

Complexity of a Line Arrangement

\square Given a set L of n lines in the plane, their arrangement $A(L)$ is the plane subdivision induced by L.

Theorem: The combinatorial complexity of the arrangement of n lines is $\Theta\left(n^{2}\right)$ in the worst case.
\square Proof:
Number of vertices $\leq\binom{ n}{2}=\frac{n^{2}}{2}-\frac{n}{2}$ (each pair of different lines may intersect at most once).
Number of edges $\leq n^{2}$ (each line is cut into at most n pieces by at most n-1 other lines).

- Number of faces $\leq \frac{n^{2}}{2}+\frac{n}{2}+1$ (by Euler's formula and connecting all rays to a point at infinity).
Equalities hold for lines in general position.
(Show!)

Computing a Line Arrangement

\square Goal: Compute this planar map (as a DCEL).
\square A plane-sweep algorithm would require $\Theta\left(n^{2} \log n\right)$ time (after finding the leftmost event*): $\Theta\left(n^{2}\right)$ events, $\Theta(\log n)$ time each.
(*) Question:
How can the leftmost event be found in $\mathrm{O}(n \log n)$ time instead of $\mathrm{O}\left(n^{2}\right)$ time?

An Incremental Algorithm

\square Input: A set L of n lines in the plane.
\square Output: The DCEL structure for the arrangement $A(L)$, i.e., the subdivision induced by L in a bounding box $B(L)$ that contains all the intersections of lines in L.
\square The algorithm:

- Compute a bounding box $B(L)$, and initialize the DCEL.
- Insert one line after another. For each line, locate the entry face, and update the arrangement, face by face, along the path of faces ("zone") traversed by the line.

-1

Line Arrangement Algorithm (cont.)

\square After inserting the ith line, the complexity of the map is $\mathrm{O}\left(i^{2}\right)$. ($\Theta\left(i^{2}\right)$ in the worst case-general position.)
\square The time complexity of each insertion of a line depends on the complexity of its zone.

Zone of a Line

\square The zone of a line ℓ in the arrangement $A(L)$ is the set of faces of $A(L)$ intersected by ℓ.
\square The complexity of a zone is the total complexity of all its faces: the total number of edges (or vertices) of these faces.

The Zone Theorem

\square Theorem: In an arrangement of n lines, the complexity of the zone of a line is $\mathrm{O}(n)$.

\square Proof (sketch):

Consider a line ℓ. Assume without loss of generality that ℓ is horizontal.
Assume first that there are no horizontal lines.

- Count the number of left bounding edges in the zone, and prove that this is at most $4 n$. (Same idea for right bounding edges.)

Zone Complexity: Proof

\square By induction on n.
\square For $n=1$: Trivial.
\square For $n>1$:
\square Let ℓ_{1} be the rightmost line intersecting ℓ (assume it's unique).

- By the induction hypothesis, the zone of ℓ in $A\left(L \backslash\left\{\ell_{1}\right\}\right)$ has at most $4(n-1)$ left bounding edges.
\square When adding ℓ_{1}, the number of such edges increases:
- One new edge on ℓ_{1}.
\square Two old edges split by ℓ_{1}.

Hence, the new zone complexity is at most $4(n-1)+3<4 n$.

Zone Complexity: Proof (cont.)

\square What happens if several (>2) lines intersect ℓ in the rightmost intersection points (i.e., if ℓ_{1} is not unique)?

- Pick ℓ_{1} randomly out of these lines.
- By the induction hypothesis, the zone of ℓ in $A\left(L \backslash\left\{\ell_{1}\right\}\right)$ has at most $4(n-1)$ left bounding edges.
- When adding ℓ_{1}, the number of such edges increases:
- Two new edges on ℓ_{1}.
- Two old edges split by ℓ_{1}.

Hence, the new zone complexity is at most

Zone Complexity: Proof (cont.)

\square And what happens if exactly 2 lines, ℓ_{1} and ℓ_{2}, intersect ℓ in the rightmost intersection points?

Discard both lines.

- By the induction hypothesis, the zone of ℓ in $A\left(L \backslash\left\{\ell_{1}, \ell_{2}\right\}\right)$ has at most $4(n-2)$ left bounding edges.
- When adding ℓ_{1}, the number of such edges increases by 3.
\square When adding ℓ_{2}, the number of such edges increases by 5 .
\square One new edge on ℓ_{1}.
- Two old edges split by ℓ_{1}
\square Two new edges on ℓ_{2}.
- Three old edges split by ℓ_{2}.
(Two are seen; where is the third?)
Hence, the new zone
complexity is at most $4(n-2)+8=4 n$.
Center for Graphics and Geometric Computing, Technion

Zone Complexity: Proof (cont.)

\square And what if there are horizontal lines?
\square If these lines are parallel to ℓ, then just (imaginarily) rotate them; this will only increase the complexity of the zone of ℓ.
If there is a line ℓ_{0} identical to ℓ, then the complexity of the zone of ℓ is equal to that of the zone of ℓ_{0}.
If there are several lines identical to ℓ, their multiplicity does not increase the complexity of the zone of ℓ.

Constructing the Arrangement

\square The time required to insert a line ℓ_{i} is linear in the complexity of its zone, which is linear in the number of the already existing lines. Therefore, the total time is
$O\left(n^{2}\right)+\sum_{i=1}^{n}(O(\log i)+O(i))=O\left(n^{2}\right)$.
Finding a Finding According bounding box the entry to the Zone (can be done point (bin. Theorem in $\mathrm{O}(n \log n)$ search)
\square Note: The bound does not depend on the line-insertion order! (All orders are good.)

Application 1: Minimum-Area Triangle

\square Given a set of n points, determine the three points that form the triangle of minimum area.*
\square Easy to solve in $\Theta\left(n^{3}\right)$ time, but not so easy to solve in $\mathrm{O}\left(n^{2}\right)$ time.
\square May be solved in $\Theta\left(n^{2}\right)$ time using
 the line arrangement in the dual plane.
(*) Finding the specific set of n points that maximizes the area of the minimum-area triangle, or, at least, determining what this area is, is the famous Heilbronn's triangle problem.

An $\Theta\left(n^{2}\right)$-Time Algorithm

Construct the arrangement of dual lines in $\Theta\left(n^{2}\right)$ time.
\square For each pair of points p_{i} and p_{j} (assume $p_{i} p_{j}$ is the triangle base):
\square Identify the vertex v in the dual arrangement, corresponding to the line through these points.

- Find the line of the arrangement that is vertically closest to v .
- Remember the best line so far.
\square Output point corresponding to the best dual line.
\square Questions:
Why is it easier to find $p_{k}{ }^{*}$ than p_{k} ?
 Why is it OK to look vertically? Why is the total running time only $\Theta\left(n^{2}\right)$?

Application 2: Discrepancy

\square Given a set S of n points in the unit square $U=[0,1]^{2}$.
\square For a given line ℓ, how many points lie below ℓ ?

- Let h be the halfplane below ℓ.
- If the points are well distributed, this number should be close to $\mu(h) \cdot n$, where $\mu(h)=|U \cap h|$. Define $\mu_{s}(h)=|S \cap h|| | S \mid$.
- The discrepancy of S with respect to h is:

$$
\Delta_{s}(h)=\left|\mu(h)-\mu_{s}(h)\right|
$$

\square The halfplane discrepancy of S is

$$
\Delta(S)=\sup _{h} \Delta_{S}(h)
$$

Observation: To compute $\Delta(\mathrm{S})$, it suffices
 to consider halfplanes that pass through pairs of points.

Naive algorithm (all pairs): $\Theta\left(n^{3}\right)$ time.

Computing Discrepancy (cont.)

\square For every vertex in $A\left(S^{*}\right)$, compute the number of lines above it, passing through it (2 in general position), or lying below it.
These three numbers sum up to n, so it suffices to
 compute only two of them.
\square From the DCEL structure we know how many lines pass through each vertex.

Levels of an Arrangement

\square A point is at level k in an arrangement of n lines if there are at most k-1 lines above this point and at most $n-k$ lines below this point.
\square There are n levels in an arrangement of n lines.
\square A vertex can be on multiple
 levels, depending on the number of lines passing through it.
(Sometimes levels are counted from 0 instead of 1.)

An $\Theta\left(n^{2}\right)$-Time Algorithm

- Construct the dual arrangement.
- For each line, compute the levels of all its vertices:

1. Compute the levels of the left infinite rays by sorting slopes. $\mathrm{O}(n \log n)$ time.
2. Traverse all the lines from left to right, incrementing or decrementing the level, depending on the direction (slope) of the crossing line. $\Theta(n)$ time for each line.
\square Total: $\Theta\left(n^{2}\right)$ time.
Center for Graphics and Geometric Computing, Technion

