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Abstract

The problem of computing the minimum-angle bounding cone of a set of three-dimensional vectors has numero
cations in computer graphics and geometric modeling. One such application is bounding the tangents of space cur
vectors normal to a surface in the computation of the intersection of two surfaces.

No optimal-time exact solution to this problem has been yet given. This paper presents a roadmap for a few strate
provide optimal or near-optimal (time-wise) solutions to this problem, which are also simple to implement. Specifica
worst-case running time is required, we provide an O(n logn)-time Voronoi-diagram-based algorithm, wheren is the number of
vectors whose optimum boundingcone is sought. Otherwise, if one is willing to accept an,in average, efficient algorithm, we
show that the main ingredient of the algorithm of Shirman and Abi-Ezzi [Comput. Graphics Forum 12 (1993) 261–272
implemented to run in optimal�(n) expected time. Furthermore, if the vectors (as points on the sphere of directions) are
to occupy no more than a hemisphere, we show how to simplify this ingredient (by reducing the dimension of the p
without affecting the asymptotic expected running time. Both versions of this algorithm are based on computing (as an
problem) the minimum spanning circle (respectively, ball) of a two-dimensional (respectively, three-dimensional) set o
 2004 Elsevier B.V. All rights reserved.
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A coneB = [�v, θ ] in three-space has an axis�v and
angular spanθ . A cone whose opening angle isπ/2 is
a plane. A cone whose angular span is betweenπ/2 to
π is called a “reflex” cone.

Given a set of spatial vectors, we seek their m
mum bounding cone, that is, the cone with minimu
angular span that contains all the vectors. Bound
cones are employed in computer graphics and geo

.
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ric modeling for bounding entities in vector spaces,
most noticeably tangents and normals of free-form
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In this paper we show that the optimal bounding
cone of a set ofn vectors can be found in a worst-
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shapes [2]. Other applications of bounding cones
found in the computations ofillumination and radios-
ity [9] and of visibility maps [3].

Two near-optimal iterative algorithms (but with n
proven quality) are given by Sederberg and M
ers [7], and by Meenakshisundaram and Krishnan
Given a set ofn vectors{Di}, both algorithms star
with some initial bounding coneB1 = [V1 = D1,0]
and refine it in each iterationi (for 2 � i � n) by com-
puting a new (but not necessarily the minimum) co
Bi = [Vi, θi], which containsBi−1 andDi .

Shirman and Abi-Ezzi [8] use bounding con
for bounding the normal fields of free-form curve
patches. They present an exact method that is base
finding the minimum spanning sphere of the vect
represented as points on the unit sphereS2, and then
intersecting this sphere withS2. The resulting spher
ical circle defines the bounding cone. This meth
gives the optimal cone, but is not time-wise optim
(at least as it is stated). The authors say it could
the rather slow algorithm of Lawson [6] for compu
ing the minimum spanning sphere. Instead, to ge
practical running time, Shirman and Abi-Ezzi used
bounding-box heuristic, which is very fast in practi
but not accurate. As will become apparent later in
paper, the sphere computation could be performe
expectedlinear time, yielding an on-average optima
time algorithm. Nonetheless, there is no need to so
this problem in three dimensions when the minim
bounding cone is known in advance to be nonrefl
That is, when the corresponding spherical points
cupy at most one hemisphere. Finding the minim
spanning spherical circle of such a set of spher
points is a two-dimensional problem, as we also sh
below.

In the field of computational geometry, finding th
minimal spanning circle (MSC) of a given set of poin
in the plane is considered a classical problem [1]. (T
original reference goes back to [10].) The optimal
lution (a minimum-radius circle) can be found in�(n)

expected time, wheren is the number of points. Thi
can be done by representing the problem as an LP-
(linear-programming-like) problem. In fact, the min
mum enclosing sphere ofn points inany dimension
can be found in expected�(n) time by using the sam
method.
n

case O(n logn)-time algorithm by using the spheric
Voronoi diagram of a set ofn points. We show tha
when only the average-case time is of interest,
algorithm of Shirman and Abi-Ezzi [8] can be impl
mented to run in expected�(n) time by computing
the minimum bounding sphere of a set ofn (spher-
ical) points. Finally, we show that if the vectors a
known to span a nonreflex cone, the latter algorit
can be simplified so as to require the computation
the minimum spanning (spherical) circle ofn (spheri-
cal) points. All these solutions are exact (unlike tho
of [4,7]) and are far simplerthan the solution offered
in [8].

2. Algorithm roadmap

Our goal is then to compute the optimum (m
imum angle) cone bounding a given set of vecto
Consider first the situation in which the algorithm
expected to run efficiently in theworst case. To this
aim we apply a Voronoi-diagram approach. Since t
technique is quite standard, we provide here onl
high-level description of it. We represent all the ve
tors as points on the unit sphereS2. In O(n logn) time
we compute the spherical Voronoi diagram of thesn

points. Then, we compute in�(n) time the maximum
empty spherical circle. (That is, the spherical cir
whose interior does not contain any of the poin
This can be done in�(n) time by considering sequen
tially all the vertices of the diagram, whose numb
is �(n), and picking up the vertex that is the ce
ter of the largest empty circle. Irrespective of whet
the original vectors span a cone with opening an
which is less or greater thanπ/2 (that is, whether o
not the minimum spherical disk containing all points
smaller or larger than a hemisphere), the complem
of this disk is the intersection of the sought cone a
the sphere. Therefore, we can compute in O(n logn)

time the minimum bounding cone of any set ofn vec-
tors.

Consider next the situation in which the algorith
is expected to run efficiently in theaverage case. We
distinguish here between two cases:

(1) The input vectors are known in advance to spa
nonreflex cone. In this case all the correspond
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re-
Fig. 1. Two views of an instance of the problem and of its solution.

spherical points lie in a hemisphere, and we apply when the vectors are known to span a small (non

the algorithm described in Section 3. In a nutshell,
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this is a randomized algorithm for computing t
minimum spherical circlethat contains a set o
spherical points. The expected running time of
algorithm is linear in the number of points. Th
computed circle is the intersection of the boun
ing cone and the sphere, thus it defines uniqu
the sought cone.

(2) Otherwise, the input vectors span a reflex co
(or it is unknown a priori whether the minimum
cone is reflex or not). In this case the correspo
ing spherical points may lie in more than a hem
sphere, and we apply our implementation of
algorithm of Shirman and Abi-Ezzi [8] describe
in Section 4. Our implementation replaces th
computation of the minimum bounding sphere
a set of points by a randomized algorithm whi
is essentially identical to the first algorithm but
one higher dimension. The intersection of the l
ter sphere with the sphere containing the po
is the circle that defines uniquely, as before,
sought cone.

Both versions of the randomized algorithm r
in expected�(n) time. On one hand, the thre
dimensional version (that is used to improve on [
solves all instances of the problem. On the other ha
the two-dimensional version (that is restricted to n
reflex cones) runs in one lower dimension, and is t
easier to implement and faster in practice. Theref
randomized algorithm.

3. A nonreflex cone

For ease of exposition, we first describe the al
rithm for computing the minimum bounding cone
a set of vectors which are knowna priori to span a
nonreflex cone. As before, we represent all the v
tors as points on the unit sphereS2. (According to
the assumption about the vectors, the points spa
most a hemisphere ofS2.) Our goal is thus to find the
minimum-radius spherical circlec (embedded inS2)
that encloses all the points. Then, the cone whose a
is the origin and whose intersection withS2 is c is the
minimum-angle cone that contains all the original v
tors. See Fig. 1 for an illustration of this method.

3.1. The algorithm

In order to find the minimum circle enclosing a s
of points on a sphere, we use the algorithm of [1, §4
pp. 85–88] for the planar case, with only a few min
modifications.

In the upper level of the algorithm, we iterative
compute the minimum enclosing circle of the firsi
points, wherei goes from 3 ton (see function Min-
SphericalCircle in Fig. 2). The minimum enclosin
circle of the first two points is the circle for which th
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ALGORITHM MinSphericalCircle (S)

r

Input: A setS of n points onS2.
Output:A minimum-radius spherical circle onS2 that fully containsS.

begin
Compute a random permutationp1, . . . ,pn of the points inS.
Let c2 be the smallest spherical circle enclosing{p1,p2}.
for i = 3, . . . , n do

if pi ∈ ci−1
then ci := ci−1;
else ci := MinSphericalCircleWithPoint ({p1, . . . ,pi−1}, pi ).

end if
end for
return cn .

end MinSphericalCircle

FUNCTION MinSphericalCircleWithPoint (S, q)
Input: A setS of n points onS2, and a pointq s.t. there exists an

enclosing spherical circle ofS that passes throughq.
Output: The minimum-radius spherical circle onS2 that fully contains

S and that passes throughq.

begin
Compute a random permutationp1, . . . ,pn of the points inS.
Let c1 be the smallest spherical circle enclosing{p1, q}.
for i = 2, . . . , n do

if pi ∈ ci−1
then ci := ci−1;
else ci := MinSphericalCircleWithTwoPoints ({p1, . . . ,pi−1}, pi , q).

end if
end for
return cn .

end MinSphericalCircleWithPoint

FUNCTION MinSphericalCircleWithTwoPoints (S, q1, q2)
Input: A setS of n points onS2, and two pointsq1, q2 s.t. there exists an

enclosing spherical circle ofS that passes throughq1 andq2.
Output: The minimum-radius spherical circle onS2 that fully contains

S and that passes throughq1 andq2.

begin
Compute a random permutationp1, . . . ,pn of the points inS.
Let c0 be the smallest spherical circle enclosing{q1, q2}.
for i = 1, . . . , n do

if pi ∈ ci−1
then ci := ci−1;
else ci := the circle passing throughq1, q2, andpi .

end if
end for
return cn .

end MinSphericalCircleWithTwoPoints

Fig. 2. Computing the minimum-radius sphericalcircle containing a set of spherical points (following closely the algorithm of [1] for the plana
case).
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two points are the endpoints of its spherical diame-
ter. In theith step, we check whether theith point lies
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Specifically, the planar algorithm relies on the fact
that if pi , the point handled in theith iteration, is out-
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inside, on, or outsideci−1, the minimum spherical en
closing circle of the firsti − 1 points. In the first two
casesci = ci−1. Only in the third case we need to r
computeci , but now it is guaranteed that theith point
is found onci . (The proof of this fact is identical to
that of the planar case; see [1, §4.7, p. 86].)

Accordingly, we now invoke a secondary functi
that performs the same task (namely, finding the m
mum enclosing circle of a set of points), with the on
restriction that one specific pointq is known to be on
the sought-after circle. (See function MinSpheric
CircleWithPoint in Fig. 2.) Again, we add one poi
at a time, and check whether the newly-added p
is inside or on the previously computed circle. If it
in neither place, we need to recompute the circle,
this time we are guaranteed that bothq and the newly-
added point are on the new circle.

Finally we invoke a tertiary function that perform
the same task, this time with the restriction that t
specific pointsq1, q2 are known to be on the sough
after circle. (See Function MinSphericalCircleWit
TwoPoints in Fig. 2.) Again, we add one point at
time, and check whether the newly-added point is
side or on the previously computed circle. If not, w
need to recompute the circle, this time with the kno
edge that all ofq1, q2, and the newly-added point a
found on the new circle. We use simple geometry
find the unique circle that fulfills this requirement.

The entire algorithm is shown in Fig. 2. The alg
rithm was broken into three levels only for clarity
exposition. In fact, the three functions can be imple
mented as a single function, which also receives
input parameter that specifies how many points
fixed on the spanning circle at the current level of c
ing to the function.

3.2. Correctness

The correctness of the algorithm is shown in
same way that the correctness of the algorithm for
planar case [1, §4.7, p. 86] is shown. Note that
fact that the points occupy no more than a hemisph
is crucial for the proof. Otherwise, the main indu
tive claim breaks down and the algorithm is no long
valid.
side ci−1, the minimum spanning circle of the fir
i − 1 points, thenpi must be onci . In the spherica
case we should use the terms “inside” and “outsi
a circle with care. We follow the straightforward de
inition that the inside of a spherical circle is the di
that is the smaller out of the two portions of the sph
delimited by the circle. Then, as long as the points
cupy less than a hemisphere, the inductive step h
using the same argument as in the planar case.
rather easy to construct a setS of spherical points tha
occupy more than a hemisphere and an orderingS
that will result in a nonoptimum bounding cone. T
reason for the wrong result is that for such a setS the
solution is actually defined by the maximum emp
circle, for which the inductive claim (that the new c
cle contains the current point) is false.1

3.3. Complexity analysis

The main algorithm, MinSphericalCircle, perform
n iterations, in each of which it either decides in co
stant time that the minimum-radius circle (so far) do
not have to change, or calls the function MinSphe
calCircleWithPoint. In the worst case, the main alg
rithm can call the latter function�(n) times, in case
all of the third through thenth points require an up
date of the enclosing circle. Similarly, the functio
MinSphericalCircleWithPoint performsk = O(n) iter-
ations (wherek is the size of the point set it receive
as a parameter). In each iteration it either decide
constant time not to update the enclosing circle o
call the function MinSphericalCircleWithTwoPoint
As in the main procedure, calling the latter fun
tion can occur in�(n) iterations. The running time
of the function MinSphericalCircleWithTwoPoints

1 Here is a simple two-dimensional example that demonstr
this fact. In two dimensions we seek a minimum-length circular
that fully contains a set of points on a circle. For clarity we rep
resent such points as the hours on aclock. Consider the sequenc
(6,9,12,1:30,3,4:30). Processing the points in this order results
the clockwise arc(6,4:30) (whose length is 7π/4), while the opti-
mum is the clockwise arc(9,6) (whose length is 3π/2). The error
occurs while processing the last point 4:30; it is outside the spannin
arc at that stage(6,3), yet it is wrong to look for a new spanning a
with 4:30 as an endpoint. It is quite easy to generalize this exam
to three dimensions.
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�(k) = O(n), wherek is the size of the point set it re-
ceives as a parameter. Overall, in the worst case, the
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step of computing the minimum spherical circle that
contains a set of points. It is always true that the in-
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entire algorithm requires�(n3) time.
The average case is much more favorable: we

now show that the expected running time of the al
rithm is only�(n), which is optimal. We already know
that the expected running time of the lowest-le
function MinSphericalCircleWithTwoPoints is�(k),
where k is the size of its first parameter (the po
set). Let us then estimate the expected running t
of the function MinSphericalCircleWithPoint. Assum
that its first parameter is also a set ofk points. Then
it performs k − 1 steps, in each of which it eithe
spends a constant time on checks and assignmen
calls the function MinSphericalCircleWithTwoPoint
At the ith step (for 2� i � k) the probability of the lat-
ter event occurring is at most 2/i. This is verified by a
simple backward-analysis argument: Letci be the cir-
cle after the ith step. Discard the pointpi and run the
algorithmbackward. The circlesci andci−1 are dif-
ferent only if pi was one of the three points definin
ci . One of the three points is known (q), so the prob-
ability is at most 2/i. (Equality would hold if it was
known in advance that no four points are cocircu
Otherwise the probability thatci �= ci−1 is strictly less
than 2/i.) Now, the total expected running time of th
function is at most

∑k
i=2((2/i)O(i)) = O(k).

A similar analysis holds for the expected runni
time of the main algorithm, MinSphericalCircle. Th
time the probability of calling the function MinSpher
calCircleWithPoint is at most 3/n, following a similar
argument. The total expected running time of the al
rithm is, thus, at most

∑n
i=3((3/i)O(i)) = O(n).

Obviously the running time of the algorithm is al
�(n) (that much time is required for just reading t
input). Therefore, this algorithm runs in expected o
timal �(n) time.

4. A general cone

For a general set of vectors, for which the minimu
bounding cone can be reflex, we use the algorithm
Shirman and Abi-Ezzi [8] but modify its main ingre
dient to use the same idea as in the previous sectio

Shirman and Abi-Ezzi’s algorithm also represe
the vectors as points on the unit sphereS2, and pro-
ceeds by computingS′, the minimum bounding spher
of these spherical points. This avoids the problem
r

tersection ofS2 and S′ is the circle that defines th
minimum bounding cone of the original set of vecto

Shirman and Abi-Ezzi suggested an inefficie
method for computingS′. However, using the algo
rithm described in Section 3 (but in three dimension
one can perform this step in time which is still e
pected to be linear in the number of points. Consi
again the algorithm in Fig. 2. It is easy to modify t
algorithm to have four instead of three levels. T
running-time analysis remains unaltered. It can
shown, using identical arguments, that all of the fo
levels still run in O(n) time on average, wheren is the
number of points.

Since both versions of the randomized algorit
run in time which is asymptotically linear in the num
ber of vectors, it is the user’s choice (or trade-off)
apply the version that fits thea priori knowledge abou
the vectors.

5. Experimental results

We have implemented the simple algorithm d
scribed in this paper (see Fig. 2) for computing
minimum-angle cone that encloses a set of vector
The software was implemented in IRIT [5]. It consis
of about 100 lines of code. The running times for
our experiments (up to 10,000 vectors) were negl
ble (below one second) on a modern Windows-ba
system and are thus omitted here.

To assess the quality of our optimal-cone soluti
we also implemented the simplest averaging heuristic
in which the axis of the bounding cone is set to the
erage of the (normalized) input vectors, and its ang
span is the largest angle between the axis and an
the given vectors. Clearly, this heuristic always runs
�(n) time, but it is biased by large clusters of vecto

Here are two representative examples of the p
formance of the optimal algorithm compared to t
simple averaging heuristic. Fig. 3 shows two sets
vectors and their bounding cones. The smaller c
(shown in darker grey) is the optimum (minimum a
gle) enclosing cone, while the larger cone (shown
lighter grey) is the solution obtained by the heur
tic method. The difference between the solutions
clearly visible in both examples.
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Fig. 3. Two instances of the minimum-enclosing-cone problem.
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In this paper we present an optimal-time (expect
solution for the problem of computing the minimum
angle bounding cone of a set of vectors in three
mensions. The solution is inherently the same as
computing the minimum spanning circle (or sphe
of a set of points. The expected running time of the
gorithm is linear in the number of input vectors. W
provide two versions of a randomized algorithm, o
of which is simpler but fits only sets of vectors who
minimum bounding cone is nonreflex.

For users who require that the worst-case insta
of the problem be solved efficiently, we provide a co
pletely different solution based on a spherical Voro
diagram of a set of spherical points. This algorith
runs (for all inputs) in O(n logn) time, wheren is the
number of input vectors.
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