrees
of freedom, the swept volume of the moving object (for a
certain range of rotations) is approximated with a polygon
or polyhedron. The C-space obstacle is then approximated
with a discrete union of low-dimensional C-space obstacle
slices. For the motion planning of polyhedra with six de-
grees of freedom, Donald [11] incrementally constructed a
connected path that consists of 1-manifold curve segments
on the 5-manifold C-space obstacle boundary.

Avnaim et al. [1] presented the �rst algorithm for
constructing an explicit C-space obstacle boundary in
the xyθ-space for a non-convex polygonal object mov-
ing among similar polygonal obstacles. Brost [6, 7] pre-
sented e�cient implementations for the C-space obstacle
boundary construction, represented as the network of two-
contact motion constraints. Our current work may be
regarded as an extension of Brost [6, 7] to the general
case of a C1-continuous planar curve moving among sim-
ilar C1-continuous planar curves. Recently, Milenkovic et
al. [25, 26] developed a robust algorithm for constructing
the C-space obstacles for planar moving object and obsta-
cles bounded by circular arcs.

Bajaj and Kim [2, 3, 4] considered the generation of
C-space obstacles for translational motions of algebraic
curves and surfaces, which produce algebraic curves and
surfaces of extremely high-degree and thus have never been
implemented. For the case of a planar freeform curve mov-
ing (with translation only) among similar freeform curves
in the plane, Lee et al. [21] presented a high-precision algo-
rithm that can approximate the C-space obstacle boundary
with B-spline planar curves. Nevertheless, there is no su�-
ciently reliable high-precision algorithm developed for the
case of a freeform surface moving (with three degrees of
freedom in translation) among freeform surfaces. In this
work, we attack a di�erent C-space generation problem
for the case of a planar curve moving with three degrees
of freedom in translation and rotation, using an approach
that is potentially extendable to higher dimensions.

Mechanical design is a typical example where high-
precision solutions are needed for the generation of C-space
obstacles. Joskowicz and Sacks [16, 17, 28] presented vari-
ous applications of high-precision C-space computation for
kinematic design of moving mechanisms. In a recent work,
Nelaturi and Shapiro [27] proposed an adaptive sampling
technique on the C-space obstacles as an e�ective way for
solving some non-trivial problems in mechanical design.

For freeform geometric models represented with
NURBS curves and surfaces, geometric constraints are
usually converted to a system of multivariate piecewise-
polynomial equations. Sherbrooke and Patrikalakis [30]
proposed an early subdivision-based approach for handling
this problem. By introducing a simple reduction scheme
for the solution domains, Elber and Kim [12] developed
a multivariate equation solver for a system of equations
that also combines symbolic and numeric techniques. The
current work is also based on this solver which has been im-
plemented as a part of the IRIT solid modeling system [15].
In a recent work, Barton et al. [5] presented an e�cient al-
gorithm for handling the special case of univariate solution
curves, which is the most relevant computational tool for
computing two-contact motion curves in this work. This
solver �nds all solutions globally and ensures the topology
of the result and, up to a prescribed tolerance. This guar-
antee enables the robust reconstruction of the C-space.

2

3 Contact Conditions for Two Planar Curves

Given two orientable planar C1-continuous regular para-
metric curves C(u) = (xC(u), yC(u)) and D(v) =
(xD(v), yD(v)), for 0 ≤ u, v ≤ 1 (an assumption used
throughout this work unless stated otherwise), the alge-
braic condition for their tangential contact at a common
touching point C(u) = D(v) can be characterized as fol-
lows:

C(u)−D(v) = 0,

det(C′(u), D′(v)) = 0,

where det() is the 2D determinant of two vectors. Equiv-
alently, we have the following over-constrained system of
three scalar equations in two variables u and v:

xC(u)− xD(v) = 0,

yC(u)− yD(v) = 0,

x′C(u)y′D(v)− y′C(u)x′D(v) = 0,

which has no solution in general. As we allow the curve
C(u) to move in the xy-plane, C(u) may have some tan-
gential contact with D(v) at some con�gurations.

When the curve C(u) is rotated by angle θ and trans-
lated by (x, y), the resulting contact condition is given as
follows:

Rθ(C(u)) + (x, y)−D(v) = 0,

det(Rθ(C
′(u)), D′(v)) = 0,

where Rθ is a 2×2 rotation matrix. Equivalently, we have
three equations in �ve variables

0 = cos θ · xC(u)− sin θ · yC(u) + x− xD(v),

0 = sin θ · xC(u) + cos θ · yC(u) + y − yD(v),

0 = F̂ (u, v, θ) =
[
cos θ · x′C(u)− sin θ · y′C(u)

]
· y′D(v)

−
[
sin θ · x′C(u) + cos θ · y′C(u)

]
· x′D(v).

The third equation speci�es a constraint F̂ (u, v, θ) = 0
among three variables u, v, θ, whereas the �rst two equa-
tions represent x and y as explicit mappings of u, v, θ:

x = − cos θ · xC(u) + sin θ · yC(u) + xD(v),

y = − sin θ · xC(u)− cos θ · yC(u) + yD(v).

We assume the coordinate functions xC(u), yC(u),
xD(v), and yD(v) are all polynomial or rational functions,
and the trigonometric functions cos θ and sin θ are repa-
rameterized by rational functions of t: cos θ = rc(t) and
sin θ = rs(t). Consequently, the rotation matrix Rθ can be
reparameterized by t, which is denoted as Rt. Moreover,
the constraint equation F̂ (u, v, θ) = 0 can be converted to
an implicit algebraic equation:

0 = F (u, v, t)

=
[
rc(t) · x′C(u)− rs(t) · y′C(u)

]
· y′D(v)

−
[
rs(t) · x′C(u) + rc(t) · y′C(u)

]
· x′D(v).

Similarly, x and y can be represented as rational mappings
of u, v, t:

x = G(u, v, t)

= −rc(t) · xC(u) + rs(t) · yC(u) + xD(v),

y = H(u, v, t)

= −rs(t) · xC(u)− rc(t) · yC(u) + yD(v).

Multiple contact conditions can also be characterized
in a similar way:

Rθ(C(ui)) + (x, y)−D(vi) = 0,

det(Rθ(C
′(ui)), D

′(vi)) = 0,

for i = 1, · · · ,K, where K is the number of tangential
contacts. Equivalently, for a K-contact (K tangential con-
tacts), we have the following 3K scalar equations in 2K+3
variables:

x = Gi(ui, vi, t)

y = Hi(ui, vi, t)

0 = Fi(ui, vi, t),

for i = 1, · · · ,K. The linear terms x and y can
be eliminated by replacing them with G1(u1, v1, t) and
H1(u1, v1, t), respectively. Consequently, we get the fol-
lowing 3K−2 scalar equations in 2K+1 variables: ui, vi, t:

0 = G1(u1, v1, t)−Gi(ui, vi, t), for 2 ≤ i ≤ K, (3.1)

0 = H1(u1, v1, t)−Hi(ui, vi, t), for 2 ≤ i ≤ K, (3.2)

0 = Fi(ui, vi, t), for 1 ≤ i ≤ K. (3.3)

In addition to contact conditions, we can enforce curve
C(u) to be locally exterior to D(v) by adding the following
inequality condition based on the orientations of the two
input curves:〈

(Rθ(C
′(ui)), D

′(vi)
〉
< 0, for 1 ≤ i ≤ K,

where 〈∗, ∗〉 denotes the inner product of two vectors.

4 Generation of C-Space Obstacle Boundary

We discuss the generation of the C-space curve arrange-
ment, mainly concentrating on the curve network of two-
contact motions embedded on the boundary. There are
two major technical issues we need to consider: (i) one
is how to identify collision-free motions from those lead-
ing to inter-penetration into the obstacle interior and (ii)
the other is how to resolve local two-contactness. For this
purpose, we present an e�cient algorithm for pruning re-
dundant solutions that do not contribute to the C-space
boundary, in Section 4.2. Local two-contactness is hard
to detect, especially when the contact locations are very
close to each other. Thus we propose simple geometric
conditions that guarantee local single-contact, used by a
hierarchical subdivision, in Section 4.3. As the construc-
tion of two-contact motion curves is a time-consuming pro-
cess, we also consider acceleration techniques based on a
hierarchical data structure for planar freeform curves, in
Section 4.4.

4.1 Curve Network of Two-Contact Motions

We solve a system of non-linear equations for two con-
tact motions (K = 2), which has four constraint equa-
tions (3.1)�(3.3), in �ve variables: u1, u2, v1, v2, t (re-
call that x and y were eliminated). For this pur-
pose, we employ the algorithm of Barton et al. [5]
which can handle a general system of non-linear equa-
tions that has n equations with n + 1 variables. The
algorithm yields one dimensional solutions and thus we
may assume that the solution curves are parameterized as
(u1(a), u2(a), v1(a), v2(a), t(a)), for 0 ≤ a ≤ 1. The cor-
responding two-contact planar motion is then generated
as a one-parameter motion (x(a), y(a), θ(t(a))) of a, where
x(a) = G1(u1(a), v1(a), t(a)) = G2(u2(a), v2(a), t(a)) and
y(a) = H1(u1(a), v1(a), t(a)) = H2(u2(a), v2(a), t(a)).

3

(a) (b) (c)

Figure 3: Solutions for the two-contact con�gurations of Figure 1: (a) all solutions for two-contact con�gurations, (b) two-contact
con�gurations after eliminating redundant two-contact con�gurations via domain pruning algorithm, and (c) the complete curve
network of collision free two-contact motions, after resolving curve arrangement by computing three-contact con�gurations, as in
Figure 1(b).

v2v1

u2

u1

D(v)

C(u)

(a)

C(u)

D(v)

u1

u2

v2v1

(b)

C(u)

D(v)

u∗
v∗

(c)

C(u)

D(v)

u v

(d)

Figure 4: Curvature Contact point of two-contact motion: (a) and (b) two-contact motion, (c) curvature matched contact, and
(d) one-contact motion.

Note that θ(t) is the rotational angle de�ned as follows:
θ(t) = arccos(rc(t)) or θ(t) = arcsin(rs(t)), for some ratio-
nal functions rc(t) and rs(t) of t.

The constraint equations for two-contact motion in-
clude many redundant solutions. Figure 3(a) shows an
entire set of two-contact motion solutions for the two pla-
nar curves in Figure 1. The majority of these solutions do
not contribute to the boundary of the C-space obstacle and
thus should be pruned out. For an e�cient computation,
we prune the redundant solutions using a simple culling
test, which is discussed in Section 4.2. Figure 3(b) shows
the solutions remaining from the pruning step.

Even after applying the pruning algorithm, the solu-
tions may still include some redundant segments (see Fig-
ure 3(b)). To complete the C-space curve arrangement, we
need to compute the intersection points among the two-
contact motion curves on the C-space boundary, which are
typically three-contact con�gurations. The three-contact
con�guration (K = 3) can be computed by solving seven
constraint equations in seven variables, which produces
discrete con�gurations. Figure 3(c) shows three-contact
con�gurations (in cyan) with a complete C-space curve ar-
rangement. The contact point can also be a K > 3 con-
tact con�guration and we treat it as multiple triple contact
points (i.e., a four contact is the overlap of four triple con-
tact con�gurations).

Interestingly enough, three-contact con�guration is not
always a terminal point of the two-contact motion curve.
The two-contact motion curve may, in special cases, con-
verge to a single contact point. Figure 4 shows an example
of such a case. Figure 4(c) shows the special single contact,
where the two curves share the same curvature at the con-

tact point. After passing the special point, the two curves
maintain only a single contact, as shown in Figure 4(d),
where the moving curve C(u) has curvature lower than the
other curve D(v). The algebraic condition for this special
case can be formulated as follows (please see Lemma 2 of
Appendix A for the proof):

κC(u)− κD(v) = 0,

κ′C(u)− κ′D(v)
∂v

∂u
= 0,

det(Rθ(C
′(u)), D′(v)) = 0,

(4.1)

where κC(u) and κD(v) are the curvature functions for the
two curves. We denote this special condition as curvature
contact.

The inter-penetration of two-contact motion always
starts at a K ≥ 3 contact con�guration and the conver-
gence of two (or more) contact points to a single contact
point is realized at a curvature contact. When the two-
contact motion causes no inter-penetration and two con-
tact points do not merge to a single contact point, the
con�gurations on the two-contact motion are always valid
and the two-contact motion terminates only at K ≥ 3 con-
tact or curvature contact con�gurations.

To complete the C-space curve arrangement, we com-
pute curvature contact points together with K ≥ 3 contact
points, and use them as terminal points of the two-contact
motion.

4.2 Domain Pruning

Solving the algebraic equations for the two-contact mo-
tion curves is a time-consuming process and, as mentioned
earlier, many of these solutions are often redundant. As a

4

consequence, an e�ective culling of redundant solutions has
a signi�cant impact on the performance of the overall algo-
rithm. For example, solving entire two contact constraint
equations, shown in Figure 3(a), requires a few gigabytes
of memory and several hours of computation time. On the
other hand, using an e�cient pruning algorithm� shown in
the Figure 3(b), it takes only a couple of minutes and only
twenty megabytes of memory for the same problem.

The points on the boundary of the C-space obstacle
can be characterized using the geometric concept of pen-
etration depth. Given two objects A and B, their pen-
etration depth PD(A,B) can be de�ned as the distance
between their deepest interpenetration points [31]. Using
this de�nition, we can prescribe the points (x, y, θ) on the
C-space boundary as follows:

{(x, y, θ)|PD(C(u, x, y, θ), D(v)) = 0}

For a given sub-domain D = [u, u] × [v, v] × [t, t] and the
corresponding C-space:

CSD = {(x, y, θ)|x = G(u, v, t), y = H(u, v, t), θ = θ(t),

(u, v, t) ∈ D},

consider the minimum penetration depth for CSD:

PD(CSD) = min{PD(C(u, x, y, θ), D(v))|(x, y, θ) ∈ CSD}

If PD(CSD) > 0, clearly, CSD cannot contribute to the
C-space boundary and thus we can safely prune out the
sub-domain D. But, a precise computation of PD(CSD)
is non-trivial and computationally quite expensive; thus,
we compute a lower bound of PD(CSD) instead.

Let (um, vm, tm) be the mid-point of the domain D
and (xm, ym, θm) be the corresponding con�guration. We
compute PDm = PD(C(u, xm, ym, θm), D(v)) using the
2D version of the algorithm of Tang et al. [31]. Let
the deepest interpenetration point on the moving curve
be denoted by C(u∗, xm, ym, θm). Now consider a max-
imum distance Distmax between C(u∗, xm, ym, θm) and
C(u∗, x, y, θ) where (x, y, θ) ∈ CSD. Then PD(CSD) can
be bounded by the following inequality:

PD(CSD) > PDm −Distmax.

4.3 Conditions for Single-Contactness

Finding all two-contact motion curves on the boundary
of the C-space and ensuring its topology is a challenging
problem, in particular, when two di�erent tangential con-
tact points C(u1) = D(v1) and C(u2) = D(v2) are located
very closely to each other. Because of numerical errors, it is
di�cult to distinguish whether two nearby contact points
are identical or di�erent. For example, it is non-trivial
to detect the degenerate contact as shown in Figure 4(c)
when we rely solely on algebraic techniques for solving a
system of equations. Thus we consider simple geometric
conditions that can guarantee the local single-contactness
as in the case of Figure 4(d).

For a given positively oriented (counterclockwise) curve
C(t), 0 ≤ t ≤ 1, we say that the curve C(t) is convex (or
concave), if det(C′(t), C′′(t)) > 0 (or det(C′(t), C′′(t)) < 0),
for all t ∈ [0, 1]. For example, C(u) is convex and D(v) is
concave in Figure 5(a).

When a convex part of C(u) is in contact with a convex
part ofD(v), the two curves may have only a single-contact
(locally, though not globally). Concave curves have no
chance of having a tangential contact at all. On the other
hand, when the minimal curvature of C(u) is higher than
the maximal curvature of D(v), the convex part of C(u)

C(u)

D(v)

C(u)

C(u)

D̂(u)

D̂(u)

(a)

κC(u)

κD̂(u)

u∗
1 u∗

2

κ

uu1 u2u∗

(b)

Figure 5: Relative curvature distribution in a two-contact con-
�guration: (a) two planar curves in a two-contact con�guration,
and (b) their curvature plot.

may have only a single-contact (locally) with the concave
part of D(v).

Depending on the relative curvature distribution of
C(u) with respect to the other curve D(v), the convex part
of C(u) may have two di�erent tangential contacts with the
concave part of D(v) (see Figure 5). The following lemma
presents a necessary condition for the two-contactness of
the two curves, the negation of which also produces a su�-
cient condition for the single-contactness of the two curves.

Lemma 1. Given two di�erent curvature-continuous
curve segments C(u) and D(v), where C(u) is convex
and D(v) is concave, if there exists a two-contact con-
�guration between the two curves at C(u1) = D(v1) and
C(u2) = D(v2) with u1 < u2, there are at least two di�er-
ent solutions for the following system of equations:

κC(u)− κD(v) = 0, (4.2)

det(C′(u), D′(v)) = 0, (4.3)

where κC(u) and κD(v) are the curvature functions of the
curves C(u) and D(v), respectively.

Proof. Due to the convexity and concavity of the two
curves, there exists a one-to-one correspondence in their
tangent-directions between the two curve domains [u1, u2]
and [v1, v2], which satis�es Equation (4.3). Thus, we as-
sume a reparameterization of v = v(u), u1 ≤ u ≤ u2,

so that the two curves C(u) and D̂(u) = D(v(u)) share
the same tangential direction at the same parameter u:
C′(u) ‖ D̂′(u), where D̂′(u) = v′(u)D′(v(u)).

The curvature κC(u) is greater than or equal to κD̂(u)
in su�ciently small neighborhoods of C(ui) = D(vi), (i =
1, 2); otherwise, the curve C(u) inter-penetrates D(v) in
the neighborhood of C(ui) = D(vi). Now, when we assume
the existence of an intermediate parameter u∗ ∈ (u1, u2)
such that κC(u∗) < κD̂(u∗), the continuity of the curvature
functions κC(u) and κD̂(u) guarantees the existence of u∗1
and u∗2 with κC(u∗i) = κD̂(u∗i), (i = 1, 2), (see Figure 5(b))
and we completed the proof.

Thus, we only need to prove the existence of such a pa-
rameter u∗ ∈ (u1, u2). Assume otherwise; that is, assume
no such u∗ may exist, then we have κC(u) ≥ κD̂(u), for all
u ∈ [u1, u2]. For an arc-length parametrization s ∈ [s1, s2],
(ui = u(si)), of C(u), we have the following relation:

C′(u2)

||C′(u2)|| −
C′(u1)

||C′(u1)|| =

∫ s2

s1

κC · n ds,

where n is the common unit normal vector of C(u) and

D̂(u). Similarly, for an arc-length parametrization s of

D̂(u),

D̂′(u2)

||D̂′(u2)||
− D̂′(u1)

||D̂′(u1)||
=

∫ s2

s1

κD̂ · n ds.

5

D̂(u)

C(u)

LD̂

−Rθ(LC)
−LRθ

LD̂

(−LRθ
)⊕ LD̂

LD̂

−LRθ

(−LRθ
)⊕ LD̂

(b)(a) (c) (d) (e)

Figure 6: Construction of line swept circle (LSC) regions: (a) the static curve D̂(u) and the initial con�guration of the moving
curve C(u), (b) their LSC regions with rotation, (c) the LSC region that bounds the rotational swept region ∪θ≤θ≤θ (−Rθ(LC)),
(d) the Minkowski sum (−LRθ

)⊕ LD̂, and (e) the LSC region that bounds the Minkowski sum.

But then, ∫ s2

s1

κC · n ds =

∫ s2

s1

κD̂ · n ds,

and since κC(u) ≥ κD̂(u), it must be the case that κC(u) =
κD̂(u), for all u ∈ [u1, u2]. Therefore, the two curves are
identical in contrast to the assumption that they are dif-
ferent.

Lemma 1 means that the two curves C(u) and D(v)
have at least two locations where they share the same
curvature as well as the same tangent direction, which
is represented by Equations (4.2) and (4.3), respectively.
By negating the conclusion of Lemma 1, we get a suf-
�cient condition for the single contactness of a convex-
concave curve pair; namely, when the system of Equations
in Lemma 1 has at most one solution, the two curves can
have no contact or only a single contact. For this pur-
pose, we employ the single solution test of Hanniel and
Elber [13], which guarantees that the system of Equations
(4.2)�(4.3) can have at most one solution.

We can extend Lemma 1 to the general case between
a rotated curve Rθ(C(u)), for θ ≤ θ ≤ θ, and a static
curve D(v). If Equations (4.2) and (4.3) have at most one
solution for all θ, there exists no double contact con�gura-
tion between the two curves. The single solution test can
also be extended simply using the generalized gradient of
Equation (4.3) due to the rotation.

4.4 Testing for K-Contactness

Given K curve pairs Rθ(C(ui)) and D(vi), i = 1, · · · ,K,
we check the necessary conditions for a K-contact con�gu-
ration, which are based on the algebraic conditions (3.1)�
(3.3), to eliminate redundant curve pairs from further con-
sideration. We test if there is some overlap between their
G- and H-functions, namely, their con�gurations in the
xy-plane. Otherwise, there is no K-contact con�guration
feasible for the K pairs. To further accelerate this condi-
tion check, we employ a hierarchical data structure for the
planar freeform curves under consideration, the details of
which will be discussed in the next subsection 4.5.

Before we give the details of the data structure, we
review the F -, G-, and H-functions. The F -function is
simply a condition for the slope matching between the ro-
tated curve Rθ(C(u)) and the other curve D(v):

F (u, v, θ) = det(Rθ(C
′(u)), D′(v)) = 0,

which means that the solution of F (u, v, θ) = 0 provides a
reparameterization of v = v(u, θ) as a bivariate function of
u and θ. Thus, we have

x = Ĝ(u, θ) = G(u, v(u, θ), θ)

= − cos θ · xC(u) + sin θ · yC(u) + xD(v(u, θ)),

y = Ĥ(u, θ) = H(u, v(u, θ), θ)

= − sin θ · xC(u)− cos θ · yC(u) + yD(v(u, θ)).

Now consider the problem of testing whether there
is some overlap among the K bivariate surfaces in the
xy-plane: (x, y) = (Ĝ(ui, θ), Ĥ(ui, θ)), ui ≤ ui ≤ ui,
i = 1, ...,K, for a certain range of orientations of C(ui),
θ ≤ θ ≤ θ. The overlap between the K surfaces is a neces-
sary condition for a possible K-contact between Rθ(C(ui))
and D(vi), for i = 1, ...,K, at K di�erent locations. Of
course, the generation of these bivariate surfaces in the
xy-plane is time-consuming. Thus we consider the genera-
tion of simple bounding regions for these two surfaces using
a hierarchical data structure which can be pre-computed
for the two planar freeform curves C(u) and D(v).

4.5 Acceleration using Bounding Region Hierarchy

We build a bounding region hierarchy (BRH) for each
curve. The curve is �rst subdivided at each in�ection
point. Each sub-curve is then either convex, concave, or
linear. A binary tree is generated for each segment by
recursively subdividing the sub-curves at mid-parameters
until the sub-curves gets shorter than a certain length.
Each node of the tree contains geometric data such as
a bounding region, and the ranges of tangent directions,
curvatures, and curvature derivatives. We employ a line
swept circle (LSC) as the bounding region for the curve
segments [18]. Each curve segment is approximated by a
line segment connecting the two endpoints, and the max-
imum approximation error is bounded from above by a
certain value ε > 0. By sweeping a circle of radius ε along
the line segment, we can generate an LSC region that com-
pletely bounds the curve segment.

We use the BRH to detect an inter-penetration between
two curves. Starting from the root nodes of the two hier-
archies, we test whether the two LSC regions overlap. The
overlap between two LSC regions is tested by computing
the distance between their center line segments and com-
paring if the distance is smaller than the sum of the two
radii of the LSC regions. If two LSCs overlap, we proceed
to the next level of hierarchy and repeat the overlap test
until we reach the leaf nodes. Once we reach the leaf nodes,

6

C(u1)

D̂(u1)C(u2)
D̂(u2)

(−LRθ
)⊕LD̂

1 1

(−LRθ
)⊕LD̂

2 2

C(u2)

D̂(u2)

D̂(u1)

C(u1)

(−LRθ
)⊕LD̂

1 1

(−LRθ
)⊕LD̂

2 2

(a) (b) (c) (d)

Figure 7: Overlap test for two curve pairs: (a) Curve pairs having a two-contact con�guration, (b) overlapping bounding regions
for the curve pairs of (a), (c) Curve pairs with no two-contact con�guration, and (d) non-overlapping bounding regions for the
curve pairs of (c).

we compute the intersection point and check if the inter-
section is transversal. If the intersection is transversal, we
consider it as an inter-penetration of the two curves.

We also use the BRH to accelerate the K-contactness
test presented in the previous subsection 4.4. Given two
curve segments Rθ(C(u)) and D̂(u), for u ≤ u ≤ u,
and a range of rotation angles, θ ≤ θ ≤ θ, we con-
struct a bounding region for the bivariate surface (x, y) =

(Ĝ(u, θ), Ĥ(u, θ)) contained in the xy-plane. The curves

C(u) and D̂(u) are bounded by LSC regions LC and LD̂,
respectively. The rotational swept region ∪θ≤θ≤θ Rθ(LC)
of LC is then bounded by another LSC region LRθC . Fi-
nally, the Minkowski sum (−LRθC)⊕ LD̂ is bounded by a

larger LSC region. The bivariate surface (Ĝ(u, θ), Ĥ(u, θ))
is then bounded by this LSC region as is evident from the
following relation:

(x, y) = (Ĝ(u, θ), Ĥ(u, θ))

= −Rθ(C(u)) +D(v(u, θ))

⊂ −Rθ(LC)⊕ LD̂
⊂ (−LRθC)⊕ LD̂,

where the Minkowski sum operation ⊕ is de�ned as A ⊕
B = {a+ b | a ∈ A, b ∈ B}.

Figure 6 illustrates some important construction steps
of the LSC regions. Figure 6(a) shows the static curve

D̂(u) and an initial con�guration of the moving curve
C(u). In Figure 6(b), three instances of the rotating curve
−Rθ(C(u)) are shown (two in gray and the middle one in
black), and each curve is bounded by the respective LSC
region. Figure 6(c) shows the LSC region that bounds the
rotational swept region ∪θ≤θ≤θ (−Rθ(LC)) of −LC . Fig-

ures 6(d)-(e) show the Minkowski sum (−LRθC)⊕LD̂ and
the LSC region that bounds (−LRθC)⊕ LD̂, respectively.

Given two pairs of curve segments: (C(u1), D̂(u1)),

u1 ≤ u1 ≤ u1, and (C(u2), D̂(u2)), u2 ≤ u2 ≤ u2,
where each pair is now guaranteed to have a local single-
contactness, we test if there is an overlap between the
corresponding bivariate surfaces (Ĝ(u1, θ), Ĥ(u1, θ)) and

(Ĝ(u2, θ), Ĥ(u2, θ)), using their bounding LSC regions thus
constructed. Figure 7 shows two examples of the overlap
test using these bounding regions. In Figure 7(a), each pair

of curve segments (C(ui), D̂(ui)), ui ≤ ui ≤ ui, (i = 1, 2),
has a tangential contact. Consequently, their bounding
LSC regions must overlap as shown in Figure 7(b). On
the other hand, the two LSC regions of Figure 7(d) have
no overlap, which means that at least one pair of curve
segments has no tangential contact. Figure 7(c) shows an
example, where no pair has a tangential contact.

The overlap test proceeds recursively from the root of
the binary tree for each curve segment to the leaf level of
the hierarchy. As we go down to the lower levels of the

hierarchy, the overlap tests using LSC bounding regions
provide more and more accurate results. In this hierarchi-
cal approach, we generate a superset of candidates for the
two/three-contact con�gurations, and to each of which we
apply the precise computations of solving the system of
equations characterizing the two/three-contact condition.

The following algorithms (Algorithms 1�2) summarize
the overall procedure for the K-contact computation.

Algorithm 1 K-Contact-Computation
Input: Curve pairs (Rθ(C(ui)), D(vi)), i = 1, · · · ,K.
Output: K-contact points.

1: for i = 1→ K − 1 do

2: if ui+1 < ui then
3: return NULL (redundant domain);
4: end if

5: end for

6: if !K-Overlap-Test((Rθ(C(ui)),D(vi)), i = 1, · · · ,K)
then

7: return NULL;
8: end if

9: if Each (Rθ(C(ui)), D(vi)) satis�es the single-
contactness and small enough then

10: return Compute-Precise-K-contact();
11: else

12: Subdivide the (Rθ(C(ui))), D(vi)), i = 1, · · · ,K)
into two sub-domains L(ui, vi, θ) and R(ui, vi, θ);

13: K-Contact-Computation(L(ui, vi, θ));
14: K-Contact-Computation(R(ui, vi, θ));
15: end if

Note that aK-contact point, (u1, v1, · · · , uk, vk, θ), has
K! potential equivalent representations. For example, a
two contact point can be represented as (u1, v1, u2, v2, θ)
or (u2, v2, u1, v1, θ). To prevent redundant computation
due to the equivalent representations, we only consider
the K-contact point representation (u1, v1, · · · , uk, vk, θ)
where ui < ui+1 for i = 1, · · · ,K. Algorithm 1 (K-
Contact-Computation) ensures this condition (ascending
order of ui values) by rejecting redundant domains (in line
1-4). Algorithm 1 then subdivides curve pairs Rθ(C(ui)),
D(vi)) into a single-contact pair using the single contact
conditions introduced in Section 4.3. On the other hand,
Algorithm 2 (K-Overlap-Test) checks the necessary con-
ditions for the K-contactness. For the subdivision, we
�nd a curve segment having the largest tangent cone (that
bounds all tangent directions) among the 2K curve seg-
ments and compare the angular span of the tangent cone
with the domain size of the rotation, θ − θ. If the angular
span of the tangent cone is larger, we subdivide the curve
segment having the largest tangent cone, otherwise, we
subdivide the rotation domain and form two sub-domains

7

L(ui, vi, θ) and R(ui, vi, θ). Once all the curve pairs get
smaller than a certain tolerance, Algorithm 1 invokes a
function Computes-Precise-K-contact() (in line 10) as a
�nal stage, which computes the precise K-contact points
by using a multi-variate equation solver [5] that ensures
the correct topology up to some tolerance. This property
allows one to guarantee the detection of valid yet narrow
paths, up to some given accuracy, for the moving geometry.

4.6 Extension to Multiple Curves

In many applications, we have obstacles consisting of mul-
tiple curves. To handle such obstacles, we extend the K-
contact algorithms to the case of multiple stationary curves
(though the moving curve is still a single connected compo-
nent). Given a moving curve C(u) and n stationary curves
Di(v), i = 1, · · · , n, we compute the K-contact between
C(u) and ∪Di(v). In this case, we need to process all possi-
ble K curve pairs, Rθ(C(uk)), Di(vk), where i = 1, · · · , n,
and k = 1, ...,K.

The K-contact algorithm for the multiple curve case
requires more computations than that of a single curve
pair, but it does not increase the complexity of the algo-
rithm. Example 9(f) shows one example of the multiple
curve case.

Algorithm 2 K-Overlap-Test
Input: Curve pairs (Rθ(C(ui)), D(vi)), i = 1, · · · ,K.
Output: True if there is overlap, False otherwise.

1: for i = 1→ K do

2: if Rθ(C(ui)) and D(vi) share no tangent direction
then

3: return False;
4: end if

5: end for

6: for i = 2→ K do

7: if (Ĝ(u1, θ), Ĥ(u1, θ)) and (Ĝ(ui, θ), Ĥ(ui, θ)) don't
overlap then

8: return False;
9: end if

10: end for

11: return True;

5 Continuous Contact Motion Planning

We consider the problem of contact motion planning using
the C-space curve arrangement. Unlike traditional motion
planning on the con�guration space, which requires opti-
mization to determine the extra degrees of freedom, we
simply connect two contact motions in the C-space curve
arrangement and build a sequence of two contact motions
that connects the start and goal con�gurations.

Given the start and goal con�gurations, a continuous
two-contact motion can be generated between the two con-
�gurations by using a graph search on the network of two-
contact motion curves embedded in the C-space obstacle
boundary. We may assume the start and goal con�gura-
tions are initially given as contact situations (by translat-
ing C(u) to the nearest point of D(v) if necessary). If
the start con�guration is in one-contact, we transform the
moving curve C(u) until it has a two-contact with the other
curveD(v). Then, we keep the continuous two-contact mo-
tion. We do a similar motion planning for the goal con�g-
uration when it is in one-contact con�guration. After that,
in the graph of two-contact motion curves, we apply Dijk-
stra's algorithm [10] to �nd the shortest path from the start
con�guration to the goal con�guration. The weight on each

(a)

(b)

Figure 8: Motion planning with a continuous two-contact mo-
tion. Two black eyes indicate the orientation of the moving
curve and the pink curve shows a two-contact motion path from
start (blue) to goal (red). Note in (b) the start and goal con�g-
urations are the same but with �ipped orientations

edge is set to the summation of angular displacement and
translation. To compute the angular displacement of C(u),
we �rst �nd a bounding circle of C(u). Then for a given
angular distance ∆θ and the radius r of the bounding cir-
cle, the angular displacement can be computed as r×∆θ.
Clearly, the weight we set here is a heuristic which com-
bines translations and angular distances, thus it can be
combined di�erently depending on the application.

Figure 8(a) shows in the left sub�gure an example of
motion planning that starts from the blue curve and ends
at the location in red. In the right sub�gure, the cur-
rent con�guration point (shown in yellow) moves along
the motion curve network, starting from the blue start
point and going all the way to the red goal point. At
each three-contact point where three two-contact motion
curves meet, the curve tracing takes an unexplored branch
which is closer to the red goal. Figure 8(b) shows a similar
example where the start and goal positions are the same
but the goal orientation is �ipped from the start one (the
goal red curve is hidden in this �gure as the start and goal
curves completely overlap each other). In this case, the
moving yellow curve should get out of the narrow cave and
then turn around at the entrance to the cave so as to meet
the orientation constraint. Though the second problem of
Figure 8(b) looks more di�cult than the motion planning
problem of Figure 8(a), the complexity of motion planning
in the curve network is just about the same. (See the right
sub�gures of Figures 8(a)�(b).)

When we reach a curvature contact point (i.e., an iso-
lated point in the curve network) during two-contact mo-
tion, instead of receding backward, we continue the con-
tact motion (in a one-contact traversal) in the goal direc-

8

tion until a two-contact or a terminal con�guration (either
a three-contact or a curvature-contact) is reached again.
The goal may be taken as a nearby terminal con�guration.
In case there is no such con�guration within a certain dis-
tance, we may take the goal as the �nal destination of the
motion planning.

The motion curve can be generated on a one-contact
constraint surface F (u, v, θ) = 0 by numerical tracing,
starting from a curvature contact point (u0, v0, θ0). Let
N(u, v, θ) = 0 denote the normal plane of F (u, v, θ) = 0 at
the point (u0, v0, θ0) along the goal direction; namely, the
plane N(u, v, θ) = 0 contains the point (u0, v0, θ0) and is
spanned by the normal vector of F (u, v, θ) = 0 and the di-
rection vector to the goal. By intersecting the two surfaces
F (u, v, θ) = 0 and N(u, v, θ) = 0, we can incrementally
make small steps in the goal directions. We can repeat
the same procedure at incremental positions (uk, vk, θk),
k = 1, · · · , until we cross a two-contact motion curve or
reach a di�erent terminal con�guration (three-contact or
curvature-contact) within a small distance. When there is
no continuous path connecting the start and goal con�g-
urations on the C-space obstacle boundary, the sequence
of incremental one-contact motions will eventually fail to
proceed to the goal con�guration. In that case, we declare
that there is no solution between the given start and goal
con�gurations.

6 Experimental Results

We have implemented our continuous contact motion plan-
ning algorithm in C++ and using the IRIT solid modeling
system [15] on an Intel Core i7 3.4GHz PC with a 3.25GB
main memory. To demonstrate the e�ectiveness of our ap-
proach, we have tested the algorithm for freeform planar
curves of non-trivial complexity (please see the video [32]
for the animated version of these results).

Figures 9(a)�(c) show three examples. In each, a closed
C1 curve (in yellow) moves around a stationary closed C1

curve (in green) in a continuous two-contact motion. In the
leftmost column of each example, the curve network of the
two-contact motions is shown. The �ve �gures on the right
show several steps of two-contact motion where the yel-
low curve indicates the start con�guration and the orange
curve indicates the end con�guration of the corresponding
motion curve. When a two-contact motion reaches a cur-
vature contact, it switches to a single-contact motion until
it reaches a nearest two/three contact con�guration. Red
curves on the con�guration space in Figures 9(b)�(c) show
examples of single-contact motions. Figures 9(d)�(e) show
two additional examples of continuous two-contact motion
planning, in each of which the moving curve starts from
the con�guration in blue and goes to the goal con�gura-
tion in red. In the leftmost column of each example, the
curve network of the two-contact motions is shown, where
the start and goal con�gurations are represented as blue
and red dots, respectively.

Table 1 provides some statistics on these �ve examples.
The second and third columns show the numbers of control
points of the planar cubic B-spline curves C(u) and D(v),
respectively. The next two columns report the number of
global triple contacts (intersection free) and the number of
two-contact motion curve segments in each example. Ta-
ble 2 reports the timing results and memory consumptions
for the domain pruning, tracing all the motion curve seg-
ments and computing all global triple contacts. Compared
to solving for the entire domain of the algebraic equations,
our algorithm shows signi�cant performance improvement
and with a huge reduction in memory usage. Computing a

two contact motion curve takes much longer than a single
triple contact. Once we compute the two contact motion
curve, we can easily �nd domains where two or more con-
tact motion curves coalesce. Using this information, we
can e�ciently detect all possible domains that might have
triple contact solutions.

In Table 2, the curves C(u) and D(v) of Example (c)
have about the same number of control points as Exam-
ples (a)�(b). However, the curve network for Example (c)
is far more complex and its construction takes around three
times more time than in Examples (a)�(b). The complex-
ity of our algorithm seems to be more dependent on the
complexity of the shape of the input curves, such as the
number of cavities, than on the number of piecewise poly-
nomial curve segments in the input curves, C(u) and D(v).

7 Conclusion

In this paper, we presented an e�cient and stable algo-
rithm for constructing the precise C-space obstacle bound-
ary for a planar C1 freeform curved shape moving around
static obstacles bounded by planar C1 freeform curves. As
a roadmap embedded in the C-space obstacle boundary, we
have constructed a network of two-contact motion curves,
which can be employed for the e�cient generation of con-
tinuous two-contact motions. We have demonstrated the
e�ectiveness of the proposed approach using several non-
trivial examples of continuous two-contact planar motions
for planar objects bounded by C1-continuous piecewise
polynomial curves.

For two curves, the three-contact solution is a set of
points, the two-contact solution yields univariate curves,
and the one-contact solution creates bivariates, in gen-
eral. Computing the full bivariate solution remains a chal-
lenge. The generalization of motion planning to higher-
dimensional objects, such as space curves and surfaces in
R3, is conceptually simple but will demand a challenging
optimization for the result to be computable in a reason-
able time.

One should also consider the extension of the current
result to a more general planar case where the curves C(u)
and D(v) are C1 continuous curves that are C0-continuous
at a �nite set of locations. All C1 discontinuity points
should be treated carefully, possibly as small arcs of van-
ishing radius.

References

[1] F. Avnaim, J.-D. Boissonnat, B. Faverjon. A practical
exact motion planning algorithm for polygonal objects
amidst polygonal obstacles. Proc. of 1988 IEEE Conf.
on Robotics and Automation, Philadelphia, Pennsylva-
nia, April 24�29, 1988, pp. 1656�1661. Also in Geometry
and Robotics, J.-D. Boissonnat and J.-P. Laumond (Eds.),
Workshop, Toulouse, France, May 26�28,1988, Lecture
Notes in Computer Science 391, Springer-Verlag, pp. 67�
86.

[2] C. Bajaj and M.-S. Kim. Generation of con�guration space
obstacles: the case of a moving sphere. IEEE J. of Robotics
and Automation, 4(1):94�99, 1988.

[3] C. Bajaj and M.-S. Kim. Generation of con�guration space
obstacles: the case of moving algebraic curves. Algorith-
mica, 4(2):157�172, 1989.

[4] C. Bajaj and M.-S. Kim. Generation of con�guration space
obstacles: the case of moving algebraic surfaces. The Int'l
J. of Robotics Research, 9(1):92�112, 1990.

[5] M. Barton, G. Elber, I. Hanniel. Topologically guaranteed
univariate solutions of underconstrained polynomial sys-
tems via no-loop and single-component tests. Computer-
Aided Design, 43(8):1035�1044, 2011.

9

http://youtu.be/tuNafC0hgws

(a)

(b)

(c)

(d)

(e)

Figure 9: Continuous two-contact motions of the six test examples.

Table 1: Statistics on the six test examples in Figure 9.

Examples #Ctrl Pts C #Ctrl Pts D
#Global #Traces

Triple Contacts (Double Contacts)

9 (a) 15 20 24 36
9 (b) 15 20 24 42
9 (c) 18 20 77 140
9 (d) 20 35 28 54
9 (e) 20 94 214 208

Table 2: Timing and memory consumption of examples in Figure 9.

Examples
Pruning Double Contact Triple Contact

Total (s)
Memory Usage

Time (s) Computation Time (s) Computation Time (s) (MB)

9 (a) 17.41 232.65 0.47 250.53 21.62
9 (b) 29.57 303.44 11.74 344.75 26.92
9 (c) 96.51 989.93 73.38 1159.82 88.48
9 (d) 30.41 1296.86 44.16 1371.43 35.88
9 (e) 178.47 4200.48 1269.69 5648.64 200.01

10

[6] R.C. Brost. Computing metric and topological properties
of con�guration space obstacles. Proc. of 1989 IEEE Conf.
on Robotics and Automation, April 1989, pp. 170�176.

[7] R.C. Brost. Computing the possible rest con�guration of
two interacting polygons. Proc. of 1991 IEEE Conf. on
Robotics and Automation, Sacramento, California, April
1991, pp. 686�693.

[8] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Bur-
gard, L.E. Kavraki, and S. Thrun. Principles of Robot Mo-
tion: Theory, Algorithms, and Implementation, The MIT
Press, Cambridge, MA, 2005.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Intro-
duction to Algorithms, 3rd Ed., The MIT Press, 2009.

[10] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269�271, 1959.

[11] B.R. Donald. A search algorithm for motion planning with
six degrees of freedom. Arti�cial Intelligence, 31(3):295�
353, 1987.

[12] G. Elber and M.-S. Kim. Geometric constraint solver us-
ing multivariate rational spline functions. Proc. of the 6th
ACM Symp. on Solid Modeling and Applications, Ann Ar-
bor, Michigan, USA, June 4�8, 2001, pp. 1�10.

[13] I. Hanniel and G. Elber. Subdivision termination criteria
in subdivision multivariate solvers using dual hyperplanes
representations. Computer-Aided Design, 39(5):369�378,
2007.

[14] J. Hoschek and D. Lasser. Fundamentals of Computer
Aided Geometric Design, AK Peters, Wellesley, MA, 1989.

[15] IRIT 11.0 User's Manual, Technion, 2013.
http://www.cs.technion.ac.il/ ∼irit.

[16] L. Joskowicz and E. Sacks. Computational kinematics. Ar-
ti�cial Intelligence, 51:381�416, 1991.

[17] L. Joskowicz and E. Sacks. Con�guration space computa-
tion for mechanical design. Proc. of 1994 IEEE Conf. on
Robotics and Automation, April 1994, pp. 1080�1087.

[18] E. Larsen, S. Gottschalk, M.C. Lin, D. Manocha. Fast
proximity queries using swept sphere volumes. Technical
Report TR99-018, Dept. of Computer Science, UNC, 1999.

[19] J.-C. Latombe. Robot Motion Planning, Kluwer Academic
Pub., Norwell, NY, 1991.

[20] S.M. Lavalle. Planning Algorithms, Cambridge University
Press, New York, NY, 2006.

[21] I.-K. Lee, M.-S. Kim, and G. Elber. Polyno-
mial/rational approximation of Minkowski sum boundary
curves. CVGIP: Graphical Models and Image Porcessing,
60(2):136�165, 1998.

[22] T. Lozano-Pérez. Automatic planning of manipulator
transfer movements. EEE Trans. on System, Man, and
Cybernetics, 11(10):681�698, 1981.

[23] T. Lozano-Pérez. Spatial planning: A con�guration space
approach. IEEE Trans. on Computers, 32(2):108�120,
1983.

[24] T. Lozano-Pérez and M.A. Wesley. An algorithm for plan-
ning collision-free paths among polyhedral obstacles. Com-
munications of the ACM, 22(10):560�570, 1979.

[25] V. Milenkovic, E. Sacks and S. Trac. Robust free space
computation for curved planar bodies. IEEE Trans. on Au-
tomation Science and Engineering, 10(4):875�883, 2013.

[26] V. Milenkovic, E. Sacks and S. Trac. Robust Complete
Path Planning in the Plane. Proc. of the Tenth Work-
shop on the Algorithmic Foundations of Robotics, 86:37�
52, 2013.

[27] S. Nelaturi and V. Shapiro. Solving inverse con�guration
space problems by adaptive sampling. Computer-Aided
Design, 45(2):373�382, 2013.

[28] E. Sacks and L. Joskowicz. The Con�guration Space
Method for Kinematic Design of Mechanisms, The MIT
Press, 2010.

[29] J.T. Scwhartz, M. Sharir and J. Hopcroft. Planning, Ge-
ometry, and Complexity of Robot Motion, Ablex Publish-
ing Corporation, 1987.

[30] E.C. Sherbrooke and N.M. Patrikalakis. Computation of
solution of non-linear polynomial systems. Computer Aided
Geometric Design, 5(10):379�405, 1993.

[31] M. Tang, M. Lee and Y. Kim Interactive Hausdor� dis-
tance computation for general polygonla models. ACM
Trans. on Graphics(SIGGRAPH), 28(3), 2009.

[32] The result video http://youtu.be/tuNafC0hgws.

Appendices

Proofs for Algebraic Conditions

Lemma 2. The algebraic condition for a curvature con-
tact point of two-contact motion (4.1) is characterized as
follows:

kC(u)− kD(v) = 0, (7.1)

k′C(u)− k′D(v) · dv
du

= 0, (7.2)

det(Rθ(C
′(u)), D′(v)) = 0, (7.3)

where kC(u) and kD(v) are the curvature functions of C(u)
and D(v), respectively.

Proof. Consider a two-contact case of some mo-
tion curve (u1(a), v1(a), u2(a), v2(a), t(a)) that
converges to a single curvature contact point
(u0, v0, u0, v0, t0) = (u1(a0), v1(a0), u2(a0), v2(a0), t(a0)).
Now consider a point (u1, v1, u2, v2, t) that is su�ciently
close to (u0, v0, u0, v0, t0). Without loss of generality, we
may assume that the curve segment C(u), (u ∈ [u1, u2]),
is convex and D(v), (v ∈ [v1, v2]), is concave. Obviously,
(u0, v0, u0, v0, t0) satis�es the tangential condition (7.3).
From Lemma 1, kC(u1) > kD(v1), kC(u2) > kD(v2) and
∃u∗ ∈ [u1, u2] and v∗ ∈ [v1, v2] such that kC(u∗) < kD(v∗).
Therefore, if (u1, v1) and (u2, v2) converges to (u0, v0), we
have kC(u0) = kD(v0).
Now consider a scalar function f(a) = kC(u1(a)) −
kD(v1(a)). The function f(a) is positive everywhere
except a = a0. Therefore, f(a) has a local minimum at
a = a0 and thus f ′(a0) = 0.

f ′(a0) = k′C(u1(a0)) · ∂u1
∂a
− k′D(v1(a0)) · ∂v1

∂a
= 0,

or k′C(u0)− k′D(v0) · dv
du

= 0.

11

	Introduction
	Related Previous Work
	Contact Conditions for Two Planar Curves
	Generation of C-Space Obstacle Boundary
	Curve Network of Two-Contact Motions
	Domain Pruning
	Conditions for Single-Contactness
	Testing for K-Contactness
	Acceleration using Bounding Region Hierarchy
	Extension to Multiple Curves

	Continuous Contact Motion Planning
	Experimental Results
	Conclusion

