Available online at www.sciencedirect.com

SGIENCE@DIRECT" Informa.tion
Processing
£l Letters
ELSEVIER Information Processing Letters 93 (2005) 83-89

www.elsevier.com/locatefipl

Optimal bounding cones of vectors in three dimensions

Gill Barequet, Gershon Elber

Center for Graphics and Geometric Computing, Department of Computer Science, The Technion— srael Institute of Technology,
Haifa 32000, Israel

Received 13 December 2003

Communicated by S.E. Hambrusch

Abstract

The problem of computing the minimum-angle bounding cone of a set of three-dimensional vectors has numerous appli-
cations in computer graphics and geometric modeling. One such application is bounding the tangents of space curves or the
vectors normal to a surface in the computation of the intersection of two surfaces.

No optimal-time exact solution to this problem has been yet given. This paper presents a roadmap for a few strategies that
provide optimal or near-optimal (time-wise) solutions to this problem, which are also simple to implement. Specifically, if a
worst-case running time is required, we provide an [0gn)-time Voronoi-diagram-based algorithm, wherés the number of
vectors whose optimum boundimgne is sought. Otherwisd,ane is willing to accept anin average, efficient algorithm, we
show that the main ingredient of the algorithm of Shirman and Abi-Ezzi [Comput. Graphics Forum 12 (1993) 261-272] can be
implemented to run in optimad (n) expected time. Furthermore, if the vectors (as points on the sphere of directions) are known
to occupy no more than a hemisphere, we show how to simplify this ingredient (by reducing the dimension of the problem)
without affecting the asymptotic expected running time. Both versions of this algorithm are based on computing (as an LP-type
problem) the minimum spanning circle (respectively, ball) of a two-dimensional (respectively, three-dimensional) set of points.
00 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A coneB = [v, 8] in three-space has an axisand
angular spaf. A cone whose opening anglesg?2 is
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ric modeling for bounding entities in vector spaces, In this paper we show that the optimal bounding
most noticeably tangents and normals of free-form cone of a set of: vectors can be found in a worst-
shapes [2]. Other applications of bounding cones are case Qnlogn)-time algorithm by using the spherical
found in the computations @fumination and radios-  Voronoi diagram of a set of points. We show that
ity [9] and of visibility maps [3]. when only the average-case time is of interest, the
Two near-optimal iterative algorithms (but with no  algorithm of Shirman and Abi-Ezzi [8] can be imple-
proven quality) are given by Sederberg and Mey- mented to run in expecte@®(n) time by computing
ers [7], and by Meenakshisundaram and Krishnan [4]. the minimum bounding sphere of a setof(spher-
Given a set ofz vectors{D;}, both algorithms start ical) points. Finally, we show that if the vectors are

with some initial bounding con&; = [V1 = D1, 0] known to span a nonreflex cone, the latter algorithm
and refine it in each iteratian(for 2 < i < n) by com- can be simplified so as to require the computation of
puting a new (but not necessarily the minimum) cone the minimum spanning (spherical) circleof{spheri-

B; =[V;, 6;1, which containd3; _; andD;. cal) points. All these solutions are exact (unlike those

Shirman and Abi-Ezzi [8] use bounding cones of [4,7]) and are far simplethan the solution offered
for bounding the normal fields of free-form curved in[8].
patches. They present an exact method that is based on
finding the minimum spanning sphere of the vectors
represented as points on the unit sphgfeand then

intersecting this sphere withi. The resulting spher- Our goal is then to compute the optimum (min-
ical circle defines the bounding cone. This method jmum angle) cone bounding a given set of vectors.
gives the optimal cone, but is not time-wise optimal consider first the situation in which the algorithm is
(at least as it is stated). The authors say it could use expected to run efficiently in theorst case. To this
the rather slow algorithm of Lawson [6] for comput-  gim we apply a Voronoi-diagram approach. Since this
ing the minimum spanning sphere. Instead, to get a technique is quite standard, we provide here only a
practical running time, Shirman and Abi-Ezzi used a high-level description of it. We represent all the vec-
bounding-box heuristic, which is very fast in practice g5 a5 points on the unit sphesé. In O(n logn) time
but not accurate. As will become apparent later in the e compute the spherical Voronoi diagram of these
paper, the sphere computation could be performed in points. Then, we compute i@ (n) time the maximum
expectedinear time, yielding an on-average optimal-  empty spherical circle. (That is, the spherical circle
time algorithm. Nonetheless, there is no need to solve \ynose interior does not contain any of the points.)
this problem in three dimensions when the minimum This can be done i® (n) time by considering sequen-
bounding cone is known in advance to be nonreflex. tially all the vertices of the diagram, whose number
That is, when the corresponding spherical points oc- js @), and picking up the vertex that is the cen-
cupy at most one hemisphere. Finding the minimum +ter of the largest empty circle. Irrespective of whether
spanning spherical circle of such a set of spherical the original vectors span a cone with opening angle
points is a two-dimensional problem, as we also show \yhich is less or greater thary2 (that is, whether or
below. not the minimum spherical disk containing all points is
In the field of computational geometry, finding the  smaller or larger than a hemisphere), the complement
minimal spanning circle (MSC) of a given set of points - qf thjs disk is the intersection of the sought cone and
inthe plane is considered a classical problem [1]. (The e sphere. Therefore, we can compute i ©gn)
original reference goes back to [10].) The optimal SO- tjme the minimum bounding cone of any setofiec-
lution (a minimum-radius circle) can be found@n) tors.
expected time, where is the number of points. This Consider next the situation in which the algorithm
can be done by representing the problem as an LP-typejg expected to run efficiently in theverage case. We

(linear-programming-like) problem. In fact, the mini-  gjistinguish here between two cases:
mum enclosing sphere af points inany dimension

can be found in expectedi(n) time by using the same (1) The input vectors are known in advance to span a
method. nonreflex cone. In this case all the corresponding

2. Algorithm roadmap
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(a)
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(b)

Fig. 1. Two views of an instance of the problem and of its solution.

spherical points lie in a hemisphere, and we apply
the algorithm described in Section 3. In a nutshell,
this is a randomized algorithm for computing the
minimum spherical circlehat contains a set of
spherical points. The expected running time of the
algorithm is linear in the number of points. This
computed circle is the intersection of the bound-

ing cone and the sphere, thus it defines uniquely

the sought cone.

Otherwise, the input vectors span a reflex cone
(or it is unknown a priori whether the minimum
cone is reflex or not). In this case the correspond-
ing spherical points may lie in more than a hemi-
sphere, and we apply our implementation of the
algorithm of Shirman and Abi-Ezzi [8] described
in Section 4. Our implemntation replaces the
computation of the minimum bounding sphere of
a set of points by a randomized algorithm which
is essentially identical to the first algorithm but in
one higher dimension. The intersection of the lat-
ter sphere with the sphere containing the points
is the circle that defines uniquely, as before, the
sought cone.

)

Both versions of the randomized algorithm run
in expected®(n) time. On one hand, the three-
dimensional version (that is used to improve on [8])

solves all instances of the problem. On the other hand,

the two-dimensional version (that is restricted to non-

when the vectors are known to span a small (nonre-
flex) cone, it is worth applying the first version of the
randomized algorithm.

3. A nonreflex cone

For ease of exposition, we first describe the algo-
rithm for computing the minimum bounding cone of
a set of vectors which are knovanpriori to span a
nonreflex cone. As before, we represent all the vec-
tors as points on the unit sphes&. (According to
the assumption about the vectors, the points span at
most a hemisphere &f.) Our goal is thus to find the
minimum-radius spherical circle (embedded ins?)
that encloses all the points. Then, the cone whose apex
is the origin and whose intersection wisR is ¢ is the
minimum-angle cone that contains all the original vec-
tors. See Fig. 1 for an illustration of this method.

3.1. Thealgorithm

In order to find the minimum circle enclosing a set
of points on a sphere, we use the algorithm of [1, 8§4.7,
pp. 85-88] for the planar case, with only a few minor
modifications.

In the upper level of the algorithm, we iteratively
compute the minimum enclosing circle of the fiist
points, where@ goes from 3 toz (see function Min-

reflex cones) runs in one lower dimension, and is thus SphericalCircle in Fig. 2). The minimum enclosing

easier to implement and faster in practice. Therefore,

circle of the first two points is the circle for which the
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ALGORITHM MinSphericalCircle §)
I nput : A setS of n points ons2.
Qut put : A minimum-radius spherical circle af? that fully containss.
begin
Compute a random permutation, ..., p, of the points inS.
Let ¢o be the smallest spherical circle enclosing, p»}.
fori=3,...,ndo
if pieci_1
then ¢; :==¢;_1;
else ¢; := MinSphericalCircleWithPoint{(p1, ..., p;_1}, pi)-
end if
end for
return cy.
end MinSphericalCircle

FUuNCTION MinSphericalCircleWithPoint.{, ¢)
Input: AsetS of n points ons?2, and a poing s.t. there exists an
enclosing spherical circle df that passes through
Qut put : The minimum-radius spherical circle &t that fully contains
S and that passes through
begin
Compute a random permutatign, ..., p, of the points inS.
Let ¢q be the smallest spherical circle enclosing, ¢}.
fori=2,...,ndo
if pieci_1
then ¢; :==¢;_1;
else ¢; := MinSphericalCircl®VithTwoPoints (p1, ..., pi_1}: pi,» 9)-
end if
end for
return cy.
end MinSphericalCircleWithPoint

FuNcTIoN MinSphericalCircleWithTwoPointsS(, g1, g2)
Input: AsetS of n points ons2, and two pointsyq, g» S.t. there exists an
enclosing spherical circle df that passes through andgo.
Qut put : The minimum-radius spherical circle &t that fully contains
S and that passes through andgs.
begin
Compute a random permutation, ..., p, of the points inS.
Let c¢g be the smallest spherical circle enclosiiag, g2}
fori=1,...,ndo
if pi €ci—a
then ¢; :=c¢;_1;
else ¢; := the circle passing througjy, ¢, andp;.
end if
end for
return cy.
end MinSphericalCircl&VithTwoPoints

Fig. 2. Computing the minimum-radius sphericatle containing a set of spherical points (folimg closely the algorithm of [1] for the planar
case).
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two points are the endpoints of its spherical diame-
ter. In theith step, we check whether thth point lies
inside, on, or outside; _1, the minimum spherical en-
closing circle of the firsi — 1 points. In the first two
cases; = c;—1. Only in the third case we need to re-
computec;, but now it is guaranteed that thth point

is found onc;. (The proof of this fact is identical to
that of the planar case; see [1, 84.7, p. 86].)

Accordingly, we now invoke a secondary function
that performs the same task (namely, finding the mini-
mum enclosing circle of a set of points), with the only
restriction that one specific poigtis known to be on
the sought-after circle. (See function MinSpherical-
CircleWithPoint in Fig. 2.) Again, we add one point
at a time, and check whether the newly-added point
is inside or on the previously computed circle. If it is
in neither place, we need to recompute the circle, but
this time we are guaranteed that bgtand the newly-
added point are on the new circle.

Finally we invoke a tertiary function that performs
the same task, this time with the restriction that two
specific pointsy1, g2 are known to be on the sought-
after circle. (See Function MinSphericalCircleWith-
TwoPoints in Fig. 2.) Again, we add one point at a
time, and check whether the newly-added point is in-
side or on the previously computed circle. If not, we
need to recompute the circle, this time with the knowl-
edge that all of1, g2, and the newly-added point are
found on the new circle. We use simple geometry to
find the unigue circle that fulfills this requirement.

The entire algorithm is shown in Fig. 2. The algo-
rithm was broken into three levels only for clarity of
exposition. In fact, the tkee functions can be imple-
mented as a single function, which also receives an
input parameter that specifies how many points are
fixed on the spanning circle at the current level of call-
ing to the function.

3.2. Correctness

The correctness of the algorithm is shown in the
same way that the correctness of the algorithm for the
planar case [1, 84.7, p. 86] is shown. Note that the
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Specifically, the planar algorithm relies on the fact
that if p;, the point handled in th&ah iteration, is out-
side ¢;_1, the minimum spanning circle of the first
i — 1 points, thenp; must be orc;. In the spherical
case we should use the terms “inside” and “outside”
a circle with care. We follow the straightforward def-
inition that the inside of a spherical circle is the disk
that is the smaller out of the two portions of the sphere
delimited by the circle. Then, as long as the points oc-
cupy less than a hemisphere, the inductive step holds
using the same argument as in the planar case. It is
rather easy to construct a sebf spherical points that
occupy more than a hemisphere and an ordering of
that will result in a nonoptimum bounding cone. The
reason for the wrong result is that for such asd¢he
solution is actually defined by the maximum empty
circle, for which the inductive claim (that the new cir-
cle contains the current point) is falSe.

3.3. Complexity analysis

The main algorithm, MinSphericalCircle, performs
n iterations, in each of which it either decides in con-
stant time that the minimum-radius circle (so far) does
not have to change, or calls the function MinSpheri-
calCircleWithPoint. In the worst case, the main algo-
rithm can call the latter functio® (n) times, in case
all of the third through the:th points require an up-
date of the enclosing circle. Similarly, the function
MinSphericalCircleWithPoint performis= O(n) iter-
ations (where is the size of the point set it receives
as a parameter). In each iteration it either decides in
constant time not to update the enclosing circle or to
call the function MinSphericalCircleWithTwoPoints.
As in the main procedure, calling the latter func-
tion can occur in®(n) iterations. The running time
of the function MinSphericalCircleWithTwoPoints is

1 Here is a simple two-dimensional example that demonstrates
this fact. In two dimensions we seek a minimum-length circular arc
that fully contains a set of poisiton a circle. For clarity we rep-
resent such points as the hours ool@ack. Consider the sequence
(6,9,12 1:30, 3, 4:30). Processing the points in this order results in
the clockwise arg6, 4:30) (whose length is 77/4), while the opti-

fact that the points occupy no more than a hemisphere mum is the clockwise ar¢9, 6) (whose length is 8/2). The error

is crucial for the proof. Otherwise, the main induc-
tive claim breaks down and the algorithm is no longer
valid.

occurs while processing the last poinB@; it is outside the spanning
arc at that stagé, 3), yet it is wrong to look for a new spanning arc
with 4:30 as an endpoint. It is quite easy to generalize this example
to three dimensions.
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® (k) = O(n), wherek is the size of the point set it re-
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step of computing the minimum spherical circle that

ceives as a parameter. Overall, in the worst case, thecontains a set of points. It is always true that the in-

entire algorithm require® (n%) time.

The average case is much more favorable: we will
now show that the expected running time of the algo-
rithmis only® (n), which is optimal. We already know
that the expected running time of the lowest-level
function MinSphericalCircleWithTwoPoints i® (),
wherek is the size of its first parameter (the point

tersection of$? and §’ is the circle that defines the
minimum bounding cone of the original set of vectors.
Shirman and Abi-Ezzi suggested an inefficient
method for computings’. However, using the algo-
rithm described in Section 3 (but in three dimensions),
one can perform this step in time which is still ex-
pected to be linear in the number of points. Consider

set). Let us then estimate the expected running time again the algorithm in Fig. 2. It is easy to modify the

of the function MinSphericalCircleWithPoint. Assume
that its first parameter is also a setiopoints. Then
it performsk — 1 steps, in each of which it either

algorithm to have four instead of three levels. The
running-time analysis remains unaltered. It can be
shown, using identical arguments, that all of the four

spends a constant time on checks and assignments, ofevels still run in Qr) time on average, whereis the

calls the function MinSphericalCircleWithTwoPoints.
Attheith step (for 2<i < k) the probability of the lat-
ter event occurring is at mosy 2 This is verified by a
simple backward-analysis argument: kebe the cir-
cle after theith step. Discard the point; and run the
algorithmbackward. The circlesc; andc;_1 are dif-
ferent only if p; was one of the three points defining
¢;. One of the three points is knowg); so the prob-
ability is at most 2i. (Equality would hold if it was
known in advance that no four points are cocircular.
Otherwise the probability that # ¢;_1 is strictly less
than 2/i.) Now, the total expected running time of the
function is at mosp_%_,((2/i)0(i)) = O(k).

A similar analysis holds for the expected running
time of the main algorithm, MinSphericalCircle. This
time the probability of calling the function MinSpheri-
calCircleWithPoint is at most/3:, following a similar
argument. The total expected running time of the algo-
rithm is, thus, at mos}_;_5((3/i)O0(@)) = O(n).

Obviously the running time of the algorithm is also
Q(n) (that much time is required for just reading the
input). Therefore, this algorithm runs in expected op-
timal ®(n) time.

4. A general cone

For a general set of vectors, for which the minimum
bounding cone can be reflex, we use the algorithm of
Shirman and Abi-Ezzi [8] but modify its main ingre-
dient to use the same idea as in the previous section.

Shirman and Abi-Ezzi's algorithm also represents
the vectors as points on the unit sphéfe and pro-
ceeds by computing/, the minimum bounding sphere
of these spherical points. This avoids the problematic

number of points.

Since both versions of the randomized algorithm
run in time which is asymptotically linear in the num-
ber of vectors, it is the user’s choice (or trade-off) to
apply the version that fits theepriori knowledge about
the vectors.

5. Experimental results

We have implemented the simple algorithm de-
scribed in this paper (see Fig. 2) for computing the
minimum-angle cone that etoses a set of vectors.
The software was implemented in IRIT [5]. It consists
of about 100 lines of code. The running times for all
our experiments (up to 10,000 vectors) were negligi-
ble (below one second) on a modern Windows-based
system and are thus omitted here.

To assess the quality of our optimal-cone solution,
we also implemented the singst averaging heuristic,
in which the axis of the bounding cone is set to the av-
erage of the (normalized) input vectors, and its angular
span is the largest angle between the axis and any of
the given vectors. Clearly, this heuristic always runs in
®(n) time, but it is biased by large clusters of vectors.

Here are two representative examples of the per-
formance of the optimal algorithm compared to the
simple averaging heuristic. Fig. 3 shows two sets of
vectors and their bounding cones. The smaller cone
(shown in darker grey) is the optimum (minimum an-
gle) enclosing cone, while the larger cone (shown in
lighter grey) is the solution obtained by the heuris-
tic method. The difference between the solutions is
clearly visible in both examples.
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Fig. 3. Two instances of the minimum-enclosing-cone problem.
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