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Geometric hashing was first introduced in the
context of object recognition, an important
area of robotics and computer vision dealing
with such things as robot task and motion

planning and automatic image understanding and learn-
ing.1,2 In a two- or three-dimensional image of a scene,
certain objects—some perhaps only partially visible—
need to be identified, both for their position and for their
orientation in the scene. Many approaches to object
recognition have been developed, including pose clus-
tering3 (also known as transformation clustering and
generalized Hough transform), subgraph isomorphism,4

alignment,5 iterative closest point,6 and many indexing
techniques—including geometric hashing.

Geometric hashing is a model-based technique for ob-
ject recognition, identifying objects using prior knowl-
edge about them stored in a database (see the tutorial on
p. 10). For the CAD software problem described here,
geometric hashing is used as in object recognition: to de-
tect the similar features of two entities. In this case, the
goal is not object recognition, but the identification of
similar portions of curves in three dimensions. Finding
these similarities between curves is only part of the so-
lution. Finding the remaining, nonsimilar parts is ac-
complished in a postprocessing step.

Defective CAD objects are an acute problem for sys-
tems that rely on the global continuity and consistency of
the object boundary, such as finite element analysis algo-
rithms and various manufacturing processes. Often the

object input to the system is a processed version of the
original object, and it is not practical to correct the design
of the original object. Therefore, a repairing algorithm—
applied to the processed version of the object—is required.

Geometric hashing
Automatic object recognition has greatly benefited

from the partial-curve matching technique, first sug-
gested by Kalvin et al.7 This technique—which uses geo-
metric hashing—solved the curve-matching problem in
the plane, assuming that one curve is a proper subcurve
of the other. That is, given two curves in the plane such
that one is a proper, though slightly deformed, subcurve
of the other, the technique finds the translation and ro-
tation of the subcurve that yields the best least-squares
fit to the appropriate portion of the larger curve.

This technique has been extended for use in computer
vision, allowing automatic identification of partially ob-
scured objects in two or three dimensions. It uses geo-
metric hashing as a recognition technique to identify par-
tial curve matches between an input scene boundary and a
preprocessed set of known object boundaries.8-10 Through
this, it determines the objects participating in a scene and
computes their position and orientation.

Put simply, geometric hashing is a model-based recog-
nition technique that can efficiently identify partially oc-
cluded objects with objects stored in a model database.
It is based on an offline model preprocessing step where
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model features are encoded through some trans-
formation-invariant function and stored in a
hashing table, thus facilitating a particularly ef-
ficient subsequent online recognition step. Geo-
metric hashing is a general technique that can
be applied to recognition tasks in any dimension
under different classes of transformation. It has
three basic characteristics:

1. Object features are represented using trans-
formation invariants, allowing recognition
of an object that is subject to any allowed
transformation.

2. These invariants are stored in a hashing
table, allowing efficient matching that is
nearly independent of the complexity of the
model database.

3. A robust matching scheme guarantees reliable
recognition even with relatively small overlap
and the presence of considerable noise.

The original partial-curve-matching version
of geometric hashing (which later will be shown
useful for repairing gaps) found partial matches
between curves in the plane. It used a database
of preprocessed curves and found matches be-
tween portions of a composite query curve and
portions of the curves in the database, subject to
a rigid motion in the plane.

In the preprocessing step, the system gener-
ates, encodes, and stores in the database features
of all the curves. It scans each curve, with foot-
prints (or invariant values under the class of al-
lowed transformations; in this case rigid mo-
tions) generated at equally spaced points along
the curve, each point labeled by its sequential
number (proportional to the arc length) along
the curve. The footprint is chosen so that it is
invariant under the rigid motion of the curve.
For example, a typical footprint choice is the
second derivative (with respect to arc length) of
the curve function—that is, the change in the
direction of the tangent line to the curve at each
point. Each footprint is a key to a hashing table,
which records the curve and the label of the
point at which the footprint was generated.

With respect to the total number of sample
points on the curves stored in the database, the
time complexity of the preprocessing step is lin-
ear. Since the processing of each curve is inde-
pendent of the others, this technique can pro-
cess curves in parallel. Moreover, it can add or
delete curves in the database without recomput-
ing the entire hashing table.

In the recognition step, a voting scheme de-

termines which portions of curves stored in the
database match portions of the query curve and
with which shifts of the label sequences. The sys-
tem scans the query curve and computes the
footprints at equally spaced points, with the same
discretization parameter as the preprocessed
curves. It finds the appropriate entry for each
footprint in the hashing table and retrieves all
the curve/label pairs stored there. Each pair con-
tributes one vote for the model curve and for the
relative shift, or difference in labels of matched

points, between this curve and the query curve.
That is, if a footprint of the ith sample point of
the query curve is close enough to the footprint
of the jth point of model curve c, then we add one
vote to the curve c with the relative shift j – i. In
order to tolerate small deviations in the foot-
prints, the system fetches not only entries with
the same footprints as the points along the query
curve, but also entries within some small neigh-
borhood of the image footprint.

The voting mechanism rests principally on the
assumption that real matches between long por-
tions of curves result in a large number of foot-
print similarities—and hence votes—between the
appropriate model curve and the query curve, giv-
ing almost identical shifts. By the end of the vot-
ing process, curve/shift pairs with the most votes
are identified, and for each pair the approximate
endpoints of the matched portions of the model
and query curves are determined.

It is then straightforward to compute the rigid
transformation between the two curves, with ac-
curacy that increases with the length of the
matched portions. The running time of the
matching step is, on average, linear in the num-
ber of sample points generated along the query
curve. This is based on the assumptions that on
average each access to the hashing table requires
a constant time, and that the output of the cor-
responding range-searching query has a con-
stant size. Thus, the expected running time of
this step does not depend on the number of

.

The goal is not object recognition, but the
identification of similar portions of curves

in three dimensions.
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curves stored in the database or on the total
number of points on the curves.

There have been many variations of the geo-
metric hashing technique, including different
choices of allowed transformation, different ap-
plications (for example, locating an object in a
raster image, registration of medical images, and
molecule docking), and generalizations to higher
dimensions. In any situation, the key to success is
in defining a good footprint so that true votes
outnumber false votes. In practice, all applica-
tions of geometric hashing have their own special
footprint setting, which strongly depends on the
nature of the problem.

Repairing CAD objects
In polyhedral approximations of CAD objects,

whose boundaries are described using curved
entities of higher levels, gaps often appear in the
boundary of the polyhedron.11-14 In construc-
tive solid geometry, an object is described as the
unions and intersections of spheres, cones, and
other 3D shapes, but when the object’s bound-
ary representation is used, it is described by such
things as nonuniform rational bisplines and
Bézier surfaces.

Gaps are caused by missing surfaces, by incor-
rect handling of adjacent patches within a surface,
or most commonly by incorrect handling of trim-
ming curves, a CAD feature defined by the inter-
sections of adjacent surfaces. The vertices of the
polyhedral approximation along an intersection
curve between those two adjacent surfaces are of-
ten computed separately along each of the curve’s
two sides, thus creating two different copies of the
same curve and causing a gap between them. In
the simple case, different point sets may still use
the same curve equation. In the more complicated
case, mesh point evaluations use different equa-
tions of the curve, one for each surface. Figure 1

shows a real CAD object,
displayed with both smooth
and faceted surfaces, and a
close-up view of a gap.

Invariably these approxi-
mation errors cause edges in
the boundary of the result-
ing polyhedron that are in-
cident to only one face—not
the two faces of a valid rep-
resentation—thus creating
gaps in the boundary and
making the resulting repre-
sentation invalid. Such gaps

may disconnect parts of the boundary from other
parts or may create small holes bounded by a cycle
of invalid edges. (The parts that are connected usu-
ally result from the polyhedral approximation of a
single surface or part of a solid in the original rep-
resentation.) This problem does not usually dis-
turb graphics applications, where the gaps between
the surfaces are often too small to be seen or are
handled straightforwardly. However, it may cause
severe problems in applications that rely on the
continuity of the boundary, such as finite-element
analysis15 and rasterization algorithms.16

Such gaps arise in almost every sufficiently
large CAD file, so their detection and elimina-
tion is indeed a rather acute practical problem.
Sheng and Tucholke11 referred to these errors
as one of the most severe software problems in
layered manufacturing. Many authors, such as
Dolenc and Mäkelä,14 and Sheng and Hirsch,17

have described attempts to avoid the gap prob-
lem already in the surface-fitting triangulation
process. Previous attempts to solve the problem,
based only on the polyhedral description of an
object, used local information and did not check
for global consistency violations. Bøhn and
Wozny treated only local gaps by iteratively tri-
angulating them, eliminating at each step the
vertex that spans the smallest angle with its two
neighboring vertices.12 Similarly, Mäkelä and
Dolenc used a minimum-distance heuristic to
locally fill cracks in the boundary of the polyhe-
dron.13 Barequet and Kumar merged vertices of
the polyhedron to close gaps in its boundary.18

A geometric hashing approach
Another approach, however, would be an al-

gorithm that uses geometric hashing to fill
gaps.19 The main problem is to stitch together
the borders—the collection of cycles of invalid
edges on the polyhedron boundary—adding
new faces to close the gaps, thus making the re-

.

(a) (b) (c)

Figure 1. A real CAD example: (a) smooth display; (b) faceted display; (c) zoom view of a
problematic region in the bottom-right area of the original image file. The “ear” doesn’t
match the body of the object. (Images courtesy of Cubital Ltd.)



OCTOBER-DECEMBER 1997 25

sulting polyhedron valid. The algorithm adds
new faces by connecting points along the same
or different borders, following these steps:

1. Identify matching portions of the borders.
2.Choose the best consistent set of matches.
3.Construct new facets, or planar faces, and

connect them.
4.Fill the remaining holes by triangulation.

An alternative approach would be to replace
each pair of matching portions of borders by a
single polygonal curve.

To identify matching portions of borders, the
geometric hashing algorithm uses a simplified
version of the partial-curve matching technique,
mentioned earlier. This version matches 3D
curves, but does not allow motion of one curve
relative to the other. Since the scope of the
problem is wider than object recognition, the
information obtained from matching is further
processed. The results are used to repair most
of the defects, and then 3D triangulation is used
to close the remaining holes.

To match border portions, the algorithm dis-
cretizes each border polygon into a cyclic se-
quence of points. This is accomplished by choos-
ing some sufficiently small arc-length parameter
s and generating equally spaced points at distance
s from each other along the polygon boundary.
As in object recognition, the resulting discretiza-
tion can be considered footprints of the borders.

Because footprints in this algorithm are the 3D
coordinates of the points, the two parts of the orig-
inal object boundary—which should have shared a
common polygonal curve, but were split apart in
the approximation—must naturally have similar
sequences of footprints along their common curve
(unless the approximation was very bad). The goal
then is to search for pairs of sufficiently long “sim-
ilar” subsequences. In this approach, two subse-
quences, (pi, …, pi+,–1) and (qj, …, qj+,–1), are said
to closely match each other if, for some chosen pa-
rameter ε > 0, the number of indices k for which
||pi+k – qj+k|| ≤ ε is sufficiently close to ,. The al-
gorithm then performs the following voting
process, where votes are given to good point-to-
point matches. The borders are given as cyclic or-
dered sequences of vertices, and each cycle is bro-
ken at an arbitrarily chosen vertex. Also, the
direction of borders is implied by the chosen ori-
entation of their connected component in the
polyhedron boundary. (Had it been chosen the
other way, the border direction would have been
reversed.) A match between two border subse-

quences is direct when the sequences of vertex in-
dices of both borders are both increasing or de-
creasing. A match is inverted when one of the se-
quences is increasing, but the other is decreasing.

Adjacent components whose orientations are
consistent should have an inverted match, which
if accepted gives the combined component the
same orientation as its subparts, or the opposite
of these orientations. A direct match implies that
the orientations of the two components are not
consistent, so if the match is accepted, all the
facets of just one of the components should in-
vert their orientation before the two compo-
nents are glued together. If two border portions
that bound the same component are matched,
then only inverted matches are acceptable be-
cause otherwise the component cannot be ori-
ented after gluing.

In order to efficiently locate all vertices that
lie in some ε-neighborhood of vertex v, all bor-
der vertices are preprocessed—either by using
a range-tree data structure20 or by fractional cas-

cading21—for range searching. The ε parame-
ter is not a function of the input, but rather an
a priori estimate of the physical size of the gaps
between the original surfaces. An estimate that is
too small or too large may lower the algorithm’s
performance. If it is too small, close points will
not be matched, keeping border matches from
being found. If it is too large, too many false
votes will cause correct border matches to be
lost among too many incorrect matches.

The positions along border sequence b, whose
length is ,b, are numbered from 0 to ,b – 1. As-
sume that the querying vertex v is in position i of
border sequence b1. Then, each vertex retrieved
by the query, which is in position j in border se-
quence b2, contributes a vote for a direct match
between borders b1 and b2 with the shift (j – i)
(mod ) and a vote for a match between the
borders     (the inverted b1) and b2 with the shift
(j – ( – 1 – i)) (mod ), the inverted match
between the borders b1 and b2. As noted earlier,

.

Gaps may cause severe problems in applications
that rely on continuous boundries, such as finite-
element analysis and rasterization algorithms.

◆
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only inverted matches are allowed between two
portions of the same border or between borders
that bound the same component.

All these cases are illustrated in Figure 2. The
match shown in Figure 2a is direct, hence the
orientation of one of the components is inverted
and the corresponding shift is (j – i). The match
in Figure 2b is inverted, hence the two involved
components are consistent, and the corre-
sponding shift is (j – , + i + 5), where the indices
of the left border already indicate that it is in-
verted. Finally, the match in Figure 2c is be-
tween a border and itself, where the shift, when
inverting the left portion, is (2i – , + 11).

Obviously, matches between long portions of
borders are indicated by a large number of votes
for the appropriate shift between the matching
borders. Since small mismatches might occur
between the two portions of the matching bor-
ders, or the arc length along one portion might
not exactly coincide with the arc length along
the other, a real match most likely will be shown
by a significant peak of a few successive shifts in
the graph plotting the number of votes between
two borders (or possibly the same one) as a func-
tion of the mutual shift.

There may, as well, be several peaks in the
same graph, which implies that there are several
good matches between the same pair of borders,
but with different alignments. For each peak,
the portions of the borders voting for this align-
ment help find the endpoints of the corre-
sponding match or matches between the two
borders. Based on the neighborhood of the
peak, the matches are extended as much as pos-
sible, allowing, up to specified limits, sporadic
mismatches, insertions, or deletions. In almost
all cases, small portions of the borders are in-

cluded in more than one candidate match. This
happens when several borders occur in close lo-
cations, usually at the junction of three or more
gaps. The algorithm simply eliminates those
portions common to more than one significant
candidate match.

Repairing the object
Each match is then given a score, which may re-

flect not only the number of votes for the appro-
priate shift, but also the Euclidean length of the
match and its quality, which is measured by the
closeness of the vertices on the match’s two sides.
Now the algorithm chooses a consistent subset of
the collection of suggestions of partial border
matches with maximum scores. This step turns out
to be NP-hard,19 so the algorithm implements it
by using a standard approximation scheme.

Next the gaps in the boundary of the polyhe-
dron are filled. Each pair of border portions that
have been matched in the above step and whose
match has been accepted are stitched together
with new triangles, which are consistently ori-
ented with the facets along the borders.

Finally, the remaining holes, which usually ap-
pear at the junctions of several matches, are iden-
tified and triangulated using a 3D minimum-area
triangulation technique. This technique is simi-
lar to the dynamic programming triangulation
of simple polygons developed by Klincsek.22

The entire algorithm has been implemented
and tested on dozens of CAD files, mostly for
automotive parts, whose boundaries contained
gaps. The tuning of the parameters was robust,
and the algorithm obtained good results in most
cases. The voting threshold ε was usually set to
0.5 for objects whose global size was 2 to 20 cm
in all dimensions.

As noted earlier, the value of ε has a crucial ef-
fect on the success of the algorithm. Although
there was in most cases a large enough range of
valid ε settings, the algorithm failed more often if
this parameter was chosen improperly. Values of ε
on the margins of this range degraded the signif-
icance of the peak in the voting graph. An ε that
was too small resulted in the loss of matches due
to the lack of votes. An ε that was too large re-
sulted in a noisy voting table, in which “intuitive”
matches were not given sufficiently larger scores
than incorrect match suggestions. Even when
these intuitive matches were identified, they over-
lapped with erroneous match suggestions and
were therefore eliminated. In all cases, too many
unmatched border portions were passed to the
next step of the algorithm, causing its failure.

.
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Figure 2. Matches between borders: (a) a direct match, (b) an
inverted match, and (c) a match between a border and itself.
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Figure 3 shows a CAD object
that underwent gap filling. Fig-
ure 3a shows the entire object,
and Figure 3b shows the gaps in
the object. Figures 3c and 3d
are close-ups of two pairs of
borders (pointed to by an arrow
in Figure 3b) before and after
stitching, respectively. Figure 4
shows the graph that plots the
number of votes and the scores,
as a function of the mutual shift,
of matches between the two
borders of the upper circular
pair, as seen in Figure 3b.

This algorithm, using geo-
metric hashing to repair

CAD objects, is significant be-
cause it is the first algorithm to
solve the acute problem of de-
fective CAD objects, combining
robust detection of matching
portions of the gaps with main-
tenance of global consistency of
the boundary orientation. The
technique holds promise for
such problems as object recog-
nition in computer vision, the
interpolation between scanned cross-sections of
human organs in medical imaging, and protein
docking in molecular biology—wherever there is
a need to find a partial geometric fit between a
priori unknown shapes. ♦
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