

On the Agenda

\square Order-preserving duality
\square Non-order-preserving dualities

Order-Preserving Duality

Point: $P(a, b)$	Dual line: $P^{*}: y=a x-b$
Line: $\ell: y=a x+b$	Dual point: $\ell^{*}:(a,-b)$

Note: Vertical lines ($x=C$, for a constant C) are not mapped by this duality (or, actually, are mapped to "points at infinity"). We ignore such lines since we can:
\square Avoid vertical lines by a slight rotation of the plane; or \square Handle vertical lines separately.

Duality Properties

1. Self-inverse: $\left(P^{*}\right)^{*}=P,\left(\ell^{*}\right)^{*}=\ell$.
2. Incidence preserving: $P \in \ell \Leftrightarrow \ell^{*} \in P^{*}$.

3. Order preserving:
P above/on/below $\ell \Leftrightarrow \ell^{*}$ above/on/below P^{*} (the point is always below/on/above the line).

Duality Properties (cont.)

4. Points P_{1}, P_{2}, P_{3} collinear on ℓ

Lines $P_{1}{ }^{*}, P_{2}{ }^{*}, P_{3}{ }^{*}$ intersect at ℓ^{*}.

(Follows directly from property 2.)

Duality Properties (cont.)

5. The dual of a line segment $s=\left[P_{1} P_{2}\right]$ is a double wedge that contains all the dual lines of points P on s.
All these points P are collinear, therefore, all their dual lines intersect at one point, the intersection of $P_{1}{ }^{*}$ and $P_{2}{ }^{*}$.

6. Line ℓ intersects segment $s \Leftrightarrow \ell^{*} \in s^{*}$.

Question: How can ℓ be located so that ℓ^{*} appears in the right side of the double wedge?

The Envelope Problem

\square Problem: Find the (convex) lower/upper envelope of a set of lines ℓ_{i} - the boundary of the intersection of the halfplanes lying below/above all the lines.

Theorem: Computing the lower (upper) envelope is equivalent to computing the upper (lower) convex hull of the points ℓ_{i}^{*} in the dual plane.
\square Proof: Using the order-preserving property.

Parabola: Duality Interpretation

\square Theorem: The dual line of a point on the parabola $y=x^{2} / 2$ is the tangent to the parabola at that point.
\square Proof:
Consider the parabola $y=x^{2} / 2$. Its derivative is $y^{\prime}=x$.

- A point on the parabola: $P\left(a, a^{2} / 2\right)$. Its dual: $y=a x-a^{2} / 2$.
- Compute the tangent at P : It is the line $y=c x+d$ passing
 through ($a, a^{2} / 2$) with slope $c=a$. Therefore, $a^{2} / 2=a \cdot a+d$, that is, $d=-a^{2} / 2$, so the line is $y=a x-a^{2} / 2$.

Center for Graphics and Geometric Computing, Technion

Parabola: Duality Interpretation (cont.)

\square And what about points not on the parabola?
\square The dual lines of two points $\left(a, b_{1}\right)$ and $\left(a, b_{2}\right)$ have the same slope and the opposite vertical order with vertical distance $\left|b_{1}-b_{2}\right|$.

Yet Another Interpretation

Problem: Given a point q, what is the line q^{*} ?
\square Construct the two tangents ℓ_{1}, ℓ_{2} to the parabola $y=x^{2} / 2$ that pass through q. Denote the tangency points by P_{1}, P_{2}.
\square Draw the line joining P_{1} and P_{2}. This is q^{*} !
Reason:
q on $\ell_{1} \rightarrow P_{1}=\ell_{1}^{*}$ on q^{*}.
q on $\ell_{2} \rightarrow P_{2}=\ell_{2}^{*}$ on q^{*}.
Hence, $q^{*}=\overline{P_{1} P_{2}}$.

