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On the AgendaOn the Agenda

 k-D Trees

 Range Trees Range Trees
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Orthogonal Range SearchingOrthogonal Range Searching

 Problem: Given a set of n points in 
d, preprocess them such that 

ti ti th k i t Yreporting or counting the k points 
inside a d-dimensional axis-parallel 
box will be efficient. 

 Desired output-sensitive query time 
complexity – O(k+f(n)) for reporting 
and O(f(n)) for counting, where 
f(n)=o(n) e g f(n)=O(log n) X

Y
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f(n)=o(n), e.g. f(n)=O(log n).

 Sample application: Report all cities 
within 20 KM radius of Tel Aviv.   
(Here the range is actually a circle.)

X

Range Searching:  Range Searching:  11DD

 In a one-dimensional space, points are real numbers, 
and a range is defined by two numbers a and b.and a range is defined by two numbers a and b.

 A simple O(log n)-time algorithm:
Sort points (O(n log n) time preprocessing).

(Binary) search for a and b in the list (O(log n) time).

List all values in between.

 C t b il li d t hi h di i

a b
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 Cannot be easily generalized to higher dimensions.  
(Why not ?).
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Range Searching:  Range Searching:  11D TreeD Tree

 Range tree solution:
Sort points.p

Construct a balanced binary 
tree, storing the points in its 
leaves. 

Each tree node stores the 
largest value of its left 
subtree.
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Range Searching in a Range Searching in a 11D TreeD Tree

 Finding a leaf:  O(log n) time.
 Find the two boundaries of the given 

1

Input Range: 3.5-8.2

1
g

range in the leaves u and v. 
 Report all the leaves in maximal

subtrees between u and v.
 Mark the vertex at which the search 

paths diverge as Vsplit.
 Continue to find the two boundaries, 

reporting values in the subtrees:
Wh i t d th l ft
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Vsplit
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5
When going towards the left       
(right) endpoint of the range:             
If going left (right), report the      
entire right (left) subtree.

 When reaching a leaf, it needs to be 
checked.
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RunningRunning--Time AnalysisTime Analysis

 k:  output size

 Leaves:  O(k) time

 Internal nodes:  O(k) time (since this is a binary tree)

 Paths:  O(log n) time

 Total:  O(log n + k) time

Worst case:  k = n →   (n) time

 C i O(l ) i h H ?
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 Counting: O(log n) even in the worst case.  How?

General IdeaGeneral Idea

 Build a data structure storing a “small” number of 
canonical subsets, such that:

Th i l t lThe canonical sets may overlap.

Every query may be answered as the union of a “small” 
number of canonical sets.

 Needs the geometry of the space to enable this.

 Two extremes:
Si l t O(k) ti f ti
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Singletons:  O(k) query time, even for counting.

Power set:  O(1) query time, O(2n) storage.
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Example (Example (11D)D)

15 V-split

1 4 9 14 17 22 25 29

3 12 20 27

7 24

{4,7}

{9,12,14,15}

{17,20}

{22}

canonical subset
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1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

2 23

u v

{3} {22}

The canonical subsets are subtrees (overkill in 1D).
What is the space consumption?

22D TreesD Trees

 Input:  A set of points in 2D.
 Bound the points by a rectangle.
 S lit th i t i t t l i b t Split the points into two equal-size subsets, 

using a horizontal or vertical line.
 Continue recursively to partition the subsets, 

alternating the directions of the lines, until  
point subsets are small enough (of constant 
size).

 Canonical subsets are subtrees.
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 In higher (k) dimensions:  Split directions 
alternate between the k axes.

 In k-D it is called “k-D tree”.
In 2-D:  Used to be called “2-D tree”;          
now (slang) called “2-D k-D tree”. 
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22D Tree:  ConstructionD Tree:  Construction
 Partition the plane into axis-

aligned rectangular regions.

 Nodes represent partition

L1

L3L2

L4

L6

B
A

C

E
G

F
H

 Nodes represent partition 
lines, and leaves represent 
input points.

 The bottleneck is finding the 
median, but this requires 
only linear time!

 Time complexity:

L1

L2 L3

L5
L7

D
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 Time complexity: 2 3

L7L6L5L4

C D E F G HBA
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Two Possible ImprovementsTwo Possible Improvements

 Instead of finding the median from scratch each time:
Spend (twice) O(n log n) preprocessing time on sorting all 
points (once according to x and once according to y)points (once according to x, and once according to y).

Finding the median will be easier, but will still require linear 
time.

 Questions:
Why linear and not, say, logarithmic time?

Is it an asymptotic improvement?

 To overcome the last pitfall copy the point subsets to
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 To overcome the last pitfall, copy the point subsets to 
the children trees (to avoid “jumps”).  Thus, finding 
the median will require constant time.  Unfortunately 
asymptotically there will be no improvement.  Why?
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Range Counting/ReportingRange Counting/Reporting

 Each node in the tree defines 
an axis-parallel rectangle in the 

L1
L4

L6

F
plane, bounded by the lines 
marked by this vertex’s 
ancestors.

 Label each node with the 
number of points in that
rectangle. 

L1

L L

L5

L3L2

L7

B
A

C

D

E

G
H

8

4 4
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L2 L3

L7L6L5L4

C D E F G HBA
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Range Counting/Reporting (cont.)Range Counting/Reporting (cont.)
 Given an axis-parallel 

range query R, search for 
this range in the tree. 

L1L4
L6

B
A E

F

Rg

 Traverse only subtrees 
which represent regions 
overlapping R.

 If a subtree entirly 
contained in R:

Counting: Add up           
its count.

L1

L2 L3

LLLL

L5

L3
L2

L7
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D

G HL1
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I
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Reporting:               
Report entire         
subtree.

L7L6L5L4

C D E F G

H

BA

L4

A B

L5

C L8

I

2
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TimeTime--Complexity AnalysisComplexity Analysis
 k nodes are reported.  How much time is spent 

on internal nodes?  The nodes visited are those 
that are stabbed by R but are not contained in Rthat are stabbed by R but are not contained in R.  
How many such cells exist?

 Theorem:  Every side of R stabs O(n) cells of 
the tree.

 Proof:  Extend the side (w.l.o.g.,                      
horizontal) to a full line.                                                   
In the first level it stabs two                                  
hild d i h l l i 
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children, and in the next level it                                 
stabs two out of the four grandchildren.                                 
Thus, the recursive equation is:

 Total query time:  O(n + k).
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kkdd--Trees:  Higher DimensionsTrees:  Higher Dimensions

 For a d-dimensional space:
Same algorithm.
O(d) time is needed to handle a pointO(d) time is needed to handle a point.
Construction time:  O(d n log n).
Space Complexity:  O(d n).
Query time complexity:  O(d (n1-1/d+k)).

 Note:  For large d, full scan is almost equally good!
 Question: Are kd-trees useful for non-orthogonal 

range queries, e.g., disks, convex polygons?
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g q , g , , p yg

 Fact: After O(d n logd-1n) preprocessing time,     
using d-D range trees, orthogonal range queries can 
be solved in O(d (logd-1n + k)) time using                
O(d n logd-1n) space.



9

MultiMulti--Level Data StructureLevel Data Structure

 Construct a tree ordered 
by x coordinates.

 Each inner vertex v
contains a pointer to a 
secondary tree, that 
contains all the points of 
the primary subtree 
ordered by y coordinates.

 P i d l i
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 Points are stored only in 
the secondary trees.

Ordered by X

Ordered by Y

Range Tree:  ConstructionRange Tree:  Construction

 Same as a 1D-Tree, except that in each level the 
secondary trees are built as well.

 Theorem:  The space complexity is (n log n).

 Proof:  The size of the primary tree is (n).  Each of 
its (log n) levels corresponds to a collection of 
secondary trees that contains all the n points.

 Construction time (naïve analysis):
1           )1(O n
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Range Tree:  Improved ConstructionRange Tree:  Improved Construction

 However, there is no need for repeated sorting by y
coordinates!

 Instead, we can sort by y only once (in O(n log n) time), 
and copy data in the recursive calls in linear time.

 The resulting recursive equation is:

else2)(O

1  )1(O
)( n

Tn

n
nT
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 Overall: O(n log n) time.
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Range Tree:  SearchRange Tree:  Search

 Given a 2D range, we 
simulate a 1D search and 
find s btrees sorted bfind subtrees sorted by x. 

 Instead of reporting the 
entire subtrees, we invoke 
a search in the secondary 
trees sorted by y, and 
report only the points in the 
query range
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query range.

Ordered by X

Ordered by Y
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Search:  AnalysisSearch:  Analysis

 Time complexity:

)(l)(l)(l)( 2 kOkOT 

 Th i i b d d O(l k) b

)(log)(log)(log)( 2 knOknnOnT
v

v  
   

traversingtraversing calls to   traversing   reporting                         calls to   traversing   reporting                         
primary         secondary   secondary                         primary         secondary   secondary                         
structure       structure      structurestructure       structure      structure
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 The running time can be reduced to O(log n + k) by 
using fractional cascading. 

Points in NonPoints in Non--General PositionGeneral Position
 Question:  How can we handle sets of 

points which are not in general position, 
i.e., with multiple points with the same x, p p
coordinate?

 Answer:  By two-step order checks.  
When comparing according to x,       
resolve ties by y, and vice versa.

 This splits points into two sides, having 
the same effect as infinitesimally rotating 
the plane
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the plane.
 Theorem:  The modified order checks 

preserve the correctness of the 
algorithms.


