
1

Computational GeometryComputational Geometry

Chapter Chapter 99

Line ArrangementsLine Arrangements

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
1

On the AgendaOn the Agenda

 Line Arrangements

 Applications

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
2

2

Complexity of a Line ArrangementComplexity of a Line Arrangement
 Given a set L of n lines in the plane, their arrangement

A(L) is the plane subdivision induced by L.

 Theorem: The combinatorial complexity of the
arrangement of n lines is (n2) in the worst case.

 Proof:
Number of vertices  (each pair of different lines
may intersect at most once).
Number of edges  n2 (each line is cut into at most n pieces by

1)

222

2 nnn










Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
3

at most n-1 other lines).

Number of faces  (by Euler’s formula and
connecting all rays to a point at infinity).

Equalities hold for lines in general position.
(Show!)

1
22

2


nn

Computing a Line ArrangementComputing a Line Arrangement

 Goal: Compute this planar map (as a DCEL).

 A plane-sweep algorithm would require (n2 log n)
2time (after finding the leftmost event*): (n2) events,

(log n) time each.

(*) Question:
How can the leftmost
event be found in

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
4

O(n log n) time
instead of O(n2) time?

3

An Incremental AlgorithmAn Incremental Algorithm

 Input: A set L of n lines in the plane.

 Output: The DCEL structure for the arrangement A(L),
i.e., the subdivision induced by L in a bounding box B(L)
that contains all the intersections of lines in L.

 The algorithm:
Compute a bounding box B(L), and initialize the DCEL.

Insert one line
after another.
For each line locate

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
5

For each line, locate
the entry face, and
update the
arrangement, face
by face, along the
path of faces (“zone”)
traversed by the line.

Line Arrangement Algorithm (cont.)Line Arrangement Algorithm (cont.)

 After inserting the ith line, the complexity of the map
is O(i2). ((i2) in the worst case—general position.)

 The time complexity of each insertion of a line
depends on the complexity of its zone.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
6

4

Zone of a LineZone of a Line

 The zone of a line ℓ in the arrangement A(L) is the
set of faces of A(L) intersected by ℓ.

 The complexity of a zone is the total complexity of all
its faces: the total number of edges (or vertices) of
these faces.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
7

The Zone TheoremThe Zone Theorem

Theorem: In an arrangement of n lines, the
complexity of the zone of a line is O(n).

Proof (sketch):
Consider a line ℓ. Assume without
loss of generality that ℓ is horizontal.

Assume first that there
are no horizontal lines.

ℓ

ℓ3
ℓ2

ℓ1
ℓ4

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
8

are no horizontal lines.

Count the number of
left bounding edges
in the zone, and prove
that this is at most 4n.
(Same idea for right bounding edges.)

5

Zone Complexity: ProofZone Complexity: Proof

 By induction on n.

 For n=1: Trivial.

 For n>1:
Let ℓ1 be the rightmost line intersecting ℓ (assume it’s unique).

By the induction hypothesis, the zone of ℓ in A(L\{ℓ1}) has at
most 4(n-1) left bounding edges.

When adding ℓ1, the number of such edges increases:

One new edge on ℓ ℓ1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
9

One new edge on ℓ1.

Two old edges split by ℓ1.
ℓ

ℓ1

w

v

Hence, the new zone
complexity is at most 4(n-1)+3 < 4n.

Zone Complexity: Proof (cont.)Zone Complexity: Proof (cont.)

What happens if several (>2) lines intersect ℓ in the
rightmost intersection points (i.e., if ℓ1 is not unique)?

Pi k ℓ d l t f th liPick ℓ1 randomly out of these lines.

By the induction hypothesis, the zone of ℓ in A(L\{ℓ1}) has at
most 4(n-1) left bounding edges.

When adding ℓ1, the number of such edges increases:

Two new edges on ℓ1.

Two old edges split by ℓ1 ℓ1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
10

Two old edges split by ℓ1.

ℓ

ℓ1

wHence, the new zone
complexity is at most 4(n-1)+4 = 4n.

v

6

Zone Complexity: Proof (cont.)Zone Complexity: Proof (cont.)

 And what happens if exactly 2 lines, ℓ1 and ℓ2,
intersect ℓ in the rightmost intersection points?

Di d b th liDiscard both lines.

By the induction hypothesis, the zone of ℓ in A(L\{ℓ1,ℓ2}) has
at most 4(n-2) left bounding edges.

When adding ℓ1, the number of such edges increases by 3.

When adding ℓ2, the number of such edges increases by 5.

One new edge on ℓ1.

Two old edges split by ℓ
ℓ1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
11

Two old edges split by ℓ1.

Two new edges on ℓ2.

Three old edges split by ℓ2.
(Two are seen; where is the third?)

ℓ

Hence, the new zone
complexity is at most 4(n-2)+8 = 4n.

ℓ2

Zone Complexity: Proof (cont.)Zone Complexity: Proof (cont.)

 And what if there are horizontal lines?

 If these lines are parallel to ℓ, then just (imaginarily)
rotate them; this will only increase the complexity of
the zone of ℓ.

 If there is a line ℓ0 identical to ℓ, then the complexity of
the zone of ℓ is equal to that of the zone of ℓ0.

 If there are several lines identical to ℓ, their multiplicity
does not increase the complexity of the zone of ℓ.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
12

7

Constructing the ArrangementConstructing the Arrangement

 The time required to insert a line ℓi is linear in the
complexity of its zone, which is linear in the number of
th l d i ti li Th f th t t l ti ithe already existing lines. Therefore, the total time is

Finding a Finding According
bounding box the entry to the Zone
(can be done point (bin. Theorem

).()() log()(2

1

2)(nOiOiOnO
n

i

 


Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
13

(p (
in O(n log n)) search)

 Note: The bound does not depend on the
line-insertion order! (All orders are good.)

Application Application 11: Minimum: Minimum--Area TriangleArea Triangle

 Given a set of n points, determine
the three points that form the triangle
of minim m area *of minimum area.*

 Easy to solve in (n3) time, but

not so easy to solve in O(n2) time.

May be solved in (n2) time using
the line arrangement in the dual
plane.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
14

(*) Finding the specific set of n points that maximizes
the area of the minimum-area triangle, or, at least,
determining what this area is, is the famous
Heilbronn’s triangle problem.

8

An An ((nn22))--Time AlgorithmTime Algorithm
 Construct the arrangement of dual

lines in (n2) time.
 For each pair of points pi and pj

pi

pj

primary

p p pi pj
(assume pipj is the triangle base):

Identify the vertex v in the dual
arrangement, corresponding to
the line through these points.
Find the line of the arrangement
that is vertically closest to v.
Remember the best line so far.

 Output point corresponding to the

pk

pi*
pj*

v=(a b) dual

y=ax+b

y=ax+b’

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
15

p p p g
best dual line.

 Questions:
Why is it easier to find pk* than pk?
Why is it OK to look vertically?
Why is the total running time only (n2)?

pk*

v (a,b) dual

(a,b’)

Application Application 22: Discrepancy: Discrepancy

 Given a set S of n points in the unit square U=[0,1]2.

 For a given line ℓ, how many points lie below ℓ ?
Let h be the halfplane below ℓ.

If the points are well distributed, this number should be close
to (h)·n, where (h) = |U∩h|. Define S(h) = |S∩h|/|S|.

The discrepancy of S with respect to h is:

S(h) = |(h)-S(h)|

 The halfplane discrepancy of S is

U

S ℓ

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
16

(S) = suph S(h)

Observation: To compute (S), , it suffices
to consider halfplanes that pass through pairs of points.

Naive algorithm (all pairs): (n3) time.

9

Computing DiscrepancyComputing Discrepancy

 In the dual plane, this is equivalent to counting the
number of dual lines above the dual point.

p
q

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
17

q

q*

p*S S*

Computing Discrepancy (cont.)Computing Discrepancy (cont.)

 For every vertex in A(S*),
compute the number of
lines above it, passing
through it (2 in general
position), or lying below it.

 These three numbers sum
up to n, so it suffices to

f

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
18

compute only two of them.

 From the DCEL structure we know how many lines
pass through each vertex.

10

Levels of an ArrangementLevels of an Arrangement

 A point is at level k in an
arrangement of n lines ifarrangement of n lines if
there are at most k-1 lines
above this point and at most
n-k lines below this point.

 There are n levels in an
arrangement of n lines.

 A vertex can be on multiple

L1

L3

L5

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
19

 A vertex can be on multiple
levels, depending on the
number of lines passing through it.

 (Sometimes levels are counted from 0 instead of 1.)

5

An An ((nn22))--Time AlgorithmTime Algorithm

 Construct the dual arrangement.

 For each line, compute
the levels of all its vertices:

1. Compute the levels of the
left infinite rays by sorting
slopes. O(n log n) time.

2. Traverse all the lines from
left to right, incrementing

4 5

4
3

2
3L3

L5

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
20

g , g
or decrementing the level,
depending on the direction
(slope) of the crossing line.
(n) time for each line.

 Total: (n2) time.

