

Problem Definition

\square Preprocess a planar map S.
Given a query point p, report the face of S containing p.
\square Goal: $\mathrm{O}(n)$-size data structure that enables $\mathrm{O}(\log n)$ query time.

\square Application:

Which state is Baltimore located in?

Answer: Maryland

Trivial Solution: $O(n)$ query time, where n is the complexity of the map.
(Question: Why is the query time only $\mathrm{O}(n)$?)

Naïve Solution

Draw vertical lines through all the vertices of the subdivision.Store the x-coordinates of the vertices in an ordered binary tree.Within each slab, sort the segments separately along y.
\square Query time: O(logn).
\square Problem: Too delicate
 subdivision, of size $\Theta\left(n^{2}\right)$ in the worst case.
(Give such an example!)

The Trapezoidal Map

Construct a bounding box.
\square Assume general position: unique \times coordinates.
\square Extend upward and downward the vertical line from each vertex until it touches another segment.
\square This works also for noncrossing ' line segments.

Complexity

\square Theorem (linear complexity): A trapezoidal map of n segments contains at most $6 n+4$ vertices and at most $3 n+1$ faces.

\square Proof:

1. Vertices:

$$
\underset{\uparrow}{2 n}+\underset{\uparrow}{4 n}+\underset{\uparrow}{\uparrow}=6 n+4
$$

2. Faces: Count Left(Δ).

$$
\underset{\uparrow}{2 n}+\underset{\uparrow}{n}+\frac{1}{\uparrow}=3 n+1
$$

left e.p. right e.p. box

Question:
Why does the proof hold for "degenerate" situations?

Map Data Structure

\square Possibly by DCEL.

An alternative:
For each trapezoid store:
\square The vertices that define its right and left sides;
\square The top and bottom segments;
\square The (up to two) neighboring trapezoids on right and left;
\square (Optional) The neighboring trapezoids from above and below. This number might be linear in n, so only the leftmost
 of these trapezoids is stored.

Search Structure: Branching Rules

\square Query point q, search-structure node s.
$\square s$ is a segment endpoint:
$\square q$ is to the right of s : go right;
$\square q$ is to the left of s : go left;
$\square s$ is a segment:
$\square q$ is below s : go right;

- q is above s : go left;

Search Structure: Construction

\square Find a Bounding Box.
\square Randomly permute the segments.
Insert the segments one by one into the map.
\square Update the map and search structure in each insertion.
\square The size of the map is $\Theta(n)$. (This was proven earlier.)

- The size of the search
 structure depends on the order of insertion.

Updating the Structures (High Level)

\square Find in the existing structure the face that contains the left endpoint of the new segment. (*)
\square Find all other trapezoids intersected by this segment by moving to the right. (In each move choose between two options: Up or Down.)Update the map M_{i} and the search structure D_{i}.
(*) Note: Since endpoints may be shared by segments, we need to consider its segment while searching.

Update M: General Case

\square General Case: The $i^{\text {th }}$ segment intersects with $k_{i}>1$ trapezoids.
\square Split trapezoids.
\square Merge trapezoids that can be united.
\square Total update time: $\mathrm{O}\left(k_{i}\right)$.

Construction: Worst-Case Analysis

\square Each segment adds trees of depth at most (4-1=) 3, so the depth of D_{i} is at most $3 i$.
\square Query time (depth of D_{i}): $\mathrm{O}(i), \Theta(i)$ in the worst case.
\square The $i^{\text {th }}$ segment, s_{i}, may intersect with $\mathbf{O}(\boldsymbol{i})$ trapezoids $(\Theta(\boldsymbol{i})$ in the worst case)!
\square The size of D and its construction time are then bounded from above by

$$
\sum_{i=1}^{n} O(i)=O\left(n^{2}\right)
$$

Construction: Worst-Case Analysis (cont.) Worst-case example:

Construction: Worst-Case Analysis (cont.) Worst-case example:

Construction: Worst-Case Analysis (cont.)

Worst-case example:

The size of D and its construction time is in the worst case.

$$
\sum_{i=1}^{\frac{n}{2}} \Theta(1)+\sum_{i=\frac{n}{2}+1}^{n} \Theta(n)=\Theta\left(n^{2}\right)
$$

Average-Case Analysis

\square We first look for the expected depth of D.
\square : A point, to be searched for in D.
$\square p_{i}$: The probability that a new vertex was created in the path leading to q in the $i^{\text {th }}$ iteration.

Compute p_{i} by backward analysis:
$\square \Delta_{q}\left(M_{i-1}\right)$: The trapezoid containing q in M_{i-1}.
\square Since a new vertex was created, $\Delta_{q}\left(M_{i}\right) \neq \Delta_{q}\left(M_{i-1}\right)$.
\square Delete s_{i} from M_{i}.
$p_{i}=\operatorname{Prob}\left[\Delta_{q}\left(M_{i}\right) \neq \Delta_{q}\left(M_{i-1}\right)\right] \leq 4 / i$. (Why?)

Expected Depth of D

$\square x_{i}$: The number of vertices created in the $i^{\text {th }}$ iteration in the path leading to the leaf q.

The expected length of the path leading to q :

$$
\mathrm{E}\left[\sum_{i=1}^{n} x_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[x_{i}\right] \leq \sum_{i=1}^{n}\left(3 p_{i}\right) \leq \sum_{i=1}^{n} \frac{12}{i}=\mathrm{O}(\log n) .
$$

Expected Size of D

Define an indicator

$$
\delta_{i}(\Delta, s)= \begin{cases}1 & \Delta \text { disappears from } M_{i} \text { if } s \text { is removed } \\ 0 & \text { otherwise }\end{cases}
$$

k_{i} : Number of leaves created in the $i^{\text {th }}$ step.
$\square S_{i}$: The set of the first i segments.
\square Average on s :

$$
\begin{aligned}
\mathrm{E}\left[k_{i}\right] & =\frac{1}{i} \sum_{s \in S_{i}}\left(\sum_{\Delta \in M_{i}} \delta_{i}(\Delta, s)\right)=\frac{1}{i}\left(\sum_{s \in S_{i}} \sum_{\Delta \in M_{i}} \delta_{i}(\Delta, s)\right) \\
& \leq \frac{1}{i}\left(4\left|M_{i}\right|\right) \quad \text { (same backward analysis) } \\
& =\frac{\mathrm{O}(i)}{i}=\mathrm{O}(1) .
\end{aligned}
$$

Handling Degeneracies

What happens if two segment endpoints have the same x coordinate?
\square Use a shearing transformation:

$$
\varphi\binom{x}{y}=\binom{x+\varepsilon y}{y}
$$

\square Higher points will move more to the right.
$\square \varepsilon$ should be small enough so that this transform will not change the order of two points with different x coordinates.
In fact, there is no need to shear the plane. Comparison rules mimic the shearing.
\square Prove: The entire algorithm remains correct.

