
Differential Cryptanalysis

of the

Data Encryption Standard

Eli Biham1

Adi Shamir2

December 7, 2009

1Computer Science Department, Technion – Israel Institute of Technology,
Haifa 32000, Israel.
Email: biham@cs.technion.ac.il, WWW: http://www.cs.technion.ac.il/˜biham/.

2Department of Applied Mathematics and
Computer Science, The Weizmann Institute of Science, Rehovot 76100, Israel.
Email: shamir@wisdom.weizmann.ac.il.

This version of the book is processed from the author’s original LaTeX files, and may be

differently paginated than the printed book by Springer (1993).

Copyright: Eli Biham and Adi Shamir.

Preface

The security of iterated cryptosystems and hash functions has been an
active research area for many years. The best known and most widely
used function of this type is the Data Encryption Standard (DES). It was
developed at IBM and adopted by the National Bureau of Standards in the
mid 70’s, and has successfully withstood all the attacks published so far
in the open literature. Since the introduction of DES, many other iterated
cryptosystems were developed, but their design and analysis were based on
ad-hoc heuristic arguments, with no theoretical justification.

In this book, we develop a new type of cryptanalytic attack which can
be successfully applied to many iterated cryptosystems and hash functions.
It is primarily a chosen plaintext attack but under certain circumstances,
it can also be applied as a known plaintext attack. We call it “differen-
tial cryptanalysis”, since it analyzes the evolution of differences when two
related plaintexts are encrypted under the same key.

Differential cryptanalysis is the first published attack which is capable
of breaking the full 16-round DES in less than 255 complexity. The data
analysis phase computes the key by analyzing about 236 ciphertexts in 237

time. The 236 usable ciphertexts are obtained during the data collection
phase from a larger pool of 247 chosen plaintexts by a simple bit repetition
criteria which discards more than 99.9% of the ciphertexts as soon as they
are generated.

This attack can be applied to a wide variety of DES-like substitution/
permutation cryptosystems, and it demonstrates the crucial role of each
element in their design. In particular, we show that almost any structural
modification of DES leads to a much weaker cryptosystem, and that DES
reduced to eight rounds is so weak that it can be broken in two minutes on a
personal computer. The attack is also applicable to bounded-round versions
of the cryptosystems FEAL, Khafre, REDOC-II, LOKI and Lucifer, and
to the hash functions Snefru and N-Hash.

We would like to use this opportunity to thank our colleagues who con-
tributed remarks, suggestions, ideas and designs. Shoji Miyaguchi’s FEAL
cryptosystem motivated the first version of our attack, and Ralph Merkle’s
Snefru motivated its extension to hash functions. We had valuable dis-
cussions with Henry Gilbert and Matthew Kwan, who carried out related
attacks on some of the cryptosystems discussed here, and we received valu-
able remarks from Philip Zimmermann. Don Coppersmith, Martin Hell-
man, and Alan Konheim sent us many helpful comments and suggestions

vi

which greatly improved the presentation of our results. Finally, the encour-
agement and help of our families are greatly appreciated.

Remark: Shortly before this book was sent to the publishers, Don
Coppersmith (who was a member of the DES design team at IBM in the
early 70’s) revealed that his team was aware of differential cryptanalysis
back in 1974, and designed the S boxes and the permutation in order to
optimally defeat it. They had to keep this information secret for 18 years for
national security reasons since it was such a potent form of cryptanalysis,
but decided to break the silence after we rediscovered and published it. In
response to our question, Don refused to reveal whether this is the strongest
attack on the DES that his team was aware of, but reiterated his belief that
the DES is still viable.

Contents

1 Introduction 1

2 Results 7

3 Introduction to Differential Cryptanalysis 11
3.1 Notations and Definitions 11
3.2 Overview . 15
3.3 Characteristics . 22
3.4 The Signal to Noise Ratio 29
3.5 Known Plaintext Attacks 31
3.6 Structures . 32

4 Differential Cryptanalysis of DES Variants 33
4.1 DES Reduced to Four Rounds 33
4.2 DES Reduced to Six Rounds 37
4.3 DES Reduced to Eight Rounds 41

4.3.1 Enhanced Characteristic’s Probability 45
4.3.2 Extension to Nine Rounds 46

4.4 DES with an Arbitrary Number of Rounds 47
4.4.1 3R-Attacks . 49
4.4.2 2R-Attacks . 50
4.4.3 1R-Attacks . 51
4.4.4 Summary . 52
4.4.5 Enhanced Characteristic’s Probability 54

4.5 Modified Variants of DES 56
4.5.1 Modifying the P Permutation 56
4.5.2 Modifying the Order of the S Boxes 57
4.5.3 Replacing XORs by Additions 58

4.5.3.1 Replacing the XORs Within the F Function 58
4.5.3.2 Replacing All the XORs 59
4.5.3.3 Replacing All the XORs in an Equivalent

DES Description 59
4.5.4 Random and Modified S Boxes 60
4.5.5 S Boxes with Uniform Difference Distribution Tables 62
4.5.6 Eliminating the E Expansion 63
4.5.7 Replacing the Order of the E Expansion and the

XOR with the Subkeys 64
4.6 DES with Independent Keys 65

CONTENTS viii

4.6.1 Eight Rounds . 65
4.6.2 Sixteen Rounds . 68

4.7 The Generalized DES Scheme (GDES) 69
4.7.1 GDES Properties . 69
4.7.2 Cryptanalysis of GDES 71

4.7.2.1 A Known Plaintext Attack for n = q 72
4.7.2.2 A Second Known Plaintext Attack for n = q 72
4.7.2.3 A Chosen Plaintext Attack for n = 2q − 1 . 73
4.7.2.4 A Chosen Plaintext Attack for n = 3q − 2 . 73
4.7.2.5 A Chosen Plaintext Attack for n = lq − 1 . 73
4.7.2.6 The Actual Attack on the Recommended

Variant . 74
4.7.2.7 Summary 76

5 Differential Cryptanalysis of the Full 16-Round DES 78
5.1 Variants of the Attack . 85

6 Differential Cryptanalysis of FEAL 88
6.1 Cryptanalysis of FEAL-8 94

6.1.1 Reducing FEAL-8 to Seven Rounds 95
6.1.2 Reducing the Seven-Round Cryptosystem to Six Rounds 97
6.1.3 Reducing the Cryptosystem to 5, 4, 3, 2 and 1 Rounds 98
6.1.4 Calculating the Key Itself 99
6.1.5 Summary . 100

6.2 Cryptanalysis of FEAL-N and FEAL-NX with N ≤ 31 Rounds100
6.3 Other Properties of FEAL 104

7 Differential Cryptanalysis of Other Cryptosystems 107
7.1 Cryptanalysis of Khafre . 107
7.2 Cryptanalysis of REDOC-II 113
7.3 Cryptanalysis of LOKI . 119
7.4 Cryptanalysis of Lucifer . 123

7.4.1 First Attack . 126
7.4.2 Second Attack . 128

8 Differential Cryptanalysis of Hash Functions 130
8.1 Cryptanalysis of Snefru . 130
8.2 Cryptanalysis of N-Hash . 142

9 Non-Differential Cryptanalysis of DES with a Small Num-
ber of Rounds 146

CONTENTS ix

9.1 Ciphertext Only Attacks . 146
9.1.1 A Three-Round Attack 146
9.1.2 Another Three-Round Attack 147
9.1.3 A Four-Round Attack 147

9.2 Known Plaintext Attacks 148
9.2.1 A Three-Round Attack 148

9.3 Statistical Known Plaintext Attacks 149
9.3.1 A Three-Round Attack 149
9.3.2 A Four-Round Attack 149
9.3.3 A Five-Round Attack 151
9.3.4 A Six-Round Attack 151

A Description of DES 152
A.1 The Key Scheduling Algorithm 157
A.2 DES Modes of Operation 158

B The Difference Distribution Tables of DES 160

Glossary 169

Bibliography 177

Index 180

1

Introduction

Iterated cryptosystems are a family of cryptographically strong functions
based on iterating a weaker function n times. Each iteration is called a
round and the cryptosystem is called an n-round cryptosystem. The round-
function is a function of the output of the previous round and of a sub-
key which is a key dependent value calculated via a key scheduling algo-
rithm. The round-function is usually based on lookup tables (also known
as substitutions or S boxes), bit permutations, arithmetic operations and
the exclusive-or (denoted by ⊕ and XOR) operation. In most applications
the encryption algorithm is assumed to be known and the secrecy of the
data depends only on the secrecy of the randomly chosen key.

An early proposal for an iterated cryptosystem was Lucifer[15], which
was designed at IBM to resolve the growing need for data security in its
products. The round-function of Lucifer has a combination of non-linear S
boxes and a bit permutation. The input bits are divided into groups of four
consecutive bits. Each group is translated by a reversible S box giving a
four bit result. The output bits of all the S boxes are permuted in order to
mix them when they become the input to the following round. In Lucifer
only two fixed S boxes (S0 and S1) were chosen. Each S box can be used at
any S box location and the choice is key dependent. For a block size of 128
bits and a 16-round cryptosystem there are 512 S box entries for which 512
key bits are needed (for the eight-round variants 256 key bits are needed).
A key expansion algorithm that repeats each key bit four times reduces
the key size to 128 bits. Decryption is accomplished by running the data
backwards using the inverse of each S box. Another variant of Lucifer is
described in [37].

The Data Encryption Standard (DES)[28] is an improved version of Lu-
cifer. It was developed at IBM and adopted by the U.S. National Bureau
of Standards (NBS) as the standard cryptosystem for sensitive but unclas-
sified data (such as financial transactions and email messages). DES has
become a well known and widely used cryptosystem. The key size of DES
is 56 bits and the block size is 64 bits. This block is divided into two halves
of 32 bits each. The main part of the round-function is the F function,
which works on the right half of the data using a subkey of 48 bits and
eight (six-bit to four-bit) S boxes. The 32 output bits of the F function are
XORed with the left half of the data and the two halves are exchanged.

1. Introduction 2

The complete specification of the DES algorithm appears in Appendix A
and in [28].

An extensive cryptanalytic literature on DES was published since its
adoption in 1977. Yet, no short-cuts which can reduce the complexity of
cryptanalysis to less than half of exhaustive search were ever reported in
the open literature.

The 50% reduction[18] is based on the complementation property of DES.
If the encryption of a plaintext P under a key K produces the ciphertext
T :

T = DES(P,K)

then the encryption of P̄ under K̄ produces T̄ :

T̄ = DES(P̄ , K̄)

where X̄ denotes the bit by bit complementation of X . Cryptanalysis can
exploit this symmetry if two plaintext/ciphertext pairs (P1, T1) and (P2,
T2) are available with P1 = P̄2 (or similarly T1 = T̄2). The attacker encrypts
P1 under all the 255 keys K whose least significant bit is zero. If such a
ciphertext T is equal to T1 then the corresponding key K is likely to be the
real key. If T = T̄2 then K̄ is likely to be the real key. Otherwise neither
K nor K̄ can be the real key. Since testing whether T = T̄2 is much faster
than a trial encryption, the computational saving is very close to 50%. This
50% reduction is achievable not only under a chosen plaintext attack, but
also under a known plaintext attack, since any collection of 233 random
plaintexts is likely to contain a complementary pair of plaintexts by the
birthday paradox.

Diffie and Hellman[14] analyzed the performance of an exhaustive search
of the entire key space on a parallel machine. They estimated that a VLSI
chip may be built which can search one key every microsecond. By build-
ing a search machine with a million such chips, all searching in parallel,
1012 keys can be searched per second. The entire key space contains about
7 · 1016 keys and it can be searched in 105 seconds which is about a day.
They estimated the cost of this machine to be $20-million and the cost per
solution to be $5000.

Hellman[17] presented a time memory tradeoff under a chosen plaintext
attack which can also be used under some circumstances under a known
plaintext attack. This attack requires mt words of memory and t2 opera-
tions provided that mt2 equals the number of possible keys (256 for DES).
A special case (m = t) of this method requires about 238 time and 238

memory, with a 256 preprocessing time. Hellman suggested a special pur-
pose machine which produces 100 solutions per day with an average wait
of one day. He estimated that the cost of the machine was about $4-million

1. Introduction 3

Number of Rounds Reduction Factor

4 219

5 29

6 22

7 –

Table 1.1. The key search reduction factor in Chaum and Evertse’s attack.

and that the cost per solution was between $1–100. The preprocessing was
estimated to take 2.3 years on the same machine.

The Method of Formal Coding, in which the formal expression of each
bit in the ciphertext is found as a XOR sum of products of the bits of the
plaintext and the key, was suggested in [18]. The formal manipulations of
these expressions may decrease the key search effort. Schaumuller-Bichl[31,
32] studied this method and concluded that it requires an enormous amount
of computer memory which makes the whole approach impractical.

There has been a considerable controversy about the key size of 56 bits
in DES. Some researchers have proposed to strengthen DES by increasing
the key size[2,18] or even making all the subkeys independent. However,
these modifications were not adopted by the NBS.

In 1985 Chaum and Evertse[7] showed that a meet in the middle attack
can reduce the key search for variants of DES with a small number of rounds
by the factors shown in Table 1.1. They also showed that a slightly modified
version of DES reduced to seven rounds can be solved with a reduction
factor of 2. However, they proved that a meet in the middle attack of this
kind is not applicable to DES reduced to eight or more rounds.

In their method they look for a set of data bits (J) in a middle round and
a set of key bits (I) for which any change of the values of the I bits cannot
change the value of the J bits in either directions. Knowing those fixed
sets and given several plaintext/ciphertext pairs the following algorithm is
used:

1. Try all the keys in which all the key bits in I are zero. Partially
encrypt and decrypt a plaintext/ciphertext pair to get the data in
the middle round.

2. Discard the keys for which the J bits are not the same under partial
encryption/decryption.

3. For the remaining keys try all the possible values of the key bits in I.

1. Introduction 4

This algorithm requires about 256−|I|+2|I| encryption/decryption attempts.

In 1987 Davies[9] described a known plaintext cryptanalytic attack on
DES. Given sufficient data, it could yield 16 linear relationships among key
bits, thus reducing the size of a subsequent key search to 240. It exploited
the correlation between the outputs of adjacent S boxes, due to their inputs
being derived from, among other things, a pair of identical bits produced
by the bit expansion operation. This correlation could reveal a linear re-
lationship among the four bits of key used to modify these S box input
bits. The two 32-bit halves of the DES result (ignoring IP) receive these
outputs independently, so each pair of adjacent S boxes could be exploited
twice, yielding 16 bits of key information.

The analysis does not require the plaintext P or ciphertext T but uses
the quantity P⊕T and requires a huge number of random inputs. The S box
pairs vary in the extent of correlation they produce so that, for example,
the pair S7/S8 needs about 1017 samples but pair S2/S3 needs about 1021.
With about 1023 samples, all but the pair S3/S4 should give results (i.e.,
a total of 14 bits of key information). To exploit all pairs the cryptanalyst
needs about 1026 samples. The S boxes do not appear to have been designed
to minimize the correlation but they are somewhat better than a random
choice in this respect. Since the number of samples is larger than the 264

size of the sample space, this attack is purely theoretical, and cannot be
carried out. However, for DES reduced to eight rounds the sample size of
1012 or 1013 (about 240) is on the verge of practicality. Therefore, Davies’
analysis had penetrated more rounds than previously reported attacks.

During the last decade several cryptosystems which are variants of DES
were suggested. Schaumuller-Bichl suggested three such cryptosystems [31,
33]. Two of them (called C80 and C82) are based on the DES structure
with the replacement of the F function by nonreversible functions. The
third one, called The Generalized DES Scheme (GDES), is an attempt to
speed up DES. GDES has 16 rounds with the original DES F function
but with a larger block size which is divided into more than two parts.
She claimed that GDES increases the encryption speed of DES without
decreasing its security.

Another variant is the Fast Data Encryption Algorithm (FEAL). FEAL
was designed to be efficiently implementable on an eight-bit microprocessor.
The structure of FEAL is similar to that of DES with a new F function
and new initial and final transformations. The basic operations of FEAL
are exclusive-or, byte additions and byte rotations. The first version of
FEAL[36], called FEAL-4, has four rounds. FEAL-4 was broken by Den-
Boer[12] using a chosen plaintext attack with 100–10000 encryptions. The
designers of FEAL reacted by introducing a new version with eight rounds,

1. Introduction 5

called FEAL-8[35,26]. Both versions were described as cryptographically
better than DES in several aspects. Later, two new versions were added to
the family: FEAL-N[23] with any even number of rounds and FEAL-NX[24]
with extended 128-bit keys.

Recently, several new attacks on FEAL were published. One of them
analyzes FEAL-8 using 10000 chosen plaintexts[16]. This attack was par-
tially derived from the attack developed in this book. Another attack an-
alyzes FEAL-4 using 20 chosen plaintexts[27]. We have devised[3] a non-
differential attack using about 100000 known plaintexts, but later a much
better attack was published[20] which analyzes FEAL-4 using five known
plaintexts and analyzes FEAL-8 with 215 known plaintexts faster than ex-
haustive search.

Khufu and Khafre[22] are fast software oriented cryptosystems suggested
by Merkle whose round-functions are based on one eight-bit to 32-bit S box.
Although the number of rounds is not specified, the designer expects that
almost all applications will use 16, 24 or 32 rounds.

REDOC-II[38,8] is a high speed confusion/diffusion/arithmetic cryptosys-
tem suggested by Cryptech Inc. REDOC-II has ten rounds, but even the
one-round variant is claimed to be sufficiently strong since the round-
function is very complicated. A reward of $5000 was offered for the best
theoretical attack performed on the one-round variant and a reward of
$20000 was offered for a practical known plaintext attack on the two-round
variant.

LOKI[6] is a 64-bit key/64-bit block cryptosystem similar to DES which
uses one twelve-bit to eight-bit S box based on irreducible polynomials in
four S box entries. Two new modes of operation which convert LOKI into
a hash function are defined.

Functions which map arbitrarily long messages into fixed length values
are called hash functions. A hash function is called cryptographically strong
if it is difficult to find any message that maps to a given value or any pair of
messages that map to the same value. Many cryptographic hash functions
are designed using the same building blocks as iterated cryptosystems,
like the XOR operation, S boxes and iteration of a simple round-function
many times. A universal attack on hash functions can be derived from the
birthday paradox: Given about 2m/2 random messages where m is the size
of the hash value, there is a high probability that two of the messages hash
to the same value. The complexity of this attack is the standard tool to
compare the strength of hash functions.

Snefru[21] is a hash function suggested by Merkle as the Xerox secure
hash function. In March 1990 a $1000 reward was offered to the first person

1. Introduction 6

to break the two-pass variant of Snefru by finding two messages which hash
to the same value. A similar reward was later announced for breaking the
four-pass variant of Snefru.

Another hash function is N-Hash[25] which was suggested by the de-
signers of FEAL as a cryptographically strong hash function. The round-
function of N-Hash is based on the F function of FEAL, and is iterated
eight times.

The open cryptographic literature contains very few examples of univer-
sal methods of cryptanalysis, which can be successfully applied to a wide
variety of encryption and hash functions. This book describes a powerful
new technique of this type, which we call differential cryptanalysis. It is a
chosen plaintext attack which can often be converted into a known plain-
text attack. The basic tool of the attack is the ciphertext pair which is a pair
of ciphertexts whose plaintexts have particular differences. The two plain-
texts can be chosen at random, as long as they satisfy a certain difference
condition, and the cryptanalyst does not have to know their values.

The structure of this book is as follows: Chapter 2 contains a brief de-
scription of the major results. Chapter 3 formally introduces the notion
of differential cryptanalysis. The application of differential cryptanalysis
to variants of DES is described in Chapter 4, while the attack on the
full 16-round DES is described in Chapter 5. The application of differen-
tial cryptanalysis to FEAL is described in Chapter 6. Chapter 7 describes
the differential cryptanalysis of Khafre, REDOC-II, LOKI and Lucifer. In
Chapter 8 differential cryptanalysis is applied to the hash functions Snefru
and N-Hash. Chapter 9 describes several new non-differential attacks on
the functions considered in this book. Finally, a technical description of
DES and the difference distribution tables of its S boxes are given in the
appendices.

2

Results

In this chapter we summarize the complexities of the major attacks de-
scribed in this book. In the data collection phase, many pairs are encrypted
under the unknown key on the target machine. The resultant ciphertexts
are then fed into a data analysis algorithm, whose goal is to find the key.
The complexities are quoted in terms of the number of encryptions needed
to create all the necessary pairs in the data collection phase, since the data
analysis algorithm is usually faster and uses fewer and simpler operations.
These complexities are calculated for the electronic code book (ECB) mode
of operation; however, the quoted known plaintext complexities hold even
when the cipher block chaining (CBC) mode, the cipher feedback (CFB)
mode, or the output feedback (OFB) mode are used.

The results of the attacks on variants of DES with reduced numbers of
rounds are as follows. DES reduced to six rounds can be broken by a chosen
plaintext attack in less than 0.3 seconds on a personal computer using 240
ciphertexts. Its known plaintext variant needs about 236 ciphertexts. DES
reduced to eight rounds can be broken by a chosen plaintext attack in less
than two minutes on a computer by analyzing about 214 ciphertexts. Its
conversion to a known plaintext attack needs about 239 ciphertexts. Any
reduced variant of DES is breakable by a chosen plaintext attack faster
than via exhaustive search. The known plaintext variants of the attacks
are faster than exhaustive search for up to 14 rounds. A summary of these
results appears in Table 2.1.

An advanced form of differential cryptanalysis can also break the full
16-round DES. The data analysis phase requires 237 time and negligible
space by analyzing 236 ciphertexts obtained from a larger pool of 247 cho-
sen plaintexts. An interesting feature of the new attack is that it can be
applied with the same complexity and success probability even if the key
is frequently changed and thus the collected ciphertexts are derived from
many different keys. The attack can be carried out incrementally, and one
of the keys can be computed in real time while it is still valid. This is partic-
ularly important in attacks on bank authentication schemes, in which the
opponent needs only one opportunity to forge a multi-million dollar wire
transfer, but has to act quickly before the next key changeover invalidates
his message. This is the first published attack which is capable of breaking
the full DES in less than the complexity of exhaustive search of 255 keys.

2. Results 8

No. of Dependent Key Independent Key

Rounds Chosen Known Chosen Known

Plaintexts Plaintexts Plaintexts Plaintexts

4 23 233 24 233

6 28 236 28 236

8 214 238 216 240

9 224 244 226 245

10 224 243 235 249

11 231 247 236 250

12 231 247 243 253

13 239 252 244 254

14 239 251 251 257

15 247 256 252 258

16 247 255 260 261

Table 2.1. Summary of the cryptanalysis of DES: The number of operations
and plaintexts required to break the specified number of rounds.

Some researchers have proposed to strengthen DES by making all the
subkeys Ki independent (or at least to derive them in a more complicated
way from a longer actual key K). Our attack can be carried out even in this
case, and thus the additional margin of safety achieved by this modification
may be smaller than anticipated. DES reduced to eight rounds with inde-
pendent subkeys (i.e., with 8 · 48 = 384 independent key bits which are not
compatible with the key scheduling algorithm) can be broken by a chosen
plaintext attack in less than two minutes by analyzing 15000 ciphertexts
chosen from a pool of 50000 candidate ciphertexts. The known plaintext
variant needs about 240 ciphertexts. The full DES with independent sub-
keys (i.e., with 16 · 48 = 768 independent key bits) is breakable by either a
chosen plaintext attack or a known plaintext attack with up to 261 steps.

Our attacks on DES reduced to 10–16 rounds are not affected by the
choice of the P permutation, and thus the replacement of the P permu-
tation by any other permutation cannot make DES stronger, but many
replaced permutations would allow even much faster attacks on the resul-
tant cryptosystems. Even the replacement of the order of the eight DES S
boxes (without changing their values) can make DES much weaker: DES
with 16 rounds with a particular replaced order is breakable using about
238 chosen plaintexts. The replacement of the XOR operation by the more
complex addition operation makes this cryptosystem much weaker. DES
with random S boxes is shown to be very easy to break. Even a minimal
change of one entry in one of the DES S boxes can make DES easier to
break. A generalized version of DES (called GDES) is shown to be trivially
breakable by a chosen plaintext attack with six encryptions in less than

2. Results 9

No. of Chosen Known

Rounds Plaintexts Plaintexts

4 8 234

8 128 236

12 221 242

16 229 246

20 237 250

24 245 254

28 256 260

30 260 262

31 263 263

Table 2.2. Summary of the cryptanalysis of FEAL: The number of opera-
tions and plaintexts required to break the specified number of rounds.

0.2 seconds, while GDES with independent subkeys is breakable with 16
encryptions in less than 3 seconds.

The FEAL-8 cryptosystem can be broken with about 128 chosen plain-
texts or with about 236 known plaintexts. As a reaction to our attack on
FEAL-8, two new versions were introduced: FEAL-N[23], with any even
number of rounds and FEAL-NX[24] with a key size extended to 128 bits.
Nevertheless, FEAL-N and FEAL-NX can be broken for any N ≤ 31 rounds
faster than exhaustive search by either a chosen plaintext attack or a known
plaintext attack. A summary of the differential cryptanalytic results on
FEAL with various numbers of rounds appears in Table 2.2.

Khafre with 16 rounds is breakable by a differential cryptanalytic chosen
plaintext attack using about 1500 encryptions within about an hour on a
personal computer. By a differential cryptanalytic known plaintext attack
it is breakable using about 238 encryptions. Khafre with 24 rounds is break-
able by a chosen plaintext attack using about 253 encryptions and using a
differential cryptanalytic known plaintext attack it is breakable using about
259 encryptions.

REDOC-II with one round is breakable by a differential cryptanalytic
chosen plaintext attack using about 2300 encryptions within less than a
minute on a personal computer. For REDOC-II with up to four rounds
it is possible to find three bytes of the masks (created by 1280 byte key
tables) faster than via exhaustive search of the key. The three masks can
even be found by a known plaintext attack.

LOKI with up to eleven rounds is breakable faster than via exhaustive
search by a differential cryptanalytic attack. We further show that every key

2. Results 10

of LOKI has 15 equivalent keys due to a key complementation property and
thus the complexity of a known plaintext attack on the full 16-round version
can be reduced to 260. Another complementation property can reduce the
complexity of a chosen plaintext attack by another factor of 16 to 256.

Lucifer with eight rounds is breakable within 221 steps using 24 ciphertext
pairs. The other variant of Lucifer reduced to eight rounds is even weaker.

Our results on hash functions are as follows: Two-pass Snefru is easily
breakable within three minutes on a personal computer. Our attack can
find many pairs which hash to the same values and can even find several
messages hashing to the same hashed value as a given message. The at-
tack is also applicable to three-pass and four-pass Snefru with complexities
which are much better than the birthday attack. The attack is independent
of the actual choice of the S boxes and one of its variants can even be used
as a black box attack in which the choice of the S boxes is not known to
the attacker.

Variants of N-Hash with up to 12 rounds (rather than eight rounds) can
be broken faster than via the birthday paradox, but for technical reasons
we can apply this attack only when the number of rounds is divisible by
three.

The two hash function modes of LOKI are shown to be insecure.

3

Introduction to Differential
Cryptanalysis

Differential cryptanalysis is a method which analyzes the effect of particular
differences in plaintext pairs on the differences of the resultant ciphertext
pairs. These differences can be used to assign probabilities to the possible
keys and to locate the most probable key. This method usually works on
many pairs of plaintexts with the same particular difference using the re-
sultant ciphertext pairs. For DES and many other DES-like cryptosystems
the difference is chosen as a fixed XORed value of the two plaintexts. In this
introduction we show how these differences can be analyzed and exploited.
Due to its importance, we use DES as the canonical example of an iterated
cryptosystem, but try to make the definitions and theorems applicable to
other cryptosystems as well.

3.1 Notations and Definitions

We first introduce the following notations:

The numbers: An hexadecimal number n is denoted with the subscript x as
nx (e.g., 10x = 16). Decimal numbers are denoted without subscripts.

The plaintext: The plaintext is denoted by P . In the discussion on DES, we
ignore the existence of the initial permutation of DES, and thus P is
the value after the initial permutation which is entered directly into
the first round. In differential cryptanalytic attacks the plaintexts are
used in pairs. The other plaintext in the pair is denoted by P ∗ and
the difference of the two plaintexts is denoted by P ′ = P ⊕P ∗ and is
called the plaintext XOR. The left and the right halves of the plaintext
P are denoted by PL and PR respectively (i.e., P = (PL, PR)).

The ciphertext: The ciphertext is denoted by T . Since we ignore the ex-
istence of the initial permutation of DES, T is the value before the
inverse initial permutation IP−1. The ciphertext of the second plain-
text P ∗ is denoted by T ∗ and the difference of the two ciphertexts
T ′ = T ⊕ T ∗ is called the ciphertext XOR. The left and the right

3.1. Notations and Definitions 12

halves of the ciphertext T are denoted by TL and TR respectively
(i.e., T = (TL, TR)). We denote the ciphertext by T , rather than by
the usual notation C, since we reserve C for other purposes.

The difference: At any intermediate point during the encryption of pairs
of plaintexts, if X denotes a value during the encryption of the first
plaintext, X∗ denotes the corresponding value during the encryption
of the second plaintext. The difference of these values is denoted by
X ′. For DES-like cryptosystems we define X ′ = X ⊕X∗. Since the
difference is usually the XOR of the two values, we call the difference
of the two plaintexts the plaintext XOR, the difference of the two
ciphertexts the ciphertext XOR, the difference of some two inputs
the input XOR and the difference of some two outputs the output
XOR.

The inputs and the outputs of the F function: The 32-bit inputs of the F
function in the various rounds are denoted by the lowercase letters
a, b, . . . , j. The corresponding 32-bit outputs of the F function in
the various rounds are denoted by the uppercase letters A, B, . . . ,
J . Therefore, the input of the first round is denoted by a (in DES
a = PR) and the output of the first round is denoted by A, the input
of the second round is denoted by b and the output of the second
round is denoted by B, and so on. See Figure 3.1 for more details.

The subkeys: The F function of each round has a unique key dependent
input, called the subkey. The subkeys are calculated from the key
by a key scheduling algorithm. The subkeys are named Ki, where i
indicates the round to which they enter.

The following notations are specific to DES:

The initial permutation: The initial permutation of DES is denoted by
IP (X). In this book the existence of the initial permutation IP and
the inverse initial permutation IP−1 of DES are ignored, since they
have no cryptanalytic significance in our attack. In many other cryp-
tosystems (such as FEAL) the initial permutation is replaced by a
more complex initial transformation which can also XOR the data
with subkeys.

The subkeys: DES iterates the round-function 16 times and uses 16 sub-
keys, named K1, K2, . . . , K16. All the bits of the subkeys are chosen
by the key scheduling algorithm of DES by duplicating each bit of
the 56-bit key into about 14 out of the 16 48-bit subkeys.

The P permutation: The P permutation of DES is denoted by P (X). Note
that P as a variable denotes the plaintext.

3.1. Notations and Definitions 13

Plaintext (P)

F

K1

A a

F

K2

B b

F

K3

C c

F

K4

D d

F

K5

E e

F

K6

F f

F

K7

G g

F

K8

H h

Ciphertext (T)

Figure 3.1. DES reduced to eight rounds.

The E expansion: The E expansion of DES is denoted by E(X).

The S boxes: The S boxes of DES are S1, S2, . . . , S8. The input of the S box
Si in the round whose input letter is X (X ∈ {a, . . . , j}) is denoted
by SiIX . The corresponding output of Si is denoted by SiOX . The
value of the six bits of the subkey entering the S box Si after they are
XORed with the expanded data is denoted by SiKX and the value
of the six input bits of the expanded data (E(X)) which are XORed
with SiKX to form SiIX is denoted by SiEX . In these notations, the

3.1. Notations and Definitions 14

input (32 bits)

E

48 bits

S1
E

S2
E

S3
E

S4
E

S5
E

S6
E

S7
E

S8
E

subkey (48 bits)

S1
K

S2
K

S3
K

S4
K

S5
K

S6
K

S7
K

S8
K

S1

S1
I

S1
O

S2

S2
I

S2
O

S3

S3
I

S3
O

S4

S4
I

S4
O

S5

S5
I

S5
O

S6

S6
I

S6
O

S7

S7
I

S7
O

S8

S8
I

S8
O

P

output (32 bits)

Figure 3.2. The F function of DES.

S box number i and the round marker X are optional. For example
S1Ea denotes the first six bits of E(a). S1Ka denotes the first six
bits of the subkey K1. S1Ia denotes the input of the S box S1 which
is S1Ia = S1Ea ⊕ S1Ka. S1Oa denotes the output of S1 which is
S1Oa = S1(S1Ia). See Figure 3.2 for more details.

Definition 3.1 An independent key is a list of subkeys which is not nec-
essarily derivable from some key via the key scheduling algorithm.

Example 3.1 DES has 216·48 = 2768 possible independent keys, but only
256 possible dependent keys. Note that every dependent key can be viewed
as a special type of an independent key.

Remark To simplify the mathematical analysis of our attacks, we assume
that all the subkeys are independent. Attacks on DES with dependent
subkeys were experimentally shown to have the same probability of success,
but the theoretical analysis of the probability is much harder.

3.2. Overview 15

3.2 Overview

The F function of DES takes a 32-bit input and a 48-bit key. The input is
expanded (by the E expansion) to 48 bits and XORed with the key (see
Figure 3.2). The result is fed into the S boxes and the resultant bits are
permuted.

Our goal is to analyze the differential behavior of this function. Given
the XOR value of an input pair to the F function it is easy to determine
its XOR value after the expansion by the formula:

E(X) ⊕ E(X∗) = E(X ⊕X∗).

The XOR with the key does not change the XOR value in the pair, i.e.,
the expanded XOR stays valid even after the XOR with the key, by the
formula:

(X ⊕K) ⊕ (X∗ ⊕K) = X ⊕X∗.

The output of the S boxes is mixed by the P permutation and the output
XOR of the P permutation is the permuted value of its input XOR, by the
formula:

P (X) ⊕ P (X∗) = P (X ⊕X∗).

The output XOR of the F function is linear in the XOR operation that
connects the different rounds:

(X ⊕ Y) ⊕ (X∗ ⊕ Y ∗) = (X ⊕X∗) ⊕ (Y ⊕ Y ∗).

The XOR of pairs is thus invariant in the key and is linear in the E expan-
sion, the P permutation and the XOR operation.

The S boxes are known to be non-linear. Knowledge of the XOR of the
input pairs cannot guarantee knowledge of the XOR of the output pairs.
Usually several output XORs are possible. A special case arises when both
inputs are equal, in which case both outputs must be equal too. However, a
crucial observation is that for any particular input XOR not all the output
XORs are possible, the possible ones do not appear uniformly, and some
XORed values appear much more frequently than others.

Before we proceed we want to mention the known design rules of the S
boxes[4]:

1. No S box is a linear or affine function of its input.

2. Changing one input bit to an S box results in changing at least two
output bits.

3.2. Overview 16

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 3.1. S box S1.

3. S(X) and S(X ⊕ 001100) must differ in at least two bits.

4. S(X) 6= S(X ⊕ 11ef00) for any choice of e and f .

5. The S boxes were chosen to minimize the differences between the
number of 1’s and 0’s in any S box output when any single bit is kept
constant.

In DES any S box has 64 · 64 possible input pairs, and each one of them
has an input XOR and an output XOR. There are only 64 · 16 possible
tuples of input and output XORs. Therefore, each tuple results in average
from four pairs. However, not all the tuples exist as a result of a pair,
and the existing ones do not have a uniform distribution. Very important
properties of the S boxes are derived from the analysis of the tables that
summarize this distribution:

Definition 3.2 A table that shows the distribution of the input XORs and
output XORs of all the possible pairs of an S box is called the difference
distribution table of the S box. In this table each row corresponds to a
particular input XOR, each column corresponds to a particular output
XOR and the entries themselves count the number of possible pairs with
such an input XOR and an output XOR.

Each line in a difference distribution table contains 64 possible pairs in
16 different entries. Thus in each line in the table the average of the entries
is exactly four.

Example 3.2 In Table 3.1 the S box S1 of DES is described. The difference
distribution table of S11 is given in Table 3.2.

Example 3.3 The first line of Table 3.2 shows that for the zero input
XOR, the output XOR must be zero too, as we noticed above. Also, the
different lines in the table have different output XOR distributions.

1See Appendix A for the description of all the S boxes and their interpretation.
The difference distribution tables of all the S boxes appear in Appendix B.

3.2. Overview 17

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8

10x 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11x 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12x 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
13x 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6
14x 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15x 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4
16x 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17x 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18x 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19x 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0
1Ax 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1Bx 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2
1Cx 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1Dx 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1Ex 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2
1Fx 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4
20x 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12
21x 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22x 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10
23x 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24x 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25x 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2
26x 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27x 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28x 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29x 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2Ax 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2Bx 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2Cx 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2Dx 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2Ex 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2Fx 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table 3.2. The difference distribution table of S1.

3.2. Overview 18

The following definition deals with difference distribution tables:

Definition 3.3 Let X and Y be two values (representing potential input
and output XORs of an S box, respectively). We say that X may cause Y
by the S box if there is a pair in which the input XOR of the S box equals
X and the output XOR of the S box equals Y . If there is such a pair we
write X → Y , and if there is no such pair we say that X may not cause Y
by the S box and write X 6→ Y .

Example 3.4 Consider the input XOR S1′I = 34x. It has only eight possi-
ble output XORs, while the other eight entries are impossible. The possible
output XORs S1′O are 1x, 2x, 3x, 4x, 7x, 8x, Dx and Fx. Therefore, the
input XOR S1′I = 34x may cause output XOR S1′O = 1x (34x → 1x). Also
34x → 2x and 34x → Fx. On the other hand, 34x 6→ 0x and 34x 6→ 9x.

Examples 3.3 and 3.4 demonstrate that for a fixed input XOR, the pos-
sible output XORs do not have a uniform distribution. The following Def-
inition extends Definition 3.3 with probabilities.

Definition 3.4 We say that X may cause Y with probability p by an S box
if for a fraction p of the pairs in which the input XOR of the S box equals
X , the output XOR equals Y .

Example 3.5 34x → 2x results from 16 out of the 64 pairs of S1, i.e., with
probability 1

4 . 34x → 4x results only from two out of the 64 pairs of S1,
i.e., with probability 1

32 .

Different distributions appear in different lines of the table. In total be-
tween 70% and 80% of the entries are possible and between 20% and 30%
are impossible. The exact percentage for each S box is shown in Table 3.3.
In various formulas in this book we approximate the percentage of the
possible entries by 80%.

The difference distribution tables let us find the possible input and out-
put values of pairs given their input and output XORs. The following ex-
ample shows a simple case:

Example 3.6 Consider the entry 34x → 4x in the difference distribution
table of S1. Since the entry 34x → 4x has value 2, only two pairs satisfy
these XORs. These pairs are duals. If the first pair is S1I , S1∗I then the
other pair is S1∗I , S1I . By looking at Table 3.4 we see that these inputs must
be 13x and 27x, whose corresponding outputs are 6x and 2x respectively.

Next we show how to find the key bits using known input pairs and
output XORs of an S box in the F function.

3.2. Overview 19

S box Percentage

S1 79.4

S2 78.6

S3 79.6

S4 68.5

S5 76.5

S6 80.4

S7 77.2

S8 77.1

Table 3.3. Percentage of the possible entries in the various difference dis-
tribution tables.

Output

XOR

(S1′
O) Possible Inputs (S1I)

1 03, 0F , 1E, 1F , 2A, 2B, 37, 3B

2 04, 05, 0E, 11, 12, 14, 1A, 1B, 20, 25, 26, 2E, 2F , 30, 31, 3A

3 01, 02, 15, 21, 35, 36

4 13, 27

7 00, 08, 0D, 17, 18, 1D, 23, 29, 2C, 34, 39, 3C

8 09, 0C, 19, 2D, 38, 3D

D 06, 10, 16, 1C, 22, 24, 28, 32

F 07, 0A, 0B, 33, 3E, 3F

Table 3.4. Possible input values for the input XOR S1′I = 34x by the
output XOR (in hexadecimal).

Example 3.7 Assume we know that S1E = 1x, S1∗E = 35x and S1′O = Dx

and we want to find the key value S1K . The input XOR is S1′E = S1′I = 34x

regardless of the actual value of S1K . By consulting Table 3.2 we can see
that the input to the S box has eight possibilities. These eight possibilities
make eight possibilities for the key (by SK = SE ⊕ SI) as described in
Table 3.5. Each line in the table describes two pairs with the same two
inputs but with the opposite order. Each pair leads to one key, so each line
leads to two keys (which are SE ⊕ SI and SE ⊕ S∗

I). The right key value
S1K must occur in this table.

Using additional pairs we can get additional candidates for S1K . Assume
that we get an input pair S1E = 21x, S1∗E = 15x whose output XOR is
S1′O = 3x. The possible inputs to the S box where 34x → 3x and the
corresponding possible keys are described in Table 3.6. The right key must
occur in both tables. The only common key values in Tables 3.5 and 3.6 are
17x and 23x. These two values are indistinguishable with this input XOR

3.2. Overview 20

S box input Possible Keys

06, 32 07, 33

10, 24 11, 25

16, 22 17, 23

1C, 28 1D, 29

Table 3.5. Possible keys for 34x → Dx by S1 with input 1x, 35x (in hex-
adecimal).

S box input Possible Keys

01, 35 20, 14

02, 36 23, 17

15, 21 34, 00

Table 3.6. Possible keys for 34x → 3x by S1 with input 21x, 15x (in hex-
adecimal).

since 17x ⊕ 23x = 34x = S1′E , but may become distinguishable by using a
pair with a different input XOR value (S1′E 6= 34x).

The following example extends this technique to a three-round cryptosys-
tem.

Example 3.8 Assume we have a ciphertext pair whose plaintext XOR is
known and the values of the six bits 64, 33, . . . , 37 of the plaintext XOR
are zero. The input XOR of the first round is zero in all the bits entering
S1 (S1′Ea = S1′Ia = 0) and thus the output XOR of S1 in the first round
must be zero (S1′Oa = 0). The left half of the ciphertext is calculated as
the XOR value of the left half of the plaintext, the output of the first round
and the output of the third round (TL = PL ⊕A⊕C). Since the plaintext
XOR and the ciphertext XOR are known and the output XOR of S1 in
the first round is known as well, the values of P ′

L and T ′
L and the bits of

A′ which correspond to the output of S1 are known. Therefore, the output
XOR of S1 in the third round can be calculated by extracting the bits which
correspond to the output of S1 in C′ = P ′

L ⊕T ′
L⊕A′. The input pair S1Ec,

S1∗Ec in the third round is easily extractable from the ciphertext pair.
If the input pair of S1 in the third round is S1Ec = 1x, S1∗Ec = 35x and

the output XOR is S1′Oc = Dx then the value of S1Kc can be found as in
Example 3.7 and it must appear in Table 3.5. Using additional pairs we can
discard some of the possible values till we get a unique value of S1Kc. Since
S1′Ec is not constant, there should not be any indistinguishable values of

3.2. Overview 21

the subkey.

The following definition extends Definitions 3.3 and 3.4 for use with the
F function:

Definition 3.5 Let X and Y be two values (representing potential input
and output XOR values of the F function). We say that X may cause Y
with probability p by the F function if for a fraction p of all the possible
input pairs encrypted by all the possible subkey values in which the input
XOR of the F function equals X , the output XOR equals Y . If p > 0 we
denote this possibility by X → Y .

Lemma 3.1 In DES, if X → Y with probability p by the F function then
every fixed input pair Z, Z∗ with Z ′ = Z ⊕Z∗ = X causes the F function
output XOR to be Y by the same fraction p of the possible subkey values.

Proof To prove the lemma it suffices to show the property for each of the
S boxes. For each input XOR of the data S′

E there is S′
I = S′

E regardless
of SK . If there are k possible input pairs to the S box with this input
XOR that may cause a given output XOR, we can choose precisely k key
values SK = SE ⊕ SI , each taking the fixed input pair SE , S∗

E to one of
the possible input pairs SI , S

∗
I of the S box and thus causing the given

output XOR. Thus, the fraction p is held constant for all the input pairs,
and therefore equals the average over all the input pairs.

In other iterated cryptosystems this lemma does not necessarily hold. How-
ever, we assume that the fraction is very close to p, which is usually the
case.

Corollary 3.1 The probability p of X → Y by the F function is the
product of pi in which Xi → Yi by the S boxes Si (i ∈ {1, . . . , 8}) where
X1X2X3X4X5X6X7X8 = E(X) and Y1Y2Y3Y4Y5Y6Y7Y8 = P−1(Y).

The above discussion about finding the key bits entering S boxes can
be extended to find the subkey entering the F function. The method is as
follows:

1. Choose an appropriate plaintext XOR.

2. Create an appropriate number of plaintext pairs with the chosen
plaintext XOR, encrypt them and keep only the resultant ciphertext
pairs.

3. For each pair derive the expected output XOR of as many S boxes in
the last round as possible from the plaintext XOR and the ciphertext

3.3. Characteristics 22

pair. (Note that the input pair of the last round is known since it
appears as part of the ciphertext pair).

4. For each possible key value, count the number of pairs that result with
the expected output XOR using this key value in the last round.

5. The right key value is the (hopefully unique) key value suggested by
all the pairs.

3.3 Characteristics

We are left with the problem of pushing the knowledge of the XORs of
the plaintext pairs as many rounds as possible (in Step 3) without making
them all zeroes. When the XORs of the pairs are zero, i.e., both texts are
equal, the outputs are equal too, which makes all the keys equally likely.
The pushing mechanism is a statistical characteristic of the cryptosystem
which is an extension of the single round analysis. Before we define it
formally we give an informal definition and three examples.

Definition 3.6 (informal) Associated with any pair of encryptions are
the XOR value of its two plaintexts, the XOR of its ciphertexts, the XORs of
the inputs of each round in the two executions and the XORs of the outputs
of each round in the two executions. These XOR values form an n-round
characteristic. A characteristic has a probability, which is the probability
that a random pair with the chosen plaintext XOR has the round and
ciphertext XORs specified in the characteristic. We denote the plaintext
XOR of a characteristic by ΩP and its ciphertext XOR by ΩT .

The following example describes a one-round characteristic with proba-
bility 1. This is the only one-round characteristic with probability greater
than 1

4 . This characteristic is very useful and is applicable in any DES-like
cryptosystem.

Example 3.9 A one-round characteristic with probability 1 is (for any
L′):

3.3. Characteristics 23

ΩP = (L′, 0x)

A′ = 0x a′ = 0x p = 1

ΩT = (L′, 0x)

F

The following example describes a simple one-round characteristic with
probability 14

64 .

Example 3.10 In this one-round characteristic the input XORs of seven
S boxes are zero. The input XOR of the eighth S box is not zero, and is
chosen to maximize the probability that the input XOR may cause the
output XOR. Since there are several input bits that enter two neighboring
S boxes by the E expansion we have to ensure that the XORs of these bits
are zero. There are only two private bits entering each S box. These bits
can have non-zero XOR values. The best such probability for S1 is 14

64 (i.e.,
there is an entry that contains 14 pairs that does not cause the input of the
neighboring S2 or S8 to be non-zero). Thus, it is easy to get a one-round
characteristic with probability 14

64 which is:

S1 : 0Cx → Ex with probability 14
64

S2, . . . , S8 : 00x → 0x with probability 1.

This characteristic can also be written (for any L′) as:

ΩP = (L′, 60 00 00 00x)

A′ = 00 80 82 00x a′ = 60 00 00 00x p = 14
64

= P (E0 00 00 00x)

ΩT = (L′ ⊕ 00 80 82 00x, 60 00 00 00x)

F

3.3. Characteristics 24

One-round characteristics with probability 1
4 are possible using non-zero

input XORs in S2 or S6.

The following example describes a two-round characteristic which is eas-
ily obtained by concatenating the two one-round characteristics described
in Examples 3.10 and 3.9:

Example 3.11 A two-round characteristic with probability 14
64 :

ΩP = 00 80 82 00 60 00 00 00x

A′ = 00 80 82 00x a′ = 60 00 00 00x p = 14
64

B′ = 0 b′ = 0 p = 1

ΩT = 60 00 00 00 00 00 00 00x

F

F

We can now formulate the exact definition of a characteristic:

Definition 3.7 An n-round characteristic is a tuple Ω = (ΩP ,ΩΛ,ΩT)
where ΩP and ΩT are m bit numbers and ΩΛ is a list of n elements ΩΛ =
(Λ1,Λ2, . . . ,Λn), each of which is a pair of the form Λi = (λi

I , λ
i
O) where λi

I

and λi
O are m/2 bit numbers and m is the block size of the cryptosystem.

A characteristic satisfies the following requirements:

λ1
I = the right half of ΩP

λ2
I = the left half of ΩP ⊕ λ1

O

λn
I = the right half of ΩT

λn−1
I = the left half of ΩT ⊕ λn

O

and for every i such that 2 ≤ i ≤ n− 1:

λi
O = λi−1

I ⊕ λi+1
I .

Definition 3.8 A right pair with respect to an n-round characteristic Ω =
(ΩP ,ΩΛ,ΩT) and an independent key K is a pair for which P ′ = ΩP and
for each round i of the first n rounds of the encryption of the pair using
the independent key K the input XOR of the ith round equals λi

I and the

3.3. Characteristics 25

output XOR of the F function equals λi
O. Every pair which is not a right

pair with respect to the characteristic and the independent key is called
a wrong pair with respect to the characteristic and the independent key.
Throughout this book we refer them shortly by right pair and wrong pair.

Definition 3.9 An n-round characteristic Ω1 = (Ω1
P ,Ω

1
Λ,Ω

1
T) can be con-

catenated with an m-round characteristic Ω2 = (Ω2
P ,Ω

2
Λ,Ω

2
T) if Ω1

T equals
the swapped value of the two halves of Ω2

P . The concatenation of the char-
acteristics Ω1 and Ω2 (if they can be concatenated) is the characteristic
Ω = (Ω1

P ,ΩΛ,Ω
2
T) where ΩΛ is the concatenation of the lists Ω1

Λ and Ω2
Λ.

The following definitions and theorem deal with the probability of char-
acteristics:

Definition 3.10 Round i of a characteristic Ω has probability pΩ
i if λi

I →
λi

O with probability pΩ
i by the F function.

Definition 3.11 An n-round characteristic Ω has probability pΩ if pΩ is
the product of the probabilities of its n rounds:

pΩ =

n∏

i=1

pΩ
i .

Note that by Definitions 3.9 and 3.11 the probability of a characteristic Ω
which is the concatenation of the characteristic Ω1 with the characteristic
Ω2 is the product of their probabilities: pΩ = pΩ1 · pΩ2

. As a result, every
n-round characteristic can be described as the concatenation of n one-
round characteristics with probability which is the product of the one-round
probabilities.

Theorem 3.1 The formally defined probability of a characteristic Ω =
(ΩP ,ΩΛ,ΩT) is the actual probability that any fixed plaintext pair satis-
fying P ′ = ΩP is a right pair when random independent keys are used.

Proof The probability of any fixed plaintext pair satisfying P ′ = ΩP to
be a right pair is the probability that at all the rounds i: λi

I → λi
O. The

probability at each round is independent of its exact input (as proved in
Lemma 3.1) and independent of the action of the previous rounds (since the
independent keys completely randomize the inputs to each S box, leaving
only the XOR value fixed). Therefore, the probability of a pair to be a
right pair is the product of the probabilities of λi

I → λi
O, which was defined

above as the probability of the characteristic.

For practical purposes, the significant probability with respect to a char-
acteristic is the probability that a pair whose plaintext XOR equals the

3.3. Characteristics 26

characteristic’s plaintext XOR is a right pair using a fixed key (the one we
try to find). As shown in the next chapter, this probability is not constant
for all the keys, but we can assume that for randomly chosen key it is well
approximated by the probability of the characteristic.

The characteristics are defined here in terms of DES-like cryptosystems.
They can be generalized to be applicable to many other round-functions.
In this case we base the definition of the characteristics on one-round char-
acteristics (rather than on the specific structure of the round as we do for
DES) and conclude all the other results on the characteristics from their
concatenation to n-round characteristics by the corresponding concatena-
tion criteria. For several applications it is also advantageous to consider
only partially specified output XORs in order to get a better probability.
Such an extended characteristic can be viewed formally as a union of several
characteristics.

After this formal discussion we show a three-round characteristic:

Example 3.12 An extension to three rounds of the characteristic de-
scribed in Example 3.11 can be achieved by concatenating it again with
the characteristic of Example 3.10. Thus a three-round characteristic with

probability
(

14
64

)2 ≈ 0.05 is:

ΩP = 00 80 82 00 60 00 00 00x

A′ = 00 80 82 00x a′ = 60 00 00 00x p = 14
64

B′ = 0 b′ = 0 p = 1

C′ = 00 80 82 00x c′ = 60 00 00 00x p = 14
64

ΩT = ΩP = 00 80 82 00 60 00 00 00x

F

F

F

where in the fourth round (if added) d′ = 00 80 82 00. We see that when the
plaintexts differ in the five specified bit locations, with probability about
0.05 there is a difference of only three bits at the input of the fourth round.

3.3. Characteristics 27

This structure of three rounds with a zero input XOR in the middle
round is very useful and forms the best possible probability for three-round
characteristics2. A similar structure can be used in five-round character-
istics. The middle round has zero input and output XORs and there is a
symmetry around it, i.e.,

ΩP = (L′, R′)

A′ a′ = R′ with some probability pa

B′ = a′ = R′ b′ = L′ ⊕A′ with some probability pb

C′ = 0 c′ = 0 p = 1

D′ = R′ d′ = L′ ⊕A′ p = pb

E′ = A′ e′ = R′ p = pa

ΩT = ΩP = (L′, R′)

F

F

F

F

F

where in the sixth round (if added) f ′ = L′. The existence of a string
b′ → a′ → A′ ensures the existence of such a five-round characteristic.
The characteristic’s probability is quite low since three S box inputs must
differ in both rounds b′ → a′ and a′ → A′, and six in the whole five-round
characteristic (due to the design rules of the S boxes mentioned earlier).
The best probability for an S box is 16

64 = 1
4 . This limits the five-round

characteristic’s probability to be lower than or equal to
(

1
4

)6
= 1

4096 . In
fact, the best known five-round characteristic has probability about 1

10486 .

2Since less than two differing S boxes are impossible and there are charac-
teristics of this structure with two differing S boxes, each with the best possible
probability (1

4
).

3.3. Characteristics 28

Among the most useful characteristics are those that can be iterated.

Definition 3.12 A characteristic Ω = (ΩP ,ΩΛ,ΩT) is called an iterative
characteristic if it can be concatenated with itself.

We can concatenate an iterative characteristic to itself any number of
times and can get characteristics with an arbitrary number of rounds. The
advantage of iterative characteristics is that we can build an n-round char-
acteristic for any large n with a fixed reduction rate of the probability for
each additional round, while in non-iterative characteristics the reduction
rate of the probability usually increases due to the avalanche effect.

There are several kinds of iterative characteristics, but the simplest ones
are the most useful. These characteristics are based on a non-zero input
XOR to the F function that may cause a zero output XOR (i.e., two differ-
ent inputs yield the same output). This is possible in DES if at least three
neighboring S boxes differ in the pair (this phenomena is also described in
[4,13]). The structure of these characteristics is described in the following
example.

Example 3.13 If the input XOR of the F function is marked by ψ, such
that ψ → 0, then we have the following iterative characteristic:

ΩP = (ψ, 0)

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = ψ with some probability

ΩT = (0, ψ)

F

F

The best such characteristic has probability about 1
234 . A five-round char-

acteristic based on this iterative characteristic iterated two and a half times
has probability about

(
1

234

)2 ≈ 1
55000 (since the first half of this charac-

teristic which consists of the single round in which a′ = 0 and A′ = 0 has
probability 1).

3.4. The Signal to Noise Ratio 29

All the characteristics described in this book were found manually. We
wrote a heuristic program which searched for the best DES characteristics
which satisfy certain plausible structural constraints. Although we believe
that we have found the best DES characteristics, we have no proof that
better characteristics do not exist.

3.4 The Signal to Noise Ratio

This section and the following ones deal with more advanced tools and
techniques that are not necessary in order to understand the fundamental
principles of the differential cryptanalytic attacks and may not be clear
to the first-time reader. We suggest that such a reader should continue
directly to the next chapter.

The statistical behavior of most characteristics does not allow us to look
for the intersection of all the keys suggested by the various pairs as we
did in Example 3.7, since when the characteristics are shorter than the
cryptosystem, it is impossible to identify the right pairs and thus the in-
tersection of the suggested keys is usually empty: the wrong pairs do not
necessarily list the right key as a possible value. However, we know that
the right key value should result from all the right pairs which occur (ap-
proximately) with the characteristic’s probability. All the other possible
key values are fairly randomly distributed: the expected XOR value (which
is usually not the real value in the pair) with the known ciphertext pair
can cause any key value to be possible, and even the wrong key values
suggested by the right pairs are quite random. Consequently, the right key
appears with the characteristic’s probability (from right pairs) plus other
random occurrences (from wrong pairs). To find the key we just have to
count the number of occurrences of each of the suggested keys. The right
key is likely to be the one that occurs most often.

Each characteristic lets us look simultaneously for a particular number
of bits in the subkey of the last round of the cryptosystem (all the bits that
enter some particular S boxes). The most useful characteristics are those
which have a maximal probability and a maximal number of subkey bits
whose occurrences can be counted. It is not necessary to count on a large
number of subkey bits simultaneously, but the advantages of counting on
all the possible subkey bits simultaneously are the good identification of the
right key values and the small amount of data needed. On the other hand,
counting the number of occurrences of all the possible values of a large
number of bits usually demands huge memory which can make the attack
impractical. We can count on a smaller number of subkey bits entering a

3.4. The Signal to Noise Ratio 30

smaller number of S boxes, and use all the other S boxes only to identify
and discard those wrong pairs in which the input XORs in such S boxes
cannot cause the expected output XORs. Since about 20% of the entries in
the difference distribution tables of the S boxes are impossible, about 20%
of the wrong pairs can be discarded by each S box before they are actually
counted.

The following definition gives us a tool to evaluate the usability of a
counting scheme based on a characteristic:

Definition 3.13 The ratio between the number of right pairs and the
average count of the incorrect subkeys in a counting scheme is called the
signal to noise ratio of the counting scheme and is denoted by S/N .

To find the right key in a counting scheme we need a high probabil-
ity characteristic and sufficiently many ciphertext pairs to guarantee the
existence of several right pairs. This means that for a characteristic with
probability 1

10000 we need several tens of thousands of pairs. How many
pairs we need depends on the probability of the characteristic p, the num-
ber k of simultaneous key bits that we count on, the average count α per
analyzed pair (excluding the wrong pairs that can be discarded before the
counting), and the fraction β of the analyzed pairs among all the pairs.
If we are looking for k key bits then we count the number of occurrences
of 2k possible key values in 2k counters. The counters contain an average
count of m·α·β

2k counts where m is the number of the created pairs (m · β is
the expected number of the analyzed pairs). The right key value is counted
aboutm·p times by the right pairs, plus the random counts estimated above
for all the possible keys. The signal to noise ratio of a counting scheme is
therefore:

S/N =
m · p

m · α · β/2k
=

2k · p
α · β .

In practice, the calculation of the average number of counted keys per pair
α · β is often simpler to estimate than the separate values of α and β.

A simple corollary of this formula is that the signal to noise ratio of a
counting scheme is independent of the number of pairs used in the scheme.
Another corollary is that different counting schemes based on the same
characteristic but with a different number of subkey bits have different
signal to noise ratio.

Usually we relate the number of pairs needed by a counting scheme to
the number of the right pairs needed. The number of right pairs needed is
mainly a function of the signal to noise ratio. When the signal to noise ratio
is high enough, only a few occurrences of right pairs are needed to uniquely
identify the right value of the subkey bits. We observed experimentally

3.5. Known Plaintext Attacks 31

that when the signal to noise ratio is about 1–2, about 20–40 occurrences
of right pairs are sufficient. When the signal to noise ratio is much higher
even 3–4 right pairs are usually enough. When the signal to noise ratio is
much smaller the identification of the right value of the subkey bits requires
an unreasonably large number of pairs.

The applicability of a differential cryptanalytic attack is determined by
comparing the number of encryptions needed by the attack to the size of the
key space and the size of the plaintext space. If the number of encryptions
is larger than the size of the key space, the expected encryption time of
the chosen plaintexts is larger than the time needed to search for the key
exhaustively. If the number of encryptions is larger than the size of the
plaintext space, the attack cannot be carried out at all.

3.5 Known Plaintext Attacks

The differential cryptanalytic attacks described so far are chosen plaintext
attacks in which the plaintext pairs can be chosen at random as long as
they satisfy the plaintext XOR condition. Unlike other chosen plaintext
attacks, differential cryptanalytic attacks can be easily converted to known
plaintext attacks by the following observation.

Assume that the differential cryptanalytic chosen plaintext attack needs
m pairs, and that we are given 232 ·

√
2m random known plaintexts and their

corresponding ciphertexts. Consider all the
(232·

√
2m)2

2 = 264 · m possible
pairs of plaintexts they can form. Each pair has a plaintext XOR which
can be easily calculated. Since the block size is 64 bits, there are only 264

possible plaintext XOR values, and thus there are about 264·m
264 = m pairs

creating each plaintext XOR value. In particular, with high probability
there are about m pairs with each one of the several plaintext XOR values
needed for differential cryptanalysis.

The known plaintext attack is not limited to the electronic code book
(ECB) mode of operation, but is also applicable to the cipher block chaining
(CBC) mode, the 64-bit cipher feedback (CFB) mode, and the 64-bit output
feedback (OFB) mode3, since it is easy to calculate the real inputs of the
encryption function when the plaintexts and the ciphertexts are known.

3The Output feedback mode with less than 64-bit blocks is not vulnerable to
this known plaintext attack. However, its use is not advisable[10] since it contains
cycles of size about 232.

3.6. Structures 32

3.6 Structures

In many attacks we use several simultaneous characteristics. In the known
plaintext attacks we get the pairs of all the additional characteristics for
free. In order to minimize the number of ciphertexts needed by the chosen
plaintext attack, we can pack them into more economical structures.

Definition 3.14 A quartet is a structure of four ciphertexts that simul-
taneously contains two ciphertext pairs of one characteristic and two ci-
phertext pairs of a second characteristic. An octet is a structure of eight
ciphertexts that simultaneously contains four ciphertext pairs of each of
three characteristics.

Example 3.14 The following four plaintexts form a quartet (where Ω1
P

and Ω2
P are the plaintext XORs of the characteristics):

1. A random plaintext P .

2. P ⊕ Ω1
P .

3. P ⊕ Ω2
P .

4. P ⊕ Ω1
P ⊕ Ω2

P .

The two pairs of the first characteristic are the pairs labelled (1, 2) and (3,
4) and the two pairs of the second characteristic are the pairs labelled (1,
3) and (2, 4).

We can use these structures in two ways. When an attack uses n pairs
of each one of two characteristics we can use n/2 quartets which contain
the same information as each of the n pairs of each characteristic. Thus,
we save half the data. Using octets we can save 2/3 of the data. The other
approach is used when an attack can simultaneously use several alternative
characteristics and count on the same key bits. We can again have the
same factors by using structures of ciphertexts which simultaneously count
according to the various characteristics.

4

Differential Cryptanalysis of
DES Variants

In this chapter we attack several variants of DES: variants of DES with
fewer than 16 rounds, variants with independent keys, variants with mod-
ified internal operations and S boxes, and the GDES variant.

4.1 DES Reduced to Four Rounds

In Chapter 3 we defined the notions of pairs and characteristics. In this
section we describe how it can be used to cryptanalyze DES reduced to
four rounds. This cryptanalysis is quite simple since it uses a characteristic
with probability 1, but it serves as a good introductory example to the
method of differential cryptanalysis.

In this attack we use the following one-round characteristic Ω1 with prob-
ability 1, which is an instance of the characteristic described in Example 3.9:

Ω1
P = 20 00 00 00 00 00 00 00x

A′ = 0x a′ = 0x p = 1

Ω1
T = 20 00 00 00 00 00 00 00x

F

where in the second round (if added) b′ = 20 00 00 00x.

In the first round the characteristic has a′ = 0 → A′ = 0 with probabil-
ity 1. The single bit difference between the two plaintexts starts to play a
role in the second round in S1. Since the inputs to S1 differ only in one bit,
at least two output bits must differ. Typically such two bits enter three S
boxes in the third round (c′ = a′ ⊕B′ = B′), where there is a difference of

4.1. DES Reduced to Four Rounds 34

Plaintext (P)

F

K1

A a

F

K2

B b

F

K3

C c

F

K4

D d

Ciphertext (T)

Figure 4.1. DES reduced to four rounds.

one bit in each S box input. Thus, about six output bits differ at the third
round. These bits are XORed with the known difference of the input of S1
in the second round (d′ = b′ ⊕C′), making a difference of about seven bits
in the input of the fourth round and about 11 bits after the E expansion.
Such an avalanche makes it very likely that the input of all the S boxes
differ at the fourth round. Even if an input of an S box does not differ in
one pair, it can differ in another pair and the exact value of d′ is usually
different for every pair.

The 28 output XOR bits of S2, . . . , S8 in B′ must be zero, since their
input XORs are zero. The value of D′ can be derived from a′, B′ and T ′

L

by the equation (see Figure 4.1)

D′ = a′ ⊕B′ ⊕ T ′
L. (4.1)

When the ciphertext pair values T and T ∗ are known then d and d∗ are
known to be their right halves (by d = TR). Since a′, T ′

L and the 28 bits
of B′ are known, the corresponding 28 bits of D′ are known as well by
Equation 4.1. These 28 bits are the output XORs of the S boxes S2, . . . ,
S8. Thus, we know the values SEd, S

∗
Ed and S′

Od of seven S boxes in the
fourth round.

Given four encrypted pairs we use a separate counting procedure for each
one of the seven S boxes in the fourth round. We try all the 64 possible

4.1. DES Reduced to Four Rounds 35

values of SKd and check whether

S(SEd ⊕ SKd) ⊕ S(S∗
Ed ⊕ SKd) = S′

Od.

For each key we count the number of pairs for which the test succeeds. The
right key value is suggested by all the pairs since we use a characteristic
with probability 1, for which all the pairs are right pairs. The other 63 key
values may occur in some of the pairs. It is unlikely that a value occurs in
all the pairs, which have various values of S′

E and S′
O. In rare cases when

more than one key value is suggested by all the pairs a few additional pairs
can be tried, or the analysis of the other key bits can be done in parallel
for all the surviving candidates.

So far we have found 7 · 6 = 42 bits of the subkey of the last round (K4).
If the subkeys are calculated via the key scheduling algorithm of DES,
these are 42 actual key bits out of the 56 key bits, and thus 14 key bits
are still missing. One can now try all the 214 possibilities of the missing
bits and decrypt the given ciphertexts using the resulting keys. The right
key should satisfy the known plaintext XOR value for all the pairs, but the
other 214 − 1 values have only probability 2−64 to satisfy this condition.

Some researchers have proposed to strengthen DES by making all the
subkeys Ki independent (or at least to derive them in a more complicated
way from a longer actual key K [2,18]). Our attack can be carried out even
in this case. To find the six missing bits of K4 and to find K3 we use another
plaintext XOR value with the following characteristic Ω2:

Ω2
P = 02 22 22 22 00 00 00 00x

A′ = 0x a′ = 0x p = 1

Ω2
T = 02 22 22 22 00 00 00 00x

F

where in the second round (if added) b′ = 02 22 22 22x.

The value of S1′Eb is zero. Thus, S1′Ob = 0. As above we find S1′Od using
Equation 4.1 and similarly we can find the corresponding six key bits S1Kd.

Now we know the complete fourth round subkey K4. Using K4 we par-
tially decrypt all the given ciphertexts by “peeling off” the effect of the
last round. As a result we remain with ciphertexts of a three-round cryp-
tosystem. In this cryptosystem, we can use the characteristic Ω2 again to

4.1. DES Reduced to Four Rounds 36

calculate the subkey of the third round (K3). The inputs to the third round
c and c∗ are known as halves of the ciphertexts of the three-round cryp-
tosystem. The input XOR c′ is easily calculated. The output XOR C′ is
calculated by C′ = b′ ⊕ d′ where b′ equals the left half of Ω2

P and d′ equals
the right half of the ciphertext XOR (T ′

R). The counting method is used
to count the number of occurrences of the possible keys of all the eight S
boxes at the third round. The values that are counted for all the pairs are
likely to be the right key values. As a result the complete K3 is found with
high probability.

The plaintext XORs of these characteristics do not suffice to find a unique
value for K2, since the values of S′

Eb are constant for all the pairs, and
thus the right key values are indistinguishable from the alternative key
values obtained by XORing them with S′

Eb. Although we can find these
two possibilities for each S box, i.e., 28 possibilities for K2, we cannot use
these characteristics to find K1, since in both plaintext XORs the right
halves are zero, and thus a′ = 0 and A′ = 0. Note that regardless of the
subkey, if a′ = 0 then all the possible values of K1 are equally likely. To
solve this problem we have to use additional plaintext XORs which have
non-zero input XORs for all the S boxes of the first round. In addition
we want to be able to distinguish the key values of all the S boxes, so
we choose two plaintext XORs P ′

3 and P ′
4. These plaintext XORs can be

chosen arbitrarily under the following two conditions:

• S′
Ea 6= 0 for all the S boxes using either P ′

3 or P ′
4.

• The value of S′
Ea derived from P ′

3 is different from the value of S′
Ea

derived from P ′
4, for every S box.

Then b and b∗ are known by decryption of the third round and B′ is known
by B′ = a′ ⊕ c′ = P ′

R ⊕ c′. The counting method is used to find K2.
This time it has to use the appropriate P ′

R value for each pair. Now a, a∗

and a′ are known by decryption of the second round and A′ is known by
A′ = P ′

L ⊕ b′. The counting method finds K1. Using K1, K2, K3 and K4
we can decrypt the original ciphertexts to get the corresponding plaintexts
and then verify their plaintext XOR values. If we find only one possibility
for all the subkeys the verification must succeed. If several possibilities are
found then only one of them is likely to be verified successfully, and thus
the right key can be identified.

Typically, 16 chosen plaintexts are required for this attack. These 16
plaintexts contain eight pairs of the characteristic Ω1, eight pairs of Ω2,
four pairs with the plaintext XOR P ′

3 and four pairs with the plaintext
XOR P ′

4. In order not to increase the amount of data needed, we use two
octets which give rise to four pairs of each of three plaintext XORs. The

4.2. DES Reduced to Six Rounds 37

known plaintext variant of the attack needs about 233.5 known plaintexts
(see Section 3.5 for the conversion to known plaintext attacks).

4.2 DES Reduced to Six Rounds

The cryptanalysis of DES reduced to six rounds is more complex than the
cryptanalysis of the four-round version. We use two characteristics with
probability 1

16 , and choose the key value that is counted most often. Each
one of the two characteristics lets us find the 30 key bits of K6 which enter
five S boxes in the sixth round, but three of the S boxes are common so
the total number of key bits found by the two characteristics is 42. The
other 14 key bits can be found later by means of exhaustive search or by
a more careful counting on the key bits entering the eighth S box in the
sixth round.

The first characteristic Ω1 is:

Ω1
P = 40 08 00 00 04 00 00 00x

A′ = 40 08 00 00x a′ = 04 00 00 00x p = 1
4

B′ = 0x b′ = 0x p = 1

C′ = 40 08 00 00x c′ = 04 00 00 00x p = 1
4

Ω1
T = 40 08 00 00 04 00 00 00x

F

F

F

where in the fourth round (if added) d′ = 40 08 00 00x.

Five S boxes in the fourth round (S2, S5, . . . , S8) have zero input XORs
(S′

Ed = 0) and thus their output XORs are zero (S′
Od = 0). The correspond-

ing output XORs in the sixth round can be found by F ′ = c′ ⊕D′ ⊕ T ′
L.

Since the right key value is not suggested by all the pairs (due to the prob-
abilistic nature of the characteristic), we cannot use a separate counting

4.2. DES Reduced to Six Rounds 38

procedure for the subkey bits entering each S box. In order to increase the
signal to noise ratio we should simultaneously count on subkey bits enter-
ing several S boxes. The best approach is to count on all the 30 countable
subkey bits together, which maximizes the probability that the right key
value is the one counted most often. A straightforward implementation of
this method requires 230 counters, which is impractical on most comput-
ers. However, the improved counting procedure described at the end of this
section achieves exactly the same result with much smaller memory.

The same efficient algorithm is used to find the 30 key bits of S1, S2, S4,
S5 and S6 using the second characteristic Ω2 which is:

Ω2
P = 00 20 00 08 00 00 04 00x

A′ = 00 20 00 08x a′ = 00 00 04 00x p = 1
4

B′ = 0x b′ = 0x p = 1

C′ = 00 20 00 08x c′ = 00 00 04 00x p = 1
4

Ω2
T = 00 20 00 08 00 00 04 00x

F

F

F

where in the fourth round (if added) d′ = 00 20 00 08x.

Again, five S boxes in the fourth round (S1, S2, S4, S5 and S6) have zero
input XORs. The computed key values of the common S boxes S2, S5 and S6
should be the same in both calculations (otherwise we should analyze more
pairs or consider additional candidate keys with almost maximal counts).
If this test is successful, we have probably found 42 bits of K6.

DES has 56 key bits, of which 14 bits are still unknown. The simplest way
to find them is to search all the 214 possibilities for the expected plaintext
XOR value of the decrypted ciphertexts. A faster way is to start looking
for the six missing bits of K6 which enter S3 (the other eight key bits occur
only in other subkeys). At first we use our partial knowledge of the key to
discard wrong pairs. For each pair we check if at the five S boxes having

4.2. DES Reduced to Six Rounds 39

Into S box e bits Key bits

number SEe SKe

S1 ++++++ 3+..++

S2 ++3+++ +3+333

S3 ++++++ ++++++

S4 ++++3+ ++..++

S5 3+++++ +++.++

S6 ++++3+ +.+.++

S7 3+++++ +++.++

S8 ++3+++ ++++++

Table 4.1. Known bits at the fifth round.

S′
Ed = 0 by the characteristic, the value of S′

Of obtained by f and f∗ and
the known key bits form the expected value from F ′ = c′ ⊕ D′ ⊕ T ′

L. If
not, this cannot be a right pair. Otherwise it is almost certainly a right
pair (since the condition can be satisfied accidentally only with probability
2−20). For the remainder of the cryptanalysis we use only the (roughly) 1

16
of the pairs which are believed to be the right pairs. This filtration greatly
improves the signal to noise ratio of the following scheme, which otherwise
would be impractical.

Table 4.1 describes the known bits of the input of the F function and of
the subkey at the fifth round, assuming we know the 42 key bits. The digit
‘3’ means that the bit depends on the exact value of the missing key bits
that enter S3 in the sixth round. ‘+’ means that it depends only on known
key bits. The eight key bits which are not used at all in the subkey K6
are marked by ‘.’. This table shows that by guessing the six missing bits
of K6 we can verify its correctness by calculating e and e∗ for each right
pair by a single round decryption with K6 and by verifying that the values
of S2′Oe, S3′Oe and S8′Oe (for which all the input and key bits are known)
are as expected by E′ = d′ ⊕ f ′. Furthermore, for the five other S boxes
we can verify that there are values of the missing key bits which are not
used in K6, such that the output XORs are as expected. The verification
of most of the 64 possibilities of the six missing bits of K6 should fail, and
with high probability only one possibility survives. This value completes
K6. Only eight key bits are missing now. They can be found by trying all
the 256 possibilities, or by applying a similar analysis to key bits that enter
S boxes in the fifth round.

How much data is needed? The signal to noise ratio of the first part of
the algorithm (which finds 30 key bits) is

S/N =
230 · 1

16

45
= 230−4−10 = 216.

4.2. DES Reduced to Six Rounds 40

The signal to noise ratio is high and thus only 7–8 right pairs of each
characteristic are needed. Since the characteristics’ probability is 1

16 , we
need about 120 pairs of each characteristic for the analysis. The signal to
noise ratio of the later part is

S/N =
26 · 1

4
= 16.

This is lower, but we do not care since we can almost certainly identify
and use only the 7–8 right pairs from the first part (while eliminating most
of the noise) and intersect the sets of possible key values. To reduce the
number of ciphertexts needed we use quartets which combine the two char-
acteristics. As a result only 240 ciphertexts (representing 120 pairs of each
characteristic) are needed for the complete cryptanalysis. The conversion of
this attack to a known plaintext attack needs about 236 known plaintexts.

In order to decrease the amount of memory needed in the first part of
this attack we devised an equivalent but faster counting algorithm that
uses negligible memory and can count on all the countable subkey bits
simultaneously. This algorithm can be used in any counting scheme that
requires a huge memory but analyzes a relatively small number of pairs
(after filtering out all the identifiable wrong pairs). The idea behind this
algorithm is to describe the pairs and the possible key values by a graph.
In this graph each pair is a vertex and every two pairs which suggest a
common key value have a connecting edge labelled by this value. Thus,
each key value forms a clique which contains all its suggesting pairs. The
largest clique corresponds to the key value which is counted by the largest
number of pairs. In our implementation, for each of the five S boxes which
we count on we keep a bit mask of 64 bits, one bit for each possible value
of SK . Given the values of SE , S∗

E and S′
O we set the bits of the key masks

that correspond to possible values. Each pair has five such key masks, one
for every S box. A clique is defined as a set of pairs for which for each of
the five key masks there is a common bit set in all the pairs in the set (i.e.,
the binary “and” operation is non-zero for all the five key masks). Finding
the largest clique can be done in the following way: first compare the key
masks of every pair with all the following pairs in the pairs list. At each
comparison there is usually at least one key mask without any common bit
set. For the remaining possibilities we try to “and” the result with third
pairs, fourth pairs and so on until no more pairs can be added to the clique.
Given the largest clique we can easily compute the corresponding key bits
by looking at each key mask for the key value that it represents.

Using the clique method with 240 ciphertexts it takes about 0.3 seconds
on a personal computer to find the key in 95% of the tests conducted on
DES reduced to six rounds. When 320 ciphertexts are used the program
succeeds in almost all the cases. The program uses about 100K bytes of

4.3. DES Reduced to Eight Rounds 41

memory, most of which is devoted to various preprocessed tables used to
speed up the algorithm. A known plaintext attack needs about 236 known
plaintexts.

4.3 DES Reduced to Eight Rounds

DES reduced to eight rounds can be broken using about 25000 ciphertext
pairs for which the plaintext XOR is P ′ = 40 5C 00 00 04 00 00 00x.
The method finds 30 bits of K8. 18 additional key bits can be found using
similar manipulations on the pairs. The remaining eight key bits can be
found using exhaustive search.

The following characteristic is used in this analysis:

ΩP = 40 5C 00 00 04 00 00 00x

A′ = 40 08 00 00x a′ = 04 00 00 00x p = 1
4

= P (0A 00 00 00x)

B′ = 04 00 00 00x b′ = 00 54 00 00x p = 10·16
64·64

= P (00 10 00 00x)

C′ = 0 c′ = 0 p = 1

D′ = 04 00 00 00x d′ = 00 54 00 00x p = 10·16
64·64

E′ = 40 08 00 00x e′ = 04 00 00 00x p = 1
4

ΩT = ΩP = 40 5C 00 00 04 00 00 00x

F

F

F

F

F

4.3. DES Reduced to Eight Rounds 42

This characteristic has probability 1
10485.76 . The input XOR in the sixth

round of a right pair is f ′ = 40 5C 00 00x. Consequently, for five S boxes
S′

Ef = S′
If = 0 and S′

Of = 0.

In right pairs, the five S boxes S2, S5, S6, S7 and S8 satisfy S′
Ef = S′

If = 0
and S′

Of = 0. By the formula H ′ = T ′
L ⊕ g′ = T ′

L ⊕ e′ ⊕ F ′ we can find
the output XORs of the corresponding S boxes in the eighth round. The
input data of the eighth round is known from the ciphertexts. Therefore,
we can use the counting method to find the 30 subkey bits entering the
five S boxes at the eighth round. The signal to noise ratio of this counting

scheme is S/N = 230

45·10485.76 = 100.

Counting on 30 subkey bits demands a huge memory of 230 counters. In
this case the clique method is not recommended since its computation time
grows very fast (more than quadratically) with the number of pairs, while
the computation time of the counting method is linear in the number of
pairs. Nevertheless, we can reduce the amount of memory by counting on
fewer subkey bits entering fewer S boxes. The remaining S boxes can be
used for identification of some of the wrong pairs (in which S′

Eh 6→ S′
Oh).

About 20% of the entries in the difference distribution tables are impossible
and thus each remaining S box discards 20% of the wrong pairs. Counting

on 24 key bits thus has S/N = 224

44·0.8·10485.76 ≈ 7.8 and counting on 18 key

bits has S/N = 218

43·0.82·10485.76 ≈ 0.6.

In counting schemes that count on a reduced number of bits we can
choose the reduced set of countable S boxes arbitrarily. In this particular
case we can choose the reduced set in a way which maximizes the character-
istic’s probability and the signal to noise ratio by using a slightly modified
characteristic which ignores output bits that are not counted anyway. The
slightly modified characteristic is similar to the original one except that in
the fifth round only one bit of S2′Oe is fixed and all the combinations of
the other three are allowed:

e′ = 04 00 00 00x → E′ = P (0W 00 00 00x) = X0 0Y Z0 00x,

where W ∈ {0, 1, 2, 3, 8, 9, A,B}, X ∈ {0, 4}, Y ∈ {0, 8} and Z ∈ {0, 4}.
Therefore at the sixth round

f ′ = X0 5V Z0 00x

where V = Y ⊕ 4. The only possible combination in which Z = 0 is
04 00 00 00x → 40 08 00 00x which has probability 16

64 . All the other
combinations (in which Z = 4) have an overall probability 20

64 . We can-
not count on the subkey bits S5Kh but it is still advisable to check the
possibility of S5′Eh → S5′Oh which is satisfied by 80% of the pairs. There-
fore, the probability of e′ → E′ is 16

64 + 0.8 20
64 = 32

64 = 1
2 . The probability

4.3. DES Reduced to Eight Rounds 43

of the five-round modified characteristic is 16·10·16
643 · 16·10·32

643 ≈ 1
5243 . The

signal to noise ratio of a counting scheme which counts on the 24 subkey

bits entering S2, S6, S7 and S8 is S/N = 224

44·0.8·5243 ≈ 15.6. This signal
to noise ratio makes it usually possible to identify the correct subkey bits
with just five right pairs. Therefore, the attack uses a total amount of about
25000 pairs. The known plaintext variant of this attack needs about 240

known plaintexts. The signal to noise ratio of a counting scheme which
counts on 18 subkey bits entering three S boxes out of S2, S6, S7 and

S8 is S/N = 218

43·0.82·5243 ≈ 1.2. This 18-bit counting scheme needs 150000
pairs and has an average of about 24 counts for any wrong key value and
about 53 counts for the right key value (53 = 24 + 150000

5243 = 24 + 29).

A summary of this cryptanalytic method, which can be easily imple-
mented on a personal computer, is as follows:

1. Set up an array of 218 = 256K single-byte counters which is initialized
by zeroes. The array corresponds to the 218 values of the 18 key bits
of K8 entering S6, S7 and S8.

2. Preprocess the possible values of SI that satisfy each S′
I → S′

O for
the eight S boxes into a table. This table is used to speed up the
program.

3. For each ciphertext pair do:

(a) Assume h′ = T ′
R, H ′ = T ′

L and h = TR. Calculate S′
Eh = S′

Ih

and S′
Oh for S2, S5, S6, S7 and S8 by h′ and H ′. Calculate SEh

for S6, S7 and S8 by h.

(b) For each one of the S boxes S2, S5, S6, S7 and S8 check if
S′

Ih 6→ S′
Oh. If S′

Ih 6→ S′
Oh for at least one of the S boxes then

discard the pair as a wrong pair.

(c) For each one of the S boxes S6, S7 and S8: fetch from the
preprocessed table all the values of SIh which are possible for
S′

Ih → S′
Oh. For each possible value calculate SKh = SIh ⊕SEh.

Increment by one the counters corresponding to all the possible
18-bit concatenations of one six-bit value suggested for S6Kh,
one six-bit value suggested for S7Kh and one six-bit value sug-
gested for S8Kh.

4. Find the entry in the array that contains the maximal count. The
entry index is likely to be the real value of S6Kh, S7Kh and S8Kh

which is the value of the 18 bits (number 31, . . . , 48) of K8.

To find the other bits, we filter all the pairs and leave just the pairs with
the expected S′

O value using the known values of h and the known bits of

4.3. DES Reduced to Eight Rounds 44

Into S box g bits Key bits

number SEg SKg

S1 +4++++ 3+..4+

S2 ++3++1 134333

S3 +14+++ +1+41+

S4 ++++31 11..1+

S5 31++4+ +++.++

S6 4++13+ +.+.++

S7 3+4+++ +++.++

S8 ++31+4 ++++++

Table 4.2. Known bits at the seventh round.

K8 entering S6, S7 and S8. The expected number of the remaining pairs
is 53. This number is so small that we can afford to analyze each pair much
more thoroughly than in the first phase, and thus recover more key bits.

The next bits we are looking for are the twelve bits of K8 that correspond
to S2 and S5. We use a similar counting method (exploiting the enhanced
signal to noise ratio created by the higher concentration of right pairs) and
then filter more pairs. A wrong pair is not discarded by either this filter
or its predecessor with probability 2−20 and thus almost all the remaining
pairs are right pairs.

Using the known subkey bits of K8 we can calculate the values of 20 bits
of each of H and H∗ for each pair and thus 20 bits of each of g and g∗ (by
g = TL ⊕H). Table 4.2 shows the dependence of the g bits and the subkey
bits of K7 at the seventh round on the known and unknown subkey bits of
K8 at the eighth round. The digits 1, 3 and 4 mean that they depend on
the value of the unknown key bits entering the corresponding S box in the
eighth round. ‘+’ means that it depends only on the known bits of K8. The
eight key bits which are not used at all in K8 are marked by ‘.’.

The expected value of G′ is known by the formula G′ = f ′ ⊕ h′. We
can now look for the 18 missing bits of K8 by exhaustive search of 218

possibilities for every pair. Thus we know H , H∗ and g, g∗ and 40 bits of
K7. For each pair we check that the expected value ofG′ holds. For the right
value of those 18 key bits the expected G′ holds for almost all the filtered
pairs. All the other possible values satisfy the expected G′ value only for
a few pairs (usually 2–3 pairs while the right value holds for 15 pairs). To
save computer time we search primarily for the 12 key bits entering S1 and
S4 in the eighth round. They suffice to compute S3′Og as seen in Table 4.2.
After we find these 12 bits, we can find the other six bits. This completes
the calculation of the 48 bits of K8. Only eight key bits are still missing and

4.3. DES Reduced to Eight Rounds 45

they can be found by exhaustive search of 256 cases, using one ciphertext
pair, and verifying that the plaintext XOR is as expected.

To save disk space we can filter the pairs as soon as they are created
and discard all the identifiable wrong pairs (leaving 0.85 ≈ 1

3 of all the
pairs). Therefore, in the case of counting on 24 bits, the 25000 pairs are
reduced to about 7500 pairs. However, when the counting is carried out
on 18 bits, the 150000 pairs are reduced to 50000 pairs. For this case, we
devised another criterion which discards most of the wrong pairs while
leaving almost all the right pairs. This criterion is based on a carefully
chosen weighting function and discards any pair whose weight is lower than
a particular threshold. This criterion is the extension of the filtering of the
identifiable wrong pairs (where the threshold is actually zero) and is based
on the idea that a right pair typically suggests more possible key values
than a wrong pair. The weighting function is the product of the number of
possible keys of each of the five countable S boxes (i.e., the number in the
corresponding entry in the difference distribution tables). The threshold is
chosen to maximize the number of discarded pairs, while leaving as many
right pairs as possible. The best threshold value was experimentally found
to be 8192, which discards about 97% of the wrong pairs and leaves almost
all the right pairs. This reduces the number of pairs we actually analyze
from 150000 to about 7500, with a corresponding reduction in the running
time of the attack.

The attacking program finds the key in less than two minutes on a per-
sonal computer using 150000 pairs with 95% success rate. Using 250000
pairs the success rate is increased to almost 100%. The program uses 460K
bytes of memory, most of it for the counting array (one byte suffices for
each counter since the maximum count is about 53, and thus the total ar-
ray size is 218 bytes), and the preprocessed speed up tables. The program
which counts using 224 memory cells finds the key using only 25000 pairs.
A known plaintext attack needs about 240 plaintexts.

4.3.1 Enhanced Characteristic’s Probability

In addition to the statistical behavior of the characteristic we can use the
possible values of individual input and output bits of the S boxes. Let us
look at the first round of the characteristic. We have 08x → Ax by S2 with
probability 16

64 . Table 4.3 describes the possible input and output values.

We can see that the input bits number 2 and 6 are always equal. In
addition for 12

16 of the input values they are both 0 and for 4
16 of them they

are both 1. If we know the XOR of the key bits entering these two bits
of S2 in the first round (i.e., bits 57 and 42 of the key) we can use only

4.3. DES Reduced to Eight Rounds 46

S2I S2∗
I S2O S2∗

O

123456 123456 1234 1234

000010 001010 0001 1011

000110 001110 1110 0100

010001 011001 1100 0110

010101 011101 0001 1011

100000 101000 0000 1010

100010 101010 1110 0100

100100 101100 0111 1101

100110 101110 1011 0001

Table 4.3. The possible instances of 08x → Ax by S2 (in binary).

plaintexts whose corresponding bits (i.e., bits 5 and 9) have the same XOR
value (causing bits number 2 and 6 to be equal). Other pairs of plaintexts
cannot satisfy the characteristic. The probability of the characteristic and
the signal to noise ratio are then twice as good, and let us use less than
half the number of pairs.

If we know the values of both bits in a key, we can choose the two bits
in the plaintexts such that the bit values entering S2 are both zero. In
this case the probability of S2 becomes 12

16 instead of 16
64 . Thus, we get a

factor of three in the probability and the signal to noise ratio. The higher
signal to noise ratio lets us use less than 1

3 of the pairs needed originally.
A factor of four can be easily obtained by a characteristic that holds for
all the inputs in which bit number 1 has value 1 and both bits number 2
and 6 have value 0.

4.3.2 Extension to Nine Rounds

The five-round characteristic can be extended to a six-round characteristic
with probability of about 1

1000000 by concatenating it to the following one-
round characteristic:

4.4. DES with an Arbitrary Number of Rounds 47

ΩP = 84 41 13 46 40 5C 00 00x

A′ = 80 41 13 46x a′ = 40 5C 00 00x p = 12·14·16
643

= P (30 EF 00 00x) ≈ 1
100

ΩT = 04 00 00 00 40 5C 00 00x

F

DES reduced to nine rounds can be broken using 30-million pairs by a
method based on this six-round characteristic and using an array of size 230

with S/N = 230

45·1000000 ≈ 1. The first part of the algorithm that finds the
first 30 key bits is almost the same as in the eight-round algorithm except
that it counts on all the 30 bits at once. The second part of the algorithm
that uses Table 4.2 is slightly different since the key scheduling algorithm
shifts only one bit at the ninth round rather than two bits at the eighth
round. The input part stays the same. The known plaintext variant of this
attack needs about 245 plaintexts.

4.4 DES with an Arbitrary Number of Rounds

The following two-round iterative characteristic with probability about 1
234

can be used to cryptanalyze (at least in principle) variants of DES with an
arbitrary number of rounds:

4.4. DES with an Arbitrary Number of Rounds 48

Number of rounds Probability

3 2−7.9 ≈ 1/234

5 2−15.7 ≈ 1/55000

7 2−23.6

9 2−31.5

11 2−39.4

13 2−47.2

15 2−55.1

Table 4.4. The probability of the iterative characteristic versus number of
rounds.

ΩP = (ψ, 0) = 19 60 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = ψ = p = 14·8·10
643

19 60 00 00x ≈ 1
234

ΩT = (0, ψ) = 00 00 00 00 19 60 00 00x

F

F

where ψ = 19 60 00 00x. Due to the importance of this iterative character-
istic, we call it the iterative characteristic.

By an iterative concatenation of the iterative characteristic with itself
and with the one-round characteristic with probability 1 (described in Ex-
ample 3.9) we get characteristics with odd numbers of rounds whose prob-
abilities are summarized in Table 4.4. These characteristics have ΩP =
ΩT = 19 60 00 00 00 00 00 00x = (ψ, 0). In the next round (if added to
the characteristic) the input XOR of the F function is ψ and five of its S
boxes satisfy S′

E = 0.

Note There is another value ψ† = 1B 60 00 00x for which the itera-
tive characteristic has the same probability. There are several additional
values for which the probabilities are smaller. The best of them is ψ‡ =
00 19 60 00x for which the probability is exactly 1

256 . The extension of this
iterative characteristic to 15 rounds has probability 2−56.

4.4. DES with an Arbitrary Number of Rounds 49

There are several possible types of attacks, depending on the number of
additional rounds in the cryptosystem that are not covered by the charac-
teristic itself. The attack on DES reduced to eight rounds in Section 4.3
uses a five-round characteristic with three additional rounds which are not
covered by the characteristic. This kind of attack is called a 3R-attack.
The other kinds of attacks are a 2R-attack with two additional rounds and
a 1R-attack with one additional round. A 0R-attack is also possible but
it can be reduced to a 1R-attack with a better probability and the same
signal to noise ratio. A 0R-attack has the advantage that the right pairs
can be recognized almost without mistakes (the probability of a wrong pair
to survive is 2−64) and thus the memory requirements can become negli-
gible using the clique method. For a fixed cryptosystem it is advisable to
use the shortest possible characteristic due to its better probability. Thus,
a 3R-attack is advisable over a 2R-attack and both are advisable over a
1R-attack.

In the following subsections, actual attacks on DES reduced to 8–15
rounds are described. All these attacks find some bits of the subkey of the
last round. The other bits of the subkey of the last round can be calculated
by using these known bits with similar techniques. Only eight bits do not
appear in the subkey of the last round and they can be found by trying all
the 256 possible keys.

4.4.1 3R-Attacks

In 3R-attacks, counting can be done on the bits of the subkey of the last
round that enter S boxes whose corresponding S boxes in the round which
follows the last round of the characteristic have zero input XORs. The four,
six, eight and nine-round attacks described in the previous sections are of
this type.

In DES reduced to eight rounds the first 30 subkey bits can be found using
the iterative characteristic with five rounds (whose probability is about

1
55000) by an attack which is similar to the one described in Section 4.3.

Using an array of size 224 we have S/N = 224

44·0.8·55000 = 1.5, and we need

about 220 pairs. Using an array of size 230 we have S/N = 230

45·55000 = 19.
About 67% (1 − 0.85) of the wrong pairs can be discarded a-priori.

For DES reduced to ten or more rounds, the signal to noise ratio of the
3R-attacks becomes too small, and thus 3R-attacks on these variants are
not recommended.

4.4. DES with an Arbitrary Number of Rounds 50

4.4.2 2R-Attacks

In 2R-attacks counting can be done on all the bits of the subkey of the last
round. Wrong pairs can be discarded if the input XORs of the S boxes in
the previous round may not cause the expected output XORs. An S box
whose input XOR is zero should also have an output XOR of zero, i.e., the
success rate of this check is 1

16 . For the other S boxes the success rate is
about 0.8.

In DES reduced to nine rounds the 48 bits of K9 can be found using
226 pairs using the seven-round characteristic. We know that a right pair
satisfies at its final rounds:

G′ = 0 g′ = 0

H ′ = T ′
R h′ = ψ

I ′ = T ′
L ⊕ ψ i′ = T ′

R

T ′ = (T ′
L, T

′
R).

F

F

F

We can discard wrong pairs in which ψ 6→ T ′
R or T ′

R 6→ T ′
L ⊕ ψ and count

the possible occurrences of the key bits in the remaining pairs. At h′ → H ′

five S boxes satisfy S′
Eh = S′

Ih = 0 and thus S′
Oh must be zero (which

happens for wrong pairs with probability 1
16), while the other three S boxes

satisfy S′
Ih → S′

Oh (which happens for wrong pairs with probability 0.8).

Therefore the counting on all the 48 bits of K9 has S/N = 248·2−23.6

48·0.83·(1
16)5

≈
229 and counting on 18 bits has S/N = 218·2−23.6

43·0.85·0.83·(1
16)5

≈ 211. Even a

separate counting on the six key bits entering each S box is possible with

S/N = 26·2−23.6

4·0.87·0.83·(1
16)5

= 12. The identification of the wrong pairs leaves

only 0.83 ·
(

1
16

)5 · 0.88 ≈ 2−23.5 of the wrong pairs and thus only about one
wrong pair remains per each right pair. The characteristic’s probability is
2−23.6 and thus we need about 226 pairs for the cryptanalysis. This attack
needs more data than the previous 3R-attack on DES reduced to nine
rounds but needs much less memory. Due to the very good identification of
wrong pairs (only about eight pairs are not discarded, four right pairs and

4.4. DES with an Arbitrary Number of Rounds 51

four wrong pairs) it is possible to use the clique method on all the 48 bits.

The eleven-round variant can be broken by using the nine-round char-

acteristic with an array of size 218 and S/N = 218·2−31.5

43·0.85·0.83·(1
16)5

≈ 8 using

235 pairs. The clique method can still be used when we count on 48 subkey

bits with S/N = 248·2−31.5

48·0.83·(1
16)5

≈ 221 with an identification that leaves only

about 231.5 · 2−23.5 = 28 wrong pairs per each right pair.

The 13-round variant can be broken using the eleven-round characteristic

with an array of size 230 and S/N = 230·2−39.4

45·0.83·0.83·(1
16)5

≈ 6 using 243 pairs.

The clique method is not applicable since 239.4 · 2−23.5 ≈ 216 wrong pairs
are not discarded per each right pair. Counting schemes on 18 and 24 bits
are not advisable due to the low signal to noise ratio.

The 15-round variant can be broken using the 13-round characteristic

with an array of size 242 and S/N = 242·2−47.2

47·0.8·0.83·(1
16)5

≈ 4 using 251 pairs.

This is still faster than exhaustive search, but requires unrealistic amounts
of space and ciphertexts.

4.4.3 1R-Attacks

In 1R-attacks counting can be done on all the bits of the subkey of the last
round which enter S boxes with non-zero input XORs. Verification of the
values of T ′

R itself and checks on all the other S boxes in the last round to
find whether the input XOR may cause the output XOR can be done. For
those S boxes with a zero input XOR the output XOR should be zero too,
i.e., the check’s success rate is 1

16 . Since the input XOR of the last round
is constant, we cannot distinguish between several subkey values. However,
the number of such values is small (eight in all the 1R-attacks described
here) and each can be checked later in parallel by the next part of the
algorithm (either via exhaustive search or by a differential cryptanalytic
method).

The ten-round variant can be broken using the nine-round characteristic.
We know that a right pair satisfies at its final rounds:

4.4. DES with an Arbitrary Number of Rounds 52

H ′ = 0 h′ = ψ

I ′ = 0 i′ = 0

J ′ = T ′
L j′ = ψ

T ′ = (T ′
L, ψ).

F

F

F

We can identify the right pairs easily. Those pairs satisfy T ′
R = ψ, and the

20 bits in T ′
L going out of S4, . . . , S8 are zero. This also holds for 2−52 of

the wrong pairs. For the other three S boxes we count the possible values

of their 18 key bits with S/N = 218·2−31.5

43·2−52 ≈ 233. Thus we need about 234

pairs.

The twelve-round variant can be broken using the eleven-round charac-

teristic with S/N = 218·2−39.4

43·2−52 ≈ 225 and with 242 pairs.

The 14-round variant can be broken using the 13-round characteristic

with S/N = 218·2−47.2

43·2−52 ≈ 217 and with 250 pairs.

For the 16-round DES, the signal to noise ratio is S/N = 218·2−55.1

43·2−52 ≈ 29

using the 15-round characteristic. This variant can be broken using 257

pairs. However, the creation of 257 pairs is more time-consuming than ex-
haustive search for the 256 possible keys, and thus the successful cryptanal-
ysis of the full 16-round DES requires the refined techniques introduced in
Chapter 5.

4.4.4 Summary

For the sake of clarity, we summarize in Table 4.5 all the cryptanalytic
results obtained so far, even though they are not the best attacks described
in this book. The various columns in Table 4.5 are:

No. of Rounds: The number of rounds in the cryptosystem.

4.4. DES with an Arbitrary Number of Rounds 53

No. of Needed Analyzed Found Characteristic S/N Chosen Known

Rounds Pairs Pairs Bits Plains Plains

4 23 23 42 1 1 16 [6] 24 233

6 27 27 30 3 1/16 216 ∗ 28 236

8 215 213 30 5 1/10486 15.6 [24] 216 240

9 225 224 30 6 1/1000000 1.0 [30] 226 245

10 234 4 18 9 2−31.5 233 ∗ 235 249

11 235 211 48 9 2−31.5 221 ∗ 236 250

12 242 4 18 11 2−39.4 225 ∗ 243 253

13 243 219 48 11 2−39.4 6 [30] 244 254

14 250 4 18 13 2−47.2 217 ∗ 251 257

15 251 227 48 13 2−47.2 4 [42] 252 258

16 257 25 18 15 2−55.1 29 ∗ 258 261

The known plaintext attack is faster than exhaustive search for variants with up to 13

rounds. The chosen plaintext attack is faster than exhaustive search for variants with up

to 15 rounds. The best results described in this book are summarized in Table 5.2.

Table 4.5. Cryptanalysis of reduced variants of DES: intermediate sum-
mary.

Needed Pairs: The number of pairs encrypted during the data collection
phase.

Analyzed Pairs: The number of pairs which are actually analyzed by the
data analysis phase of the attack. This number excludes the iden-
tifiable wrong pairs which can be easily discarded during the data
collection phase.

Found Bits: The number of key bits found in the first part of the attack
by using a single characteristic. The other key bits are found later by
a variety of other techniques.

Characteristic: The number of rounds and the probability of the charac-
teristic used in the attack.

S/N : The signal to noise ratio of the attack. The number in brackets (if
any) denotes the number of initial bits found with that signal to noise
ratio. An asterisk denotes that the clique method is preferable over
the counting method and then the S/N is based on the number of
found bits.

Chosen Plains: The number of chosen plaintexts needed by the chosen
plaintext attack.

4.4. DES with an Arbitrary Number of Rounds 54

S2I S2∗
I S2O = S2∗

O

123456 123456 1234

000111 110101 0111

001111 111101 1110

010101 100111 0001

010111 100101 1010

Table 4.6. Possible inputs and outputs for 32x → 0 by S2 (in binary).

S3I S3∗
I S3O = S3∗

O

123456 123456 1234

000010 101110 0000

000011 101111 0111

000111 101011 1001

001111 100011 1010

010001 111101 0010

Table 4.7. Possible inputs and outputs for 2Cx → 0 by S3 (in binary).

Known Plains: The number of known plaintexts needed by the known
plaintext variant of the attack.

4.4.5 Enhanced Characteristic’s Probability

As described in Section 4.3.1, we can use the individual values of the input
and output bits of the S boxes in order to marginally improve the proba-
bility of our characteristics. In this subsection we show how to apply this
idea to the iterative characteristic.

When 32x → 0 by S2 in the iterative characteristic the values of the
input bits number 4 and 6 are both always 1 (see Table 4.6). Since in the
first round the input XOR is zero, it cannot be used as in Section 4.3.1. In
addition, when 2Cx → 0 by S3, in 8

10 of the cases bit number 2 equals 0
and in 2

10 of the cases bit number 2 equals 1 (see Table 4.7).

The XOR value of bit 6 of S2I and of bit 2 of S3I equals the XOR value
of the corresponding key bits in S2K and S3K since the corresponding bits
in S2E and S3E are the same bit due to the E expansion. If the XOR value
of these key bits is known to be 1 then the probability of the two-round
iterative characteristic becomes 14·8·8

642·32 = 7
210 ≈ 1

146 . If their XOR value is

4.4. DES with an Arbitrary Number of Rounds 55

No. of keys probability of probability of sum of No. chosen

equals ratio first characteristic other characteristic probabilities ciphertexts

0 1
128 1.6 · 2−51 1.6 · 2−65 1.6 · 2−51 1.25 · 252

1 7
128 1.6 · 2−53 1.6 · 2−63 1.6 · 2−53 1.25 · 254

2 21
128 1.6 · 2−55 1.6 · 2−61 1.625 · 2−55 1.23 · 256

3 35
128 1.6 · 2−57 1.6 · 2−59 2−56 258

4 35
128 1.6 · 2−59 1.6 · 2−57 2−56 258

5 21
128 1.6 · 2−61 1.6 · 2−55 1.625 · 2−55 1.23 · 256

6 7
128 1.6 · 2−63 1.6 · 2−53 1.6 · 2−53 1.25 · 254

7 1
128 1.6 · 2−65 1.6 · 2−51 1.6 · 2−51 1.25 · 252

Table 4.8. Probabilities by number of key bits equalities.

known to be 0 then the probability becomes 14·8·2
642·32 = 7

212 ≈ 1
585 .

The other characteristic described with the same probability has an op-
posite behavior. When 36x → 0 by S2 the value of bit number 6 is always 0
and thus the probabilities are exchanged. If the XOR of the key bits is 0
then the probability is 1

146 and if it is 1 then the probability is 1
585 .

Consider for example, an attack on DES with 16 rounds. There are seven
rounds in which the input XOR is assumed to be ψ. Suppose that, out of
these seven rounds, we have n rounds (0 ≤ n ≤ 7) whose key bit number 6
of S2K equals key bit number 2 of S3K . In this case, the probability of the
15-round characteristic is

(
7

212

)n (
7

210

)7−n

≈ 1.6
47−n

265
.

For the other characteristic the probability is 1.6 4n

265 . Table 4.8 describes
the probabilities for each number n of equalities among the key bits and
the relative frequency of such keys.

To increase the probability (especially in the worse cases) we use quartets
based on both characteristics. Since both characteristics allow counting
on the same S boxes we can use them simultaneously. We can see from
the table that we can use this method to break the full 16-round DES
with less than 256 encryptions, provided that the key bits satisfy certain
relations. However, such keys can also be exhaustively searched in less than
256 encryptions, and thus the small improvement in the complexity of the
attack for such keys does not make it faster than exhaustive search.

4.5. Modified Variants of DES 56

4.5 Modified Variants of DES

In this section we study the intricate relationship between the structure and
the security of DES by modifying DES in a variety of ways and applying
differential cryptanalytic techniques to the modified variants. The modi-
fied operations are the P permutation, the S boxes and their order in the
encryption process, the XOR operation, and the E expansion. The results
shed considerable light on the (unpublished) design rules of the DES.

4.5.1 Modifying the P Permutation

The choice of the P permutation has a major influence on the existence of
high probability characteristics. Many modifications of the P permutation
would weaken the variants of DES. An extreme case is when the P permu-
tation is replaced by the identity permutation (or eliminated). In this case
the two middle output bits of each S box would enter as the two middle
(private) bits of the same S box in the following round, and this would give
rise to the following iterative characteristic:

ΩP = 00 00 00 00 00 60 00 00x

A′ = 00 60 00 00x a′ = 00 60 00 00x p = 12
64

B′ = 00 60 00 00x b′ = 00 60 00 00x p = 12
64

C′ = 0 c′ = 0 p = 1

ΩT = 00 60 00 00 00 00 00 00x.

F

F

F

This characteristic can be iterated to a 10-round characteristic with prob-
ability about 2−14.5. Due to the small avalanche in this cryptosystem (the
output of an S box affects only the inputs of itself and the two neighboring
S boxes in the following round), we can extend this characteristic so that

4.5. Modified Variants of DES 57

with probability about 2−16.5 the input XORs and the output XORs of
five S boxes in round 14 are zero, and in this case 18 bits of the ciphertext
XOR of right pairs are zero. Therefore, we can easily discard almost all
the wrong pairs. This attack requires up to 220 pairs. Attacks in which two
output bits of an S box enter as the two private bits of the same S box in
the following round may be mounted for about 9% of the replacements of P
by random permutations, and their complexity is between 220–242. Many
other random permutations may be attacked using other characteristics.

However, attacks based on characteristics in which the output XORs of
all the F functions are zero, are not influenced by the choice of the P per-
mutation. Therefore, all the attacks based on the iterative characteristic
are independent of the choice of the P permutation and thus the replace-
ment of the P permutation by any other permutation cannot make DES
stronger.

4.5.2 Modifying the Order of the S Boxes

The DES cryptosystem specifies a certain order of the eight S boxes. Even
a modification of the order of the S boxes can make the cryptosystem much
weaker. Consider for example the case in which S1, S7 and S4 are brought
together in this order (without loss of generality, in the first three S box
entries) and the other S boxes are set in any order. Then there is a similar
two-round iterative characteristic, denoted by ψ• = 1D 40 00 00x whose
probability is about 1

73 :

ΩP = 1D 40 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = 1D 40 00 00x p = 14·16·16
643

≈ 1
73

ΩT = 00 00 00 00 1D 40 00 00x.

F

F

The 15-round characteristic has probability 1
737 ≈ 2−43 and thus the

4.5. Modified Variants of DES 58

16-round cryptosystem can be attacked using about 246 chosen plaintexts

with S/N = 218·2−43

43·2−52 = 221 or using about 255 known plaintexts.

The 17-round characteristic has probability 1
738 ≈ 2−50 and thus the

18-round cryptosystem can be attacked using about 253 chosen plaintexts

with S/N = 218·2−50

43·2−52 = 214.

In these attacks the clique method can be used due to the excellent
identification of wrong pairs (only 2−53 of them remain). As in the attack
based on the iterative characteristic this attack is independent of the choice
of the P permutation.

4.5.3 Replacing XORs by Additions

In DES there are two XOR operations in each round. The first XORs the ex-
panded input with the subkey within the F function while the other XORs
the output of the F function with the other half of the input data. The
following subsections describe three possible modifications which replace
some of the XOR operations by addition operations. The same analysis
applies when the XORs are replaced by subtraction operations.

4.5.3.1 Replacing the XORs Within the F Function

If we replace the XOR operation within the F function by an addition op-
eration we get a much weaker cryptosystem. The attack uses the following
iterative characteristic:

ΩP = 00 00 00 00 00 0C 00 00x

A′ = 0 a′ = 00 0C 00 00x p = 1
64

B′ = 0 b′ = 0 p = 1

ΩT = 00 0C 00 00 00 00 00 00x

F

F

The 00 0C 00 00x → 0 should be explained: 00 0C 00 00x is the input

4.5. Modified Variants of DES 59

XOR of the F function. The expansion to 48 bits is 000058000000x. The
addition of the key causes the input XOR to become 000028000000x with
probability 1

16 . Thus the input XORs of all the S boxes except S4 is zero,
while S4′I = 28x. However, 28x → 0 by S4 with probability 1

4 .

The 15-round characteristic has probability (1
64)7 = 2−42. The 1R-attack

counting scheme which finds the six subkey bits entering S4 in the sixteenth

round has S/N = 26

242·2−32·2−24·4 = 218. Thus the attack on this modified
16-round DES requires about 244 pairs of encryptions. The six key bits
entering S3 can then be found using the same encryptions with even higher
signal to noise ratio. Either exhaustive search of the 244 possible keys (with
12 fixed bits) or similar analysis with other characteristics recover the right
key. The total complexity of this attack is thus 245. The known plaintext
variant of this attack needs about 254 known plaintexts.

4.5.3.2 Replacing All the XORs

Modifying all the XORs by additions changes the probability of this char-
acteristic from 2−6 to 2−8. This happens because the additional addition
operation (for example c = a+B) does not change the input XOR (c′ = a′

for B′ = 0) with probability 1
4 . Thus the 16-round characteristic has prob-

ability 2−64, the 15-round characteristic has probability 2−58, the 14-round
characteristic has probability 2−56 and the 13-round characteristic has
probability 2−50.

The analysis of this attack shows that 252 pairs are needed to cryptana-
lyze the 14-round cryptosystem. The attacks on the 15-round and 16-round
cryptosystems are slower than exhaustive search.

4.5.3.3 Replacing All the XORs in an Equivalent DES Description

DES has an equivalent description in which the expansion is moved to
the end of the F function and all the calculations are done using 48 bits
instead of 32 bits. The cryptosystem which results from the replacement
of all the XORs in this description by additions is not equivalent to the
modified standard cryptosystem as described in the previous subsection.
In this subsection we show that this cryptosystem is much weaker than the
modified standard cryptosystem. We can save the repeated cancellation of
non-zero input XORs entering S3 in the previous characteristic by doing it
in the first addition, since during the various rounds the data bits entering
each S box are kept expanded. We get a two-round iterative characteristic
with probability 1

16 which is concatenated to a single occurrence of a one-
round characteristic with probability 1

16 at the first round. Thus an n-round

4.5. Modified Variants of DES 60

characteristic with an odd n has probability 1
16 · (1

16)
n−1

2 = 2−2−2n.

The 15-round characteristic has probability 2−32. A 1R-attack on the
16-round cryptosystem which counts on the six key bits entering S4 in the

last round has S/N = 26

232·2−48·2−42·1 = 264. Thus, only about 234 pairs
are needed. The other key bits entering the last round can be found us-
ing similar characteristics. The best three characteristics have probabilities
between 2−32 and 2−35, and the attacks based on them can find 18 key
bits. Therefore, about 237 pairs are needed to find the first 18 key bits. The
value of the remaining 38 key bits can be found by exhaustive search. The
total complexity of this attack is thus 239. The known plaintext variant of
this attack needs about 251 known plaintexts.

4.5.4 Random and Modified S Boxes

In a random S box there is a very high probability (about 0.998) that there
are two different inputs that differ in the two middle input bits of an S
box (which do not affect the neighboring S boxes) which have the same
output. In this case there is an iterative characteristic which is (without
loss of generality the S box is S1 and S1′I = Cx):

ΩP = 60 00 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = 60 00 00 00x with some probability

ΩT = 00 00 00 00 60 00 00 00x

F

F

97% of the sets of eight S boxes have such iterative characteristic with
probability 1

8 or more. The corresponding 13-round characteristics have
probability 2−18 and the 3R-attack on 42 subkey bits needs 220 pairs with
S/N = 210. Table 4.9 describes the relationship between the probability of
the characteristic, the number of pairs needed, and the probability that a
set of random S boxes has such a characteristic.

In S boxes chosen as four random permutations (as in the original DES

4.5. Modified Variants of DES 61

Char. Prob. 8 13-round 13-round Chosen

Prob. S boxes char. prob. S/N Pairs

1/32 1.00000 2−30 2−2

2/32 1.00000 2−24 24 227

3/32 0.99991 2−20.5 27.5 223

4/32 0.97079 2−18 210 220

5/32 0.68375 2−16.1 211.9 218

6/32 0.27330 2−14.5 213.5 217

7/32 0.07240 2−13.2 214.8 215

8/32 0.01499 2−12 216 214

9/32 0.00260 2−11.0 217.0 213

10/32 0.00039 2−10.1 217.9 212

Table 4.9. Characteristic probabilities with random S boxes.

S boxes) two different inputs that differ only in the private bits of one S
box must have different outputs. But there is a high probability that there
are two different inputs differing in the input bits of two S boxes which
have the same output. In this case there is an iterative characteristic which
is (without loss of generality the difference is in S1 and S2, and the input
XOR is 7E 00 00 00x):

ΩP = 7E 00 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = 7E 00 00 00x with some probability

ΩT = 00 00 00 00 7E 00 00 00x

F

F

In random tests we found several attacks that use between 243 to 247 pairs.
We estimate that attacks that use this number of pairs can be found for
more than 90% of the 16-round cryptosystems which use S boxes chosen
as four random permutations.

The security of DES can be devastated even by minor modifications of
the S boxes. With a single modification in one entry of one of the original

4.5. Modified Variants of DES 62

S boxes of DES1 we can force this S box to have two inputs which differ
only in one private input bit of the S box and have the same output. For
example, such a modification may set the value of S(4) to be equal to
S(0) (i.e., the third value in the first line to be equal to the first value in
the first line). Then, the two inputs 0 and 4 have the same output, and
thus the probability of 4 → 0 by this S box is 1

32 . A two-round iterative
characteristic based on this property has probability 1

32 and is (without
loss of generality the difference is in S1):

ΩP = 20 00 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = 20 00 00 00x p = 1
32

ΩT = 00 00 00 00 20 00 00 00x

F

F

Therefore the probability of the 15-round characteristic is 1
327 = 2−35.

Using a 1R-attack, 237 pairs are required to attack the 16-round modified

DES with S/N = 26·2−35

4·2−60 = 229 in order to find two indistinguishable values
of the first six key bits.

4.5.5 S Boxes with Uniform Difference

Distribution Tables

After we published our initial results on differential cryptanalysis, several
researchers [1,11,30] claimed that DES can be made immune to this attack
by using S boxes whose difference distribution tables have the same value
(e.g., 4) in all their entries, except the unavoidable irregularities at the first
row. They suggested in particular using bent functions as S boxes, since
these functions satisfy the uniformity condition2.

1This modification violates the permutation property in the S boxes of DES.
2Note that any function with a uniform difference distribution table must have

a non-uniform output distribution in which some output values result from more

4.5. Modified Variants of DES 63

Variants of DES with such S boxes turn out to be easier to attack. The
regularity implies that the input XORs which modify only private input
bits of the S boxes (which are not replicated to two S boxes) may cause zero
output XOR with probability 4

64 = 1
16 . Therefore, the following two-round

iterative characteristic has probability 1
16 :

ΩP = 60 00 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = 60 00 00 00x p = 1
16

ΩT = 00 00 00 00 60 00 00 00x.

F

F

This probability is much higher than of the iterative characteristic of the
original DES. There are two other such characteristics which modify the
input bits of S1 and similar characteristics which modify the input bits
of the other S boxes. The iteration of this characteristic to 15 rounds has
probability

(
1
16

)7
= 2−28 and a 1R-attack on the 16-round cryptosystem

needs about 230 pairs with S/N = 26·2−28

4·2−28·2−32 = 236. Even 29-round variants
of such a cryptosystem are still weaker than DES, and thus the cure is worse
than the original problem.

4.5.6 Eliminating the E Expansion

A cryptosystem similar to DES in which the E expansion is eliminated and
the S boxes map four bits to four bits is quite weak. Even the cryptosystems
that use permutations derived from the original S boxes are easily attacked.
For example, using the first lines of the original six-bit to four-bit S boxes
as the new four-bit to four-bit S boxes, we can find the following four-round
iterative characteristic with probability 1

256 :

input values than others. This unavoidable property can be used by the crypt-
analyst to design efficient non-differential attacks, in addition to the differential
attacks described in this subsection.

4.5. Modified Variants of DES 64

ΩP = B0 00 00 00 00 00 05 00x

A′ = 10 00 00 00x a′ = 00 00 05 00x p = 1
4

B′ = 00 00 02 00x b′ = A0 00 00 00x p = 1
8

C′ = 10 00 00 00x c′ = 00 00 07 00x p = 1
4

= A′

D′ = 00 00 02 00x d′ = B0 00 00 00x p = 1
2

= B′

ΩT = 00 00 05 00 B0 00 00 00x

F

F

F

F

Only 228 pairs are needed to break the 16-round cryptosystem using a
2R-attack. There are several additional characteristics that can be used to
attack the cryptosystem with a similar number of pairs.

4.5.7 Replacing the Order of the E Expansion and

the XOR with the Subkeys

A cryptosystem similar to DES in which the order of the E expansion and
the XOR with the subkeys is reversed (and thus the length of the sub-
keys is reduced to 32 bits) is slightly weaker than DES. This variant has
a two-round iterative characteristic with probability about 1

146 . This char-
acteristic is just the second iterative characteristic described in Section 4.4
whose original probability is about 1

234 and whose probability was shown
(in Subsection 4.4.5) to depend on the value of the subkey. In our case,
the subkey bits on which the probability depends are the same, and thus
we receive the same probability for any valid key. Therefore, the 13-round
characteristic has probability about 2−43.1 and the 15-round characteristic
has probability 2−50.3 (rather than 2−55.1). Thus, an attack on the 16-round

4.6. DES with Independent Keys 65

modified cryptosystem requires only about 252 pairs (rather than 257 pairs).

4.6 DES with Independent Keys

In this section we describe attacks on variants DES with independent keys
(those whose subkeys are not derived from a 56-bit key by the key schedul-
ing algorithm). We concentrate on the eight-round and the 16-round vari-
ants of DES, and conclude that DES with independent keys is not much
stronger than DES with dependent keys, in spite of its longer keys.

4.6.1 Eight Rounds

The attack on DES reduced to eight rounds with independent keys is ba-
sically similar to the attack on DES reduced to eight rounds described in
Section 4.3. We start by using the same algorithm to find the first 30 bits
of K8 and then proceed to find the remaining bits of K8 and the bits of all
the other subkeys by variants of this algorithm. The attack uses the same
characteristic as in the attack described in Section 4.3 plus 100 pairs with
two additional characteristics.

After finding the first 30 bits of K8, we filter the pairs, identify the right
pairs and discard all the wrong pairs (with relatively few errors). The other
18 bits of K8 cannot be found yet since we cannot assume that the subkeys
are related to each other by the key scheduling algorithm. To avoid this
problem we first look for bits of K7. Table 4.2 shows the bits in g that can be
calculated for any given ciphertext (the known key bits there are irrelevant
to our case). For each of the eight S boxes of the seventh round and for each
of its 64 possible key values we count the number of pairs for which this
key value is possible. A key value is possible for an S box in a pair if there
is an input pair to the S box whose computable bits have the calculated
value, the other bits have any value and the output XOR is as expected
by the characteristic and the ciphertexts (by G′ = f ′ ⊕ h′ = f ′ ⊕ T ′

R). The
most frequent key value is likely to be the right key value. Since there is
not enough data to make this key value unique we look for the set of key
values with maximal counts and choose the bits that have the same value
in all the members of this set. Those bits are likely to have the right values.
The other bits stay unknown. Experience has shown that the known bits
of S1Kg, S3Kg and S4Kg are at the locations denoted by ‘1’ bits in 2Fx,
27x and 3Cx respectively. If some of these bits are unknown it is almost
certainly due to a mistaken value of the known bits of K8.

4.6. DES with Independent Keys 66

By the knowledge of the subkey bits of the eighth round we can calculate
several input bits of the seventh round for any ciphertext. The input to the
seventh round g has missing bits that enter all the S boxes. There is one
S box whose input depends just on one missing bit while the inputs of all
the other S boxes depend on two missing bits at least. This S box is S1
whose input bit could be calculated if the output of S4 of the eighth round
were known. To find the key bits of S4Kh we try all the 64 possibilities of
its value for each pair, and find the key bits value by the counting method.
Now each of the inputs of S3Eg and S4Eg have one missing bit: S3Eg could
be calculated if S1Oh were known and S4Eg could be calculated if S3Oh

were known. To find these subkey bits we try all the 128 possibilities of
S1Kh and the missing bit of S3Kg and then the 128 possibilities of S3Kh

and the missing bit of S4Kg. Now K8 is completely known. To find K7 we
repeat the algorithm of finding K7 described above with the difference that
now we know K8 completely. Only one bit of K7 remains indistinguishable.
This bit is bit number 2 of S1Kg.

So far we have used the filtered pairs. These pairs are assumed to be
right pairs whose f ′ is as expected. They cannot help finding K6 since the
input XORs of five of the S boxes are zero, and thus 30 bits of K6 cannot
be found at all. The other three S boxes have constant input XORs so there
are two indistinguishable values for the subkey bits entering each S box. In
order to find K6 we have to use wrong pairs for which the characteristic
holds in the first three of the five rounds. From now on we use all the pairs
and filter them by a different criterion in each phase of the cryptanalysis.

• K6: To find K6 we decrypt two rounds of the ciphertexts and get the
values of f and f∗. We assume that the first three rounds of the charac-
teristic hold in the chosen pairs so d′ is as expected with zero input XORs
entering six S boxes. Thus we can calculate the output XORs of these S
boxes in the sixth round by F ′ = c′⊕D′⊕g′. Since c′ = 0 and S′

Ed is zero in
the six S boxes, we get that F ′ = g′ in the output bits of these S boxes. The
filtering chooses all the pairs for which f ′ and F ′ satisfy S′

Ef → S′
Of for S1,

S2, S5, . . . , S8. Using the resultant pairs we count on the 12 subkey bits
entering S1 and S2 and the missing bit of K7 (needed for the decryption of
the seventh round).

To find the other bits of K6 we filter the pairs again by using the known
bits of K6 to check the output XOR of S1 and S2, and count on S5Kf , . . . ,
S8Kf , a separate counting for each S box (we have a very good filtering so
the signal to noise ratio is high enough). In parallel we count on S3Kf and
on S4Kf , using the assumption that e′ is as expected by the characteristic
(four rounds hold) and using the filter that discards any pair for which
S′

Oe 6= 0 for S1, S3, . . . , S8 (since only S2′Ee 6= 0). Several possibilities
are found for some of the S boxes’ key bits, and the following phases are

4.6. DES with Independent Keys 67

applied on each one of them in parallel.

• K5: We assume c′ = 0 and d′ = b′. Then D′ = e′ where e and e∗ are
calculated by partial decryption. S′

Od must be zero in the six S boxes in
which S′

Ed = 0. We filter the pairs and leave only those that have S′
Od = 0.

Then we count on each of the eight S boxes of the fifth round. Several
possibilities can be found for some of the SKe’s. A list of all the possibilities
of K5 is created and used to try each one of them in parallel in the following
phases.

• K4: At the second round there must be S2′Eb = S6′Eb = 0 for any pair
(these S box inputs do not depend on the differing bits of the plaintexts). d
and d∗ are found by partial decryption. In additionD′ = a′⊕B′⊕e′ so S2′Od

and S6′Od are known and there must be S2′Ed → S2′Od and S6′Ed → S6′Od.
If it does not hold for even one pair it is not a filtering problem: it can only
result from a wrong value of the subkeys K5, . . . , K8. A separate counting
is done for each of the six S boxes S1, S2, S5, . . . , S8. The counting on
the other S boxes S3 and S4 is done only for pairs whose d′ is as expected
by the characteristic, since otherwise we cannot know the value of S3′Od

and S4′Od because S3′Ob and S4′Ob are unknown. Since S3′Ed and S4′Ed are
constants there are two indistinguishable values for each of their keys. As
usual we create a list of the possible K4 values and try them in parallel.

• K3: c and c∗ can be found by partial decryption of the last five rounds
using K4, . . . , K8. S′

Ea = 0 in all the S boxes except S2. Thus S′
Oc can

be found for S1, S3, . . . , S8 by C′ = P ′
L ⊕ A′ ⊕ d′. For every pair there

must be S′
Ec → S′

Oc. Therefore, even if only one S box (S1 or S3, . . . , S8)
of one pair does not match S′

Ec → S′
Oc then the values of K4, . . . , K8 are

wrong. If this does not happen, the counting is done in parallel for all the
S boxes except S2 using all the pairs. S2′Ea 6= 0, thus the calculation of
S2′Oc is impossible without further assumptions. Therefore we assume that
the values of A′ and b′ are as expected by the characteristic. The filtering
discards any pair that does not have S′

Ob = 0 for S1, S2 and S5, . . . , S8
using B′ = a′ ⊕ c′ = P ′

R ⊕ c′ (since we assume S′
Eb = 0 in these S boxes).

The counting of S2Kc is done using the filtered pairs.

• K2 and K1: The plaintext XOR used above is useless to find K2 and
K1 since all the pairs have S2′Eb = S6′Eb = 0 and for all the S boxes of
the first round except S2 there is S′

Ea = 0. The key bits cannot be found
at all for these S boxes. Therefore, in order to find K1 and K2 we must
use additional plaintext XORs. We need only 100 pairs with the additional
plaintext XORs, which can be obtained without adding new ciphertexts
by arranging some of the original ciphertexts in quartets. These plaintext
XORs and the algorithm of finding K1 and K2 are very similar to the case
of K1 and K2 in the four round version. See the end of Section 4.1 for more

4.6. DES with Independent Keys 68

details.

This attack was implemented in C on a personal computer. It finds the
key in less than two minutes with 95% success rate using 150000 pairs.
Using 250000 pairs the success rate is almost 100%. The program uses
460K bytes of memory, most of it for the counting array (of size 218 bytes)
and the preprocessed optimization tables. The program which counts using
224 memory cells finds the key using only 25000 pairs. The known plaintext
variant of this attack needs about 240 known plaintexts. As demonstrated
by these figures, DES reduced to eight rounds with independent keys is
almost as easy to solve as the corresponding variant with dependent keys,
even though the number of key bits is increased from 56 to 8 · 48 = 384.

4.6.2 Sixteen Rounds

DES with independent keys with an arbitrary number of rounds is vulner-
able to similar attacks. We showed in Section 4.4 that for 16-round DES we
can find eight possibilities for 18 bits of K16 using 257 pairs. Three char-
acteristics can be used to cover K16 completely. The three characteristics
are the iterative characteristic itself, a similar iterative characteristic which
has non-zero input XORs to S3, S4 and S5 whose 15 round probability is
2−56, and a similar characteristic with non-zero input XORs to S6, S7 and
S8 whose 15 round probability is about 2−57. Altogether, about 259 pairs
are needed to find two possibilities for the six bits entering each of the
S boxes, except S2 whose bits are completely determined by two charac-
teristics. Therefore 27 possibilities for K16 are found. We try in parallel
all the 128 possibilities of the value of K16 and reduce the cryptanalytic
problem to a DES reduced to 15 rounds. Since we know how to attack DES
reduced to 15 rounds with 252 chosen ciphertexts (that exist in the pool we
already have), trying the 128 possibilities takes about 259 steps. Most of
the possibilities are discarded during this reduction, and all the subsequent
reductions to fewer rounds have even smaller complexities. Therefore, the
cryptanalysis of DES with 16 rounds with independent keys takes about
260 steps and uses 259 pairs which are formed by 260 chosen plaintexts. The
known plaintext variant of this attack needs about 261.5 known plaintexts
using several characteristics. Even though these are impractical complex-
ity bounds, they are much faster than the 2768 complexity of exhaustive
search.

4.7. The Generalized DES Scheme (GDES) 69

4.7 The Generalized DES Scheme (GDES)

In this section, we analyze a structurally-modified variant of DES, called
GDES, and show that it is much weaker than the original DES even though
it is based on the same F function.

The Generalized DES Scheme (GDES) is a faster version of DES which
was suggested by Schaumuller-Bichl[31,33]. The speed-up is obtained by
increasing the ratio between the block size and the number of evaluations
of the F function.

The GDES blocks are divided into q parts of 32 bits each. The F function
is calculated once per round on the rightmost part, and the result is XORed
into all the other parts, which are then cyclically rotated to the right. After
the last round the order of the parts is exchanged to make the encryption
and decryption differ only in the order of the subkeys. The scheme is shown
in Figure 4.2, where n is the number of rounds of the GDES cryptosystem,

B
(j)
i = B

(j−1)
i−1 ⊕ F (B

(q)
i−1,Ki) j ∈ {2, . . . , q}, i ∈ {1, . . . , n}

B
(1)
i = B

(q)
i−1 i ∈ {1, . . . , n},

B0 = (B
(1)
0 , . . . , B

(q)
0) is the plaintext and Bt

n = (B
(q)
n , . . . , B

(1)
n) is the

ciphertext.

4.7.1 GDES Properties

This subsection describes several properties of GDES.

1. In GDES with n < q,

B
(i)
0 ⊕ ϕ = B(n+i)

n ∀i ∈ {1, . . . , q − n}

where ϕ =
n⊕

j=1

F (B
(q)
j−1,Kj).

Thus, the following formulae are satisfied for any i, j ∈ {1, . . . , q−n}:

B
(i)
0 ⊕B

(j)
0 = B(n+i)

n ⊕B(n+j)
n

B
(i)
0 = B

(j)
0 ⇐⇒ B(n+i)

n = B(n+j)
n

and for pairs of plaintexts for which B
(q−n+1)
0 , . . . , B

(q)
0 are kept

constant (i.e., B
′(q−n+1)
0 = . . . = B

′(q)
0 = 0):

B
′(i)
0 = B′(m+i)

m = B′(n+i)
n ∀i ∈ {1, . . . , q − n}, ∀m ∈ {0, . . . , n}.

4.7. The Generalized DES Scheme (GDES) 70

B(1)
0 B(2)

0 B(3)
0 B(q-1)

0 B(q)
0

. . .

B(1)
1 B(2)

1 B(3)
1 B(q-1)

1 B(q)
1

. . .

B(1)
2 B(2)

2 B(3)
2 B(q-1)

2 B(q)
2

. . .

B(1)
n-1 B(2)

n-1 B(3)
n-1 B(q-1)

n-1 B(q)
n-1

. . .

B(1)
n B(2)

n B(3)
n B(q-1)

n B(q)
n

. . .

F

K1
. . .

F

K2
. . .

F

Ki
. . .

F

Kn
. . .

Ciphertext (swapped)

Plaintext

Figure 4.2. The Generalized DES Scheme.

2. In GDES with n ≤ q, any pair of encryptions in which B
(q−n+2)
0 , . . . ,

B
(q)
0 are kept constant satisfies:

B
′(q−n+1)
0 = B

′(q)
n−1 = B′(1)

n .

3. For any odd q and any n the following equation is satisfied:

q⊕

j=1

B
(j)
0 =

q⊕

j=1

B(j)
m =

q⊕

j=1

B(j)
n ∀m ∈ {0, . . . , n}.

4.7. The Generalized DES Scheme (GDES) 71

4. In GDES with n = q − 1,

B
′(j)
0 = 0 ∀j ∈ {2, . . . , q}

implies that

B′(j)
n = 0 ∀j ∈ {1, . . . , q − 1}

and

B′(q)
n = B

′(1)
0 .

5. In GDES with n = 2q − 2,

B
′(1)
0 = η1

B
′(2)
0 = η2

B
′(j)
0 = 0 ∀j ∈ {3, . . . , q}

where η1 = 44 08 00 00x and η2 = 04 00 00 00x or η1 = 00 20 04 08x

and η2 = 00 00 04 00x implies that

B′(j)
n = 0 ∀j ∈ {1, . . . , q − 2}

B′(q−1)
n = η2

B′(q)
n = η1

with probability 1
16 since η2 → η1 ⊕ η2 with probability 1

4 . There are
additional values for η1 and η2 with smaller probabilities.

6. In GDES with n = 2q − 1,

B
′(1)
0 = ψ

and

B
′(j)
0 = 0 ∀j ∈ {2, . . . , q}

(where ψ is the value used in Section 4.4: ψ = 19 60 00 00x) implies
that

B′(j)
n = 0 ∀j ∈ {1, . . . , q − 1}

and

B′(q)
n = ψ

with probability about 1
234 . GDES with n = lq− 1 satisfies it for any

l ≥ 2 with probability about
(

1
234

)l−1
.

4.7.2 Cryptanalysis of GDES

This subsection describes how to cryptanalyze GDES for various values of
n and q. We assume that q is even (as suggested in [31,33]), but note that

4.7. The Generalized DES Scheme (GDES) 72

odd q can be attacked by variants of our technique. All the attacks can
find the independent keys, and thus are not affected by the key scheduling
algorithm. The special case of q = 8 and n = 16 which is suggested in
[31,33] as a faster and more secure alternative to DES is breakable with
just six ciphertexts in a fraction of a second on a personal computer.

4.7.2.1 A Known Plaintext Attack for n = q

Using a known plaintext attack we are given several plaintexts (each one

of the form B0 = (B
(1)
0 ,. . . ,B

(q)
0)) and the corresponding ciphertexts (each

one of the form Bt
n = (B

(q)
n ,. . . ,B

(1)
n)). Then

n⊕

j=1

F (B
(q)
j−1,Kj) =

q⊕

j=1

(
B

(j)
0 ⊕B(j)

n

)

and for any i ∈ {1, . . . , n}
n⊕

j=1

j 6=i

F (B
(q)
j−1,Kj) = B

(q+1−i)
0 ⊕B(q+1−i)

n .

Thus, the output of the F function in round i is

F (B
(q)
i−1,Ki) = B

(q+1−i)
0 ⊕B(q+1−i)

n ⊕
q⊕

j=1

(
B

(j)
0 ⊕B(j)

n

)

and the input of the F function in round i is

B
(q)
i−1 = B

(q+1−i)
0 ⊕

i−1⊕

j=1

F (B
(q)
j−1,Kj).

Therefore, we can easily calculate SE and SO of each one of the 8n S
boxes. As a result we get only four choices for the six subkey bits of each S
box. Using two or three encryptions the choices can be filtered by leaving
only the ones that appear in all the encryptions, and thus all the subkey
bits can be found.

4.7.2.2 A Second Known Plaintext Attack for n = q

Using pairs whose plaintext XORs are known we can compute the input
and output XORs of the F functions by the same method used in the
known plaintext attack. We can thus find all the subkeys (starting with the
subkey of the last round and working backwards towards the first round)
using three pairs of ciphertexts with different plaintext XORs.

4.7. The Generalized DES Scheme (GDES) 73

4.7.2.3 A Chosen Plaintext Attack for n = 2q − 1

Using a chosen plaintext attack with pairs satisfying

B
′(j)
0 = 0 ∀j ∈ {2, . . . , q}

and any B
′(1)
0 6= 0, we get

B
′(j)
q−1 = 0 ∀j ∈ {1, . . . , q − 1}

and

B
′(q)
q−1 = B

′(1)
0 .

The rest of the encryption is based on q rounds and thus an attack
similar to the second known plaintext attack for n = q can be used to find
q subkeys by analyzing three ciphertext pairs.

The other q − 1 subkeys can be found using a similar attack with two
additional ciphertexts.

4.7.2.4 A Chosen Plaintext Attack for n = 3q − 2

This attack is similar to the previous one, and uses ciphertext pairs satis-
fying:

B
′(1)
0 = η1

B
′(2)
0 = η2

B
′(j)
0 = 0 ∀j ∈ {3, . . . , q}.

where η1 and η2 are defined in Subsection 4.7.1. The right pairs with respect
to the corresponding (2q − 2)-round characteristic are about 1

16 of all the
pairs. We can identify most of the wrong pairs by checking that the input
XOR cannot cause the output XOR. This happens with probability about
0.8 for each S box. Thus only 0.88q = 0.16q of the wrong pairs remain. When
q ≥ 3 this is less than 0.88·3 = 1

250 of the pairs. This excellent identification
makes it possible to consider only 48 pairs, and identify the three expected
occurrences of right pairs among them. We can further decrease this amount
to 24 pairs by using quartets of two characteristics.

4.7.2.5 A Chosen Plaintext Attack for n = lq − 1

This attack works for n = lq − 1 rounds for l ≥ 3. It is similar to the
previous ones using

B
′(1)
0 = ψ = 19 60 00 00x

4.7. The Generalized DES Scheme (GDES) 74

B
′(j)
0 = 0 ∀j ∈ {2, . . . , q}.

The ((l − 1)q − 1)-round characteristic holds with probability about(
1

234

)l−2
. The identification leaves about 0.88q−5 ·

(
1
16

)5
of the wrong pairs.

Thus, if 0.88q−5 · 2−20 ≪
(

1
234

)l−2
(i.e., for q = 8: l ≤ 7 and n ≤ 55) then

the identification is excellent and only three right pairs are needed (among
the 3 · 234l−2 pairs considered) for counting the occurrences for each S box
separately. Otherwise we can count on several S boxes simultaneously using
more memory and a better signal to noise ratio. Counting on the 48 bits
of the subkey of the last round has

S/N =
248 · 2−8(l−2)

48 · 0.88q−13 · 2−20
≈ 264−8l+2.5q.

This attack shows that any GDES which is faster than DES is also less
secure than DES. GDES with n = 8q rounds is just as fast as DES. Con-
sider GDES with n = 8q− 1 which is slightly faster than DES. The usable
characteristic has 7q− 1 rounds and six repetitions of the iterative charac-

teristic. Thus its probability is about
(

1
234

)6 ≈ 2−48. Counting on all the
48 bits of the subkey of the last round has

S/N =
248 · 2−48

48 · 0.88q−13 · 2−20
≈ 22.5q.

Therefore, about 4–8 right pairs are needed, giving a total of 8 · 248 = 251

pairs. This complexity decreases rapidly when we try to make GDES even
faster by making n substantially smaller than 8q.

4.7.2.6 The Actual Attack on the Recommended Variant

The recommended parameters for GDES are q = 8 and n = 16. In this sub-
section we show that even the independent-key version of any GDES with
n = 2q can be broken with just 16 ciphertexts with particular differences
in the plaintexts. The complexity can be reduced to six ciphertexts if the
subkeys are derived from the standard key scheduling algorithm.

The ciphertexts corresponding to the following 16 plaintexts are required
by the attack:

• A random plaintext P .

• The nine plaintexts obtained from P by XORing 66 00 00 00x,
60 60 00 00x, 60 00 60 00x, 60 00 00 60x, 60 00 00 06x, 9E 5F AC 7Dx,

4.7. The Generalized DES Scheme (GDES) 75

F7 A5 35 C7x, 7A FA 78 D5x and 21 22 E3 2Cx into B
(1)
0 (the first

32 bits of P).

• The six plaintexts obtained from P by XORing A6 BD EF B7x,
F4 F3 82 3Cx, 4F 5C 37 51x, 2B 76 7A DBx, 5A 19 F9 68x and

33 EE DD FFx into all the B
(i)
0 blocks.

These XOR values are chosen by the following criteria:

1. The first plaintext is the randomly chosen basis for the differential
attack.

2. Five plaintexts have the maximal number of unchanged inputs to S
boxes in the qth round compared with P and with each other. At
least five of the inputs to each S box in the qth round are unchanged,
which makes it possible to find the subkey of the last round.

3. Four other plaintexts have a maximal difference in the S boxes of the
qth round. This is used to find the subkeys of the q + 1th and all the
subsequent rounds (There is not enough variability in the previous
values to find all those subkeys).

4. Six plaintexts have a maximal difference in the S boxes of the first q
rounds. This makes it possible to find the first q subkeys.

The cryptanalytic algorithm is as follows. At first the attacker tries to
find the subkey of the last round. Each one of the 15 pairs formed by the
first six encryptions has a different set of six S boxes whose input XORs

in B
(1)
0 are zero. All the other B

(i)
0 , i ∈ {2, . . . , q} have input XORs which

are trivially zero. Thus, the F functions of the first q− 1 rounds have zero
input and output XORs in all the pairs. The F function of the qth round
has zero input and output XORs in six of the eight S boxes. Therefore, we
can calculate the output XOR of these six S boxes in the last (2qth) round
by the formula:

F ′(B(q)
n−1,Kn) =

q⊕

j=2

B′(j)
n .

The input XOR is easily computed as B
′(q)
n−1 = B

′(1)
n and the input itself is

B
(1)
n . Now we try all the possible key bits for each S box separately and

check that for the given input XOR we get the given output XOR value.
For each S box there are at least five pairs which can distinguish values of
the key bits. The (almost certainly unique) value suggested by all the pairs
is the key of the corresponding S box. Therefore, the complete subkey of
the last round is found. Now partial decryption of the last round can be
done, effectively reducing the cryptosystem to 2q − 1 rounds.

4.7. The Generalized DES Scheme (GDES) 76

Note that if the subkeys are derived by the key scheduling algorithm of
DES then 48 bits out of the 56 key bits are known at this point. The others
can be easily found by trying all the 256 possibilities of the missing eight
key bits. We thus proceed to analyze the case of independent keys, which
requires 10 additional ciphertexts.

In the following q− 1 rounds we get the input and the input XOR of the
F function from the (partially decrypted) ciphertexts. The output XOR is
calculated by the formula:

F ′(B(q)
r−1,Kr) = B

′(1)
0 ⊕

q⊕

j=2

B′(j)
r

where r is the round number (r ∈ {q+ 1, . . . , 2q− 1}). In this case the first
ten ciphertexts are used. The additional four ciphertexts are needed pri-
marily to find K(q+1) since in the first six encryptions there are too many
zero XOR bits and more variety is needed. These additional ciphertexts
cannot help in the nth round because the output XORs of the S boxes in
the qth round have to be zero.

In the remaining q rounds we use all the 16 ciphertexts. The additional
ciphertexts have non-zero differences in all the S boxes in all the rounds,
whereas the first ten had a constant value during the first q − 1 rounds.
The input XOR is calculated by the formula:

F ′(B(q)
r−1,Kr) = ϕ⊕

q⊕

j=2

B′(j)
r

where r is the round number (r ∈ {1, . . . , q}) and ϕ is

ϕ =

{
B

′(1)
0 , if r < q;

B
′(2)
0 , if r = q.

4.7.2.7 Summary

GDES with n = q = 8 is breakable using a known plaintext attack with
three ciphertexts. With a key scheduling similar to DES, GDES is vulner-
able to a known plaintext attack when n = q + 1 as well.

The recommended parameters for GDES are q = 8 and n = 16 [31,33].
The n = 15 variant is easily breakable using the n = 2q − 1 attack with
three ciphertexts. The recommended n = 16 variant is breakable with six
ciphertexts in 0.2 seconds on a personal computer. If independent keys are
used then it is breakable with 16 ciphertexts in three seconds on the same
computer.

4.7. The Generalized DES Scheme (GDES) 77

GDES with q = 8 and n = 22 is breakable using the n = 3q − 2 attack
with 48 ciphertexts (24 pairs). GDES with q = 8 and n = 31 is breakable

using the n = 4q − 1 attack with 250000 pairs and S/N = 218

2342·0.813 ≈ 27

with memory of size 218. In general, any GDES which is faster than DES is
also less secure than DES. The known plaintext variants of these attacks are
not advisable since the block size is very large and therefore the conversion
needs a huge number of known plaintexts.

5

Differential Cryptanalysis of
the Full 16-Round DES

In this chapter we describe the first known attack which is capable of
breaking the full 16-round DES in less than the complexity of exhaustive
search of 255 keys. The data analysis phase computes the key by analyzing
about 236 ciphertexts in 237 time. The 236 usable ciphertexts are obtained
during the data collection phase from a larger pool of 247 chosen plaintexts
by a simple bit repetition criteria which discards more than 99.9% of the
ciphertexts as soon as they are generated. This attack is not applicable to
the independent-key variant of DES.

The attack on the 15-round variant of DES described in the previous
chapter is based on the following two-round iterative characteristic:

ΩP = (ψ, 0) = 19 60 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = ψ = p ≈ 1
234

19 60 00 00x

ΩT = (0, ψ) = 00 00 00 00 19 60 00 00x

F

F

A 13-round characteristic can be obtained by iterating this characteristic
six and a half times and its probability is about 2−47.2. The attack uses this
characteristic in rounds 1 to 13, followed by a 2R-attack on the last two
rounds 14 to 15. The attack tries many pairs of plaintexts, and eliminates
any pair which is obviously a wrong pair due to its known input and out-
put values. However, since the cryptanalyst cannot actually determine the
intermediate values, the elimination process is imperfect and leaves behind
a mixture of right and wrong pairs.

5. Differential Cryptanalysis of the Full 16-Round DES 79

In the previous chapter, each surviving pair suggested several possible
values for certain key bits. Right pairs always suggested the correct value
for these key bits (along with several wrong values), while wrong pairs
suggested random values. When sufficiently many right pairs were analyzed,
the correct value (signal) overcame the random values (noise) by becoming
the most frequently suggested value. The actual algorithm was to keep a
separate counter for the number of times each value was suggested, and to
output the index of the counter with the maximal final value. This approach
required a huge memory (with up to 242 counters in the attack on the 15-
round variant of DES), and had a negligible probability of success when
the number of analyzed pairs was reduced below the threshold implied by
the signal to noise ratio.

In this chapter, we work somewhat harder on each pair, and suggest
a list of complete 56-bit keys rather than possible values for a subset of
key bits. As a result, we can immediately test each suggested key via trial
encryption, without using any counters. By eliminating the counters, we
can carry out the attack with very small memory, and the algorithm is
guaranteed to discover the correct key as soon as the first right pair is
encountered.

The key to success in such an attack is to use a high probability charac-
teristic, which makes it possible to consider fewer wrong pairs before the
first occurrence of a right pair. The probability of the characteristic used

in the attack on the 15-round variant of DES is about
(

1
234

)6
= 2−47.2.

The obvious way to extend the attack to 16 rounds is to use the above
iterative characteristic one more time, but this reduces the probability of
the characteristic from 2−47.2 to 2−55.1, which makes the attack slower than
exhaustive search. In this chapter we add the extra round without reducing
the probability at all.

The assumed evolution of the differences during the encryption of a right
pair in this 16-round attack is summarized in Figure 5.1, which consists of
the old 15-round attack on rounds 2 to 16, preceded by a new round 1.
For convenience, we employ the notation of an eight-round cryptosystem
to the 16-round DES.

Our goal is to generate without loss of probability pairs of plaintexts
whose XORed outputs after the first round are the required XORed inputs
(ψ, 0) into the 13-round characteristic of rounds 2 to 14. Let P be an
arbitrary 64-bit plaintext, and let v0, . . . , v4095 be the 212 32-bit constants
which consist of all the possible values at the 12 bit positions which are
XORed with the 12 output bits of S1, S2 and S3 after the first round, and
0 elsewhere. We now define a structure which consists of 213 plaintexts:

Pi = P ⊕ (vi, 0) P̄i = (P ⊕ (vi, 0)) ⊕ (0, ψ) for 0 ≤ i < 212

5. Differential Cryptanalysis of the Full 16-Round DES 80

P ′ = (P ′
L, P

′
R) = (v, ψ)

A′ = v a′ = ψ One additional round

B′ = 0 b′ = 0

0 ψ =

19 60 00 00x

0 0
The 13-round
characteristic with
probability 2−47.2

0 ψ

0 0

G′ = h′ = T ′
R g′ = ψ

H ′ = g′ ⊕ T ′
L = h′ = T ′

R
Two rounds for the
2R-attack

T ′
L ⊕ ψ

T ′ = (T ′
L, T

′
R)

F

F

F

F

F

F

F

F

Figure 5.1. The attack on the full 16-round DES.

5. Differential Cryptanalysis of the Full 16-Round DES 81

Ti = DES(Pi,K) T̄i = DES(P̄i,K)

The plaintext pairs we are interested in are all the 224 pairs (Pi, P̄j) with
0 ≤ i, j < 212. Their plaintext XOR is always of the form (vk, ψ), and each
vk occurs exactly in 212 pairs. Since the processing of the F function on
the inputs PR and PR ⊕ ψ in the first round causes an output XOR which
can be non-zero only at the outputs of S1, S2 and S3, this output XOR
is one of the vk. As a result, for exactly 212 of the pairs, the output XOR
of the first F function is exactly cancelled by XORing it with the left half
of the plaintext XOR, and thus the output XOR of the first round (after
swapping the left and right halves) is the desired input XOR (ψ, 0) into
the iterative characteristic. Therefore, each structure has a probability of
about 212 · 2−47.2 = 2−35.2 to contain a right pair.

The problem in this approach is that we do not know the actual value
of vk, which cancels the output XOR of the first F function, and thus
we do not know on which 212 plaintext pairs to concentrate. Trying all
the 224 possible pairs takes too long, but we can use their cross-product
structure to isolate the right pairs among them in just 212 time. In any
right pair, the ciphertext XOR should have 20 zero bits at its right half at
the positions corresponding to the outputs of the five S boxes S4, . . . , S8 in
the 15th round. We can thus sort (or hash) the two groups of 212 ciphertexts
Ti, T̄j by these 20 bit positions, and detect all the repeated occurrences
of values among the 224 ciphertext pairs in about 212 time. Any pair of
plaintexts which fails this test has a non-zero ciphertext XOR at those 20
bit positions, and thus cannot be a right pair by definition. Since each one
of the 224 possible pairs passes this test with probability 2−20, we expect
about 24 = 16 pairs to survive. By testing additional S boxes in the first,
fifteenth, and sixteenth rounds and eliminating all the pairs whose XOR
values are indicated as impossible in the difference distribution tables of
the various S boxes, we can discard about 92.55% of these surviving pairs1

leaving only 16 · 0.0745 = 1.19 pairs per structure as the expected output
of the data collection phase. All these additional tests can be implemented
by a few table lookup operations into small precomputed tables, and their
time complexity is much smaller than the time required to perform one trial
encryption during an exhaustive search. Note that this filtering process
removes only wrong pairs but not all of them and thus the input of the
data analysis phase is still a mixture of right and wrong pairs.

1A fraction of about
(

14

16
· 13

16
· 15

16

)2

· 0.88 = 0.0745 of these pairs remain and
thus a fraction of about 0.9255 of them are discarded. The input XOR values
of the S boxes in the first and the fifteenth rounds of right pairs are known and
fixed, and thus we use the fraction of non-zero entries of the corresponding lines
in the difference distribution tables whose values are 14

16
, 13

16
and 15

16
, rather than

the fraction of the non-zero entries in the whole tables, which is approximated
by 0.8.

5. Differential Cryptanalysis of the Full 16-Round DES 82

The data analysis phase of the attacks described in the previous chapter
uses huge arrays of up to 242 counters to find the most popular values
of certain key bits. The new attack described in this chapter uses only
negligible space. We want to count on all the key bits simultaneously but
cannot afford an array of 256 counters. Instead, we immediately try each
suggested value of the key. A key value is suggested when it can create
the output XOR values of the last round as well as the expected output
XOR of the first round and the fifteenth round for the particular plaintexts
and ciphertexts. In the first round and in the fifteenth round the input
XORs of S4 and S5, . . . , S8 are always zero. Due to the key scheduling
algorithm, all the 28 bits of the left key register are used as inputs to the
S boxes S1, S2 and S3 in the first and the fifteenth rounds and S1, . . . , S4
in the sixteenth round. Only 24 bits of the right key register are used in
the sixteenth round. Thus, 28 + 24 = 52 key bits enter these S boxes. The
fraction of 52-bit values that remain after comparing the output XOR of the
last round to its expected value and discarding the ones whose values are

not possible is 2−32

0.88 . Only a fraction of 2−12

14
16 · 1316 · 1516

of the remaining ones exist

after comparing the output XOR of the three S boxes in the first round to
its expected value. A similar fraction of the remaining 52-bit values remain
by analyzing the three S boxes in the fifteenth round. Each analyzed pair

suggests about 252 · 2−32

0.88 · 2−12

14
16 · 1316 · 1516

· 2−12

14
16 · 1316 · 1516

= 0.84 values for these 52 bits

of the key, each value corresponding to 16 possible values of the full 56-bit
key. Therefore, each structure suggests about 1.19 ·0.84 ·16 = 16 choices for
the whole key. By peeling off two additional rounds we can verify each such
key by performing about one quarter of a DES encryption (i.e., executing
two rounds for each one of the two members of the pair), leaving only about
2−12 of the choices of the key. This filtering costs about 16· 14 = 4 equivalent
DES operations per structure. Each remaining choice of the 56-bit key is
verified via trial encryption of one of the plaintexts and comparing the
result to the corresponding ciphertext. If the test succeeds, there is a very
high probability that this key is the right key. Note that the signal to noise

ratio of this counting scheme is S/N = 252·2−47.2

1.19/212·0.84 = 216.8.

This data analysis can be carried out efficiently by carefully choosing
the order in which we test the various key bits. We first enumerate all the
possible values of the six key bits of S4Kh, and eliminate any value which
does not give rise to the expected output XOR of this S box. This leaves
four out of the 64 possibilities of S4Kh in average. Table 5.1 shows the
number of common bits entering the S boxes in the first round and in the
sixteenth round. We see that three of the bits of S4Kh are shared with
S3Ka. We complete the three missing bits of S3Ka in all possible ways,
and reduce the average number of possibilities to two. Two bits of S1Kh

are shared with S3Ka. By completing the four missing bits of S1Kh and
then the two missing bits of S2Ka we can reduce the average number of

5. Differential Cryptanalysis of the Full 16-Round DES 83

K16

Left Key Register (C) Right Key Register (D)

S1 S2 S3 S4 X S5 S6 S7 S8 X

K1 S1 2 1 1 2

S2 2 1 2 1

S3 2 3 1

S4 2 3 1

X 1 3

S5 1 2 2 1

S6 3 2 1

S7 2 2 2

S8 2 3 1

X 1 2 1

X denotes the key bits which are not used in the subkey.

Table 5.1. The number of common bits entering the S boxes in the first
round (K1) and in the sixteenth round (K16).

possibilities to about half. After completing the 13 remaining bits of the
left key register in a similar way, the average number of values suggested
for this half of the key is one.

To compute bits from the right key register, we first extract actual S
box input bits from their assumed XORed values. In the fifteenth round
we know the input XORs and the output XORs of S1, S2 and S3. We can
thus generate about 4–5 candidate inputs for each one of these S boxes,
and deduce the corresponding bits in g by XORing with the known bits of
the left key register. In a similar way, we can calculate the outputs of the S
boxes S1, S2, S3 and S4 in the sixteenth round, XOR these bits of H with
the known bits of the left half of the ciphertext TL and get 16 bits of g,
from which two bits enter S1, two bits enter S2 and three bits enter S3 in
the fifteenth round. By comparing these bit values to the candidate inputs
of the S boxes we end up with about one candidate input for S1, one for S2,
and only about half of the trials would result with a candidate input for S3.
We can now deduce all the bits of g which enter these three S boxes and
deduce the corresponding bits of H by H = g ⊕ TL. Two of these bits are
outputs of S5, two bits are outputs of S6, three are outputs of S7 and one
is an output of S8. For each of these four S boxes we know the input XOR
and the output XOR, and can deduce about 4–5 possible inputs. Since we
also know actual output bits, the number of possible inputs is reduced to
about one for S5 and S6, two for S8, but only half of the trials would result
with a candidate for S7. We can deduce 24 out of the 28 bits of the right

5. Differential Cryptanalysis of the Full 16-Round DES 84

key register by XORing the 24 computed bits at the inputs of these four S
boxes with the expanded value of the known right half of the ciphertext.

We can now summarize the performance of this attack in the following
way. Each structure contains a right pair with probability 2−35.2. The data
collection phase encrypts a pool of about 235 structures, which contain
about 235 ·213 = 248 chosen plaintexts, from which about 235 ·1.19 = 235.25

pairs (236.25 ciphertexts) remain as candidate inputs to the data analysis
phase. The probability that at least one of them is a right pair is about
58%, and the analysis of any right pair is guaranteed to lead to the correct
key. The time complexity of this data analysis phase is about 235 · 4 = 237

equivalent DES operations.

In order to further reduce the number of chosen plaintexts and in order
to avoid the dependence of the probability on the unknown key (described
in Subsection 4.4.5), we can use an extended notion of quartets. Since the
basic collection of plaintexts in this attack is a structure rather than a
pair, we create metastructures which contain 214 chosen plaintexts, built
from two structures which correspond to the standard iterative character-
istic and from two structures which correspond to the following iterative
characteristic:

Ω†
P = (ψ†, 0) = 1B 60 00 00 00 00 00 00x

A′ = 0 a′ = 0 p = 1

B′ = 0 b′ = ψ† = p ≈ 1
234

1B 60 00 00x

Ω†
T = (0, ψ†) = 00 00 00 00 1B 60 00 00x

F

F

This characteristic has the same probability as the previous one. With these
metastructures, we can obtain four times as many pairs from twice as many
plaintexts, and thus reduce the number of chosen plaintexts encrypted in
the data collection phase from 248 to 247.

Since the instances of processing different structures are unrelated, this
attack can be carried out on a parallel machine with up to 233 disconnected
processors with very small local memories with linear speedup. In addition,

5.1. Variants of the Attack 85

this attack can be carried out even if the analyzed ciphertexts are derived
from up to 233 different keys due to frequent key changes during the data
collection phase. The attack can be carried out incrementally with any
number of available ciphertexts, and its probability of success grows linearly
with this number (e.g., when 229 usable ciphertexts are generated from a
smaller pool of 240 plaintexts, the analysis time decreases to 230 and the
probability of success is about 1%).

This specific attack is not directly applicable to plaintexts consisting
solely of ASCII characters since such plaintexts cannot give rise to the
desired XOR differences. By using several other iterative characteristics we
can attack the full 16-round DES with a pool of about 249 chosen ASCII
plaintexts (out of the 256 possible ASCII plaintexts).

5.1 Variants of the Attack

The general form of this attack can be summarized in the following way:
Given a characteristic with probability p and signal to noise ratio S/N for
a cryptosystem with k key bits, we can apply an attack which encrypts
2
p chosen plaintexts in the data collection phase and whose complexity is
2k

S/N trial encryptions in the data analysis phase. The number of chosen

plaintexts can be reduced to 1
p by using appropriate metastructures, and

the effective time complexity can be reduced by a factor of f ≤ 1 if a
tested key can be discarded by carrying out only a fraction f of the rounds.
Therefore, this attack can be mounted whenever p > 21−k and S/N > 1.
This attack requires fewer chosen plaintexts compared to the corresponding
counting schemes, but if the signal to noise ratio is too low or if the number
of the key bits on which we count is small, the time complexity of the data
analysis phase may be higher than the corresponding complexity of the
counting scheme.

In the attack described in this chapter, p = 2−47.2, k = 56, f = 1
4 and

S/N = 216.8. Therefore, the number of chosen plaintexts is 2
p = 248.2 which

can be reduced to 1
p = 247.2 by using metastructures, and the complexity

of the data analysis phase is 237.2 equivalent DES operations.

This is currently our best attack on DES, and its performance for var-
ious variants with reduced number of rounds is summarized in Table 5.2.
Variants with an even number of rounds n have a characteristic with
probability p =

(
1

234

)(n−4)/2
, require p−1 chosen plaintexts, and analyze

p−1 · 2−10.75 plaintexts in time complexity p−1 · 2−10. The known plaintext

5.1. Variants of the Attack 86

No. of Chosen Known Analyzed Complexity

Rounds Plaintexts Plaintexts Plaintexts of Analysis

8 214 238 4 29

9 224 244 2 232†

10 224 243 214 215

11 231 247 2 232†

12 231 247 221 221

13 239 252 2 232†

14 239 251 229 229

15 247 256 27 237

16 247 255 236 237

† The complexity of the analysis can be greatly reduced for

these variants by using about four times as many plaintexts with

the clique method.

Table 5.2. Cryptanalysis of variants of DES: our best results.

variant of this attack needs about 231.5 · p−0.5 known plaintexts (using the
symmetry of the cryptosystem which makes it possible to double the num-
ber of known encryptions by reversing the roles of the plaintexts and the
ciphertexts). Variants with an odd number of rounds n have a character-

istic with probability p =
(

1
234

)(n−3)/2
, require p−1 chosen plaintexts, and

analyze p−1 · 2−40.2 plaintexts in time complexity p−1 · 2−10. For such odd
values of n, if p > 2−40.2 then the number of analyzed plaintexts is two and
the complexity of the data analysis phase is 232. However, using about four
times as many chosen plaintexts, we can use the clique method (described
in Section 4.2) and reduce the time complexity of the data analysis phase
to less than a second on a personal computer. The known plaintext attacks
need about 232 · p−0.5 known plaintexts (in this case the symmetry does
not help).

In the previous chapter we analyzed several modified variants of DES.
The results of the application of the technique introduced in this chapter
to these 16-round variants are summarized in Table 5.3.

5.1. Variants of the Attack 87

Modified Operation Chosen Plaintexts

Full DES (no modification) 247 (dependent key)

P permutation Cannot strengthen

Identity permutation 219

Order of S boxes 238

XORs by additions 239, 231

S boxes:

Random 221

Random permutations 244–248

One entry 233

Uniform tables 226

Elimination of the E expansion 226

Order of E and subkey XOR 244

GDES (width q = 8):

16 rounds 6, 16

64 rounds 249 (independent key)

Table 5.3. Cryptanalysis of modified variants of DES: our best results.

6

Differential Cryptanalysis of
FEAL

FEAL was suggested as a software-oriented cryptosystem which can be eas-
ily and efficiently implemented on microprocessors. The structure of FEAL
is similar to DES with a modified F function, initial and final permutations
and key scheduling algorithm. In the F function, the P permutation and
the S boxes of DES are replaced by byte rotations and addition operations.
The S boxes S0 and S1 of FEAL get two input bytes and calculate one out-
put byte as Si(x, y) = ROL2(x + y + i (mod 256)), where ROL2 rotates
its input byte two bits to the left. The F function gets a 32-bit input and a
16-bit subkey and calculates a 32-bit output by applying the S boxes four
times sequentially. The initial and the final permutations are replaced by
initial and final transformations, in which the whole 64-bit data is XORed
with 64-bit subkeys and the right half of the data is XORed with the left
half. Figure 6.1 describes the structure of an eight-round FEAL and its
F function. The key scheduling algorithm is replaced by a key processing
algorithm, which makes the subkeys depend on the key in a more complex
way. The key processing algorithm and its Fk function are described in
Figure 6.2.

Originally, FEAL was suggested as a four-round cryptosystem[36], called
FEAL-4. After the cryptanalysis of FEAL-4 by Den-Boer[12], the eight-
round variant FEAL-8 was suggested[35,26]. Later, FEAL-N with an ar-
bitrary number of rounds[23] and FEAL-NX with increased size 128-bit
key[24] were also introduced. In this chapter we show that differential crypt-
analytic techniques can be used to break FEAL with up to 31 rounds, and
that the eight-round variant FEAL-8 is easily breakable.

The following FEAL-specific notations are used in this chapter:

The plaintext and the ciphertext: The plaintext and the ciphertext are de-
noted by P and T respectively. Unlike the case of DES, they denote
the real plaintext and ciphertext without ignoring the initial and final
transformations of FEAL. Thus, the characteristic’s input XOR ΩP

is different from the corresponding plaintext XOR P ′.

Rotation operations: The operations of cyclically rotating the byte X by
n bits to the left and to the right are denoted by ROLn(X) and

6. Differential Cryptanalysis of FEAL 89

(K89,Kab)

P

F
K0

A a

F
K1

B b

F
K2

C c

F
K3

D d

F
K4

E e

F
K5

F f

F
K6

G g

F
K7

H h

(Kcd,Kef)

T

S1

S0

S0 S1

F0 F1 F2 F3

f0 f1 f2 f3

k0

k1

Si(x, y) = ROL2(x+ y + i (mod 256))

Figure 6.1. The outline of FEAL-8 and of the F function.

RORn(X) respectively.

The S boxes: The S boxes of FEAL S0 and S1 are denoted by Si(X,Y) for
the inputs X and Y and for i ∈ {0, 1}. Their definition is: Si(x, y) =
ROL2(x + y + i (mod 256)).

Selecting one byte or one bit: The ith byte of a multi-byte value X or the
ith bit of the byte X are denoted by Xi. The jth bit of the ith byte
of a multi-byte value X is denoted by Xi,j . The index 0 denotes the
least significant byte and bit as appropriate.

Useful operations: The 32-bit value (0,K0,K1, 0) where K is 16-bit long is
denoted by am(K). The 16-bit value (X0 ⊕X1, X2 ⊕X3) where X is
32-bit long is denoted by mx(X).

Since each S box has 16 input bits and only eight output bits it is not
recommended to use the difference distribution tables directly. Instead, in
the first stage of the analysis we use the joint distribution table of the two

6. Differential Cryptanalysis of FEAL 90

Key (K)

Fk
(K0, K1)

Fk
(K2, K3)

Fk
(K4, K5)

Fk
(K6, K7)

Fk
(K8, K9)

Fk
(Ka, Kb)

Fk
(Kc, Kd)

Fk
(Ke, Kf)

S1

S0

S0 S1

F0 F1 F2 F3

a0 a1 a2 a3

b0

b1

b2

b3

Figure 6.2. The key processing algorithm of FEAL-8 and its Fk function.

middle S boxes in the F function (inside the gray rectangle in Figure 6.1).
This combination has 16 input bits and 16 output bits, and the table has
many interesting entries. For example, there are two entries with proba-
bility 1 which are 00 00x → 00 00x and 80 80x → 00 02x. About 98% of
the entries are impossible (contain value 0). The average value of all the
entries is 1, but the average value of the non-zero entries is about 50. In
Section 6.3 we describe how we can easily decide whether X → Y for any
particular X and Y without consulting the table.

The S boxes also have the following properties with respect to pairs: Let
Z = Si(X,Y). If X ′ = 80x and Y ′ = 80x then Z ′ = 00x. If X ′ = 80x and
Y ′ = 00x then Z ′ = 02x. For any input XORs X ′ and Y ′ of the S boxes
the most probable output XOR is Z ′ = ROL2(X ′⊕Y ′). This output XOR
is obtained with probability about 1

2#(X′|Y ′) (where #X is the number of
bits set to 1 in the lower seven bits of the byte X and | is the or operator)
since each bit which is different in the pairs (in X and X∗, or in Y and
Y ∗) gives rise to a different carry with probability 1

2 .

The input of the F function in the last round is a function of the cipher-
text XORed with an additional subkey of the final transformation rather
than just a function of the ciphertext (as in DES). There is an equivalent
description of FEAL in which the XOR with the subkeys in the final trans-
formation is eliminated and the 16-bit subkeys XORed to the two middle

6. Differential Cryptanalysis of FEAL 91

bytes of the inputs of the F function in the various rounds are replaced by
32-bit values.

Definition 6.1 The 32-bit subkeys of the equivalent description in which
the XOR with the subkeys in the final transformation is eliminated are
called actual subkeys. The actual subkey which replaces the subkey Ki
is denoted by AKi. The 16-bit XOR combinations mx(AKi) = (AKi0 ⊕
AKi1, AKi2 ⊕ AKi3) are called 16-bit actual subkeys. The actual subkey
of the last round of a cryptosystem is called the last actual subkey.

The actual subkeys in the even rounds i+ 1 are
AKi = Kcd⊕Kef ⊕ am(Ki).

The actual subkeys in the odd rounds i+ 1 are
AKi = Kcd⊕ am(Ki).

The actual subkeys of the initial transformation are
AK89 = K89 ⊕Kcd⊕Kef

AKab = Kab⊕Kef.

The actual subkeys of the final transformation are eliminated and thus their
equivalent values are zero. Our attack finds the actual subkeys rather than
the subkeys themselves since it finds XORs of the ciphertexts and internal
values in the F function.

The simplest example of a one-round characteristic with probability 1 is
(for any L′):

ΩP = (L′, 0x)

A′ = 0x a′ = 0x p = 1

ΩT = (L′, 0x)

F

This characteristic is similar to the one-round characteristic with proba-
bility 1 of DES. Unlike the case of DES, FEAL has three other one-round
characteristics with probability 1. A typical one is:

6. Differential Cryptanalysis of FEAL 92

ΩP = (L′, 80 80 80 80x)

A′ = 02 00 00 02x a′ = 80 80 80 80x p = 1

ΩT = (L′ ⊕ 02 00 00 02x, 80 80 80 80x)

F

Three non-trivial three-round characteristics with probability 1 also exist.
The one derived from the above one-round characteristic is:

ΩP = 02 00 00 02 80 80 80 80x

A′ = 02 00 00 02x a′ = 80 80 80 80x p = 1

B′ = 0 b′ = 0 p = 1

C′ = 02 00 00 02x c′ = 80 80 80 80x p = 1

ΩT = 02 00 00 02 80 80 80 80x

F

F

F

The following is a five-round characteristic with probability 1
16 :

6. Differential Cryptanalysis of FEAL 93

ΩP = 00 80 02 8A 00 00 02 02x

A′ = 00 00 00 08x a′ = 00 00 02 02x p = 1/2

B′ = 00 00 02 02x b′ = 00 80 02 82x p = 1/2

C′ = 0 c′ = 0 p = 1

D′ = 00 00 02 02x d′ = 00 80 02 82x p = 1/2

E′ = 00 00 00 08x e′ = 00 00 02 02x p = 1/2

ΩT = 00 80 02 8A 00 00 02 02x

F

F

F

F

F

A second five-round characteristic with probability 1
16 is described later.

The iterative characteristics of FEAL do not include one in which a non-
zero input XOR of the F function may cause a zero output XOR (since the
F function is reversible), but there are other kinds of iterative character-
istics. For example, the following iterative characteristic has probability 1

4
for each round:

6.1. Cryptanalysis of FEAL-8 94

ΩP = 80 60 80 00 80 60 80 00x

A′ = 00 80 00 00x a′ = 80 60 80 00x p = 1/4

B′ = 00 80 00 00x b′ = 80 E0 80 00x p = 1/4

C′ = 00 80 00 00x c′ = 80 E0 80 00x p = 1/4

D′ = 00 80 00 00x d′ = 80 60 80 00x p = 1/4

ΩT = 80 60 80 00 80 60 80 00x.

F

F

F

F

6.1 Cryptanalysis of FEAL-8

This differential cryptanalytic chosen plaintext attack on FEAL-8 requires
about 128 pairs of ciphertexts whose corresponding plaintext XORs are
P ′ = A2 00 80 00 22 80 80 00x. It can be converted into a known plain-
text attack which uses about 236 known plaintexts and their corresponding
ciphertexts. This plaintext XOR is motivated by the following five-round
characteristic whose probability is 1/16:

6.1. Cryptanalysis of FEAL-8 95

ΩP = A2 00 80 00 80 80 00 00x

A′ = 02 00 00 00x a′ = 80 80 00 00x p = 1

B′ = 80 80 00 00x b′ = A0 00 80 00x p = 1/4

C′ = 0 c′ = 0 p = 1

D′ = 80 80 00 00x d′ = A0 00 80 00x p = 1/4

E′ = 02 00 00 00x e′ = 80 80 00 00x p = 1

ΩT = A2 00 80 00 80 80 00 00x

F

F

F

F

F

Four shorter characteristics are derived from the first rounds of this five-
round characteristic. Each characteristic has a different number of rounds
but all of them have the same value of ΩP . The one-round characteristic
which is derived from the first round of the five-round characteristic has
probability 1. The two-round and the three-round characteristics which
are derived from the first two and three rounds have probability 1/4. The
four-round characteristic has probability 1/16.

6.1.1 Reducing FEAL-8 to Seven Rounds

Given the ciphertexts T and T ∗ of a right pair, we can deduce:

h = TL ⊕ TR

h′ = T ′
L ⊕ T ′

R

6.1. Cryptanalysis of FEAL-8 96

G′ = d′ ⊕ E′ ⊕ h′ = A2 00 80 00x ⊕ T ′
L ⊕ T ′

R

F ′ ⊕H ′ = T ′
L ⊕ e′ = T ′

L ⊕ 80 80 00 00x.

Before the counting method is used to find the 16-bit last actual subkey,
filtering can be done to discard about 15

16 of the wrong pairs. Since the
addition operation is linear in its least significant bit and since h′ → H ′,
the following equations hold:

h′0,0 = H ′
0,2 ⊕H ′

1,0

h′3,0 = H ′
3,2 ⊕H ′

2,0

h′2,0 = H ′
2,2 ⊕H ′

1,0 ⊕ h′3,0

h′1,0 = H ′
1,2 ⊕ h′0,0 ⊕ h′2,0 ⊕ h′3,0.

Similar equations hold for f ′ → F ′. Since these equations are linear and
the value of F ′ ⊕H ′ is known, we can deduce the XOR of these four bits
in f ′ and in h′: f ′

i,0 ⊕ h′i,0, i ∈ {0, . . . , 3}. Both f ′ and h′ are known for
a right pair, and therefore by comparing these four bits to their expected
values we can discard about 15

16 of the wrong pairs. All the right pairs must
be verified correctly. Since the right pairs occur with the characteristic’s
probability of 1

16 , about half of the remaining pairs are right pairs.

Then, a special form of a 3R-attack is applied. Instead of finding zero
bits in F ′, deriving the corresponding bits in H ′ and trying all possible
subkeys for success, we work here in the other direction. The counting
scheme counts the number of pairs for which each value of the 16-bit last
actual subkey mx(AK7) is possible. For each such value we calculate Ĥ
and Ĥ∗ (where for any 32-bit X , X̂ is the 16-bit value of its two middle
bytes (X1, X2)), and receive F̂ ′ (since F ′⊕H ′ is known). Then we verify if
f ′ may cause the calculated value of F̂ ∗. The expected signal to noise ratio
is

S/N =
216 · 2−4

0.02 · 1
4

≈ 220

(the value 1
4 replaces 1

16 since part of it is also included within 0.02). This
ratio is so high that only eight right pairs are typically needed for the
attack, and thus the total number of pairs we have to examine is about
8 ·16 = 128. Note that we cannot distinguish between the right value of the
16-bit actual subkey and the same value XORed with 80 80x. Therefore,
we find two possibilities for the 16-bit last actual subkey.

The following counting scheme is used to complete the last actual subkey.
For each pair (out of all the pairs) we calculate Ĥ and Ĥ∗ and get Ĥ ′. Then
we calculate ĝ′ = T̂ ′

L⊕Ĥ ′, F̂ ′ = ê′⊕ ĝ′ and a few other bits of g′ and discard
any pair for which we can conclude that g′ 6→ G′ by the F function using
the bits we have found.

6.1. Cryptanalysis of FEAL-8 97

We try the 128 possibilities for the lowest seven bits of AK70. For each
value we calculate H0, H

∗
0 , H ′

0 = H0 ⊕ H∗
0 and F ′

0 = e′0 ⊕ H ′
0 ⊕ T ′

L0 and

verify that f ′
0 (from the characteristic) and F ′

1 (from F̂ ′) may cause this
F ′

0. We count the number of the pairs satisfying this condition. The value
of AK70 which is counted most often is likely to be the right value. We
cannot distinguish the upper bit of the value, so we try just 128 possibilities
(instead of 256 as was expected) and then try the two possible values in
the following steps, till the wrong one fails. In a similar way we find seven
bits of AK73. As a result, we find eight possibilities for the last actual
subkey AK7. Unlike the case of DES, we cannot easily deduce key bits
from a single actual subkey. However, we can reduce the cryptosystem to a
seven-round cryptosystem by “peeling off” the last round using the known
last actual subkey, and can analyze the resultant cryptosystem by similar
methods.

6.1.2 Reducing the Seven-Round Cryptosystem to

Six Rounds

We assume that the last actual subkey is already known, and that the
cryptosystem can be reduced to a seven-round cryptosystem. A right pair
with respect to the five-round characteristic satisfies

f ′ = A2 00 80 00x

g′ = T ′
L ⊕H ′

G′ = h′ ⊕ f ′ = h′ ⊕A2 00 80 00x

F ′ = e′ ⊕ g′ = T ′
L ⊕H ′ ⊕ 80 80 00 00x.

We verify that f ′ → F ′ and g′ → G′ and count in two steps: the first step
counts on the 16-bit actual subkey and the second step counts on each one
of the other two bytes of the actual subkey. The signal to noise ratio of the
first step which finds the 16-bit actual subkey mx(AK6) is

S/N =
216

16 ·
(

1
7

)4 ·
(

1
7

)2 · 1
≈ 229.

The signal to noise ratio of the second step which finds AK60 and AK63

is

S/N =
28

16 ·
(

1
7

)4 · 2−16 · 1
≈ 231.

In the first step one bit is indistinguishable and in the second step two
bits are indistinguishable. Therefore, we try all the eight resulting possi-
bilities of AK6 in parallel in the following steps. In total we find at most

6.1. Cryptanalysis of FEAL-8 98

64 possibilities for the last two actual subkeys and can thus reduce the
cryptosystem to six rounds.

6.1.3 Reducing the Cryptosystem to 5, 4, 3, 2

and 1 Rounds

Using the last two actual subkeys we can calculate H and G for any cipher-
text T and reduce the cryptosystem to six rounds. All the right pairs with
respect to the five-round characteristic satisfy f ′ = h′⊕G′ = A2 00 80 00x

and f ′ → g′ ⊕ 80 80 00 00x (g′ can be calculated using the known AK7).
Two bytes of AK5 equal their counterparts in AK7. We try all the 216

possibilities of the 16-bit actual subkey mx(AK5). For each possibility
and each pair we calculate F , F ∗ and F ′ = F ⊕ F ∗. A right pair satis-
fies F ′ = g′ ⊕ 80 80 00 00x. We count the number of pairs which satisfy
f ′ = A2 00 80 00x (as is enforced by the five-round characteristic) and
whose above values of F ′ are equal, and f ′ → F ′. The value of mx(AK5)
which is counted most often is likely to be the real value. The signal to
noise ratio of this step is

S/N =
216

16 · 2−32 · 2−16
= 260.

In this step we can always distinguish all the bits of the actual subkey.

Given AK5 we reduce the cryptosystem to five rounds and find AK4
using the three-round characteristic. Two bytes of AK4 have the same
value as their counterparts in AK6. For each possible value of mx(AK4)
we count the number of pairs which satisfy e′ = g′ ⊕ F ′ 6= 80 80 00 00x

(the pairs whose e′ = 80 80 00 00x are useless because they enforce a fixed
output XOR), e′ → E′ and d′ → D′ = g′ ⊕F ′. AK3 is calculated similarly
by counting the pairs which satisfy d′ = A0 00 80 00x and d′ → D′. AK2
is also calculated similarly using the one-round characteristic and counting
the pairs which satisfy c′ 6= 0, c′ → C′ and b′ → B′. AK1 is similarly
calculated by counting the pairs which satisfy b′ → B′.

AK0 cannot be calculated using these pairs since their plaintext XOR
always cause A′ = 02 00 00 00x and thus all the possibilities succeed un-
der the A′ condition with equal probability. However, it can be found us-
ing other characteristics. The actual subkeys of the initial transformation
AK89 and AKab cannot be found without the value of a plaintext even if
all the other actual subkeys are known. In our case AK0, AK89 and AKab
are not needed since the key itself can be obtained from the actual subkeys
which we have already found.

Although we find the actual subkeys with the (correct) assumption that

6.1. Cryptanalysis of FEAL-8 99

many actual subkeys have common values in two of their bytes, it is possible
to extend this attack to the general case in which all the actual subkeys
are independent (i.e., 8 · 32 + 2 · 32 = 320 independent bits).

6.1.4 Calculating the Key Itself

Using the values of the actual subkeys AK1–AK7 the following XORs of
the original subkeys can be obtained:

K5 ⊕K7

K4 ⊕K6

K3 ⊕K5

K2 ⊕K4

K1 ⊕K3.

(6.1)

The key itself can be derived from these values by analyzing the structure
of the key processing algorithm.

We start by trying all the 256 possible values of K51. For each value we
calculate [the values in brackets are known from (6.1)]:

K71 = K51 ⊕ [K51 ⊕K71]

K31 = K51 ⊕ [K31 ⊕K51]

K11 = K31 ⊕ [K11 ⊕K31].

By the fourth round of the key processing algorithm:

K70 = K11 ⊕K51 ⊕ S−1
1 (K71,K31)

K50 = K70 ⊕ [K50 ⊕K70]

K30 = K50 ⊕ [K30 ⊕K50]

K10 = K30 ⊕ [K10 ⊕K30].

Now, we find two bytes of the key itself, one by the third round of the key
processing algorithm and the other by the second round:

K7 = K31 ⊕K50 ⊕ S−1
1 (K51,K11)

K3 = K11 ⊕K30 ⊕ S−1
1 (K31,K7)

and verify by the first round of the key processing algorithm that

S1(K10 ⊕K7,K3) = K11.

For each remaining value we try all the 256 possibilities of K40. Then

K60 = K40 ⊕ [K40 ⊕K60]

K20 = K40 ⊕ [K20 ⊕K40].

6.2. Cryptanalysis of FEAL-N and FEAL-NX with N ≤ 31 Rounds 100

By the fourth round of the key processing algorithm:

K61 = K10 ⊕K50 ⊕ S−1
0 (K60,K20)

K41 = K61 ⊕ [K41 ⊕K61]

K21 = K41 ⊕ [K21 ⊕K41]

K00 = K40 ⊕K30 ⊕K31 ⊕ S−1
1 (K61,K20 ⊕K21)

K01 = K41 ⊕K61 ⊕ S−1
0 (K70,K30 ⊕K31).

The rest of the key can be found by the third round of the key processing
algorithm:

K4 = K20 ⊕K10 ⊕K11 ⊕ S−1
1 (K41,K00 ⊕K01)

K5 = K21 ⊕K41 ⊕ S−1
0 (K50,K10 ⊕K11)

K6 = K30 ⊕K41 ⊕ S−1
0 (K40,K00)

and by the second round:

K0 = K00 ⊕K6 ⊕K7 ⊕ S−1
1 (K21,K4 ⊕K5)

K1 = K01 ⊕K21 ⊕ S−1
0 (K30,K6 ⊕K7)

K2 = K10 ⊕K21 ⊕ S−1
0 (K20,K4).

Given the key, we verify that it is really processed to the known actual
subkeys and that the XOR of a decrypted pair of ciphertexts equals the cho-
sen plaintext XOR value. If this verification succeeds, then the calculated
key is very likely to be the real key.

6.1.5 Summary

This attack was implemented on a personal computer. It finds the actual
subkeys and then the key in less than two minutes using 128 pairs. Using
quartets with the two characteristics with probability 1

16 we need only 128
ciphertexts for this attack. The program uses 280K bytes of memory. The
known plaintext variant of this attack needs about 236 known plaintexts.

6.2 Cryptanalysis of FEAL-N and FEAL-NX with
N ≤ 31 Rounds

FEAL-N[23] was suggested as an N -round extension of FEAL-8 after our
attack on FEAL-8 was announced. FEAL-NX[24] is similar to FEAL-N but

6.2. Cryptanalysis of FEAL-N and FEAL-NX with N ≤ 31 Rounds 101

uses a longer 128-bit key and a different key processing algorithm. Since our
attack ignores the key processing algorithm and finds the actual subkeys,
we can apply it to both FEAL-N and FEAL-NX with identical complexity
and performance.

The attack on FEAL with an arbitrary number of rounds is based on
the following iterative characteristic (whose corresponding plaintext XOR
is P ′ = 80 60 80 00 00 00 00 00x):

ΩP = 80 60 80 00 80 60 80 00x

A′ = 00 80 00 00x a′ = 80 60 80 00x p = 1/4

B′ = 00 80 00 00x b′ = 80 E0 80 00x p = 1/4

C′ = 00 80 00 00x c′ = 80 E0 80 00x p = 1/4

D′ = 00 80 00 00x d′ = 80 60 80 00x p = 1/4

ΩT = 80 60 80 00 80 60 80 00x.

F

F

F

F

The probability of each round of this characteristic is 1/4, and it can be
concatenated to itself any number of times since the swapped value of the
two halves of ΩP equals ΩT . Thus, for any N , an N -round characteristic
with probability 1

4N = 2−2N can be obtained.

A 2R-attack is based on a characteristic which is shorter by two rounds
than the cryptosystem. In this case, we know the ciphertext XOR T ′ and
the input XOR of the F function of the last round (without loss of generality
we employ the notation of an eight-round cryptosystem) h′ from the cipher-
texts, and we know f ′ and g′ from the characteristic. Thus, G′ = f ′⊕h′ and
H ′ = g′ ⊕ T ′

L. Each pair is verified to have g′ → G′ and h′ → H ′ and the
resultant pairs are used in the process of counting the possibilities in order
to find the last actual subkey. Two bits of the last actual subkey are indis-

6.2. Cryptanalysis of FEAL-N and FEAL-NX with N ≤ 31 Rounds 102

tinguishable. Therefore, we must try the following steps in parallel for the
four possibilities of these two bits. The verification of g′ → G′ leaves only
2−19 of the pairs (since for either g′ = 80 60 80 00x or g′ = 80 E0 80 00x

there are only about 213 possible output XORs G′ and 213 · 2−32 = 2−19).
The verification of h′ → H ′ leaves 2−11 of the pairs (the fraction of the
non-zero entries in the difference distribution table of the F function). The
signal to noise ratio of this process is thus

S/N =
232

22(N−2) · 2−19 · 1 = 255−2N .

The identification leaves

I = 22(N−2) · 2−19 · 2−11 = 22N−34

wrong pairs for each right pair. Therefore, the right value of the last actual
subkey is counted with a detectably higher probability than a random value
up to N ≤ 28 rounds, and thus we can break FEAL-N with 2R-attacks for
any N ≤ 28 rounds, faster than via exhaustive search. The results of these
attacks and their known plaintext variants are shown in Table 6.1.

A 1R-attack is based on a characteristic which is shorter by one round
than the cryptosystem. Using 1R-attacks (without loss of generality we
employ the notation of an eight-round cryptosystem), we know T ′ and h′

from the ciphertexts and g′ and h′ from the characteristic. Also, H ′ = g′⊕
T ′

L. We can verify that the value of h′ calculated from the ciphertexts equals
the value of h′ derived from the characteristic, and that h′ → H ′. The
successfully filtered pairs are used in the process of counting the number of
times each possible value of the last actual subkey is suggested, and finding
the most popular value. Complicating factors are the small number of bits
set in h′ (which is a constant defined by the characteristic), and the fact
that many values of H ′ suggest many common values of the last actual
subkey. The signal to noise ratio of this process is

S/N =
232

22(N−1) · 2−32 · 1 = 266−2N .

The identification leaves

I = 22(N−1) · 2−32 · 2−19 = 22N−53

wrong pairs for each right pair. Therefore, the right value of the last sub-
key is counted with detectably higher probability than a random value up
to N ≤ 31 rounds. A summary of the 1R-attacks on FEAL-N appears
in Table 6.1, and shows that the differential cryptanalysis is faster than
exhaustive search up to N ≤ 31.

Note that in both the 1R-attacks and the 2R-attacks we use octets with
four characteristics (this is a special case in which an octet can have four

6.2. Cryptanalysis of FEAL-N and FEAL-NX with N ≤ 31 Rounds 103

No. of 2R-attack 1R-attack

Rounds Char S/N Pairs Cho- Kno- Char S/N Pairs Cho- Kno-

Prob Nee- sen wn Prob Nee- sen wn

ded Plain Plain ded Plain Plain

8 2−12 239 214 213 238.5 2−14 250 217 216 240

9 2−14 237 216 215 239.5 2−16 248 219 218 241

10 2−16 235 218 217 240.5 2−18 246 221 220 242

11 2−18 233 220 219 241.5 2−20 244 223 222 243

12 2−20 231 222 221 242.5 2−22 242 225 224 244

13 2−22 229 224 223 243.5 2−24 240 227 226 245

14 2−24 227 226 225 244.5 2−26 238 229 228 246

15 2−26 225 228 227 245.5 2−28 236 231 230 247

16 2−28 223 230 229 246.5 2−30 234 233 232 248

17 2−30 221 232 231 247.5 2−32 232 235 234 249

18 2−32 219 234 233 248.5 2−34 230 237 236 250

19 2−34 217 236 235 249.5 2−36 228 239 238 251

20 2−36 215 238 237 250.5 2−38 226 241 240 252

21 2−38 213 240 239 251.5 2−40 224 243 242 253

22 2−40 211 242 241 252.5 2−42 222 245 244 254

23 2−42 29 244 243 253.5 2−44 220 247 246 255

24 2−44 27 246 245 254.5 2−46 218 249 248 256

25 2−46 25 249 248 256 2−48 216 251 250 257

26 2−48 23 252 251 257.5 2−50 214 253 252 258

27 2−50 2 255 254 259 2−52 212 255 254 259

28 2−52 2−1 258 257 260.5 2−54 210 257 256 260

29 2−54 2−3 2−56 28 259 258 261

30 2−56 2−58 26 261 260 262

31 2−58 2−60 24 264 263 263.5

32 2−60 2−62 22 267 266

Table 6.1. Summary of the attacks on FEAL-N.

characteristics since Ω4
P = Ω1

P ⊕ Ω2
P ⊕ Ω3

P). These four characteristics are
the four possible rotations of the given characteristic. Thus, each octet
gives rise to 16 pairs which greatly reduces the required number of chosen
plaintexts. In both kinds of attacks there are two indistinguishable bits at
each of the last two actual subkeys. The attacking program should try all
the 16 possible values of these bits when analyzing the earlier subkeys.

6.3. Other Properties of FEAL 104

6.3 Other Properties of FEAL

In this section we describe several properties of FEAL which can acceler-
ate the implementation of the FEAL-breaking algorithms described in this
chapter.

1. The F function is partially invertible even if the subkey is not known:
Given the value Y = F (X,K) we can find all the internal values inside
the F function and half of the actual input bytes by:

X0 = S−1
0 (Y0, Y1)

X3 = S−1
1 (Y3, Y2)

X2 ⊕K1 = X2 ⊕X3 ⊕K1 = S−1
0 (Y2, Y1)

X1 ⊕K0 = X0 ⊕X1 ⊕K0 = S−1
1 (Y1, [X2 ⊕K1]).

2. The Fk function of the key processing algorithm is partially invertible:
Let Z = Fk(X,Y). Then, given any three values out of Z2, Z3, X3,
Y3, the fourth value is easily calculated using the formula:

Z3 = S1(X3, Z2 ⊕ Y3).

In particular,
Z3,2 = X3,0 ⊕ Z2,0 ⊕ Y3,0 ⊕ 1

since the S box is linear in the least significant bit of the addition
operation.

3. The following equation of the subkeys is satisfied by FEAL-8:

Kef3,2 ⊕Kcd3,2 = Kcd3,0 ⊕Kef2,0 ⊕Kcd2,0 ⊕K71,0

or using the actual subkeys notation:

AK73,2 = AK63,0 ⊕AK72,0.

Therefore, given the value of AK7, it is easy to calculate the value
of the bit AK63,0. This property is used to discard wrong values of
AK6 during the search for the actual subkeys.

4. The key processing algorithm of FEAL-8 yields 256 subkey bits, of
which 32 bits are redundant. Only 224 bits are needed during the
encryption/decryption processes. They are:

K0† = K0 ⊕ K̂cd

K1† = K1 ⊕ K̂cd⊕ K̂ef

6.3. Other Properties of FEAL 105

K2† = K2 ⊕ K̂cd

K3† = K3 ⊕ K̂cd⊕ K̂ef

K4† = K4 ⊕ K̂cd

K5† = K5 ⊕ K̂cd⊕ K̂ef

K6† = K6 ⊕ K̂cd

K7† = K7 ⊕ K̂cd⊕ K̂ef

K89† = K89 ⊕ am(K̂cd⊕ K̂ef)

Kab† = Kab⊕ am(K̂ef)

Kcd† = (Kcd0, 0, 0,Kcd3)

Kef † = (Kef0, 0, 0,Kef3)

where for any 32-bit X , X̂ is the 16-bit value of its two middle bytes
(i.e., (X1, X2)). The encryption and decryption using the new values
of the subkeys give the same results as with the original values. An-
other equivalent description of the subkeys is denoted by the actual
subkeys in which the subkeys of the rounds are extended to 32 bits
and the subkey of the final transformation is eliminated.

5. The following property can be most useful in deciding whether some
input XOR may cause some output XOR by the F function and to
find actual values of input bits from the input XOR and the output
XOR. The decision is done in parallel for each S box in the F function.

Let Z = Si(X,Y) and Z∗ = Si(X
∗, Y ∗). The least significant bit of

the addition operation satisfies Z ′
2 = X ′

0 ⊕ Y ′
0 . Let C be the byte

of carries in the addition operation (X + Y + i) (mod 256) in Si,
defined as C = (X + Y + i (mod 256))⊕X ⊕ Y (i is interpreted as
the 0/1 carry into the least significant bit). Cj is the carry bit passed
from the (j − 1)th bit of the addition operation in Si to the jth bit.
Thus,

∀j ∈ {1, . . . , 7} : Cj =

{
1, if Xj−1 + Yj−1 + Cj−1 ≥ 2;
0, if Xj−1 + Yj−1 + Cj−1 ≤ 1

and C′
j is the value of Cj ⊕ C∗

j . C0 = i and thus the value of C′
0 is

always zero. Since C = ROR2(Z)⊕X⊕Y , C′ can be easily calculated
from the input XORs and the output XOR by

C′ = ROR2(Z ′) ⊕X ′ ⊕ Y ′.

From the combination of the values of X ′
j, Y

′
j , C′

j and C′
j+1 (for j ∈

{0, . . . , 6}) we can derive some new information. For example, assume
that X ′

j = Y ′
j = 0 and C′

j = 1 and consider the two possibilities of
C′

j+1. If C′
j+1 = 0 then either (a)Xj+Yj+Cj ≤ 1 andX∗

j +Y ∗
j +C∗

j ≤
1 and thusXj = Yj = 0, or (b) Xj+Yj+Cj ≥ 2 andX∗

j +Y ∗
j +C∗

j ≥ 2

6.3. Other Properties of FEAL 106

X′
j Y ′

j C′
j = 1 C′

j = 0

0 0 Xj ⊕ Yj = C′
j+1

‡ C′
j+1 = 0∗

0 1 Yj ⊕ Cj = C′
j+1 ⊕ 1 Xj ⊕ Cj = C′

j+1
†

1 0 Xj ⊕ Cj = C′
j+1 ⊕ 1 Yj ⊕ Cj = C′

j+1
†

1 1 C′
j+1 = 1∗ Zj+2 ⊕ Cj = Xj ⊕ Yj = C′

j+1 ⊕ 1‡

In Zj+2, the index (j + 2) is modulo eight.

Table 6.2. Difference properties of the S boxes of FEAL.

and thus Xj = Yj = 1. In both cases Xj = Yj . If C′
j+1 = 1 then

similarly Xj 6= Yj and therefore in general Xj ⊕Yj = C′
j+1. Table 6.2

generalizes this observation for all the combinations of X ′
j, Y

′
j and

C′
j . The entries marked by ∗ are particularly useful because they can

be used to identify wrong pairs. The entries marked by † can be used
to derive the values of the bits X0 and Y0. The entries marked by ‡

can be used to derive the value of Xj ⊕ Yj and the value of Z2).

7

Differential Cryptanalysis of
Other Cryptosystems

7.1 Cryptanalysis of Khafre

Khafre[22] is a software-oriented cryptosystem with 64-bit blocks whose
number of rounds (which should be a multiple of eight) is not specified.
Each block is divided into two halves, called the right half and the left half.
In each round the lowest byte of the right half is used as an eight-bit input
to an S box with 32-bit output. The left half is XORed with the output of
the S box. The right half is rotated and the two halves are exchanged. The
rotation is such that every byte is used once every eight rounds as an input
to an S box. Before the first round and after every eighth round the data
is XORed with 64-bit subkeys. These subkeys are the only way the key is
involved in the cryptosystem.

The differential cryptanalysis of Khafre is based upon the observation
that the number of output bits of an S box is more than twice the number
of input bits. Therefore, given an output XOR of an S box in a pair, the
input pair is (usually) unique and it is easy to find the two inputs. Moreover,

there are about (28)2

2 = 215 possible input pairs for each S box, and thus
only about 2−17 of the 32-bit values are output XORs of some pair.

A second observation is that there are characteristics in which only one
even round (or only one odd round) has non-zero input XOR to the S box.
The output XOR of this round in a right pair is easily derivable from the
plaintext XOR and the ciphertext XOR. Given this output XOR we can
discard most of the wrong pairs by the first observation, leaving only a
small fraction of about 2−17 of them.

The characteristics of Khafre are described by templates which choose
between zero XORs and non-zero XORs. Each right pair may have a differ-
ent value of the non-zero XORs. The following characteristic is used as an
example of the cryptanalysis of Khafre with 16 rounds. This characteristic
is described as the first characteristic of Khafre due to its simplicity. Better

7.1. Cryptanalysis of Khafre 108

characteristics are described later in this section.

Rnd Left Half Right Half Output XOR

ΩP 0 0 A 0 0 0 B 0

1 0 0 A 0 0 0 B 0 → 0 0 0 0
2 B 0 0 0 0 0 A 0 → 0 0 0 0
3 A 0 0 0 B 0 0 0 → 0 0 0 0
4 0 B 0 0 A 0 0 0 → 0 0 0 0
5 0 A 0 0 0 B 0 0 → 0 0 0 0
6 0 0 0 B 0 A 0 0 → 0 0 0 0

7 0 0 0 A 0 0 0 B → C D E A†

8 0 0 B 0 C D E 0 → 0 0 0 0

9 D E 0 C 0 0 B 0 → 0 0 0 0

10 B 0 0 0 D E 0 C → F ⊕ B‡ G H I

11 0 C D E F G H I → J K D ⊕ L‡ E†

12 I F G H J M0 L 0 → 0 0 0 0

13 0 J M0 L I F G H → N P ⊕ J‡ Q L†

14 G H I F N P R0 0 → 0 0 0 0

15 R0 0 N P G H I F → S T U P †

16 H I F G V T W 0 0 → 0 0 0 0

ΩT T W 0 0 V H I F G

Each value 0 describes a byte which has equal values in both executions of
the encryption of the pair (zero XOR). Each letter denotes a XOR value
which is not zero. A letter with a superscript 0 denotes a XOR value which
can be either zero or non-zero. The exact values of the non-zero XOR values
may vary for different right pairs. The superscript † means that the byte
of the output XOR must be equal to the corresponding byte of the left
half in order to cause the input XOR byte of the S box in the next round
to be zero. Each occurrence of † causes a reduction of the probability of
the characteristic by 1

255 . The superscript ‡ means that the byte of the
output XOR must not be equal to the corresponding byte of the left half in
order to prevent a zero value in the corresponding byte in the next round,
so that it can become zero in one of the following rounds, after XORing
with another non-zero value. Each occurrence of ‡ causes a reduction of
the probability of the characteristic by 254

255 . Therefore, the probability of

this characteristic is
(

1
255

)4 ·
(

254
255

)3 ≈ 2−32. The input XOR ΩP of the
characteristic has two degrees of freedom: A and B, each one can have
255 possible values. Therefore, the characteristic has 2552 ≈ 216 possible
plaintext XORs.

Given a sufficient number of pairs, we can discard most of the wrong
pairs using the byte in the ciphertext XOR with value zero. Only about
2−8 of the wrong pairs remain.

Looking at the characteristic we can see that the output XOR of the
tenth round is easily extracted by XORing the right half of the plaintext

7.1. Cryptanalysis of Khafre 109

XOR with the right half of the ciphertext XOR and rotating the result by
16 bits (ROT16(P ′

R ⊕T ′
R)). This happens since the tenth round is the only

even round whose output XOR is not zero. There are 232 possibilities for the
value of ROT16(P ′

R⊕T ′
R). However, there are only about 215 possible input

pairs of the S box itself. Therefore, there are at most about 215 possible
output XORs in the tenth round. As a consequence, most of the remaining
wrong pairs can be easily discarded, leaving only about 2−17 of the 2−8

of the wrong pairs that remained in the previous test. In addition, the
two input values of the S box and the two output values can be identified
uniquely.

The input XOR value C of the S box in the tenth round equals the upper
byte of the output XOR in the seventh round. The input XOR B and the
lower byte of the output XOR A of the S box in the seventh round are
known from the plaintext XOR. There are only 128 possible pairs of inputs
(with that input XOR) to the S box in the seventh round. 16 bits of the
output XOR of this S box are known. Therefore, we can discard each pair
whose corresponding 16 bit value is not as expected. The probability of a
wrong pair to pass this test is about 27 · 2−16 = 2−9.

For each of the remaining pairs, we can find the actual values of the
inputs to the S box in the fifteenth round since we know its eight-bit input
XOR and eight bits of its output XOR. There are only 27 pairs with this
input XOR and therefore about half of the wrong pairs can be discarded.
Then, we can calculate the input values to the S box in the thirteenth
round by a similar calculation and discard about half of the remaining
wrong pairs. The input values to the S box in the eleventh round can be
found with much better identification, since all the 32 bits of the output
XOR are known at this stage. We can discard most of the remaining wrong
pairs and leave only about 27 · 2−32 = 2−25 of them.

Up to now, we discarded almost all the wrong pairs, leaving only a neg-
ligible fraction of about 2−8 · 2−17 · 2−9 · 2−1 · 2−1 · 2−25 = 2−61 of them.
For the right pairs, we found the actual input values of the S boxes in
all the five rounds with non-zero input XORs. However, we do not know
which value belongs to which encryption in the pair, and thus we have two
possible relations for each of these five values. We can find 16 possibilities
for the lower byte of the left half of the last subkey by XORing through a
trail from the tenth round forward to the ciphertext (two possible values
of the input XOR of the tenth round and two possible values of the output
XOR of each one of the eleventh, the thirteenth and the fifteenth rounds).
Using the counting method with three right pairs among 3 · 232 pairs, we
can uniquely identify the value of this byte of the subkey, identify the right
pairs themselves, and identify the exact choice of inputs to the S boxes
in the five rounds for each encryption in the right pairs. Identification of

7.1. Cryptanalysis of Khafre 110

the values of the input to the S box of the last round is possible using
the counting method which identifies two more bytes of the last subkey.
A similar identification may be done for the fourteenth round and then to
the twelfth round, each finding two more bytes of the subkey. In total we
find seven bytes of the last subkey. We can complete the value of the last
subkey using another characteristic in which the first non-zero input XOR
to an S box is in the eighth round, and reduce the cryptosystem to eight
rounds (since in Khafre the subkeys are XORed into the data only once
every eight rounds). The eight-round cryptosystem is already known to be
breakable even if the S boxes themselves are unknown (see [22]).

This attack on Khafre with 16 rounds needs about three right pairs ob-
tained from a pool of about 3 · 232 pairs (3 · 233 ciphertexts). This number
of ciphertexts can be drastically reduced by using a compact structure of
216 encryptions which contains about 231 pairs. Therefore, the structure
has probability about half to contain a right pair. The structure is simple:
choose a constant random value for six of the bytes of the plaintexts, ex-
cluding the second and the sixth bytes. Choose all the 216 possible values
for the second and sixth bytes of the plaintexts and encrypt all the plain-
texts. This structure also contains pairs with the additional characteristic
needed to complete the last subkey. In order to have about three right
pairs, we have to choose about six such structures, with a total of about
6 · 216 ≈ 400000 plaintexts.

The attacking program finds the last subkey in less than 45 minutes on a
personal computer using 400000 encryptions with 90% success rate. Using
about 590000 encryptions the success rate is increased to more than 99%
and the execution time is increased to about an hour. The program uses
about 500K bytes of memory, most of which is used to store the plaintexts
and the ciphertexts.

This attack can be converted to a known plaintext attack using about
241.5 plaintext/ciphertext pairs. In such an attack, the 241.5 plaintexts can
form (241.5)2/2 = 282 pairs. Since there are only 264 possible plaintext
XORs, about 282/264 = 218 pairs occur with each plaintext XOR. There
are about 216 usable input XORs of the characteristic and thus we get
about 216 · 218 = 234 candidate pairs which can be used to break Khafre
with 16 rounds.

Characteristics with improved probability of about 2−24 also exist. One

7.1. Cryptanalysis of Khafre 111

such characteristic is:

Rnd Left Half Right Half Output XOR

ΩP 0 0 A 0 0 0 0 0

1 0 0 A 0 0 0 0 0 → 0 0 0 0
2 0 0 0 0 0 0 A 0 → 0 0 0 0
3 A 0 0 0 0 0 0 0 → 0 0 0 0
4 0 0 0 0 A 0 0 0 → 0 0 0 0
5 0 A 0 0 0 0 0 0 → 0 0 0 0
6 0 0 0 0 0 A 0 0 → 0 0 0 0
7 0 0 0 A 0 0 0 0 → 0 0 0 0
8 0 0 0 0 0 0 0 A → B C D E

9 0 0 A 0 B C D E → F G H0⊕ A I
10 D E B C F G H0 I → J0⊕ D K0⊕ E L ⊕ B‡ C†

11 H0 I F G J0 K0 L 0 → 0 0 0 0
12 0 J0 K0 L H0 I F G → M N ⊕ J0‡ P 0⊕ K0 L†

13 G H0 I F M N P 0 0 → 0 0 0 0
14 P 0 0 M N G H0 I F → Q0⊕ P 0 R S0⊕ M N†

15 I F G H0 Q0 R S0 0 → 0 0 0 0
16 R S0 0 Q0 I F G H0 → T 0⊕ R U0⊕ S0 V 0 W 0⊕ Q0

ΩT F G H0 I T 0 U0 V 0 W 0

Using characteristics with probability about 2−24 we need about 3·224 pairs
which are formed by 3 · 225 encryptions. Using structures of 28 encryptions
which contain 215 pairs the attack needs about 3 ·217 encryptions (the same
as with the characteristic with probability about 2−32). Known plaintext
differential cryptanalytic attacks based on this characteristic need about

241.5 encryptions (since (241.5)2

2·264 ·28 = 226 > 3·224). The above characteristic
can be extended to a 24-round characteristic with probability about 2−56.
Attacks on 24-round Khafre based on this characteristic need about 260

pairs. Using structures of 28 encryptions with 215 pairs they need about
253 encryptions. The differential cryptanalytic known plaintext attack on
24-round Khafre based on this characteristic needs about 258.5 encryptions

(since (258.5)2

2·264 · 28 = 260).

The best usable characteristic of Khafre that we have found is the fol-

7.1. Cryptanalysis of Khafre 112

No. of Char. Pairs Chosen Known

rounds prob. needed plaintexts plaintexts

16 2−16 3 · 216 1536 237.5

24 2−56 260 253 258.5

Table 7.1. Summary of the attacks on Khafre.

lowing 16-round characteristic whose probability is about 2−16:

Rnd Left Half Right Half Output XOR

ΩP 0 0 A 0 0 0 0 0

1 0 0 A 0 0 0 0 0 → 0 0 0 0
2 0 0 0 0 0 0 A 0 → 0 0 0 0
3 A 0 0 0 0 0 0 0 → 0 0 0 0
4 0 0 0 0 A 0 0 0 → 0 0 0 0
5 0 A 0 0 0 0 0 0 → 0 0 0 0
6 0 0 0 0 0 A 0 0 → 0 0 0 0
7 0 0 0 A 0 0 0 0 → 0 0 0 0
8 0 0 0 0 0 0 0 A → B C D E

9 0 0 A 0 B C D E → F G H0⊕ A I

10 D E B C F G H0 I → J0⊕ D K0⊕ E L ⊕ B‡ M ⊕ C‡

11 H0 I F G J0 K0 L M → N0⊕ H P 0⊕ I Q ⊕ F ‡ R ⊕ G‡

12 M J0 K0 L N0 P 0 Q R → S0⊕ M T ⊕ J0‡ U0⊕ K0 L†

13 R N0 P 0 Q S0 T U0 0 → 0 0 0 0
14 U0 0 S0 T R N0 P 0 Q → V 0⊕ U0 W X0⊕ S0 T †

15 P 0 Q R N0 V 0 W X0 0 → 0 0 0 0
16 W X0 0 V 0 P 0 Q R N0 → Y 0⊕ W Z0⊕ X0 α0 β0⊕ V 0

ΩT Q R N0 P 0 Y 0 Z0 α0 β0

Two of the odd rounds (the ninth and the eleventh rounds) have non-zero
output XORs. The XOR of these two output XORs (with a rotation of one
of them) can be easily extracted for right pairs. Since this XOR is a combi-
nation of four outputs (rather than two as in the previous characteristics),
the identification of the right pairs is much more complex, but is still pos-
sible. The differential cryptanalytic chosen plaintext attack based on this
characteristic needs three right pairs which are likely to be found in a pool
of 3 · 216 pairs. Using structures of 28 encryptions which contain 215 pairs

about 28

215 · 3 · 216 = 1536 encryptions are needed. The implementation of
this chosen plaintext attack takes about an hour on a personal computer.
The known plaintext differential cryptanalytic attack based on this char-

acteristic needs about 237.5 encryptions (since (237.5)2

2·264 · 28 = 218 > 3 · 216).

A summary of our best results for 16-round Khafre and 24-round Khafre
is given in Table 7.1 which describes the number of pairs needed for the
attack, the number of chosen plaintexts needed, and the number of known

7.2. Cryptanalysis of REDOC-II 113

plaintexts needed. Note that these complexities are independent of the
actual choice of the S boxes as long as the S boxes themselves are known to
the attacker, and remain valid even if different S boxes are used in different
rounds.

7.2 Cryptanalysis of REDOC-II

REDOC-II[38,8] is a ten-round cryptosystem with 70-bit blocks (arranged
as ten bytes of seven bits). Each round contains six phases: (1) First vari-
able substitution, (2) Second variable substitution, (3) First variable key
XOR, (4) Variable enclave, (5) Second variable key XOR and (6) Vari-
able permutation. Each phase modifies the data using tables. There are
16 predefined substitution tables which are used by the variable substitu-
tions. There are 128 predefined permutation tables used by the variable
permutation. There are 128 predefined enclave tables used by the variable
enclave. All these tables are fixed and are given as part of the definition
of REDOC-II. In addition, 128 ten-byte key tables and nine mask tables
are calculated for each key by a key processing algorithm. In each variable
key XOR phase one table is chosen by XORing the value of a specific byte
in the data with a specific byte in the mask tables. The resulting value
is the table number. All the bytes of the data except the choosing byte
are XORed with the corresponding bytes in the chosen key table. In each
variable substitution phase one table is chosen by XORing the value of a
specific byte in the data with a specific byte in the mask tables. The table
number is the resulting value modulo 16. All the bytes of the data except
the choosing byte are substituted by the chosen substitution table. In each
variable permutation phase one table is chosen by adding (modulo 128) all
the ten bytes of the data and XORing the result with a specific byte in the
mask tables. The resulting value is the table number. The data bytes are
permuted by the chosen permutation.

The variable enclave phase is more complicated. The predefined enclave
tables have five rows and three columns. Each entry contains a number
between one and five. There are two properties which an enclave table
should satisfy: each column should be a permutation of the numbers 1–5
and each row should contain three different numbers. Processing an enclave
table on a half-block is as follows:

1. Each entry in the table contains an index of a byte in the half-block.

2. Add the values of the three bytes pointed to by the numbers in the
first row of the table and store the result in the byte pointed to by
the first column in this row.

7.2. Cryptanalysis of REDOC-II 114

3. Add the resultant values of the three bytes pointed to by the numbers
in the second row of the table and store the result in the byte pointed
to by the first column in the row.

4. Similarly add according to the third, fourth and fifth rows.

Each variable enclave phase uses four enclave tables as follows:

1. Divide the block into two half-blocks of five bytes each. The half-
blocks are called the left half and the right half.

2. XOR the values of two particular bytes in the right half (in the first
round: the first two bytes) with two particular mask bytes. The re-
sultant two bytes are indexes of two enclave tables.

3. Process the left half by the first enclave table indexed by the above
two bytes.

4. Process the resultant left half by the second enclave table indexed by
the above two bytes.

5. XOR the values of two particular bytes in the resultant left half (in
the first round: the first two bytes) with two particular mask bytes.
The resultant two bytes are indexes of two enclave tables.

6. XOR the left half to the right half.

7. Process the resultant right half by the first enclave table indexed by
the above two bytes.

8. Process the resultant right half by the second enclave table indexed
by the above two bytes.

9. XOR the right half to the left half.

An important property of the enclave tables is that they are linear op-
erations in terms of addition which can be simulated by a matrix-vector
product. By modifying only most significant bits in the input, only most
significant bits in the output are modified. Moreover, the linear modifica-
tion table of the most significant output bits by the most significant input
bits uniquely identifies the enclave table used. This property can even be
used in the variable enclave phase. The left half of the input with two of
the bytes of the right half affect the choice of the enclave tables used in
this phase. However, three of the bytes of the right half do not affect the
choice of the enclave tables (in the first round they are the eighth, ninth
and tenth bytes) and thus the modifications of the most significant bits of
the output are linear functions of the modifications of the most significant
bits of these input bytes. Note that since we XOR the right half to the left

7.2. Cryptanalysis of REDOC-II 115

half as the last step in the variable enclave phase we get a symmetric mod-
ification in both halves and therefore, an even number of modified most
significant bits.

In this attack we use the following one-round characteristic:

After Phase Data XOR

ΩP 0 0 0 0 0 0 0 A 0 0

First Subst 0 0 0 0 0 0 0 B 0 0 For some B
Second Subst 0 0 0 0 0 0 0 64 0 0 p ≈ 1/128

Key XOR 0 0 0 0 0 0 0 64 0 0
Enclave C 0 D E F C 0 D E F p ≈ 1/2

Key XOR C 0 D E F C 0 D E F
Permutation Some permutation of C,0,D,E,F ,C,0,D,E,F

ΩT Some permutation of C,0,D,E,F ,C,0,D,E,F

where A,B ∈ {1, . . . , 127} and C,D,E, F ∈ {0, 64} (not all of them zero).
In total, this characteristic has probability about 1

256 . The ciphertext XOR
has 60 zero bits (six in each byte) and the XORed value of the most sig-
nificant bits of the ciphertext XOR is zero as well. Similar characteristics
exist in which the difference is at the ninth and tenth bytes rather than at
the eighth byte. Differences in more than one of these three bytes is also
possible with smaller probabilities, but if the difference is the same in all
the differing bytes and the values of all the differing bytes in the plaintexts
are equal then the probability remains about 1

256 .

Given sufficiently many pairs encrypted by one-round REDOC-II with
the plaintext differences specified in the characteristics, we can discard
(almost) all the wrong pairs by verifying that the 61 bits of the ciphertext
XORs (60 + 1) are really zero. Only a negligible fraction of 2−61 of the
wrong pairs may remain. In practice, only right pairs remain.

For each of the 16 ·16 = 256 possible values of the masks of the substitu-
tion phases we count the number of pairs whose differing byte after the two
substitutions resulting from the masks differ only by the most significant
bit. For each one of the 128 possible values of the mask of the permutation
phase we count the number of pairs whose ciphertext XOR permuted by
the resulting inverse permutation is symmetric and has zeroes in the second
and the seventh bytes. The right values of these mask bytes are likely to be
the ones counted most frequently and thus can be identified. This attack
needs about 1000 pairs and finds three masks of the processed key.

The attack can be enhanced by using structures of 32 encryptions with
identical nine bytes and whose tenth byte has 32 different values. In such a
structure there are 496 pairs. There are only 128 possible differences after
the second substitution and thus there are about four pairs which differ
only by one most significant bit after the substitution phases. These four

7.2. Cryptanalysis of REDOC-II 116

pairs use the same enclave tables and thus with probability about half the
structure contains four right pairs, and with probability about half does
not contain any right pair. Using three such structures with identical eight
bytes, where 32 plaintexts differ by the ninth byte, 32 differ by the tenth
byte and 32 differ by both the ninth and the tenth bytes with equal values
in both bytes in each plaintext, we are guaranteed to have at least one
structure whose choosing byte of the second key XOR has no difference
and thus to have about four right pairs. This enhanced attack needs only
96 chosen plaintexts.

REDOC-II with more than one round is also vulnerable to this attack.
The following characteristic is a two-round extension of the above charac-
teristic (for simplicity we use in the second round the same choosing bytes
as in the first round, rather than the new choosing bytes of the second
round).

After Phase Data XOR

ΩP 0 0 0 0 0 0 0 A 0 0

First Subst 0 0 0 0 0 0 0 B 0 0 For some B
Second Subst 0 0 0 0 0 0 0 64 0 0 p ≈ 1/128

Key XOR 0 0 0 0 0 0 0 64 0 0
Enclave C 0 D E F C 0 D E F p ≈ 4/31 (see †)

Key XOR C 0 D E F C 0 D E F
Permutation 0 0 0 0 0 0 0 G H I p ≈ 1/15 (see ‡)

First Subst 0 0 0 0 0 0 0 J K 0 Some J and K
Second Subst 0 0 0 0 0 0 0 64 64 0 p ≈ (1/128)2

Key XOR 0 0 0 0 0 0 0 64 64 0
Enclave L 0 M N P L 0 M N P p ≈ 1/2

Key XOR L 0 M N P L 0 M N P (see •)
Permutation Some permutation of L,0,M ,N ,P ,L,0,M ,N ,P

ΩT Some permutation of L,0,M ,N ,P ,L,0,M ,N ,P

† One of C, D, E and F is 64 and the others are zero.

‡ Two of G, H and I are 64 and the third is zero. The probability that the
permutation takes the two 64’s into G, H and I is

(
3

2

)
/
(
10

2

)
= 3/45 = 1/15.

We assume without loss of generality that I = 0.

• L, M , N and P are either zero or 64.

This characteristic has probability about 1
128 · 4

31 · 3
45 ·

(
1

128

)2 · 1
2 ≈ 2−29

and the attack needs about 231 pairs. Using structures of 128 encryptions
whose differences are restricted to a single byte (either the eighth, ninth or
the tenth byte) we are guaranteed to have 64 pairs whose difference after
the first two substitution phases is only in one most significant bit, and
each of them has a probability of about 2−22 to be a right pair. Therefore,
there is a right pair in such a structure with probability about 2−16 and
the attack needs about 4 ·216 ·128 = 225 encryptions to find four right pairs

7.2. Cryptanalysis of REDOC-II 117

and to deduce three masks. The extended three-round characteristic has
probability about 2−50 and thus the attack needs about 252 pairs. Using
structures of 128 encryptions the attack needs about 246 encryptions. The
extended four-round characteristic has probability about 2−71 and thus the
attack needs about 273 pairs. Using structures of 128 encryptions the attack
needs about 267 encryptions. About 273 · 2−61 = 212 wrong pairs may not
be discarded, but the right values of the three masks can still be identified
using the counting scheme which counts all the 15 bits simultaneously.

The conversion of the chosen plaintext attacks on REDOC-II into known
plaintext attacks has the following results. Given 235 ·

√
2m encryptions,

there are about
(235·

√
2m)

2

2·270 = m pairs with each plaintext XOR value.
There are 3 · 27 possible plaintext XORs of pairs differing by one of the
three bytes and therefore about 3 · 27 · m pairs with the plaintext XORs
required by the attack are likely to exist among them. Using the plaintext
XORs which differ by more than one byte, this complexity changes to
about 7 ·27 ·m. Since the attack on one-round REDOC-II needs about 1000
pairs, 7 · 27 · m = 1000 and therefore m ≈ 1. The number of encryptions
needed for the known plaintext attack on one-round REDOC-II is about
235 ·

√
2m ≈ 235.5. The attacks on REDOC-II with two, three and four

rounds need about 246, 256.5 and 267 known plaintexts, respectively.

In addition to the chosen plaintext attacks, we can also mount chosen
ciphertext attacks which use characteristics based on the differences in the
ciphertexts and show their evolution towards the plaintexts (i.e., in the
reverse direction). One such characteristic of the one-round variant is:

Before Phase Data XOR

ΩT Some permutation of two 64’s and eight 0’s

Permutation Same values in both half blocks where p ≈ 4/45
one 64 is at bytes i ∈ {1, 3, 4, 5}
and the other at byte i + 5

Key XOR The same
Enclave 0 0 0 0 0 0 0 A B C p ≈ 1/4

Key XOR 0 0 0 0 0 0 0 A B C
Second Subst 0 0 0 0 0 0 0 D E F for some D, E, F

First Subst 0 0 0 0 0 0 0 G H I (G, H, I) 6= (0, 0, 0)

ΩP 0 0 0 0 0 0 0 G H I

This characteristic has probability about 1
45 . Similar characteristics with

four differing bytes in the ciphertexts, six differing bytes and eight differing
bytes have probabilities about 1

140 , 1
210 and 1

180 respectively. Using special
structures, we can attack one-round REDOC-II using 40 chosen ciphertexts
in order to find the three mask bytes. The variants with two, three and four
rounds can be attacked using 224, 245 and 266 chosen ciphertexts respec-
tively. The conversion of these attacks to known plaintext attacks gives

7.2. Cryptanalysis of REDOC-II 118

approximately the same complexities as the attacks based on the chosen
plaintext attacks.

An extension of the chosen plaintext attack on the one-round variant
of REDOC-II can find all the mask tables and the key tables. We assume
here that the three masks were already found and that the cryptosystem is
reduced to three phases. In order to find all the key tables we use several
structures of 128 encryptions which differ by one of the three bytes as
above, plus several encryptions which differ also by the first two bytes.

This extension starts by calculating the matrix which describes the dou-
ble enclave of the right half of the enclave phase. In the first step we look
for the value of the entry which corresponds to the influence of the eighth
input byte on the second output byte by trying the triplets of the value
XORed with the input byte before it is multiplied, the multiplication fac-
tor and the value added after the multiplication from the other four input
bytes. For each such triplet we check whether all the pairs in the structure
suggest the same value to be XORed with the sum to make the output
byte. The right value of the triplet should be suggested by all the pairs in
the structure. Usually several triplets remain undiscarded, and all of them
have the same factor. This factor should be the value of the corresponding
entry in the matrix. The two entries which correspond to the ninth and to
the tenth input bytes can be found similarly. Using the values of these three
entries we can find more bits of the twelve entries of the matrix which cor-
respond to the same three input bytes and to the four other output bytes.
These values usually suffice to identify uniquely the pair of enclave tables
used in the double enclave and to complete the matrix.

The attacker should follow the following steps. First, find the values
which are XORed with the inputs of the right half of the data (by the first
key XOR phase and by the left half of the data after its double enclave).
Then find the values which are XORed with the output of the right double
enclave to make the outputs. Derive the relationship between the values
XORed with the inputs and the values XORed with the outputs, derive
some entries of the key tables and calculate the masks of the right double
enclave and the XOR of the masks of the two key XOR phases. Find ad-
ditional entries of the key tables by reversing the left double enclave and
finding its masks. Complete the missing entries of the key tables using the
additional encryptions (especially the second bytes of the key tables which
cannot be found otherwise). Finally, derive the actual indexes of the key
tables and calculate the actual values of the missing masks from the key
tables.

The three masks of the substitution and the permutation phases of the
one-round variant can be found within less than a second on a personal

7.3. Cryptanalysis of LOKI 119

No. of Char. Pairs Chosen Chosen Known Comments

rounds prob. needed plains ciphers plains

1 2−8 – 2300 – – All masks + key tables

1 2−8 1000 96 40 235.5 Three masks

2 2−29 231 225 224 246 Three masks

3 2−50 252 246 245 256.5 Three masks

4 2−71 273 267 266 267 Three masks

Table 7.2. Summary of the attacks on REDOC-II.

computer by a chosen plaintext attack. The program which attacks the
one-round variant of REDOC-II finds all the masks and the key tables in
about a minute using about 2300 encryptions with more than 90% success
rate. Using about 3900 encryptions the success rate becomes better than
99%. The program uses about 150K bytes of memory. A summary of our
best results on REDOC-II is given in Table 7.2.

7.3 Cryptanalysis of LOKI

LOKI[6] is a 64-bit key/64-bit block cryptosystem similar to DES which
uses one twelve-bit to eight-bit S box (based on irreducible polynomials)
replicated four times in each round. The E expansion and the P permuta-
tion are replaced by new choices and the initial and final permutations are
replaced by XORs with the key. The permutations in the key scheduling
algorithm are replaced by rotations and the subkeys become 32-bit long.
The XOR of the input of the F function with the key is done before the ex-
pansion and therefore neighboring S boxes receive common bits. Two new
modes of operation which convert LOKI into a hash function are defined.

The difference distribution table of the larger S box of LOKI has much
smaller probabilities than the ones of DES (average 1

256 and maximum
1
64). However, it is possible to have non-zero input XORs in two S boxes
resulting with the same output, whereas in DES this requires at least three
S boxes. We have found the following two-round iterative characteristic
with probability 118

220 ≈ 2−13.12 (this probability is calculated using the
observation that two neighboring S boxes have four common input bits,
otherwise we get a slightly smaller probability):

7.3. Cryptanalysis of LOKI 120

ΩP = 00 00 00 00 00 00 05 10x

A′ = 0 a′ = 00 00 05 10x p = 118
220

B′ = 0 b′ = 0 p = 1

ΩT = 00 00 05 10 00 00 00 00x.

F

F

This characteristic can be iterated to nine rounds with probability about
2−52.5 and to eleven rounds with probability about 2−65.5. Since all the four
S boxes of LOKI are the same and all the output XORs in this characteristic
are zero, there are three similar characteristics in which the XOR pattern
is rotated by multiples of eight bits. There is another eight-round iterative
characteristic in which only non-replicated bits of some S box are different
and the outputs differ only by one bit. This characteristic is:

7.3. Cryptanalysis of LOKI 121

ΩP = 00 00 00 00 00 00 00 E0x

A′ = 00 00 00 10x a′ = 00 00 00 E0x p = 32
212

= P (00 00 00 02x)

B′ = 00 00 00 10x b′ = 00 00 00 10x p = 14
212

C′ = 00 00 00 10x c′ = 00 00 00 F0x p = 18
212

D′ = 0 d′ = 0 p = 1

E′ = 00 00 00 10x e′ = 00 00 00 F0x p = 18
212

F ′ = 00 00 00 10x f ′ = 00 00 00 10x p = 14
212

G′ = 00 00 00 10x g′ = 00 00 00 E0x p = 32
212

H ′ = 0 h′ = 0 p = 1

ΩT = 00 00 00 E0 00 00 00 00x.

F

F

F

F

F

F

F

F

This iterative characteristic has probability about 2−46 and its extension to
nine rounds has the same probability. Using this characteristic it is possible
to break LOKI with up to eleven rounds with less than 264 chosen or known
plaintexts.

7.3. Cryptanalysis of LOKI 122

Careful analysis of the structure of LOKI has revealed that any key has
15 equivalent keys which encrypt any plaintext to the same ciphertext due
to a key complementation property. These 15 keys are the original key
XORed with the 15 possible 64-bit hexadecimal numbers whose digits are
identical (i.e., hhhhhhhhhhhhhhhhx where h ∈ {1x, . . . , Fx}). Encryption
with these keys results with the same inputs to the F functions in all the
16 executions. Therefore, most of the keys are redundant and a known
plaintext attack can be carried out with a complexity of 260 rather than
264.

Another complementation property is due to the observation that XOR-
ing the key with an hexadecimal value gggggggghhhhhhhhx and XORing
the plaintext by iiiiiiiiiiiiiiiix where g ∈ {0x, . . . , Fx}, h ∈ {0x, . . . , Fx}
and i = g ⊕ h results in XORing the ciphertext by iiiiiiiiiiiiiiiix. This
property can be used to reduce the complexity of a chosen plaintext attack
by a further factor of 16 to 256.

These observations result in major weaknesses when LOKI is used as a
hash function. For any message it is easy to find 15 additional messages
which hash to the same value by the Single Block Hash (SBH) mode of
LOKI: the other messages are the given message XORed with each of the
15 hexadecimal values hhhhhhhhhhhhhhhhx. Since the messages are used
as the key of the LOKI primitive (XORed with the previous hash value
which can be viewed as a fixed value) and the plaintext of LOKI is fixed,
the outputs of all the executions are the same.

If we are allowed to choose the initial value, then for any message it is
easy to find 255 other messages which hash to the same value by the Double
Block Hash (DBH) mode of LOKI. This is done by XORing both H−1 and
M2 with gggggggghhhhhhhhx and XORing M1 with hhhhhhhhggggggggx

without changing H0 (where g ∈ {0x, . . . , Fx} and h ∈ {0x, . . . , Fx}).

LOKI has 256 simple fixpoints of the form LOKI(X,K) = X whose
plaintexts and the ciphertexts are equal using keys of the form K =
gggggggghhhhhhhhx and plaintexts of the form X = iiiiiiiiiiiiiiiix, where
g, h ∈ {0x, . . . , Fx} and i = g⊕h. In particular, LOKI encrypts the plaintext
zero by the key zero to the ciphertext zero: LOKI(0, 0) = 0. Therefore, the
two hash function modes hash the zero messages with the zero initial value
to zero. This observation shows that the zero initial value should be avoided
since any number of zero-blocks (or any even number in the DBH mode)
can be prepended to the message without modifying the hash value. More-
over, in the SBH mode all the 16 initial values H0 = hhhhhhhhhhhhhhhhx

should be avoided since the message 00000000hhhhhhhhx and 15 oth-
ers hash to the initial value H1 = hhhhhhhhhhhhhhhhx. In the DBH
mode all the 256 initial values H−1 = 0 and H0 = gggggggghhhhhhhhx

7.4. Cryptanalysis of Lucifer 123

should be avoided since the messages M1 = hhhhhhhhggggggggx and
M2 = iiiiiiiiiiiiiiiix where i = g ⊕ h hash to the initial value and can
be prepended any number of times without affecting the hash value.

After this research was completed, Matthew Kwan[19,5] found the fol-
lowing three-round iterative characteristic of LOKI with probability 2−14.4:

ΩP = 00 00 00 00 00 40 00 00x

A′ = 00 40 00 00x a′ = 00 40 00 00x p = 28
4096

B′ = 00 40 00 00x b′ = 00 40 00 00x p = 28
4096

C′ = 0 c′ = 0 p = 1

ΩT = 00 40 00 00 00 00 00 00x.

F

F

F

This characteristic can be used to break LOKI with up to 14 rounds, and re-
quires up to 260 chosen plaintexts. He also found many additional fixpoints
of LOKI.

7.4 Cryptanalysis of Lucifer

Lucifer[15] is a substitution/permutation cryptosystem designed by IBM
prior to the design of DES. In DES the output of the F function is XORed
with the input of the previous round to form the input of the next round.
This value is XORed (in turn) with a subkey to form the input of the S
boxes. In Lucifer, the input of the S boxes is the permuted output of the
S boxes of the previous round while the input of the S boxes of the first
round is the plaintext itself. A key bit is used to choose the actual S box at
each entry out of two possible S boxes. Figure 7.1 describes this structure.
The other variant of Lucifer[37] is similar to DES, but is weaker than the
variant attacked in this section. An attack on this other variant reduced to

7.4. Cryptanalysis of Lucifer 124

Plaintext (P)

S S S S S S S S K1

P

S S S S S S S S K2

P

S S S S S S S S K3

P

S S S S S S S S Ki

P

S S S S S S S S K13

P

S S S S S S S S K14

P

S S S S S S S S K15

P

S S S S S S S S K16

Ciphertext (T)

Figure 7.1. Lucifer.

eight rounds requires less than 256 chosen plaintexts and negligible time
complexity.

Given an input of an S box, the outputs of the two possible S boxes are
known. Each output bit may be the same in both S boxes or may differ.
Usually only one or two output bits are the same in both S boxes. In few
cases, one output bit is equal in all the four output values obtained when
two input values differing by one bit (for example 8x and Ax) enter the two

7.4. Cryptanalysis of Lucifer 125

Input Output Output Equal

of S0 of S1 bits

0000 0100 1111 .1..

0001 0001 1100 ..0.

0010 1110 1000 1..0

0011 1000 0010 .0.0

0100 1101 0100 .10.

0101 0110 1001

0110 0010 0001 00..

0111 1011 0111 ..11

1000 1111 0101 .1.1

1001 1100 1011 1...

1010 1001 0011 .0.1

1011 0111 1110 .11.

1100 0011 1010 .01.

1101 1010 0000 .0.0

1110 0101 0110 01..

1111 0000 1101 ..0.

Table 7.3. Output bits that are equal for both S boxes.

Input Equal bits

.000 .1..

0.00 .1..

001. ...0

.110 0...

10.0 ...1

110. .0..

Table 7.4. Output bits that are equal for both S boxes for two input values.

possible S boxes. There are pairs of inputs for which the same output bits
stay fixed for both values and the same bits differ using either one of the
two S boxes. In particular, there are pairs for which three output bits are
equal although their fourth bit differ using either S box.

The published description of this variant of Lucifer does not specify the
particular choice of the S boxes. For the sake of concreteness, we use the
third and fourth lines of S1 of DES as the S boxes S0 and S1 of Lucifer.
Other choices of the S boxes give similar results. Table 7.3 describes the S
boxes and the equal bits of the outputs of the two S boxes. We see that 11
inputs have two equal bits in the outputs, four inputs have one equal bit
and for one input all the output bits differ. Table 7.4 describes the equal
bits of two input values that differ by one bit using both S boxes. A binary

7.4. Cryptanalysis of Lucifer 126

Input Input Common Common Common bits in

No. 1 No. 2 in S0 in S1 Both S boxes

0001 1111 000- 110- ++0-

0010 1001 11-0 10-- 1+-.

0011 1101 10-0 00-0 +0-0

1000 1010 1--1 0--1 +--1

1000 1101 1-1- 0-0- +-+-

1010 1101 10-- 00-- +0--

1011 1100 0-11 1-10 +-1+

Table 7.5. Output bits that are equal in pairs for either S box.

notation is used in these tables.

Table 7.5 describes pairs that have many equal bits, such that the re-
placement of one input with the other leaves those output bits unchanged
using either S box. In this table ‘0’ and ‘1’ means that the output bit is
‘0’ or ‘1’ respectively at all the cases. ‘+’ means that at either S box, the
output bit is equal for both inputs of the pairs. ‘-’ means the output bit
value is different for the inputs of the pairs for either S box. ‘.’ means that
neither of the above cases holds.

By consulting these tables we can create many plaintexts whose partic-
ular (chosen) bit at an interior round has a chosen fixed value, regardless
of the choice of the key. We can also create pairs of plaintexts which differ
in a later round only at a particular bit. Lucifer reduced to eight rounds
can be attacked using the encryptions of such plaintexts.

Since Feistel did not fix the parameters of Lucifer in his paper[15], we
show two attacks on variants with various choices of the blocksize and the
P permutation, and with fixed S boxes derived from the S boxes of DES.
Other choices of S boxes do not seems to strengthen the resultant ciphers.

7.4.1 First Attack

The following attack breaks eight-round Lucifer with 32-bit blocks, with
the DES P permutation and with S boxes based on the third and fourth
lines of S1 of DES. Most of the possible choices of the S boxes and the
permutation are breakable with a similar complexity.

Table 7.6 describes 450 plaintexts as a Cartesian product of the specified
inputs to the S boxes of the first round. These plaintexts cause bit 17 of

7.4. Cryptanalysis of Lucifer 127

S box Possible input values

S1 3x, 6x, Ax, Cx, Dx

S2 2x

S3 Ax

S4 0x, 4x, 8x, Bx, Ex

S5 6x

S6 7x, 8x, Ax

S7 2x, 3x, Dx

S8 2x, 9x

Table 7.6. Input values that cause a bit in the fourth round to be zero.

Round Common input and output values†

(in binary)

I1 0011 0010 1010 0000 0110 0111 0010 0010

O1 .0.. 1..0 .0.1 .1.. 00.. ...1 ...0 1...

I2 1100 10.0 0011

O201.1 .0.0

I3 110.0..0

O3 .0..

I4 0...

† The first line of the table represents the first plain-

text. The other lines represent values that are common

to the encryptions of all the 450 plaintexts.

Table 7.7. Common input and output bits of the various rounds.

the input of the fourth round to be zero. The fixed input and output values
in the various rounds are given in Table 7.7. I1 is the plaintext. Oi denotes
the output of the S boxes for input Ii. Ii+1 is the input of round i + 1
which is the permuted value of Oi.

The key bits of the following rounds can be found by the following algo-
rithm:

1. Try all the possible values of the key bits of the eighth, seventh and
sixth rounds with the key bits of the four S boxes in the fifth round
that are affected by the output of S5 in the fourth round, and the
key bit of S5 in the fourth round (total of 29 bits).

2. For each of them, partially decrypt the ciphertexts to get the input
bits of S5 in the fourth round. If for any one of them the bit number 17
is non-zero then the tried key is wrong.

7.4. Cryptanalysis of Lucifer 128

3. Using 40 encryptions we get a probability of 2−40 for a wrong key to
survive, i.e., there is a probability of about 2−40 ·229 = 2−11 that any
wrong key remains. The real key must have zero for all the pairs and
thus we find 29 key bits (out of 8 × 8 = 64).

4. Once these key bits are known, the other key bits can be found by a
similar method with the same ciphertexts.

This algorithm has a time complexity of 229 and needs about 29–35 chosen
plaintexts.

There are similar attacks on Lucifer with 128-bit blocks with a chosen
fixed bit in the fourth round (or possibly even the fifth round for some
choices of the P permutation and the S boxes). In these attacks the above
algorithm starts by finding 53 out of the 8× 32 = 256 key bits, uses about
53–60 ciphertexts, and has a time complexity of about 253.

7.4.2 Second Attack

The following attack breaks eight-round Lucifer with 128-bit blocks. This
attack is described in general terms to allow any choice of the P permuta-
tion.

In the preparation phase of the attack we choose an S box in the second
round which will have inputs 8x and Ax when the two members of each
pair are encrypted. If its third bit (with value 2x) comes from an S box in
the first round from the output bit 1 (with value 8x) then we try another
S box (only about three quarters of the S boxes in the second round can
be chosen using this particular choice of the S boxes). All the other inputs
of the S boxes in the second round should be equal in the pair. At the first
round we choose the following values for the bits of the two plaintexts:

1. One S box in the first round has an output bit which enters the third
bit of the chosen S box in the second round. If this output bit is:

bit 2: choose 1011 and 1100 as the input bits.
bit 3: choose 0011 and 1101 as the input bits.
bit 4: choose 0001 and 1111 as the input bits.

These input bits are actual bits of the plaintexts. The outputs of this
S box differ only by the bit which enters the chosen S box in the
second round.

2. All the other plaintext bits are chosen identically for both members
of each pair.

7.4. Cryptanalysis of Lucifer 129

Rounds Block Chosen Operations Comments

size plaintexts

8 128 53 253 First Attack

8 128 21 221 Second Attack

8 128 256 29 Other Variant[37]

Table 7.8. Summary of the attacks on Lucifer.

3. In particular, for the three other S boxes whose output bits enter
the chosen S box in the second round, choose input values (using
Table 7.3) which cause the output bit that enters the chosen S box
in the second round to have identical value under S0 and under S1

and such that the value of these bits would be the constant derived
from the chosen inputs 8x and Ax of the S box in the second round.

After the first round the partially encrypted values differ only in one bit
(the output of the S box from step 1). Thus, in the second round only one S
box has different input values (1000 and 1010, respectively). In the output
two bits differ. In the third round two S boxes have different inputs. Their
outputs enter seven S boxes in the fourth round (they may enter eight S
boxes, but with a proper choice they may enter seven S boxes). The output
bits of the seven S boxes enter about 20–28 S boxes in the fifth round.
Therefore, the outputs of at least four S boxes do not differ. In the sixth
round we choose an S box with one of these bits as its input. We try all the
possible values of the key bits of this S box, of the four affected S boxes
in the seventh round and of the 16 affected S boxes in the eighth round.
For each of their choices we verify the equality of the input bit in the sixth
round. Since we try 221 choices and each wrong pair has probability half
to succeed, we need about 21–30 pairs to find the value of the 21 key bits.
Once these key bits are found, the other key bits can be found with a
similar method using the known key bits.

A summary of the results on Lucifer is given in Table 7.8.

8

Differential Cryptanalysis of
Hash Functions

8.1 Cryptanalysis of Snefru

Snefru[21] is designed to be a cryptographically strong hash function which
hashes messages of arbitrary length into m-bit values (typically 128 bits).
The messages are divided into (512 − m)-bit chunks and each chunk is
mixed with the hashed value computed so far by a randomizing function
H. The function H takes a 512-bit input composed of the previous hashed
value and the next chunk and calculates an m-bit output. The new hashed
value is the output of H. More formally, for any 1 ≤ i ≤ #c:

hi = H(hi−1‖ci)

where #c is the number of chunks, ‘‖’ is the concatenation operator of bit
vectors, ci is chuck number i and h0 is an m-bit vector of zeroes. The final
output is:

output = H(h#c‖length of message in bits).

The process is outlined in Figure 8.1.

The function H is based on a (reversible) 512-bit to 512-bit function E
and returns a XOR combination of the first m bits of the input and the last
m bits of the output of E. The function E randomizes the data in several
passes. Each pass is composed of 64 randomizing rounds, where in each one
of them a different byte of the data is used as an input to an S box whose
output word is XORed with the two neighboring words. The codes of the

0 H H H H H H H

Length

Output

Message

Figure 8.1. Outline of Snefru.

8.1. Cryptanalysis of Snefru 131

function H (int32 input[INPUT BLOCK SIZE])

returns int32 output[OUTPUT BLOCK SIZE]

{
int32 block[INPUT BLOCK SIZE];

block = E(input);

for i = 0 to OUTPUT BLOCK SIZE-1 do

output[i] = input[i] ⊕ block[INPUT BLOCK SIZE-i-1];

return(output);

}

Figure 8.2. The function H.

function E (int32 input[INPUT BLOCK SIZE])

returns int32 output[INPUT BLOCK SIZE]

{
int32 block[INPUT BLOCK SIZE];

int32 SBoxEntry;

int shift, i, index, byteInWord;

int shiftTable[4] = {16, 8, 16, 24};

block = input;

for index = 0 to NO OF PASSES-1 do { (for each pass)

for byteInWord = 0 to 3 do {
for i = 0 to INPUT BLOCK SIZE-1 do { (for each round)

SBoxEntry = {fetch entry number block[i] mod 256 of S box

number 2 · index + (i/2) mod 2};
block[(i + 1) mod INPUT BLOCK SIZE] ⊕= SBoxEntry;

block[(i - 1) mod INPUT BLOCK SIZE] ⊕= SBoxEntry;

}
shift = shiftTable[byteInWord];

for i = 0 to INPUT BLOCK SIZE-1 do

block[i] = {rotate block[i] by shift bits to the right};
}

}

return(output);

}

Figure 8.3. The function E.

functions H and E are given by Figures 8.2 and 8.3. In the codes the block
sizes are measured in units of 32-bit words and the values of the constants
are:

8.1. Cryptanalysis of Snefru 132

Rotate

Figure 8.4. Graphic description of the first 18 rounds of the function E.

INPUT BLOCK SIZE = 16 (i.e., 512-bit block)
OUTPUT BLOCK SIZE = 4 (for m = 128) or 8 (for m = 256)
NO OF PASSES = the number of passes (2, 3 or 4 passes).

A graphic description of the first 18 rounds of the function E is given in
Figure 8.4. Each row represents a round. Each column represents a word of
data, which is composed of four bytes. The input appears at the top of the
figure, and the calculation is done downwards. The bytes used as inputs
to the S boxes are surrounded by a thick rectangle. The words which are
affected by the output of the S box in each round are painted in gray. After
every group of 16 rounds the values of all the words are rotated.

A cryptographically strong hash function is broken if two different mes-
sages which hash to the same value are found. In particular, we break
Snefru by finding two different chunk-sized messages which hash to the
same value, or in other words, finding two inputs of the function H which
differ only in the chunk part and have the same output. Unless specified
otherwise, we concentrate in the following discussion on two-pass Snefru
with m = 128 (whose chunks are 384-bit long).

8.1. Cryptanalysis of Snefru 133

A universal attack on hash functions is based on the birthday paradox.
If we hash about 2m/2 random messages (264 when m = 128) then with a
high probability we can find among them a pair of messages which hash
to the same value. This attack is applicable to any hash function and is
independent of its details.

For Snefru we designed a differential cryptanalytic attack which is also
independent of the choice of S boxes. Its variants can be used even when
the hash function is viewed as a black box with unknown S boxes.

The basic attack is as follows: choose a random chunk-sized message and
prepend the 128-bit zero vector (or any previous hashed value calculated
from previous chunks) to get the input of the function H. We create a
second message from the first one by modifying the two bytes in the eighth
and the ninth words which are used as inputs to the S boxes at rounds 56
and 57 (the fourth time we use these words). We hash both messages by
the function H and compare the outputs of the two executions. A fraction
of 2−40 of these pairs of messages are hashed to the same value. Therefore,
by hashing about 241 messages we can break Snefru. As described later in
this section, the number can be greatly reduced by using more structured
messages.

In the basic attack we use a characteristic which differentiates only zero
XOR values from non-zero XOR values and does not a priori fix the values
of the non-zero XORs. In round 56 the byte from word eight is used to
garble words seven and nine. In a fraction of about 1/256 of the pairs the
garbling cancels the differences in the byte in the ninth word. Therefore,
for this fraction the XOR of this byte after round 56 is zero and the same
values are XORed to the tenth word in both executions. The same values
are used as inputs to the S boxes in both executions till the next time
a byte of word seven is used at round 71. Round 71 garbles words six
and eight by a different value for each execution and so does round 72
to words seven and nine. In a fraction of about 1/256 of the pairs the
garbled version of the byte used as input to round 73 in the ninth word
cancels its previous XOR value again. Therefore, for this fraction the XOR
of this byte after round 72 is zero and the same values are XORed to the
tenth word in both executions. The same values are used as inputs to the
S boxes in both executions till the next time a byte of word six is used
at round 86. The same cancellation should take place five times in rounds
56, 72, 88, 104 and 120. Therefore, the characteristic’s probability is about
(1/256)5 = 2−40. Each right pair with respect to this characteristic has
zero XORs at the first m bits of the input and at the last m bits of the
output and thus both messages are hashed to the same value. Figure 8.5
is a graphic description of the characteristic. In the figure each column
represents a word of data and each row represents 16 rounds (represented

8.1. Cryptanalysis of Snefru 134

Figure 8.5. Graphic description of the characteristic.

by the thin lines along the edges). The gray area in the middle represents
the modified words (non-zero XORs) in the characteristic. The brighter
gray area represents the bytes with zero XORs in these words. The two
black lines at the top-left and the bottom-right corners point to the words
which are used in the calculation of the hash value by the function H (for
m = 128). Since both of them occur in the white (unmodified) part of
the block, the two messages hash to the same value. Figure 8.6 describes
the modified bytes in intermediate rounds of the characteristic. In this
figure each row represents a round. This same attack can break two-pass
Snefru with any m ≤ 224 bits. Similar attacks with modification of bytes
of three to seven consecutive words of the input XOR of the characteristic
are possible with the same characteristic’s probability. Figure 8.7 describes
a characteristic which modifies seven bytes.

This attack can be enhanced by using structures of messages. If we choose
randomly about 220.5 messages out of the 224 messages which differ only

in three bytes and hash them we get about (220.5)2

2 = 240 legal pairs of
messages which can be used by the attack. With high probability such a
structure contains a right pair, i.e., a pair whose two messages hash to the
same value, and such a pair can be easily found by sorting the 220.5 hashed
values. A variant of this attack can find a pair of messages composed only
from ASCII letters or digits by hashing about 220.5 messages which differ

8.1. Cryptanalysis of Snefru 135

Rotate

Figure 8.6. Zoomed part of the characteristic.

by the appropriate subset of bits in four bytes. By modifying up to seven
bytes (which is the limit of this attack on two-pass Snefru) we can find
pairs of messages hashing to the same value which are composed only from
ASCII capital letters, only from ASCII digits or even from sets of eight
different characters (for example octal digits) with the same complexity

(since (87)2

2 = 241 > 240). This attack can also be used when Snefru is
considered as a black box which hides the choice of the S boxes.

In a black box attack on three-pass Snefru with m = 128 we can modify
only three bytes and the characteristic’s probability is 2−72. Using struc-

tures of 224 messages we obtain about (224)2

2 = 247 pairs in each structure.

Therefore, about 272

247 · 224 = 249 messages should be hashed. For three-pass
Snefru with m = 160 only two bytes can be modified and the complexity
of the attack becomes 257.

The black box attacks are independent of the (unknown) S boxes. The
attack is applicable even if different S boxes are used in different rounds.
A summary of the black box attacks on Snefru is given in Table 8.1. Only
one byte is modified in each word.

8.1. Cryptanalysis of Snefru 136

Figure 8.7. A characteristic with modification of seven bytes.

No. of m Char. No. mod Complexity Birthday Comments

passes prob. bytes of attack complexity

2 128–192 2−40 3 220.5 264–296

224 2 225 2112

128–192 2−40 4 220.5 264–296 Alphanumeric

224 2 229 2112 messages

3 128 2−72 3 249 264

160 2 257 280

Table 8.1. Summary of the black box attacks on Snefru.

An important observation is that whenever the S boxes are known to
the attacker, the modification of the bytes may be done at an intermediate
round rather than in the message itself. In this case we choose a message
and hash it, while recording the value of the data block at some intermedi-
ate round. We modify the value of bytes of consecutive words that are used
in consecutive rounds in the computation. Then, the input of the function
E is calculated backwards and its output is calculated forward. From the
input and the output of E we calculate the output of H. Figure 8.8 describes

8.1. Cryptanalysis of Snefru 137

Figure 8.8. A characteristic with modification at an intermediate round.

a characteristic which modifies the data at the intermediate round denoted
by the dashed line. Note that this technique can be applied to hash func-
tions but not to encryption functions, since we cannot compute partially
encrypted values without knowing the key.

Another observation is that the values of the last and the first modified
bytes can be chosen directly. For each choice of the modifications of all the
bytes except the last, there is exactly one possibility for the modified value
of the last byte which cancels the difference from the previous word. This
value can be easily calculated and thus we can save a factor of 28 relative to
the characteristic’s probability. The first modified bytes can also be chosen
(with a small loop) to save another factor of 28. Therefore, a total factor of
216 can be saved. Additional choices of bytes do not change the complexity.

An extension of these observations makes it possible to modify up to four
bytes in each word and to choose up to twice the number of modified bytes
in a word plus one (i.e., up to 2b+1 bytes depending on the exact character-
istic, where b is the number of modified bytes in a word). A characteristic
which modifies only one byte in each word is called a simple characteristic.
A characteristic which modifies more than one byte in a word is called a
complex characteristic. Note that all the black box attacks described above
use simple characteristics (although it is not necessary).

8.1. Cryptanalysis of Snefru 138

The probability of the simple characteristics of two-pass Snefru described
earlier in this section is 2−40. By modifying four bytes at an intermediate
round and choosing directly the last and the first of them we get 216 possible
data blocks from which we choose and hash about 212.5. The number of
possible pairs is (212.5)2

2 = 224. Each pair has probability of 2−40 ·216 = 2−24

to be a right pair. Therefore, by hashing 212.5 messages we can find a right
pair with a high probability. This attack can be used for any m ≤ 192 bits.
Using a complex characteristic we can attack the case of m = 224 with the
same complexity.

The probability of the simple characteristics of three-pass Snefru is 2−72.
By modifying six bytes in an intermediate round and choosing directly the
last and the first of them we get 232 possible data blocks, from which
we choose and hash about 228.5. The number of possible pairs is about
(228.5)2

2 = 256. Each pair has a probability of 2−72 · 216 = 2−56 to be a
right pair. Therefore, hashing 228.5 messages we can find a right pair with
a high probability. Modification of six bytes makes it possible to use this
attack up to m ≤ 160. The attacks on three-pass Snefru with m = 192 and
m = 224 hash about 228.5 and 233 messages respectively using complex
characteristics.

The probability of the simple characteristics of four-pass Snefru is 2−104.
Using simple characteristics we can only break the variants with m = 192
and m = 224 with complexities 281 and 289 respectively. Using the complex
characteristic with probability 2−160 described in Figure 8.9 we can break
four-pass Snefru with up to m = 192 with complexity 244.5.

A summary of the attacks on Snefru with known S boxes is given in
Table 8.2. The number of modified bytes is denoted by the number of
modified words times the number of modified bytes in each modified word.
The number in parentheses is the number of bytes chosen directly. The S
boxes should be known but the attack is independent of their choice. The
attack is applicable even if different S boxes are used in different rounds.

This attack can also find many partners which hash to the same value
as a given message. For two-pass Snefru, given a message we create new
messages by modifying the value of seven bytes by the characteristic in
Figure 8.7. By trying about 240 such messages we can find with a high
probability a second message which hashes to the same value as the given
message. Moreover, the modification of the last modified byte (typically in
word 12) may be chosen after the garbling from the previous bytes is known.
Therefore, the value of this modified byte can be chosen directly to cancel
the garbling, and can decrease the complexity of this attack by a factor of
28. If the modification is in a middle round it is possible to verify the value
of the first modified byte after choosing the last one directly and decrease

8.1. Cryptanalysis of Snefru 139

Figure 8.9. A complex four-pass characteristic.

8.1. Cryptanalysis of Snefru 140

No. of m Char. No. mod Complexity Birthday Comments

passes prob. bytes of attack complexity

2 128–192 2−40 4·1 (2) 212.5 264–296

224 2·1 (2) 225 2112

224 2−56 2·3 (4) 212.5 2112

128–192 2−40 4·1 (1) 217 264–296 Alphanumeric

224 2·1 (1) 229 2112 messages

3 128–160 2−72 6·1 (2) 228.5 264–280

192 2−80 4·2 (3) 228.5 296

224 2−96 2·4 (5) 233 2112

4 128–192 2−160 4·4 (9) 244.5 264–296

224 2−112 2·2 (3) 281 2112

Table 8.2. Summary of the attacks on Snefru with known S boxes.

No. of m Char. No. mod Complexity Brute Comments

passes prob. bytes of attack force

2 128–160 2−40 6·1 (2) 224 2128–2160

128–160 6·1 (0) 240 2128–2160 Black box

128–224 2−64 2·4 (5) 224 2128–2224

128–160 2−40 7·1 (1) 232 2128–2160 Alphanumeric

128–160 7·1 (0) 240 2128–2160 Alphanumeric,

black box

3 128–224 2−96 2·4 (5) 256 2128–2224

4 128–192 2−160 4·4 (9) 288 2128–2192

Table 8.3. Summary of the attacks which find partners of given messages.

the complexity by a total factor of 216 to about 224 hash calculations.
This variant can be applied to three-pass and four-pass Snefru as well. A
summary of the attacks on Snefru which can find many partners of given
messages is given in Table 8.3.

A personal computer implementation of this attack on two-pass Snefru
finds a pair of messages which hash to the same value within three minutes.
It finds a partner of a given message in about an hour. Typical results of
this implementation are:

1. The following two messages hash to the same value by two-pass Snefru.
The messages are 48-byte long and are denoted as 12 words. The messages

8.1. Cryptanalysis of Snefru 141

and the hashed value are given in hexadecimal.

• Message 1: 3fe15e26 23b7c030 c7089999 90efc48f a04d87ee

16493392 00046085 00003415 00000000 00000000 00000000

00000000.

• Message 2: 3fe15e26 23b7c030 c7089999 90efc48f a9a09fee

d74af7ae 096c7885 c19ef029 00000000 00000000 00000000

00000000.

• Common hash value: c8ff5e2c 8f9cf7c7 f08ddaa7 e4f9b44e.

2. The following four messages hash to the same value as the (chosen) zero
message:

• Message 1: 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000.

• Message 2: 00000000 f1301600 13dfc53e 4cc3b093 37461661

ccd8b94d 24d9d35f 71471fde 00000000 00000000 00000000

00000000.

• Message 3: 00000000 1d197f00 2abd3f6f cf33f3d1 8674966a

816e5d51 acd9a905 53c1d180 00000000 00000000 00000000

00000000.

• Message 4: 00000000 e98c8300 1e777a47 b5271f34 a04974bb

44cc8b62 be4b0efc 18131756 00000000 00000000 00000000

00000000.

• Common hash value: 2e88e244 e9d4a208 b2d02fbb 72d0eee6.

3. The following 36-byte messages hash to the same value by two-pass
Snefru with m = 224:

• Message 1: 5bcc4d9b e1da3df2 a6fb6db0 002eef3f 00000007

00000000 00000000 00000000 00000000.

• Message 2: eb11879b e1da3d07 1626a76e 002eef3f 00000007

00000000 00000000 00000000 00000000.

• Common hash value: 70c0577c 3feb6c47 42edcd49 a28241e3

b5e9fc88 1968f18f 1d712965.

8.2. Cryptanalysis of N-Hash 142

IV H H H H H H Output

Message

Figure 8.10. Outline of N-Hash.

8.2 Cryptanalysis of N-Hash

N-Hash[25] is designed as a cryptographically strong hash function which
hashes messages of arbitrary length into 128-bit values. The messages are
divided into 128-bit blocks, and each block is mixed with the hashed value
computed so far by a randomizing function g. The new hashed value is the
XOR of the output of the g-function with the block itself and with the
old hashed value. The g-function contains eight randomizing rounds, and
each one of them calls an F function (which is similar to the one of FEAL)
four times. A graphic description of N-Hash is given in Figures 8.10, 8.11,
and 8.12.

We break N-Hash by finding two different 128-bit messages which are
hashed to the same 128-bit value. Since the output of the g-function is
XORed with its input in order to form the hashed value, it suffices to find
a right pair for a characteristic of the g-function in which ΩP = ΩT . After
XORing the input with the output of the g-function, the hashed value XOR
becomes zero and thus the two messages have the same hashed value.

The following characteristic is a three-round iterative characteristic with
probability 2−16 (N-Hash does not swap the two halves after each round
since the swap operation is part of the round itself. Therefore, the con-
catenation of the characteristic Ω1 with the characteristic Ω2 is possible
whenever Ω1

T = Ω2
P without swapping). In the description of this charac-

teristic we refer to the value 80 60 80 00x as ψ and to the value 80 E0 80 00x

as ϕ. Note that both ψ → (ψ ⊕ ϕ) and ϕ → (ψ ⊕ ϕ) with probability 1
4

by the F function. The behavior of the XORs in the F function in this
characteristic is similar to their behavior in the iterative characteristic of
FEAL. The characteristic itself is based on the input difference:

ΩP = (ψ, ψ, 0, 0).

8.2. Cryptanalysis of N-Hash 143

PS
V1

PS
V2

PS
V3

PS
V4

PS
V5

PS
V6

PS
V7

PS
V8

U
EXG

Hi-1 Hi

Mi

g X1 X2 X3 X4

FP1 FP2

FP3 FP4

Y1 Y2 Y3 Y4

Figure 8.11. The function H and one round (PS) of N-Hash.

S1

S0

S0 S1

F0 F1 F2 F3

f0 f1 f2 f3

k0
k1
k2
k3

Figure 8.12. The F function of N-Hash.

8.2. Cryptanalysis of N-Hash 144

Number of Rounds Complexity

3 28

6 224

9 240

12 256

15 272

Table 8.4. Summary of the attack on N-Hash.

With probability 1
256 the difference after the first round is

(0, 0, ϕ, ϕ).

With probability 1
16 the difference after the second round is

(ψ, ψ, ϕ, ϕ).

And with probability 1
16 the difference after the third round is

ΩT = ΩP = (ψ, ψ, 0, 0).

Therefore, the probability of the characteristic is 2−16.

A pair of messages whose XOR equals ΩP has probability
(
2−16

)2
= 2−32

to have ΩT as its output XOR after the sixth round of the g-function,
and thus to have the same hashed value after their inputs and outputs
are XORed by the six-round variant of N-Hash. Instead of trying about
232 random pairs of messages we can choose only pairs from a smaller
set in which the characteristic is guaranteed to be satisfied in the four F
functions of the first round. The pairs in this set are chosen by the following
algorithm. For each F function in the first round we search a priori a list of
input pairs for which the input XOR and the output XOR are as expected
by the characteristic. To get a new pair we choose a random input pair
for each F function and from the four input pairs and their corresponding
outputs we deduce the two messages backwards. Therefore, the probability
in this set is increased by a factor of 256, and only about 224 such pairs
have to be tested in order to find a pair of messages which hash to the same
value.

Since we use a three-round iterative characteristic, this specific attack
works only for variants of N-Hash whose number of rounds is divisible by
three. Table 8.4 describes the results of this attack. We can see from the
table that this attack is faster than the birthday attack (whose complexity
is 264) for variants of N-Hash with up to 12 rounds.

8.2. Cryptanalysis of N-Hash 145

The attack on N-Hash with six rounds was implemented on a personal
computer and the following pairs of messages (as well as many others) were
found within about two hours:

• – CAECE595 127ABF3C 1ADE09C8 1F9AD8C2

– 4A8C6595 921A3F3C 1ADE09C8 1F9AD8C2

– Common hash value: 12B931A6 399776B7 640B9289 36C2EF1D

• – 5878BE49 F2962D67 30661E17 0C38F35E

– D8183E49 72F6AD67 30661E17 0C38F35E

– Common hash value: 29B0FE97 3D179E0E 5B147598 137D28CF.

9

Non-Differential Cryptanalysis
of DES with a Small Number
of Rounds

In this chapter we describe several novel attacks on DES reduced to 3–6
rounds which are not based on the ciphertext pair paradigm. These attacks
are of three kinds: ciphertext only attacks, known plaintext attacks and
statistical known plaintext attacks. Compared to differential attacks, they
analyze fewer ciphertexts but require more time.

9.1 Ciphertext Only Attacks

9.1.1 A Three-Round Attack

This attack assumes that the eight plaintext bytes are ASCII characters
whose most significant bits are zeroes, and crucially depends on the fact
that the initial permutation (IP) moves the most significant bits of all these
bytes into a single byte. This byte is the fifth byte of the permuted plaintext
which is the first byte of the right half. Given a ciphertext T = (TL, TR)
we can easily calculate eight bits of the output of the second round by
B = a⊕ c = PR ⊕ TR. From Table A.4 we see that these eight bits are the
output of seven S boxes in the second round (two of them are outputs of
S5). The attack is as follows:

1. We try all the possibilities of the key bits entering S5 in the second
round and all the key bits entering the six S boxes S1, S2, S3, S4, S6
and S8 in the third round whose output bits are XORed into the data
bits entering S5 in the second round. Three of these bits are counted
twice (in both rounds) and thus only 39 bits are exhaustively tried.

2. Using the tried key bits and any ciphertext we can calculate the
output of the six S boxes in the third round and the input and the
output of S5 in the second round.

9.1. Ciphertext Only Attacks 147

3. We compare the two computed output bits of S5 in the second round
to their expected value. If they are different then the value of the
39 key bits is wrong. A quarter of the tried keys have the expected
value. By trying additional ciphertexts we can discard additional key
values. We stop when only one candidate remains.

Since we start with 239 possible keys and only 1
4 of them survive each test,

we need about log4 239 = 19.5 ciphertexts. When the correct 39 key bits are
determined, we can exhaustively try all the possible values of the remaining
17 bits by checking whether the decoded plaintexts are ASCII characters.
This ciphertext only attack requires a total of 239 steps and 20 ciphertexts
to break DES reduced to three rounds.

9.1.2 Another Three-Round Attack

In this attack we assume that the plaintext bytes belong to a smaller set
in which the three most significant bits are constant. Such sets are the
ASCII capital letters, the ASCII lower case letters and the ASCII digits.
The three most significant bits of all the eight plaintext bytes are packed
into three bytes by the initial permutation. These three bytes are the first
byte of the left half and the first and second bytes of the right half. Since
the first and second bytes of the right half are constant in all the plaintext
blocks, the inputs of S2 and S3 in the first round are constant and thus
their outputs are constant as well. We can calculate the output of the third
round by C = PL ⊕A⊕ TL. Two bits of the eight constant bits in PL have
corresponding constant bits in A: one of them is an output of S2 and the
other is an output of S3 (see Table A.4). Since TL is known, the two bits
in C are known up to a XOR with a constant. These bits are outputs of
S2 and S3. Trying all the 64 possibilities of the key bits entering S2 in the
third round, we can check that in any pair of ciphertexts the output bit of
S2 satisfies C1 ⊕TL1 = C2 ⊕TL2. Since half the keys satisfy this condition,
we need about 1 + log2 64 = 7 ciphertexts to find the six key bits entering
S2 in the third round. The same ciphertexts can be used to find the six key
bits entering S3 in the third round. This leaves 44 unknown key bits which
can be found later.

9.1.3 A Four-Round Attack

This attack is an extension of the previous three-round attack and assumes
(as before) that the three most significant bits of each plaintext byte are
constant. In this attack two bits of C are found by C = A⊕PL ⊕TR. Then

9.2. Known Plaintext Attacks 148

two output bits (one in S2 and one in S3 in the third round) are known
up to a constant. We try all the possible key values of the six key bits of
S2 (or similarly S3) in the third round and all the possible key values of
the six S boxes in the fourth round whose output bits are XORed with the
data bits entering S2 (or S3) in the third round. We try a total of 36 key
bits entering the fourth round and six key bits entering the third round,
but five bits are common (six when using S3) and thus we have to try 237

possible key values. We need about 1 + log2 237 = 1 + 37 = 38 ciphertexts
to make the computed key unique.

9.2 Known Plaintext Attacks

9.2.1 A Three-Round Attack

The DES key scheduling algorithm divides the 56 key bits into two 28-bit
key registers (called the C register and the D register, see Appendix A.1).
Each register supplies the key bits to the same four S boxes in all the
rounds. The following attack exploits this particular aspect of DES.

Consider DES reduced to three rounds with a single known plaintext and
its corresponding ciphertext. The exclusive-or value of the output of the
first round and the third round is known by A⊕ C = PL ⊕ TL.

We first try all the 228 possibilities of one key register. Each candidate
makes it possible to compute the output of four S boxes in the first round
and the output of the same S boxes in the third round. We know their
expected exclusive-or value. Since the value has 16 bits, only about 2−16 of
the candidates survive this test. Thus we get about 212 possibilities for the
first 28 bits of the key. In a similar way we get about 212 possibilities for the
other 28 bits of the key. Therefore we find about 212 ·212 = 224 possibilities
for the full key, which can be exhaustively searched. The complexity of this
algorithm is about 229, and can be reduced to about 221 by choosing the key
bits entering each S box sequentially rather than in parallel, and discarding
partial keys as soon as they lead to a contradiction. Using several known
plaintexts, the complexity of this attack can be reduced to 28.

9.3. Statistical Known Plaintext Attacks 149

9.3 Statistical Known Plaintext Attacks

9.3.1 A Three-Round Attack

In this attack we use the fact that in a difference distribution table, if
we know that the output XOR is zero then the input XOR is zero with
probability 1

4 . Given the plaintext and the ciphertext of an encryption, we
can easily calculate A⊕C = PL ⊕TL. Then the following algorithm is used
for each S box. Choose only the encryptions whose output XOR from this
S box is zero (1

16 of the encryptions): SOa ⊕SOc = 0. If SIa ⊕SIc = 0 then
the corresponding bits of a ⊕ c = PR ⊕ TR equal SKa ⊕ SKc. We count
the number of occurrences of each such value. The right value is suggested
by about 1

4 of the encryptions. Each incorrect value is suggested by about
3
4 · 1

63 of the encryptions. The value that appears most frequently is likely
to be the value of SKa ⊕ SKc. This algorithm is used for each S box and
thus we find 8 · 6 = 48 bits that are XORs of the actual key bits. Then
trying 28 possibilities we can find the full 56 bit key. We need about four
occurrences of the right value of the key XOR for each S box, i.e., a total
of about 4 · 4 · 16 = 256 random plaintext/ciphertext pairs.

9.3.2 A Four-Round Attack

In this attack we use the fact that for all the S boxes there is a weak
correlation between the value of the XOR of the four output bits and the
value of bit number 2 of the input (this phenomenon was pointed out by
Shamir[34], but at the time it did not seen to make cryptanalysis easier). In
particular, for every two inputs of an S box, if the XOR of the four output
bits of the first input equals the corresponding value of the second input
then both bits 2 of the input are equal with a certain probability. This
probability is different for each S box and varies between 0.56 and 0.70.

Given a plaintext and its corresponding ciphertext, we can easily calcu-
late SOa ⊕ SOc by A⊕C = PL ⊕ TR. Then the following algorithm can be
used separately for each S box. For every encryption calculate the (single
bit) XOR of the four output bits of the first round and the four output
bits of the third round by the above equation. This value is likely to be
equal to the XOR of bits number 2 of the inputs of the S box in these two
rounds. SIa is known up to a XOR with the key (by the plaintext) and
thus bit number 2 of the input in the third round is known up to a XOR
with a constant with a high probability. This constant is the XOR of the
corresponding bit number 2 in SKa ⊕ SKc. Thus by D = TL ⊕ c we find
the corresponding output bit in the fourth round up to that constant with

9.3. Statistical Known Plaintext Attacks 150

By Finding Average Best tradeoff

S box Bits of Probability Values Encryptions

S1 S4 66% 16 75

S2 S8 57% 8 195

S3 S1 58% 7 240

S4 S2 56% 9 370

S5 S1 70% 16 50

S6 S8 61% 8 135

S7 S5 60% 14 210

S8 S6 63% 12 120

Table 9.1. Number of encryptions needed to find SKd for each S box.

a high probability. We try all the 64 possibilities of the key bits entering
the corresponding S box in the fourth round and the two possibilities of
the constant and verify that the specific output bit of the S box equals
its expected value. The right key value is counted in about 56%–70% of
the encryptions, depending on the exact S box. Any wrong key value is
counted in about half of the encryptions. The key value which is counted
most frequently is likely to be the right value. For each tried S box, this
attack finds a total of seven bits: six of them are actual key bits and the
seventh is an XOR of two key bits.

The attack obtains the best results when the probability is as high as
possible. To increase the probability we use only encryptions with specific
values of SOa ⊕ SOc which maximize this probability. For instance, when
S5Oa⊕S5Oc = 0 this probability is about 0.81. There is a tradeoff between
the number of allowed values and the corresponding probability. As the
number of allowed values increases, the probability decreases so we need
more data to carry out the attack. However, as the number of allowed
values decreases we need more data to make the occurrence of these values
sufficiently probable. Table 9.1 describes the best tradeoff achievable by
this attack. To make the best use of this attack it is advisable to use about
200 plaintext/ciphertext pairs, from which we can find almost 28 key bits,
and search exhaustively for the (about 228) remaining possibilities of the
key. Using about 370 plaintext/ciphertext pairs we can find almost 42 key
bits and search exhaustively for the (about 214) remaining possibilities of
the key.

9.3. Statistical Known Plaintext Attacks 151

9.3.3 A Five-Round Attack

This five-round attack is similar to the previous algorithm. We can calculate
B ⊕ D = PR ⊕ TR. Then an input XOR bit of the S box in the second
and fourth round is known with probability between 0.56 and 0.70. As a
result, an output bit of A ⊕ E is known up to a XOR with a constant by
PL ⊕ A = b and d ⊕ E = TL and thus A ⊕ E = b ⊕ d ⊕ PL ⊕ TL. Using a
counting method that counts on the key bits entering the same S box in
the first round, the key bits entering the corresponding S box in the fifth
round, and the constant, we can find 13 bits of the key: six of them are
actual key bits from the first round, six are actual key bits from the fifth
round, and the thirteenth bit is an XOR of two key bits. The amount of
data needed to find these 13 key bits is about the same as in the previous
attack.

9.3.4 A Six-Round Attack

This attack is again similar to the attack on five rounds, but we also have
to count all the possibilities of the 36 subkey bits of the sixth round which
enter S boxes whose output bits enter the counted S box in the fifth round
by the P permutation. In total we count on 49 bits. The total complexity
of this attack is about 255–256 but the basic operation (which is similar to
a single application of the F function) is simpler than an encryption, and
thus the time needed is marginally faster than exhaustive search.

Appendix A

Description of DES

The Data Encryption Standard (DES)[28] is a blockcipher which encrypts
64-bit plaintexts into 64-bit ciphertexts under 56-bit keys. In the descrip-
tion of DES, the bit locations are numbered from 1 to 64 for 64-bit values,
and similarly for shorter values. Bit number 1 is the most significant bit of
the first byte, and bit number 64 is the least significant bit of the eighth
byte. The 56-bit key is represented as a 64-bit value, in which 56 bits are
the key bits, while all the bits whose numbers are multiples of eight are
used as parity bits, and are ignored by the algorithm.

The first part of the algorithm permutes the plaintext by an initial per-
mutation IP while the final part of the algorithm permutes the bits by the
inverse of the initial permutation, called final permutation. The body of
the algorithm, which is executed between these two permutations, divides
the block of the data into two 32-bit halves: the right half of the data and
the left half of the data. The basic step of the algorithm is called a round,
in which two new halves are calculated using the previous two halves and
a 48-bit subkey, which is calculated by a key scheduling algorithm from the
key. In DES, the body of the algorithm is composed of 16 rounds, which
use 16 different subkeys K1, K2, . . . , K16, where K1 is used in the first
round, K2 in used in the second round, and so on. In the round itself, an
F function is calculated with the right half of the data and the subkey
as inputs. The left half of the data is XORed with the output of the F
function. Between any two rounds, the two halves are exchanged (but not
before the first round nor after the last round). Figure A.1 describes this
structure of DES.

The F function expands the 32-bit right half to 48 bits by anE expansion
which duplicates 16 bits, and the result is XORed with the 48-bit subkey.
Then, the resultant 48-bit value is subjected to eight S boxes, called S1, S2,
. . . , S8, each one of which maps six bits into four bits using a particular
lookup table. The 32 output bits of the S boxes are concatenated and
permuted by a P permutation, whose output is the final output of the F
function. The F function of DES is outlined in Figure 3.2.

The particular choices of the initial permutation, of the P permutation
and of the E expansion of DES are given in Tables A.1, A.2 and A.3
respectively. These tables are arranged as bit selection tables. Each location

Appendix A. Description of DES 153

C D

PC-1

Key (K)

ROL1 ROL1

PC-2

K1

ROL1 ROL1

PC-2

K2

ROL2 ROL2

PC-2

K3

ROL ROL

PC-2

Ki

ROL2 ROL2

PC-2

K13

ROL2 ROL2

PC-2

K14

ROL2 ROL2

PC-2

K15

ROL1 ROL1

PC-2

K16

IP

Plaintext (P)

F

F

F

F

F

F

F

F

FP

Ciphertext (T)

Figure A.1. Outline of DES and of its key scheduling algorithm.

Appendix A. Description of DES 154

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Table A.1. The initial permutation.

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

Table A.2. The P permutation.

corresponds to an output bit, and contains the number of the input bit
which is copied into that location. For example, the first bit in the output
of the P permutation has the same value as bit number 16 of its input. For
easy reference, we also include Table A.4 which describes how the output
bits of each S box in any particular round are permuted and expanded
towards the S boxes in the following round.

The S boxes of DES are six-bit to four-bit lookup tables. Each S box maps
64 possible input values into 16 output values. In the standard description

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Table A.3. The E expansion.

Appendix A. Description of DES 155

From To

Bit S box Bit Mask Bit S box Bit Mask Missing

no. and bit (hex) no. and bit (hex) S box

1 S1 1 80 00 00 00 9 S2.6 S3.2 00 80 00 00 S7

2 2 40 00 00 00 17 S4.6 S5.2 00 00 80 00

3 3 20 00 00 00 23 S6.4 00 00 02 00

4 4 10 00 00 00 31 S8.4 00 00 00 02

5 S2 1 08 00 00 00 13 S3.6 S4.2 00 08 00 00 S6

6 2 04 00 00 00 28 S7.5 S8.1 00 00 00 10

7 3 02 00 00 00 2 S1.3 40 00 00 00

8 4 01 00 00 00 18 S5.3 00 00 40 00

9 S3 1 00 80 00 00 24 S6.5 S7.1 00 00 01 00 S1

10 2 00 40 00 00 16 S4.5 S5.1 00 01 00 00

11 3 00 20 00 00 30 S8.3 00 00 00 04

12 4 00 10 00 00 6 S2.3 04 00 00 00

13 S4 1 00 08 00 00 26 S7.3 00 00 00 40 S2

14 2 00 04 00 00 20 S5.5 S6.1 00 00 10 00

15 3 00 02 00 00 10 S3.3 00 40 00 00

16 4 00 01 00 00 1 S8.6 S1.2 80 00 00 00

17 S5 1 00 00 80 00 8 S2.5 S3.1 01 00 00 00 S8

18 2 00 00 40 00 14 S4.3 00 04 00 00

19 3 00 00 20 00 25 S6.6 S7.2 00 00 00 80

20 4 00 00 10 00 3 S1.4 20 00 00 00

21 S6 1 00 00 08 00 4 S1.5 S2.1 10 00 00 00 S4

22 2 00 00 04 00 29 S7.6 S8.2 00 00 00 08

23 3 00 00 02 00 11 S3.4 00 20 00 00

24 4 00 00 01 00 19 S5.4 00 00 20 00

25 S7 1 00 00 00 80 32 S8.5 S1.1 00 00 00 01 S5

26 2 00 00 00 40 12 S3.5 S4.1 00 10 00 00

27 3 00 00 00 20 22 S6.3 00 00 04 00

28 4 00 00 00 10 7 S2.4 02 00 00 00

29 S8 1 00 00 00 08 5 S1.6 S2.2 08 00 00 00 S3

30 2 00 00 00 04 27 S7.4 00 00 00 20

31 3 00 00 00 02 15 S4.4 00 02 00 00

32 4 00 00 00 01 21 S5.6 S6.2 00 00 08 00

Table A.4. Expanded P permutation.

of DES, the S boxes are described as four permutations of the numbers
0,. . . ,15. In this description, the middle four bits of the six input bits denote
the value to be permuted, while the outer two bits (bit 1 and bit 6) choose
the permutation. The standard choice of the S boxes of DES is described in
Tables A.5–A.12. Table A.13 describes the input values which correspond
to each entry in the standard description of the S boxes.

Appendix A. Description of DES 156

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table A.5. S box S1.

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table A.6. S box S2.

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table A.7. S box S3.

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

Table A.8. S box S4.

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Table A.9. S box S5.

A.1. The Key Scheduling Algorithm 157

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Table A.10. S box S6.

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table A.11. S box S7.

A.1 The Key Scheduling Algorithm

The key scheduling algorithm calculates the values of the 16 48-bit subkeys
K1, K2, . . . , K16 from the 56-bit key. These subkeys are later used as inputs
to the F functions in the various rounds of the encryption algorithm. The
first part of the key scheduling algorithm permutes the 56 key bits by a
permutation called PC-1 which is described in Table A.14 and divides them
into two 28-bit key registers called the C register and the D register. The
key bits are numbered from 1 to 64, while the eight bits whose numbers
are multiples of eight (8, 16, 24, . . . , 64) are parity bits, and thus only 56
bits are participating in the algorithm itself. The bits of the C register are
57, 49, . . . , 36 of the key and the bits of the D register are 63, 55, . . . , 4 of
the key. In each round the registers C and D are rotated one or two bits
to the left, as is defined in Table A.15. Then, PC-2 takes the concatenated
value of the C and the D registers, selects 48 bits (24 bits from each key

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table A.12. S box S8.

A.2. DES Modes of Operation 158

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Table A.13. The input values which correspond to the standard description
of the S boxes.

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Table A.14. PC-1.

register) and permutes them to form the 48-bit subkey of the corresponding
round. PC-2 is described in Table A.16. The outline of the key scheduling
algorithm is given in Figure A.1.

A.2 DES Modes of Operation

The standard includes several modes of operation in which DES can be
used[29].

The simplest mode of operation is the Electronic Code Book (ECB)
mode. In this mode, any plaintext P is divided into 64-bit blocks P =

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rotations 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table A.15. Number of rotations in the key scheduling algorithm.

A.2. DES Modes of Operation 159

14 17 11 24 1 5

3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Table A.16. PC-2.

P1P2P3 . . . Pm, and all the plaintext blocks are encrypted under a key K
into ciphertext blocks by Ti = DES(Pi,K). The ciphertext is the concate-
nated value of the ciphertext blocks T = T1T2T3 . . . Tm.

A more complicated mode of operation is the Cipher Block Chaining
(CBC) mode. In this mode, each plaintext block is encrypted after it is
mixed with the previous ciphertext block by Ti = DES(Pi ⊕ Ti−1,K).
Again, the ciphertext is the concatenated value of the ciphertext blocks
T = T1T2T3 . . . Tm. This mode requires an initial value T0 (which is also
called IV).

The other two modes of operation are feedback modes which generate
long pseudo-random bit streams by repeatedly encrypting an initial value.
The ith block of pseudo-random bits Vi is then XORed with the ith plaintext
block Pi to form the ith ciphertext block Ti = Pi ⊕ Vi.

In the Output Feedback (OFB) mode, Vi is calculated by encrypting
Vi−1 by Vi = DES(Vi−1,K), and an initial value V0 (which is also called
IV) is required.

In the Cipher Feedback (CFB) mode, Vi is calculated by encrypting the
previous ciphertext block Ti−1 by Vi = DES(Ti−1,K), and an initial value
T0 (which is also called IV) is required.

Both feedback modes have variants with shift-registers which use fewer
than 64 bits from Vi−1 or Ti−1 as feedback. However, these variants are
slower than the 64-bit variants, and the OFB variants with less than 64
bits of feedback have short cycles[10].

Appendix B

The Difference Distribution
Tables of DES

The difference distribution table of an S box shows how many input pairs
have each combination of the input XOR and output XOR values. In the
table, each row corresponds to one input XOR value and each column
corresponds to one output XOR value (both in hexadecimal notation). The
value in each entry counts the number of pairs (in decimal notation, among
all the 64 · 64 = 4096 possible pairs) whose input XORs and output XORs
are as specified by the row and by the column of the entry. Since there are
only 64 · 16 = 1024 entries in the table, the average value of the number of
pairs in each entry is four.

The first row in the table is special. Since in the first row the input XOR
is zero, the output XOR must be zero as well. Therefore, the entry with
zero output XOR counts all the 64 pairs whose input XOR is zero and the
other entries in this row do not count any pair at all. In other rows, many
possible values arise. For example, for the input XOR 1x, eleven output
XORs are possible. For the input XOR 34x and the output XOR 2x the
number of possible pairs is 16, and thus a quarter of the pairs with this
input XOR lead to the output XOR 2x.

Appendix B. The Difference Distribution Tables of DES 161

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4
2x 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2
3x 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0
4x 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2
5x 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6
6x 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12
7x 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4
8x 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4
9x 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12
Ax 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10
Bx 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12
Cx 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2
Dx 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2
Ex 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8
Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8

10x 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6
11x 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0
12x 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0
13x 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6
14x 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0
15x 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4
16x 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6
17x 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0
18x 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2
19x 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0
1Ax 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8
1Bx 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2
1Cx 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0
1Dx 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0
1Ex 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2
1Fx 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4
20x 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12
21x 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8
22x 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10
23x 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10
24x 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4
25x 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2
26x 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0
27x 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4
28x 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2
29x 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4
2Ax 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2
2Bx 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4
2Cx 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6
2Dx 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6
2Ex 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4
2Fx 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2
30x 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4
31x 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8
32x 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0
33x 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4
34x 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6
35x 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0
36x 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0
37x 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4
38x 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10
39x 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0
3Ax 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0
3Bx 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2
3Cx 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0
3Dx 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4
3Ex 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4
3Fx 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

Table B.1. The difference distribution table of S1.

Appendix B. The Difference Distribution Tables of DES 162

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 4 0 2 6 4 0 14 8 6 8 4 6 2
2x 0 0 0 2 0 4 6 4 0 0 4 6 10 10 12 6
3x 4 8 4 8 4 6 4 2 4 2 2 4 6 2 0 4
4x 0 0 0 0 0 6 0 14 0 6 10 4 10 6 4 4
5x 2 0 4 8 2 4 6 6 2 0 8 4 2 4 10 2
6x 0 12 6 4 6 4 6 2 2 10 2 8 2 0 0 0
7x 4 6 6 4 2 4 4 2 6 4 2 4 4 6 0 6
8x 0 0 0 4 0 4 0 8 0 10 16 6 6 0 6 4
9x 14 2 4 10 2 8 2 6 2 4 0 0 2 2 2 4
Ax 0 6 6 2 10 4 10 2 6 2 2 4 2 2 4 2
Bx 6 2 2 0 2 4 6 2 10 2 0 6 6 4 4 8
Cx 0 0 0 4 0 14 0 10 0 6 2 4 4 8 6 6
Dx 6 2 6 2 10 2 0 4 0 10 4 2 8 2 2 4
Ex 0 6 12 8 0 4 2 0 8 2 4 4 6 2 0 6
Fx 0 8 2 0 6 6 8 2 4 4 4 6 8 0 4 2

10x 0 0 0 8 0 4 10 2 0 2 8 10 0 10 6 4
11x 6 6 4 6 4 0 6 4 8 2 10 2 2 4 0 0
12x 0 6 2 6 2 4 12 4 6 4 0 4 4 6 2 2
13x 4 0 4 0 8 6 6 0 0 2 0 6 4 8 2 14
14x 0 6 6 4 10 0 2 12 6 2 2 2 4 4 2 2
15x 6 8 2 0 8 2 0 2 2 2 2 2 2 14 10 2
16x 0 8 6 4 2 2 4 2 6 4 6 2 6 0 6 6
17x 6 4 8 6 4 4 0 4 6 2 4 4 4 2 4 2
18x 0 6 4 6 10 4 0 2 4 8 0 0 4 8 2 6
19x 2 4 6 4 4 2 4 2 6 4 6 8 0 6 4 2
1Ax 0 6 8 4 2 4 2 2 8 2 2 6 2 4 4 8
1Bx 0 6 4 4 0 12 6 4 2 2 2 4 4 2 10 2
1Cx 0 4 6 6 12 0 4 0 10 2 6 2 0 0 10 2
1Dx 0 6 2 2 6 0 4 16 4 4 2 0 0 4 6 8
1Ex 0 4 8 2 10 6 6 0 8 4 0 2 4 4 0 6
1Fx 4 2 6 6 2 2 2 4 8 6 10 6 4 0 0 2
20x 0 0 0 2 0 12 10 4 0 0 0 2 14 2 8 10
21x 0 4 6 8 2 10 4 2 2 6 4 2 6 2 0 6
22x 4 12 8 4 2 2 0 0 2 8 8 6 0 6 0 2
23x 8 2 0 2 8 4 2 6 4 8 2 2 6 4 2 4
24x 10 4 0 0 0 4 0 2 6 8 6 10 8 0 2 4
25x 6 0 12 2 8 6 10 0 0 8 2 6 0 0 2 2
26x 2 2 4 4 2 2 10 14 2 0 4 2 2 4 6 4
27x 6 0 0 2 6 4 2 4 4 4 8 4 8 0 6 6
28x 8 0 8 2 4 12 2 0 2 6 2 0 6 2 0 10
29x 0 2 4 10 2 8 6 4 0 10 0 2 10 0 2 4
2Ax 4 0 4 8 6 2 4 4 6 6 2 6 2 2 4 4
2Bx 2 2 6 4 0 2 2 6 2 8 8 4 4 4 8 2
2Cx 10 6 8 6 0 6 4 4 4 2 4 4 0 0 2 4
2Dx 2 2 2 4 0 0 0 2 8 4 4 6 10 2 14 4
2Ex 2 4 0 2 10 4 2 0 2 2 6 2 8 8 10 2
2Fx 12 4 6 8 2 6 2 8 0 4 0 2 0 8 2 0
30x 0 4 0 2 4 4 8 6 10 6 2 12 0 0 0 6
31x 0 10 2 0 6 2 10 2 6 0 2 0 6 6 4 8
32x 8 4 6 0 6 4 4 8 4 6 8 0 2 2 2 0
33x 2 2 6 10 2 0 0 6 4 4 12 8 4 2 2 0
34x 0 12 6 4 6 0 4 4 4 0 4 6 4 2 4 4
35x 0 12 4 6 2 4 4 0 10 0 0 8 0 8 0 6
36x 8 2 4 0 4 0 4 2 0 8 4 2 6 16 2 2
37x 6 2 2 2 6 6 4 8 2 2 6 2 2 2 4 8
38x 0 8 8 10 6 2 2 0 4 0 4 2 4 0 4 10
39x 0 2 0 0 8 0 10 4 10 0 8 4 4 4 4 6
3Ax 4 0 2 8 4 2 2 2 4 8 2 0 4 10 10 2
3Bx 16 4 4 2 8 2 2 6 4 4 4 2 0 2 2 2
3Cx 0 2 6 2 8 4 6 0 10 2 2 4 4 10 4 0
3Dx 0 16 10 2 4 2 4 2 8 0 0 8 0 6 2 0
3Ex 4 4 0 10 2 4 2 14 4 2 6 6 0 0 6 0
3Fx 4 0 0 2 0 8 2 4 0 2 4 4 4 14 10 6

Table B.2. The difference distribution table of S2.

Appendix B. The Difference Distribution Tables of DES 163

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 2 0 4 2 12 0 14 0 4 8 2 6 10
2x 0 0 0 2 0 2 0 8 0 4 12 10 4 6 8 8
3x 8 6 10 4 8 6 0 6 4 4 0 0 0 4 2 2
4x 0 0 0 4 0 2 4 2 0 12 8 4 6 8 10 4
5x 6 2 4 8 6 10 6 2 2 8 2 0 2 0 4 2
6x 0 10 6 6 10 0 4 12 2 4 0 0 6 4 0 0
7x 2 0 0 4 4 4 4 2 10 4 4 8 4 4 4 6
8x 0 0 0 10 0 4 4 6 0 6 6 6 6 0 8 8
9x 10 2 0 2 10 4 6 2 0 6 0 4 6 2 4 6
Ax 0 10 6 0 14 6 4 0 4 6 6 0 4 0 2 2
Bx 2 6 2 10 2 2 4 0 4 2 6 0 2 8 14 0
Cx 0 0 0 8 0 12 12 4 0 8 0 4 2 10 2 2
Dx 8 2 8 0 0 4 2 0 2 8 14 2 6 2 4 2
Ex 0 4 4 2 4 2 4 4 10 4 4 4 4 4 2 8
Fx 4 6 4 6 2 2 4 8 6 2 6 2 0 6 2 4

10x 0 0 0 4 0 12 4 8 0 4 2 6 2 14 0 8
11x 8 2 2 6 4 0 2 0 8 4 12 2 10 0 2 2
12x 0 2 8 2 4 8 0 8 8 0 2 2 4 2 14 0
13x 4 4 12 0 2 2 2 10 2 2 2 2 4 4 4 8
14x 0 6 4 4 6 4 6 2 8 6 6 2 2 0 0 8
15x 4 8 2 8 2 4 8 0 4 2 2 2 2 6 8 2
16x 0 6 10 2 8 4 2 0 2 2 2 8 4 6 4 4
17x 0 6 6 0 6 2 4 4 6 2 2 10 6 8 2 0
18x 0 8 4 6 6 0 6 2 4 0 4 2 10 0 6 6
19x 4 2 4 8 4 2 10 2 2 2 6 8 2 6 0 2
1Ax 0 8 6 4 4 0 6 4 4 8 0 10 2 2 2 4
1Bx 4 10 2 0 2 4 2 4 8 2 2 8 4 2 8 2
1Cx 0 6 8 8 4 2 8 0 12 0 10 0 4 0 2 0
1Dx 0 2 0 6 2 8 4 6 2 0 4 2 4 10 0 14
1Ex 0 4 8 2 4 6 0 4 10 0 2 6 4 8 4 2
1Fx 0 6 8 0 10 6 4 6 4 2 2 10 4 0 0 2
20x 0 0 0 0 0 4 4 8 0 2 2 4 10 16 12 2
21x 10 8 8 0 8 4 2 4 0 6 6 6 0 0 2 0
22x 12 6 4 4 2 4 10 2 0 4 4 2 4 4 0 2
23x 2 2 0 6 0 2 4 0 4 12 4 2 6 4 8 8
24x 4 8 2 12 6 4 2 10 2 2 2 4 2 0 4 0
25x 6 0 2 0 8 2 0 2 8 8 2 2 4 4 10 6
26x 6 2 0 4 4 0 4 0 4 2 14 0 8 10 0 6
27x 0 2 4 16 8 6 6 6 0 2 4 4 0 2 2 2
28x 6 2 10 0 6 4 0 4 4 2 4 8 2 2 8 2
29x 0 2 8 4 0 4 0 6 4 10 4 8 4 4 4 2
2Ax 2 6 0 4 2 4 4 6 4 8 4 4 4 2 4 6
2Bx 10 2 6 6 4 4 8 0 4 2 2 0 2 4 4 6
2Cx 10 4 6 2 4 2 2 2 4 10 4 4 0 2 6 2
2Dx 4 2 4 4 4 2 4 16 2 0 0 4 4 2 6 6
2Ex 4 0 2 10 0 6 10 4 2 6 6 2 2 0 2 8
2Fx 8 2 0 0 4 4 4 2 6 4 6 2 4 8 4 6
30x 0 10 8 6 2 0 4 2 10 4 4 6 2 0 6 0
31x 2 6 2 0 4 2 8 8 2 2 2 0 2 12 6 6
32x 2 0 4 8 2 8 4 4 8 4 2 8 6 2 0 2
33x 4 4 6 8 6 6 0 2 2 2 6 4 12 0 0 2
34x 0 6 2 2 16 2 2 2 12 2 4 0 4 2 0 8
35x 4 6 0 10 8 0 2 2 6 0 0 6 2 10 2 6
36x 4 4 4 4 0 6 6 4 4 4 4 4 0 6 2 8
37x 4 8 2 4 2 2 6 0 2 4 8 4 10 0 6 2
38x 0 8 12 0 2 2 6 6 2 10 2 2 0 8 0 4
39x 2 6 4 0 6 4 6 4 8 0 4 4 2 4 8 2
3Ax 6 0 2 2 4 6 4 4 4 2 2 6 12 2 6 2
3Bx 2 2 6 0 0 10 4 8 4 2 4 8 4 4 0 6
3Cx 0 2 4 2 12 2 0 6 2 0 2 8 4 6 4 10
3Dx 4 6 8 6 2 2 2 2 10 2 6 6 2 4 2 0
3Ex 8 6 4 4 2 10 2 0 2 2 4 2 4 2 10 2
3Fx 2 6 4 0 0 10 8 2 2 8 6 4 6 2 0 4

Table B.3. The difference distribution table of S3.

Appendix B. The Difference Distribution Tables of DES 164

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0
2x 0 0 0 8 0 4 4 8 0 4 4 8 8 8 8 0
3x 8 6 2 0 2 4 8 2 6 0 4 6 0 6 2 8
4x 0 0 0 8 0 0 12 4 0 12 0 4 8 4 4 8
5x 4 2 2 8 2 12 0 2 2 0 12 2 8 2 2 4
6x 0 8 8 4 8 8 0 0 8 0 8 0 4 0 0 8
7x 4 2 6 4 6 0 16 6 2 0 0 2 4 2 6 4
8x 0 0 0 4 0 8 4 8 0 4 8 8 4 8 8 0
9x 8 4 4 4 4 0 8 4 4 0 0 4 4 4 4 8
Ax 0 6 6 0 6 4 4 6 6 4 4 6 0 6 6 0
Bx 0 12 0 8 0 0 0 0 12 0 0 12 8 12 0 0
Cx 0 0 0 4 0 8 4 8 0 4 8 8 4 8 8 0
Dx 8 4 4 4 4 0 0 4 4 8 0 4 4 4 4 8
Ex 0 6 6 4 6 0 4 6 6 4 0 6 4 6 6 0
Fx 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0

10x 0 0 0 0 0 8 12 4 0 12 8 4 0 4 4 8
11x 4 2 2 16 2 4 0 2 2 0 4 2 16 2 2 4
12x 0 0 0 8 0 4 4 8 0 4 4 8 8 8 8 0
13x 8 2 6 0 6 4 0 6 2 8 4 2 0 2 6 8
14x 0 8 8 0 8 0 8 0 8 8 0 0 0 0 0 16
15x 8 4 4 0 4 8 0 4 4 0 8 4 0 4 4 8
16x 0 8 8 4 8 8 0 0 8 0 8 0 4 0 0 8
17x 4 6 2 4 2 0 0 2 6 16 0 6 4 6 2 4
18x 0 8 8 8 8 4 0 0 8 0 4 0 8 0 0 8
19x 4 4 4 0 4 4 16 4 4 0 4 4 0 4 4 4
1Ax 0 6 6 4 6 0 4 6 6 4 0 6 4 6 6 0
1Bx 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
1Cx 0 8 8 8 8 4 0 0 8 0 4 0 8 0 0 8
1Dx 4 4 4 0 4 4 0 4 4 16 4 4 0 4 4 4
1Ex 0 6 6 0 6 4 4 6 6 4 4 6 0 6 6 0
1Fx 0 0 12 8 12 0 0 12 0 0 0 0 8 0 12 0
20x 0 0 0 8 0 0 0 12 0 0 0 12 8 12 12 0
21x 0 4 8 0 8 4 8 8 4 0 4 4 0 4 8 0
22x 8 2 2 0 2 4 8 6 2 8 4 6 0 6 6 0
23x 4 6 2 8 2 4 0 2 6 0 4 6 8 6 2 4
24x 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
25x 0 8 4 4 4 0 0 4 8 8 0 8 4 8 4 0
26x 0 6 6 0 6 4 8 2 6 8 4 2 0 2 2 8
27x 4 6 2 8 2 4 0 2 6 0 4 6 8 6 2 4
28x 16 4 4 0 4 4 4 4 4 4 4 4 0 4 4 0
29x 0 6 2 8 2 4 0 2 6 8 4 6 8 6 2 0
2Ax 0 2 2 16 2 4 4 2 2 4 4 2 16 2 2 0
2Bx 8 0 4 0 4 8 16 4 0 0 8 0 0 0 4 8
2Cx 8 4 4 4 4 0 8 4 4 8 0 4 4 4 4 0
2Dx 4 2 6 4 6 8 0 6 2 0 8 2 4 2 6 4
2Ex 16 0 0 0 0 16 0 0 0 0 16 0 0 0 0 16
2Fx 16 0 0 0 0 0 16 0 0 16 0 0 0 0 0 16
30x 0 6 6 4 6 4 0 6 6 0 4 6 4 6 6 0
31x 0 8 4 4 4 0 0 4 8 8 0 8 4 8 4 0
32x 16 6 6 4 6 0 4 2 6 4 0 2 4 2 2 0
33x 0 2 6 4 6 8 8 6 2 0 8 2 4 2 6 0
34x 0 12 12 8 12 0 0 0 12 0 0 0 8 0 0 0
35x 0 4 8 0 8 4 8 8 4 0 4 4 0 4 8 0
36x 0 2 2 4 2 0 4 6 2 4 0 6 4 6 6 16
37x 0 2 6 4 6 8 8 6 2 0 8 2 4 2 6 0
38x 0 4 4 0 4 4 4 4 4 4 4 4 0 4 4 16
39x 0 6 2 8 2 4 0 2 6 8 4 6 8 6 2 0
3Ax 0 4 4 0 4 8 8 4 4 8 8 4 0 4 4 0
3Bx 16 4 4 0 4 0 0 4 4 0 0 4 0 4 4 16
3Cx 0 4 4 4 4 0 8 4 4 8 0 4 4 4 4 8
3Dx 4 2 6 4 6 8 0 6 2 0 8 2 4 2 6 4
3Ex 0 2 2 8 2 12 4 2 2 4 12 2 8 2 2 0
3Fx 8 4 0 8 0 0 0 0 4 16 0 4 8 4 0 8

Table B.4. The difference distribution table of S4.

Appendix B. The Difference Distribution Tables of DES 165

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 4 0 10 8 6 0 4 2 2 12 10 2 4
2x 0 0 0 4 0 10 6 4 0 6 4 2 4 8 10 6
3x 8 2 4 6 4 4 2 2 6 8 6 4 4 0 2 2
4x 0 0 0 8 0 4 10 6 0 6 6 4 8 6 0 6
5x 12 2 0 4 0 4 8 2 4 0 16 2 0 2 0 8
6x 0 8 4 6 4 6 2 2 4 4 6 0 6 0 2 10
7x 2 0 4 8 4 2 6 6 2 8 6 2 2 0 6 6
8x 0 0 0 2 0 8 10 4 0 4 10 4 8 4 4 6
9x 8 6 0 4 0 6 6 2 2 10 2 8 6 2 0 2
Ax 0 6 8 6 0 8 0 0 8 10 4 2 8 0 0 4
Bx 4 2 2 4 8 10 6 4 2 6 2 2 6 2 2 2
Cx 0 0 0 10 0 2 10 2 0 6 10 6 6 6 2 4
Dx 10 4 2 2 0 6 16 0 0 2 10 2 2 4 0 4
Ex 0 6 4 8 4 6 10 2 4 4 4 2 4 0 2 4
Fx 4 4 0 8 0 2 0 2 8 2 4 2 8 4 4 12

10x 0 0 0 0 0 4 4 12 0 2 8 10 4 6 12 2
11x 6 6 10 10 4 0 2 6 2 4 0 6 2 4 2 0
12x 0 2 4 2 10 4 0 10 8 6 0 6 0 6 6 0
13x 0 0 6 2 8 0 0 4 4 6 2 8 2 8 10 4
14x 0 12 2 6 4 0 4 4 8 4 4 4 6 2 4 0
15x 4 8 0 2 8 0 2 4 2 2 4 2 4 8 8 6
16x 0 6 10 2 14 0 2 2 4 4 0 6 0 4 6 4
17x 0 6 8 4 8 4 0 2 8 4 0 2 2 8 6 2
18x 0 10 8 0 6 4 0 4 4 4 6 4 4 4 0 6
19x 0 4 6 2 4 4 2 6 4 2 2 4 12 2 10 0
1Ax 0 2 16 2 12 2 0 6 4 0 0 4 0 4 4 8
1Bx 2 8 12 0 0 2 2 6 8 4 0 6 0 0 8 6
1Cx 0 10 2 6 6 6 6 4 8 2 0 4 4 4 2 0
1Dx 4 6 2 0 8 2 4 6 6 0 8 6 2 4 2 4
1Ex 0 2 6 2 4 0 0 2 12 2 2 6 2 10 10 4
1Fx 0 6 8 4 8 8 0 6 6 2 0 6 0 6 2 2
20x 0 0 0 8 0 8 2 6 0 4 4 4 6 6 8 8
21x 0 0 0 6 6 2 6 4 6 10 14 4 0 0 4 2
22x 14 4 0 10 0 2 12 2 2 2 10 2 0 0 2 2
23x 2 0 0 4 2 2 10 4 0 8 8 2 6 8 0 8
24x 6 2 8 4 4 4 6 2 2 6 6 2 6 2 2 2
25x 6 0 0 8 2 8 2 6 6 4 2 2 4 2 6 6
26x 12 0 0 4 0 4 4 4 0 8 4 0 12 8 0 4
27x 12 2 0 2 0 12 2 2 4 4 8 4 8 2 2 0
28x 2 8 4 6 2 4 6 0 6 6 4 0 2 2 2 10
29x 6 4 6 8 8 4 6 2 0 0 2 2 10 0 2 4
2Ax 4 4 0 2 2 4 6 2 0 0 6 4 10 4 4 12
2Bx 4 6 2 6 0 0 12 2 0 4 12 2 6 4 0 4
2Cx 8 6 2 6 4 8 6 0 4 4 0 2 6 0 6 2
2Dx 4 4 0 4 0 6 4 2 4 12 0 4 4 6 4 6
2Ex 6 0 2 4 0 6 6 4 2 10 6 10 6 2 0 0
2Fx 10 4 0 2 2 6 10 2 0 2 2 4 6 2 2 10
30x 0 4 8 4 6 4 0 6 10 4 2 4 2 6 4 0
31x 0 6 6 4 10 2 0 0 4 4 0 0 4 6 12 6
32x 4 6 0 2 6 4 6 0 6 0 4 6 4 10 6 0
33x 8 10 0 14 8 0 0 8 2 0 2 4 0 4 4 0
34x 0 4 4 2 14 4 0 8 6 8 2 2 0 4 6 0
35x 0 4 16 0 8 4 0 4 4 4 0 8 0 4 4 4
36x 4 4 4 6 2 2 2 12 2 4 4 8 2 4 4 0
37x 4 2 2 2 4 2 0 8 2 2 2 12 6 2 8 6
38x 0 4 8 4 12 0 0 8 10 2 0 0 0 4 2 10
39x 0 8 12 0 2 2 2 2 12 4 0 8 0 4 4 4
3Ax 0 14 4 0 4 6 0 0 6 2 10 8 0 0 4 6
3Bx 0 2 2 2 4 4 8 6 8 2 2 2 6 14 2 0
3Cx 0 0 10 2 6 0 0 2 6 2 2 10 2 4 10 8
3Dx 0 6 12 2 4 8 0 8 8 2 2 0 2 2 4 4
3Ex 4 4 10 0 2 4 8 8 2 2 0 2 6 8 4 0
3Fx 8 6 6 0 4 2 2 4 4 2 8 6 2 4 6 0

Table B.5. The difference distribution table of S5.

Appendix B. The Difference Distribution Tables of DES 166

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 2 6 2 0 4 2 4 6 16 14 2
2x 0 0 0 2 0 10 6 10 0 2 4 8 6 6 8 2
3x 0 8 0 8 0 6 4 6 4 4 4 12 2 4 2 0
4x 0 0 0 8 0 0 8 0 0 6 8 10 2 4 10 8
5x 10 2 4 4 4 8 8 4 2 2 0 4 0 8 0 4
6x 0 8 4 4 8 4 2 2 12 0 2 6 6 2 2 2
7x 6 6 4 0 2 10 2 2 2 2 6 6 8 0 6 2
8x 0 0 0 6 0 2 16 4 0 2 6 2 4 12 6 4
9x 10 4 2 6 0 2 6 2 4 0 8 6 4 4 2 4
Ax 0 14 4 4 0 2 2 2 10 4 4 4 6 4 2 2
Bx 4 6 2 0 2 2 12 8 2 2 2 6 8 2 0 6
Cx 0 0 0 12 0 10 4 6 0 8 4 4 2 12 2 0
Dx 12 0 2 10 6 4 4 2 4 2 6 0 2 6 0 4
Ex 0 6 4 0 4 4 10 8 6 2 4 6 2 0 6 2
Fx 2 2 2 2 6 2 6 2 10 4 8 2 6 4 4 2

10x 0 0 0 8 0 8 0 12 0 4 2 6 8 4 6 6
11x 6 2 6 4 6 2 6 4 6 6 4 2 4 0 6 0
12x 0 8 4 2 0 4 2 0 4 10 6 2 8 6 4 4
13x 6 6 12 0 12 2 0 6 6 2 0 4 0 2 4 2
14x 0 4 6 2 8 6 0 2 6 10 4 0 2 4 6 4
15x 2 2 6 6 4 4 2 6 2 6 8 4 4 0 4 4
16x 0 4 14 6 8 4 2 6 2 0 2 0 4 2 0 10
17x 2 6 8 0 0 2 0 2 2 6 0 8 8 2 12 6
18x 0 4 6 6 8 4 2 2 6 4 6 4 2 4 2 4
19x 2 6 0 2 4 4 4 6 4 8 6 4 2 2 6 4
1Ax 0 6 6 0 8 2 4 6 4 2 4 6 2 0 4 10
1Bx 0 4 10 2 4 4 2 6 6 6 2 2 6 6 2 2
1Cx 0 0 8 2 12 2 6 2 8 6 6 2 4 0 4 2
1Dx 2 4 0 6 8 6 0 2 6 8 6 0 2 4 0 10
1Ex 0 10 8 2 8 2 0 2 6 4 2 4 6 4 2 4
1Fx 0 6 6 8 6 4 2 4 4 2 2 0 2 4 2 12
20x 0 0 0 0 0 6 6 4 0 4 8 8 4 6 10 8
21x 2 8 6 8 4 4 6 6 8 4 0 4 0 2 2 0
22x 16 2 4 6 2 4 2 0 6 4 8 2 0 2 2 4
23x 0 4 0 4 4 6 10 4 2 2 6 2 4 6 6 4
24x 10 8 0 6 12 6 10 4 8 0 0 0 0 0 0 0
25x 0 2 4 2 0 4 4 0 4 0 10 10 4 10 6 4
26x 2 2 0 12 2 2 6 2 4 4 8 0 6 6 8 0
27x 8 4 0 8 2 4 2 4 0 6 2 4 4 8 2 6
28x 6 8 4 6 0 4 2 2 4 8 2 6 4 2 2 4
29x 2 4 4 0 8 8 6 8 6 4 0 4 4 4 2 0
2Ax 6 0 0 6 6 4 6 8 2 4 0 2 2 4 6 8
2Bx 12 0 4 0 0 4 2 2 2 6 10 6 10 2 4 0
2Cx 4 2 6 0 0 6 8 6 4 2 2 8 4 6 4 2
2Dx 6 2 2 6 6 4 4 2 6 2 4 8 4 2 4 2
2Ex 4 6 2 4 2 4 4 2 4 2 4 6 4 10 4 2
2Fx 10 0 4 8 0 6 6 2 0 4 4 2 6 2 2 8
30x 0 12 8 2 0 6 0 0 6 6 0 2 8 2 6 6
31x 2 6 10 4 2 2 2 4 6 0 2 6 0 2 4 12
32x 4 2 2 8 10 8 8 6 0 2 2 4 4 2 2 0
33x 4 2 2 2 6 0 4 0 10 6 6 4 0 4 8 6
34x 0 4 4 2 6 4 0 4 6 2 6 4 2 8 0 12
35x 6 12 4 2 4 2 2 4 8 2 2 0 6 4 4 2
36x 0 2 2 4 4 4 4 0 2 10 12 4 0 10 4 2
37x 10 2 2 6 14 2 2 6 2 0 4 6 2 0 4 2
38x 0 4 14 0 8 2 0 4 4 4 2 0 8 2 4 8
39x 2 4 8 0 6 2 0 6 2 6 4 2 8 6 2 6
3Ax 8 4 0 4 6 2 0 4 6 8 6 0 6 0 4 6
3Bx 0 4 6 6 2 2 2 14 0 12 0 4 2 2 8 0
3Cx 0 6 16 0 2 2 2 8 4 2 0 12 6 2 2 0
3Dx 0 6 2 2 2 6 8 2 4 2 6 2 6 2 4 10
3Ex 4 2 2 4 4 0 6 10 4 2 4 6 6 2 6 2
3Fx 0 4 6 6 4 8 4 0 4 8 4 0 4 8 2 2

Table B.6. The difference distribution table of S6.

Appendix B. The Difference Distribution Tables of DES 167

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 2 0 4 4 14 0 12 4 6 2 6 6 4
2x 0 0 0 0 0 12 2 2 0 4 0 4 8 12 6 14
3x 8 2 12 2 6 8 6 0 6 4 4 2 2 0 0 2
4x 0 0 0 8 0 4 4 8 0 8 8 12 2 6 2 2
5x 6 0 0 2 8 0 8 4 0 2 6 0 10 6 6 6
6x 0 2 12 0 8 4 8 2 4 4 4 2 6 0 6 2
7x 4 6 4 12 0 4 2 0 0 14 2 6 4 0 0 6
8x 0 0 0 8 0 0 6 10 0 4 12 4 6 6 0 8
9x 10 8 4 8 6 2 2 0 2 6 8 2 0 6 0 0
Ax 0 10 6 2 12 2 4 0 4 4 6 4 4 0 0 6
Bx 0 2 2 2 4 8 6 4 4 0 4 2 6 4 2 14
Cx 0 0 0 4 0 4 8 4 0 2 6 0 14 12 8 2
Dx 6 6 2 4 2 6 4 6 6 4 8 8 0 2 0 0
Ex 0 12 10 10 0 2 4 2 8 6 4 2 0 0 2 2
Fx 2 0 0 0 6 8 8 0 6 2 4 6 8 0 6 8

10x 0 0 0 4 0 2 8 6 0 6 4 10 8 4 8 4
11x 6 10 10 4 4 2 0 4 4 0 2 8 4 2 2 2
12x 0 0 8 8 2 8 2 8 6 4 2 8 0 0 8 0
13x 4 4 2 2 8 6 0 2 2 2 0 4 6 8 14 0
14x 0 8 6 2 8 8 2 6 4 2 0 2 8 6 0 2
15x 4 4 8 2 4 0 4 10 8 2 4 4 4 2 0 4
16x 0 6 10 2 2 2 2 4 10 8 2 2 0 4 10 0
17x 8 2 4 2 6 4 0 6 4 4 2 2 0 4 8 8
18x 0 16 2 2 6 0 6 0 6 2 8 0 6 0 2 8
19x 0 8 0 2 4 4 10 4 8 0 6 4 2 6 2 4
1Ax 0 2 4 8 12 4 0 6 4 4 0 2 0 6 4 8
1Bx 0 6 2 6 4 2 4 4 6 4 8 4 2 0 10 2
1Cx 0 8 4 4 2 6 6 6 6 4 6 8 0 2 0 2
1Dx 4 4 4 0 0 2 4 2 4 2 2 4 10 10 8 4
1Ex 0 0 2 2 12 6 2 0 12 2 2 4 2 6 8 4
1Fx 2 2 10 14 2 4 2 4 4 6 0 2 4 8 0 0
20x 0 0 0 14 0 8 4 2 0 4 2 8 2 6 0 14
21x 4 2 6 2 12 2 4 0 6 4 10 2 4 2 2 2
22x 10 6 0 2 4 4 10 0 4 0 12 2 8 0 0 2
23x 0 6 2 2 2 4 6 10 0 4 8 2 2 6 0 10
24x 4 2 0 6 8 2 6 0 8 2 2 0 8 2 12 2
25x 2 0 2 16 2 4 6 4 6 8 2 4 0 6 0 2
26x 6 10 0 10 0 6 4 4 2 2 4 6 2 4 2 2
27x 4 0 2 0 2 2 14 0 4 6 6 2 12 2 4 4
28x 14 4 6 4 4 6 2 0 6 6 2 2 4 0 2 2
29x 2 2 0 2 0 8 4 2 4 6 4 4 6 4 12 4
2Ax 2 4 0 0 0 2 8 12 0 8 2 4 8 4 4 6
2Bx 16 6 2 4 6 10 2 2 2 2 2 2 4 2 2 0
2Cx 2 6 6 8 2 2 0 6 0 8 4 2 2 6 8 2
2Dx 6 2 4 2 8 8 2 8 2 4 4 0 2 0 8 4
2Ex 2 4 8 0 2 2 2 4 0 2 8 4 14 6 0 6
2Fx 2 2 2 8 0 2 2 6 4 6 8 8 6 2 0 6
30x 0 6 8 2 8 4 4 0 10 4 4 6 0 0 2 6
31x 0 8 4 0 6 2 2 6 6 0 0 2 6 4 8 10
32x 2 4 0 0 6 4 10 6 6 4 6 2 4 6 2 2
33x 0 16 6 8 2 0 2 2 4 2 8 4 0 4 6 0
34x 0 4 14 8 2 2 2 4 16 2 2 2 0 2 0 4
35x 0 6 0 0 10 8 2 2 6 0 0 8 6 4 4 8
36x 2 0 2 2 4 6 4 4 2 2 4 2 4 16 10 0
37x 6 6 6 8 4 2 4 4 4 0 6 8 2 4 0 0
38x 0 2 2 2 8 8 0 2 2 2 0 6 6 4 10 10
39x 4 4 16 8 0 6 4 2 4 4 2 6 0 2 2 0
3Ax 16 6 4 0 2 0 2 6 0 4 8 10 0 0 4 2
3Bx 2 0 0 2 0 4 4 4 2 6 2 6 6 12 12 2
3Cx 0 0 8 0 12 8 2 6 6 4 0 2 2 4 6 4
3Dx 2 4 12 2 2 2 0 4 6 10 2 6 4 2 0 6
3Ex 4 6 6 6 2 0 4 8 2 10 4 6 0 4 2 0
3Fx 14 0 0 0 8 0 6 8 4 2 0 0 4 8 4 6

Table B.7. The difference distribution table of S7.

Appendix B. The Difference Distribution Tables of DES 168

Input Output XOR

XOR 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 6 0 16 10 0 0 0 6 0 14 6 2 4
2x 0 0 0 8 0 10 4 2 0 10 2 4 8 8 6 2
3x 6 0 2 8 2 6 4 0 6 6 6 2 2 0 8 6
4x 0 0 0 2 0 4 6 12 0 6 8 4 10 4 8 0
5x 4 10 6 0 0 2 6 0 4 10 4 6 8 2 0 2
6x 0 0 10 4 6 4 4 8 2 6 4 2 4 2 2 6
7x 6 2 8 2 8 10 6 6 4 2 0 4 0 0 0 6
8x 0 0 0 4 0 6 4 2 0 8 6 10 8 2 2 12
9x 8 4 0 6 0 4 4 6 2 4 6 2 12 2 0 4
Ax 0 0 16 4 6 6 4 0 4 6 4 2 2 0 0 10
Bx 2 8 0 6 2 6 0 4 4 10 0 2 10 2 6 2
Cx 0 0 0 2 0 10 10 6 0 6 6 6 2 6 10 0
Dx 6 0 4 10 2 0 8 6 2 2 6 10 2 2 2 2
Ex 0 0 6 8 4 8 0 2 10 6 2 4 6 2 4 2
Fx 8 0 4 2 2 4 2 2 2 6 4 6 0 2 14 6

10x 0 0 0 4 0 0 8 12 0 0 8 8 2 10 6 6
11x 0 6 4 6 2 2 6 6 4 6 4 6 0 4 4 4
12x 0 4 0 8 6 2 8 4 2 4 4 6 2 4 10 0
13x 4 2 2 6 8 6 2 2 14 2 2 4 2 2 2 4
14x 0 16 4 2 6 0 2 6 4 0 4 6 4 6 4 0
15x 0 10 6 0 6 0 2 8 2 2 0 8 2 6 6 6
16x 0 12 6 4 6 0 0 0 8 6 6 2 2 6 4 2
17x 0 6 8 0 6 2 4 6 6 0 2 6 4 4 2 8
18x 0 12 2 2 8 0 8 0 10 4 4 2 4 2 0 6
19x 6 4 8 0 8 0 4 2 0 0 12 2 4 6 2 6
1Ax 0 4 6 2 8 8 0 4 8 0 0 0 6 2 0 16
1Bx 2 4 8 10 2 4 2 8 2 4 8 2 0 2 4 2
1Cx 0 12 6 4 6 4 2 2 6 0 4 4 2 10 2 0
1Dx 8 6 0 0 10 0 0 8 10 4 2 2 2 8 4 0
1Ex 0 4 8 6 8 2 4 4 10 2 2 4 2 0 6 2
1Fx 4 2 4 2 6 2 4 0 2 6 2 2 2 16 8 2
20x 0 0 0 16 0 4 0 0 0 14 6 4 2 0 4 14
21x 0 0 2 10 2 8 10 0 0 6 6 0 10 2 2 6
22x 8 0 6 0 6 4 10 2 0 6 8 0 4 4 2 4
23x 4 8 0 6 0 4 8 6 2 2 10 4 8 0 0 2
24x 4 0 4 8 4 6 2 4 8 6 2 0 0 4 4 8
25x 0 4 6 8 2 8 8 0 4 2 4 4 2 2 6 4
26x 2 6 0 6 4 4 4 6 6 0 4 4 10 4 2 2
27x 6 6 0 0 2 2 6 2 4 4 6 10 2 6 2 6
28x 10 2 6 2 4 12 12 0 2 2 4 0 0 0 2 6
29x 4 0 0 14 2 10 4 2 8 6 4 0 4 2 2 2
2Ax 8 8 0 2 0 2 4 0 2 6 8 14 2 8 0 0
2Bx 2 2 0 0 4 2 10 4 6 2 4 0 6 4 8 10
2Cx 2 6 6 2 4 6 2 0 2 6 4 0 6 4 10 4
2Dx 8 0 4 4 6 2 0 0 6 8 2 4 6 4 4 6
2Ex 6 2 2 4 2 2 6 12 4 0 4 2 8 8 0 2
2Fx 8 12 4 6 6 4 2 2 2 2 4 2 2 4 0 4
30x 0 4 6 2 10 2 2 2 4 8 0 0 8 4 6 6
31x 4 6 8 0 4 6 0 4 4 6 10 2 2 4 4 0
32x 6 6 6 2 4 6 0 2 0 6 8 2 2 6 6 2
33x 6 6 4 2 4 0 0 10 2 2 0 6 8 4 0 10
34x 0 2 12 4 10 4 0 4 12 0 2 4 2 2 2 4
35x 6 4 4 0 10 0 0 4 10 0 0 4 2 8 8 4
36x 4 6 2 2 2 2 6 8 6 4 2 6 0 4 10 0
37x 2 2 8 2 4 4 4 2 6 2 0 10 6 10 2 0
38x 0 4 8 4 2 6 6 2 4 2 2 4 6 4 4 6
39x 4 4 4 8 0 6 0 6 4 8 2 2 2 4 8 2
3Ax 8 8 0 4 2 0 10 4 0 0 0 4 8 6 8 2
3Bx 8 2 6 4 4 4 4 0 6 4 4 6 4 4 4 0
3Cx 0 6 6 6 6 0 0 8 8 2 4 8 4 2 4 0
3Dx 2 2 8 0 10 0 2 12 0 4 0 8 0 2 6 8
3Ex 6 4 0 0 4 4 0 10 6 2 6 12 2 4 0 4
3Fx 0 6 6 0 4 4 6 10 0 6 8 2 0 4 8 0

Table B.8. The difference distribution table of S8.

Glossary

The purpose of this glossary is to provide informal (and often imprecise)
definitions for commonly used terms and phrases. Formal definitions can
be found either in the text or in the cited references.

0R-attack: A differential cryptanalytic attack in which the characteristic
has the same number of rounds as the cryptosystem.

1R-attack: A differential cryptanalytic attack in which the characteristic
is shorter by one round than the cryptosystem.

2R-attack: A differential cryptanalytic attack in which the characteristic
is shorter by two rounds than the cryptosystem.

3R-attack: A differential cryptanalytic attack in which the characteristic
is shorter by three rounds than the cryptosystem.

Actual Subkey: The subkeys of the equivalent description of FEAL, in
which the XOR of the data with a subkey in the final transformation is
eliminated. Differential cryptanalytic attacks find the actual subkeys,
rather than the subkeys.

Adaptive Attack: A cryptanalytic attack in which the attacker is able to
choose each new plaintexts to be encrypted under the secret key
(or each new ciphertexts to be decrypted) as a function of all the
previous plaintexts and ciphertexts. The attack uses the knowledge
of both the plaintexts and the ciphertexts in order to find the key.

Birthday Attack: An attack on hash functions which is based on the
birthday paradox. Its complexity is about the square-root of the
number of possible hash values.

Birthday Paradox: There is probability of about one half that in a class of
23 children, there are two with the same birthday. The extension of
this paradox states that when more than

√
n elements are chosen at

random from n possible elements, at least one element is likely to be
chosen twice.

CBC mode: See Cipher Block Chaining (CBC) mode.

CFB mode: See Cipher Feedback (CFB) mode.

Characteristic: An n-round characteristic describes a possible evolution
of the differences in the various rounds of an iterated cryptosystem
and estimates the probability that a random pair with the specified

Glossary 170

plaintext difference would have the specified differences in the various
rounds when it is encrypted under a randomkey. Characteristics can be
concatenated with other characteristics under certain circumstances.
Characteristics which can be concatenated with themselves are called
iterative characteristics.

Chosen Ciphertext Attack: A cryptanalytic attack in which the attacker
chooses the ciphertexts to be decrypted under the secret key. The
attack uses the knowledge of both the plaintexts and the ciphertexts
in order to find the key.

Chosen Plaintext Attack: A cryptanalytic attack in which the attacker
chooses the plaintexts to be encrypted under the secret key. The
attack uses the knowledge of both the plaintexts and the ciphertexts
in order to find the key.

Cipher Block Chaining (CBC) mode: An operation mode in which each
plaintext block is XORed with the previous ciphertext block before
the encryption algorithm is applied. In this mode, two equal plaintext
blocks may be encrypted to different ciphertext blocks, even if the
same key is used, if the previous ciphertext blocks are different.

Cipher Feedback (CFB) mode: An operation mode similar to the output
feedback mode which uses the previous ciphertext as input to
the encryption process, rather than the previous output of the
blockcipher. Each plaintext block is XORed with the resulting output
block to form the ciphertext block. Variants of this mode with blocks
shorter than 64 bits are also defined.

Ciphertext: The encrypted form of the plaintext, which is supposed to hide
the information from anybody who does not know the key.

Ciphertext Only Attack: A cryptanalytic attack which uses only the
ciphertexts (whose plaintexts are unknown to the attacker) in order
to find the plaintexts or the key.

Complementation Property: For certain cryptosystems, complementation
of particular bits in the plaintext and of particular bits in the key
causes complementation of particular bits the ciphertext. Such a
property can be used to reduce the complexity of exhaustive search
under a chosen plaintext attack, and in some circumstances even
under a known plaintext attack. DES has such a complementation
property that reduces the complexity of exhaustive search from 256

to 255.

Counting Scheme: Differential cryptanalytic attacks locate the most
probable keys from a sufficiently large pool of pairs. Each pair
suggests several keys, and the key suggested by the maximal number

Glossary 171

of pairs is likely to be the real key. All counting schemes count the
number of pairs suggesting each possible key value, but they differ
by the characteristic they use, the number of key bits they count on
and the signal to noise ratio.

Cryptanalytic Attack: An algorithm in which an attacker can uncover the
plaintexts of given ciphertexts without knowing the key, or even find
the key itself. The four major types of cryptanalytic attacks are:
ciphertext only attacks, known plaintext attacks, chosen plaintext
attacks and adaptive attacks.

Cryptosystem: A tool for making data unintelligible to unauthorized
parties. Cryptosystems use keys to encrypt plaintexts to ciphertexts.
When the key is known, transforming plaintexts to ciphertexts should
be easy. When the key is unknown, extracting any information about
the key or the plaintexts should be very difficult.

Data Analysis Phase: Differential cryptanalytic attacks on cryptosystems
are divided into two phases. In the data collection phase many
plaintexts are encrypted on the target machine with the unknown
key. In the data analysis phase the resultant ciphertexts are analyzed
by the attacker in order to find the key.

Data Collection Phase: See the description of the Data Analysis Phase.

Data Encryption Standard: See DES.

Dependent Key: A key from which subkeys are derived via some key
scheduling algorithm. This is the standard type of key for iterated
cryptosystems. In this book, dependent keys are viewed as a special
type of independent keys.

DES: A cryptosystem which was developed by IBM[28] and adopted
by the NBS in 1977 as the standard cryptosystem for securing
civilian applications dealing with sensitive but unclassified data. See
Appendix A for technical description.

DES-like Cryptosystem: An iterated cryptosystem whose structure is
similar to DES: In each round the data is divided into two halves,
an F function operates on the right half, its output is XORed into
the left half, and the halves are exchanged.

Design rules: The design rules of DES were never published due to national
security reasons. Recently, Don Coppersmith who was one of the
designers of DES announced that the design team at IBM was aware
of differential cryptanalysis in 1974 and that DES was specifically
designed to defeat it.

Glossary 172

Difference Distribution Table: A table that shows the distribution of the
input XORs and output XORs of all the possible pairs of mappings
by an S box. In a difference distribution table each row corresponds
to a particular input XOR, each column corresponds to a particular
output XOR and the entries contain the number of possible pairs
with such an input XOR and an output XOR.

Differential Cryptanalysis: A method which studies the evolution of
differences during the encryption of pairs of plaintexts, and derives
the most likely keys from a pool of many pairs. Differential
cryptanalysis can also be used to find collisions in hash functions.
For DES-like cryptosystems the differences are usually in terms of
exclusive-or of the intermediate data in the pair.

ECB mode: See Electronic Code Book (ECB) mode.

Electronic Code Book (ECB) mode: An operation mode in which each
plaintext block is encrypted separately. In this mode, two equal
plaintext blocks are always encrypted to the same ciphertext blocks,
if the same key is used.

Exhaustive Search: Under a known plaintext attack, it is possible to search
the whole key space and locate the key which encrypts a known
plaintext to its corresponding known ciphertext. The complexity of
exhaustive search (which is the size of the key space) is an obvious
upper bound on the strength of cryptosystems.

F function: The main operation in a round of a DES-like cryptosystem
is called the F function. The role of the F function is to mix the
data with the subkeys. The F function of DES uses S boxes, XORs
and permutations. The F function of FEAL use addition operations,
XORs and byte rotations.

FEAL: A family of DES-like cryptosystems which is designed to be easily
and efficiently implementable on microprocessors. The F function of
FEAL is based on the addition operation and byte rotation (rather
than S boxes and permutations). The original four-round variant of
FEAL, called FEAL-4[36], was broken by Den-Boer[12]. Then, the
eight-round variant FEAL-8[35,26] was suggested. Later, FEAL-N[23]
with an arbitrary number of rounds and FEAL-NX[24] with a longer
128-bit key were also suggested. In this book we cryptanalyze all the
variants of FEAL with up to 31 rounds.

GDES: See Generalized DES Scheme (GDES).

Generalized DES Scheme (GDES): GDES[31,33] is an attempt to speed
up DES without weakening its security. In GDES the blocksize is
extended and the block is divided into more than two 32-bit parts.

Glossary 173

In each round the F function of DES is applied on one part and
its output is XORed into all the other parts. In the recommended
variant, the F function is applied 16 times (as in DES) but the
blocksize is 256 bits.

Hash Function: Cryptographic functions which hash arbitrarily long
messages into fixed length values (usually 128-bit long) with the
following two criteria: (a) It is hard to find a message which hashes
to any particular value. (b) It is hard to find a pair of messages
which hash to the same value. Implementations of digital signatures
use hash functions to speed up the signature process by hashing long
messages and signing only the fixed length result.

IBM: IBM has developed the Lucifer cryptosystem in the 1970’s. DES
evolved from the Lucifer project.

Independent Key: A list of subkeys which is not necessarily derivable from
some key via the key scheduling algorithm.

Initial Permutation (IP): The first operation during the encryption by
DES is to permute the order of the plaintext bits. After the initial
permutation, the 16 rounds are applied.

Iterated Cryptosystem: A cryptosystem based on iterating a relatively
weak round-function many times. In many iterated cryptosystems
the round-function is based on an F function which mixes half of the
data with a subkey, and the output of the F function is XORed to
the other half of the data.

Iterative Characteristic: A characteristic which can be concatenated with
itself.

Key: A secret random value which is used to control the encryption of a
plaintext into its secure ciphertext form. Decryption should be easy
when the key is known, but very difficult when the key is unknown.

Key Processing Algorithm: The particular algorithm which calculates the
subkeys from the key in the FEAL cryptosystem. This algorithm
is more complex than the key scheduling algorithm of DES, and it
calculates the subkeys in a non-linear way.

Key Scheduling Algorithm: The algorithm which calculates the subkeys
from the key in iterated cryptosystems. In DES, the key scheduling
algorithm copies each key bit into various positions in about 14
subkeys.

Khafre: A fast software oriented cryptosystem[22] whose round-function is
based on fixed eight-bit to 32-bit S boxes.

Glossary 174

Khufu: A fast software oriented cryptosystem[22] whose round-function is
based on key-dependent eight-bit to 32-bit S boxes.

Known Plaintext Attack: Acryptanalytic attackwhich uses givenplaintexts
as well as their corresponding ciphertexts in order to find the key.

LOKI: A DES-like cryptosystem[6] whose F function uses one twelve-bit
to eight-bit S box (based on irreducible polynomials) replicated four
times in each round.

Lucifer: A 128-bit substitution/permutation cryptosystem designed by
IBM prior to the design of DES. Lucifer has two variants: In the first
variant[15] the data is divided in each round into groups of four bits,
an S box chosen by a key bit from two possible S boxes is applied
on each group, and the output bits of the S boxes are permuted.
The ciphertexts are decrypted by applying the rounds in a reverse
order and using the inverse of the S boxes. The second variant[37] is
a direct predecessor of DES, whose F function uses only two four-bit
to four-bit S boxes replicated eight times.

Meet in the Middle Attack: An attack in which the evolution of the data
is studied from both directions: from the plaintext forwards towards
an intermediate round and from the ciphertext backwards towards
the same intermediate round. If the results at the intermediate round
are not the same in both directions, then the tested value of the
key is not the real value. If both results are the same in several
encryptions, then the tested value of the key is the real value with
high probability.

Method of Formal Coding: A method in which the formal expression of
each bit in the ciphertext is found as a XOR sum of products of
the bits of the plaintext and the key. The formal manipulations of
these expressions may decrease the key search effort. The application
of this method to DES requires an enormous amount of computer
memory which makes the whole approach impractical[31,32].

Modes of Operation: Methods in which cryptosystems can be used to
encrypt multi-block plaintexts. The simplest mode is the electronic
code book (ECB) mode in which all the plaintext blocks in a message
are encrypted separately using the same key. A more complex mode is
the cipher block chaining (CBC) mode in which each plaintext block
is XORed with the previous ciphertext block before the encryption.
Additional modes of operation are the output feedback (OFB)
mode and the cipher feedback (CFB) mode. They are described in
Appendix A.2.

Glossary 175

N-Hash: A hash function[25] which was suggested by the designers of
FEAL and which uses an F function similar to the one of FEAL.
N-Hash hashes messages of arbitrary length into 128-bit values.

National Bureau of Standards (NBS): The U.S. institute that standardized
DES. Its name was later changed to National Institute for Standards
and Technology (NIST).

Octet: A structure of eight plaintexts which consists of four pairs motivated
by each one of three different characteristics. In total, there are 12
pairs in each octet.

OFB mode: See Output Feedback (OFB) mode.

Output Feedback (OFB) mode: An operation mode which generates a
pseudo-random bit string by repeatedly encrypting a 64-bit block
(initially set to an initial value) under a fixed key. Each plaintext
block is XORed with the pseudo-random block to form the ciphertext
block. Variants of this mode with blocks shorter than 64 bits are also
defined.

Pair: Differential cryptanalytic attacks analyze the evolution of the
differences between intermediate values when two related plaintexts
are encrypted. The two plaintexts of a pair are chosen to have
a particular initial difference. A pair whose differences during the
various rounds are as expected by the corresponding characteristic is
called a right pair, and any other pair is called a wrong pair.

Plaintext: The original (clear) form of the encrypted data, which is
transformed into a ciphertext form by using a cryptosystem and a
key.

Quartet: A structure of four plaintexts which consists of two pairs
motivated by each one of two different characteristics. In total, there
are four pairs in each quartet.

REDOC-II: A ten-round 70-bit block software oriented cryptosystem[38,8]
whose round-function is relatively complex, and thus it is claimed to
be secure even with a small number of rounds.

Right Pair: A pair in which the differences during the encryption of the
two plaintexts are as predicted in the corresponding characteristic.

Round: Iterated cryptosystems iterate weak functions many times. Each
iteration of the weak function is called a round, and the weak function
itself is called a round-function. In many iterated cryptosystems, the
round-function is based on an F function.

Round-Function: See the description of Round.

Glossary 176

S Box: A lookup table which maps short input strings into short output
strings. In many iterated cryptosystems (like DES) the S boxes
are the only non-linear operations, and thus the strength of the
cryptosystem crucially depends on the choice of the S boxes.

Signal to Noise Ratio: The expected ratio between the number of times
the correct key value is counted by right pairs and the number of
times an incorrect key value is counted (by right or wrong pairs) in
a particular counting scheme. The number of pairs required by the
counting scheme can be approximated by using the signal to noise
ratio. A counting scheme whose signal to noise ratio is high requires
relatively few pairs (with relatively few right pairs among them). A
counting scheme whose signal to noise ratio is too low may require
an unrealistic number of pairs. The signal to noise ratio is denoted
by S/N .

Snefru: A hash function[21] which uses fixed eight-bit to 32-bit S boxes.
Snefru hashes messages of arbitrary length into 128-bit values.

Structure: A structure groups together many related plaintexts in a way
which saves data by allowing many pairs to exist in a relatively small
group of plaintexts. Typical examples of structures are quartets and
octets.

Subkey: A key dependent value used in one round of an iterated
cryptosystem. DES has 16 rounds and uses 16 subkeys derived from
the key by placing each key bit in about 14 subkeys via the key
scheduling algorithm. In other iterated cryptosystems the subkeys
are derived by more complex procedures. In FEAL, this procedure is
called key processing algorithm.

Wrong Pair: Any pair of plaintexts which is not a right pair.

Bibliography

[1] Carlisle M. Adams, On Immunity against Biham and Shamir’s
“Differential Cryptanalysis”, Information Processing Letters, Vol. 41,
No. 2, pp. 77–80, 1992.

[2] Thomas A. Berson,Long Key Variants of DES, Advances in Cryptology,
proceedings of CRYPTO’82, pp. 311–313, 1982.

[3] Eli Biham, Adi Shamir, Differential Cryptanalysis of FEAL and N-
Hash, technical report CS91-17, Department of Applied Mathematics
and Computer Science, The Weizmann Institute of Science, 1991. The
extended abstract appears in Lecture Notes in Computer Science,
Advances in Cryptology, proceedings of EUROCRYPT’91, pp. 1–16,
1991.

[4] E. F. Brickell, J. H. Moore, M. R. Purtill, Structure in the S-Boxes of
the DES, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of CRYPTO’86, pp. 3–7, 1986.

[5] Lawrence Brown, Matthew Kwan, Josef Pieprzyk, Jennifer Seberry,
Improving Resistance to Differential Cryptanalysis and the Redesign of
LOKI, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of ASIACRYPT’91, 1991, to appear.

[6] Lawrence Brown, Josef Pieprzyk, Jennifer Seberry, LOKI - A Crypto-
graphic Primitive for Authentication and Secrecy Applications, Lecture
Notes in Computer Science, Advances in Cryptology, proceedings of
AUSCRYPT’90, pp. 229–236, 1990.

[7] David Chaum, Jan-Hendrik Evertse, Cryptanalysis of DES with
a reduced number of rounds, Sequences of linear factors in block
ciphers, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of CRYPTO’85, pp. 192–211, 1985.

[8] Thomas W. Cusick, Michael C. Wood, The REDOC-II Cryptosys-
tem, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of CRYPTO’90, pp. 545–563, 1990.

[9] D. W. Davies, private communication.

[10] D. W. Davies, G. I. P. Parkin, The average Cycle Size of the Key Stream
in Output Feedback Encipherment, Lecture Notes in Computer Science,
Cryptography, proceedings of the Workshop on Cryptography, Burg
Feuerstein, Germany, March 29–April 2 1982, pp. 263–279, 1982. Also
in Advances in Cryptology, proceedings of CRYPTO’82, pp. 97–98,
1982.

Bibliography 178

[11] M. H. Dawson, S. E. Tavares, An Expanded Set of S-box Design Criteria
Based On Information Theory and its Relation to Differential-Like
Attacks, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of EUROCRYPT’91, pp. 352–367, 1991.

[12] Bert Den-Boer, Cryptanalysis of F.E.A.L., Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of EUROCRYPT’88,
pp. 293–300, 1988.

[13] Yvo Desmedt, Jean-Jacque Quisquater, Marc Davio, Dependence of
Output on Input in DES: Small Avalanche Characteristics, Lecture
Notes in Computer Science, Advances in Cryptology, proceedings of
CRYPTO’84, pp. 359–376, 1984.

[14] W. Diffie, M. E. Hellman, Exhaustive Cryptanalysis of the NBS Data
Encryption Standard, Computer, Vol. 10, No. 6, pp. 74–84, June 1977.

[15] H. Feistel, Cryptography and Data Security, Scientific American,
Vol. 228, No. 5, pp. 15–23, May 1973.

[16] Henry Gilbert, Guy Chasse, A Statistical Attack on the FEAL-8
Cryptosystem, Lecture Notes in Computer Science, Advances in
Cryptology, proceedings of CRYPTO’90, pp. 22–33, 1990.

[17] M. E. Hellman, A Cryptanalytic Time-Memory Tradeoff, IEEE Trans.
Inform. Theory, Vol. 26, No. 4, pp. 401–406, July 1980.

[18] M. E. Hellman, R. Merkle, R. Schroppel, L. Washington, W. Diffie, S.
Pohlig and P. Schweitzer, Results of an Initial Attempt to Cryptanalyze
the NBS Data Encryption Standard, Stanford University, September
1976.

[19] Matthew Kwan, private communications.

[20] M. Matsui, A New Method for Known Plaintext Attack of FEAL
Cipher, Abstracts of EUROCRYPT’92, May 1992.

[21] Ralph C. Merkle, A Fast Software One-Way Hash Function, Journal
of Cryptology, Vol. 3, No. 1, pp. 43-58, 1990.

[22] Ralph C. Merkle, Fast Software Encryption Functions, Lecture
Notes in Computer Science, Advances in Cryptology, proceedings of
CRYPTO’90, pp. 476–501, 1990.

[23] Shoji Miyaguchi, FEAL-N specifications, technical note, NTT, 1989.

[24] Shoji Miyaguchi, The FEAL cipher family, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of CRYPTO’90, pp. 627–
638, 1990.

Bibliography 179

[25] S. Miyaguchi, K. Ohta, M. Iwata, 128-bit hash function (N-Hash),
proceedings of SECURICOM’90, pp. 123–137, March 1990.

[26] Shoji Miyaguchi, Akira Shiraishi, Akihiro Shimizu, Fast Data
Encryption Algorithm FEAL-8, Review of electrical communications
laboratories, Vol. 36, No. 4, pp. 433–437, 1988.

[27] Sean Murphy, The Cryptanalysis of FEAL-4 with 20 Chosen Plaintexts,
The Journal of Cryptology, Vol. 2, No. 3, pp. 145–154, 1990.

[28] National Bureau of Standards, Data Encryption Standard, U.S.
Department of Commerce, FIPS pub. 46, January 1977.

[29] National Bureau of Standards, DES Modes of Operation, U.S.
Department of Commerce, FIPS pub. 81, December 1980.

[30] Kaisa Nyberg, Perfect nonlinear S-boxes, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of EUROCRYPT’91,
pp. 378–386, 1991.

[31] Ingrid Schaumuller-Bichl, Zur Analyse des Data Encryption Standard
und Synthese Verwandter Chiffriersysteme, Ph.D. Thesis, Linz
University, May 1981.

[32] Ingrid Schaumuller-Bichl, Cryptanalysis of the Data Encryption
Standard by the Method of Formal Coding, Lecture Notes in Computer
Science, Cryptography, proceedings of the Workshop on Cryptography,
Burg Feuerstein, Germany, March 29–April 2 1982, pp. 235–255, 1982.

[33] Ingrid Schaumuller-Bichl, On the Design and Analysis of New Cipher
Systems Related to the DES, technical report, Linz University, 1983.

[34] Adi Shamir, On the Security of DES, Lecture Notes in Computer
Science, Advances in Cryptology, proceedings of CRYPTO’85, pp. 280–
281, 1985.

[35] Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm
FEAL, Lecture Notes in Computer Science, Advances in Cryptology,
proceedings of EUROCRYPT’87, pp. 267–278, 1987.

[36] Akihiro Shimizu, Shoji Miyaguchi, Fast Data Encryption Algorithm
FEAL, Abstracts of EUROCRYPT’87, pp. VII-11–VII-14, April 1987.

[37] Arthur Sorkin, Lucifer, a Cryptographic Algorithm, Cryptologia, Vol. 8,
No. 1, pp. 22–41, January 1984.

[38] Michael C. Wood, technical report, Cryptech Inc., Jamestown, NY,
July 1990.

Index

0R-attack, 49, 169

1R-attack, 49, 51, 59–60, 62–63,
102–103, 169

2R-attack, 49, 50, 64, 78, 80, 101–
103, 169

3R-attack, 49, 60, 96, 169

Adams Carlisle M., 177
Adaptive Attack, 169, 171
Addition operation, 4, 8, 58–59,

87–88, 96, 104–105, 114,
172

ASCII, 85, 134–135, 146–147
Avalanche, 28, 34, 56
Berson Thomas A., 177
Biham Eli, 177
Birthday attack, 10, 136, 140, 144,

169

Birthday paradox, 2, 5, 10, 133, 169

Black box attack, 133, 135–137, 140
Blockcipher, 152
Brickell Ernest F., 177
Brown Lawrence, 177
C register, See Key register
CBC mode, See Cipher block chain-

ing (CBC) mode
CFB mode, See Cipher feedback

(CFB) mode
Characteristic, 22, 24, 169, 173

Complex, 137, 138–139
Concatenation, 24, 25, 26, 28,

46, 48, 59, 101, 142, 173
Iterative, 28, 47–48, 54, 56–63,

68, 74, 78–79, 81, 84–85,
93, 101, 119–121, 123, 142,
170, 173

Simple, 137, 138
The iterative characteristic, 48,

49, 54, 57–58, 63–64, 68
Chasse Guy, 178
Chaum David, 3, 177
Chosen Ciphertext Attack, 117, 170

Chosen plaintext attack, v, 2, 4–
10, 31–32, 53, 73, 94, 112,
117–119, 122, 128, 170,
171

Cipher block chaining (CBC) mode,
7, 31, 159, 170, 174

Cipher feedback (CFB) mode, 7, 31,
159, 170

Ciphertext, 88, 170

Ciphertext only attack, 146–148,
170, 171

Ciphertext pair, 6, 11, 32, 146
Clique method, 40, 42, 49, 51, 53,

58, 86
Complementation property, 2, 10,

122, 170

Coppersmith Don, v, vi, 171
Counting scheme, 30, 40, 42–43, 59,

82, 85, 96, 117, 170, 176
Cryptanalytic Attack, 171

Cryptech Inc., 5
Cryptosystem, 171

Cusick Thomas W., 177
D register, See Key register
Data analysis algorithm, 7
Data analysis phase, v, 7, 53, 78,

81–82, 84–86, 171

Data collection phase, v, 7, 53, 78,
81, 84–85, 171

Data Encryption Standard, See DES
Davies Donald W., 4, 177
Davio Marc, 178
Dawson M. H., 178
DBH mode, See Double Block Hash

mode
Den-Boer Bert, 4, 88, 172, 178
DES, v, vi, 1, 2–9, 11–29, 33–69,

72, 74, 76–88, 90–91, 97,
119, 123, 125–126, 146–
151, 152, 153, 154–168,
170, 171, 172–176

DES-like cryptosystem, v, 11–12, 22,
26, 171, 172, 174

Design rules, 15, 27, 56, 171

Desmedt Yvo, 178
Difference distribution table, 6, 16,

17–19, 30, 45, 62, 81, 89,
102, 119, 149, 160–168,
172

180

Index 181

Differential cryptanalysis, v, vi, 6,
11, 29, 31, 62, 88, 102,
112, 133, 146, 169–171,
172, 175

Diffie Whitfield, 2, 178
Double Block Hash mode (DBH),

122
E expansion, 13, 15, 23, 34, 54, 56,

63–64, 87, 119, 152, 154

ECB mode, See Electronic Code
Book (ECB) mode

Electronic code book (ECB) mode,
7, 31, 158, 172, 174

Enclave table, 113–114, 116, 118
Evertse Jan-Hendrik, 3, 177
Exhaustive Search, 2, 5, 7, 9, 37, 41,

44, 51–53, 55, 59–60, 68,
78–79, 81, 102, 148, 151,
170, 172

F function, 1, 4, 6, 12, 14–15, 18,
21, 25, 28, 39, 48, 57–
59, 69, 72, 75–76, 81, 88,
89, 90–91, 93, 96, 101–
102, 104–105, 119, 122–
123, 142–144, 151, 152,
157, 171, 172, 173–175

FEAL, v, 4–6, 9, 12, 88, 89, 90–106,
142, 169, 172, 173, 175

FEAL-4, 4–5, 88, 172
FEAL-8, 5, 9, 88, 89, 90, 94–

100, 104, 172
FEAL-N, 5, 9, 88, 100–103, 172
FEAL-NX, 5, 9, 88, 100–103,

172
Feistel Horst, 178
Final permutation, 88, 119, 152

Final transformation, 4, 88, 90, 169
Fk function, 88, 90

GDES, See Generalized DES Scheme
(GDES)

Generalized DES Scheme (GDES),
4, 8, 33, 69–77, 87, 172

Gilbert Henry, v, 178
Hash function, v, 5, 6, 10, 119, 122,

130–145, 173, 175–176
Hellman Martin E., v, 2, 178
IBM, v, vi, 1, 123, 171, 173, 174
Initial permutation (IP), 4, 11, 12,

88, 119, 146–147, 152, 154,

173

Initial transformation, 4, 12, 88
IP , See Initial permutation (IP)
Iterated cryptosystem, v, 1, 5, 11,

21, 169, 173, 175–176
Iwata M., 179
Key, 7, 12, 14, 50, 65, 88, 97, 99–

100, 119, 123, 147–148,
150, 152, 157, 169–172,
173, 174–175

Dependent, 8, 14, 65, 68, 171

Independent, 3, 8–9, 14, 24–25,
33, 35, 65, 68, 72, 74, 76,
78, 171, 173

Key processing algorithm, 88, 90,
99–101, 104, 113, 173, 176

Key register, 83, 148, 157–158
Key scheduling algorithm, 1, 8, 12,

14, 35, 47, 65, 72, 74, 76,
82, 88, 119, 148, 152–153,
157, 158, 171, 173, 176

Key table, 113, 118–119
Khafre, v, 5–6, 9, 107–113, 173

Khufu, 5, 174

Known plaintext attack, v, 2, 4–
10, 31–32, 37, 40–41, 43,
45, 47, 53–54, 59–60, 68,
72–73, 76–77, 85–86, 94,
100, 102, 110–112, 117,
122, 146, 148–151, 170–
172, 174

Konheim Alan, v
Kwan Matthew, v, 123, 177–178
Left half, 114, 152

LOKI, v, 5–6, 9–10, 119–123, 174

Lucifer, v, 1, 6, 10, 123, 124, 125–129,
173, 174

Mask table, 113, 118
Matsui M., 178
May cause, 18, 21

Meet in the middle attack, 3, 174

Merkle Ralph C., v, 5, 178
Method of Formal Coding, 3, 174

Microprocessor, 4, 88, 172
Miyaguchi Shoji, v, 178–179
Modes of operation, 119, 158, 174

Moore J. H., 177
Murphy Sean, 179
N-Hash, v, 6, 10, 142–145, 175

Index 182

National Bureau of Standards (NBS),
v, 1, 3, 171, 175, 179

NBS, See National Bureau of Stan-
dards (NBS)

Nyberg Kaisa, 179
Octet, 32, 36, 102–103, 175, 176
OFB mode, See Output feedback

(OFB) mode
Ohta K., 179
Output feedback (OFB) mode, 7,

31, 159, 170, 175

P permutation, vi, 8, 12, 15, 56–58,
87–88, 119, 126, 128, 151,
152, 154, 155

Pair, 6, 7, 11, 175

Right, 24, 25–26, 29–31, 35, 39–
40, 42–45, 49–52, 73–74,
79, 81, 84, 95–98, 102, 107–
110, 112, 115–116, 133–
134, 138, 142, 175

Wrong, 25, 29–30, 38, 40, 42–45,
49–53, 58, 73–74, 78–79,
81, 96, 102, 106–109, 115,
117, 129, 175, 176

Parallel machine, 2, 84
Parkin Graeme I. P., 177
PC-1, 157, 158

PC-2, 157, 159

Personal computer, v, 7, 9–10, 40,
45, 68, 72, 76, 86, 100,
110, 112, 119, 140, 145

Pieprzyk Josef, 177
Plaintext, 88, 175

Plaintext pair, 11
Purtill M. R., 177
Quartet, 32, 40, 55, 67, 73, 84, 100,

175, 176
Quisquater Jean-Jacque, 178
REDOC-II, v, 5–6, 9, 113–119, 175

Right half, 114, 152

Rotation operation, 4, 88, 107,
109, 112, 119–120, 131–
132, 157–158, 172

Round, 1, 152, 175

Round-function, 1, 12, 173, 175

S box, vi, 1, 4–6, 8, 10, 13, 14–21,
23, 25, 27–30, 33–34, 36–
40, 42–45, 48–52, 54–57,
59–63, 65–68, 72–76, 81–

84, 87–89, 104–110, 113,
119–120, 123–133, 135–
136, 138, 140, 146, 148–
151, 152, 154, 155–158,
160–168, 172–174, 176

S/N, See Signal to noise ratio
SBH mode, See Single Block Hash

mode
Schaumuller-Bichl Ingrid, 3–4, 69,

179
Schroppel R., 178
Seberry Jennifer, 177
Shamir Adi, 149, 177, 179
Shimizu Akihiro, 179
Shiraishi Akira, 179
Signal to noise ratio, 30, 31, 38–40,

42–44, 46, 49, 51–53, 59,
66, 74, 79, 82, 85, 96–98,
102, 176

Single Block Hash mode (SBH), 122
Snefru, v, 5–6, 10, 130–141, 176

Software, 5, 88, 107, 173–175
Sorkin Arthur, 179
Structure, 32, 79, 81–82, 84, 110–112,

115–118, 134–135, 176

Subkey, 1, 12, 14, 21, 58, 64–65,
88, 91, 97, 123, 152, 157,
171–173, 176

16-bit actual subkey, 91, 96–98
Actual subkey, 91, 97–101, 104–

105, 169

Last actual subkey, 91, 96–97,
101–103

Subtraction operation, 58
Tavares S. E., 178
Variable enclave, 113–115
Variable key XOR, 113
Variable permutation, 113
Variable substitution, 113
Wood Michael C., 177, 179
Xerox, 5
Zimmermann Philip, v

