

Orthogonal Range Searching

Problem: Given a set of n points in \Re^{d}, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel box will be efficient.

- Desired output-sensitive query time complexity - $\mathrm{O}(k+\mathrm{f}(n))$ for reporting and $\mathrm{O}(\mathrm{f}(n))$ for counting, where $\mathrm{f}(n)=\mathrm{o}(n)$, e.g. $\mathrm{f}(n)=\mathrm{O}(\log n)$.

Sample application: Report all cities within 20 KM radius of Tel Aviv.
(Here the range is actually a circle.)

Range Searching: 1D

In a one-dimensional space, points are real numbers, and a range is defined by two numbers a and b.
\square A simple $\mathrm{O}(\log n)$-time algorithm:
\square Sort points $(O(n \log n)$ time preprocessing).

- (Binary) search for a and b in the list ($O(\log n)$ time).
- List all values in between.

Cannot be easily generalized to higher dimensions.
(Why not?).

Range Searching: 1D Tree

Range tree solution:
Sort points.

- Construct a balanced binary tree, storing the points in its
 leaves.
- Each tree node stores the largest value of its left subtree.

Range Searching in a 1D Tree

Finding a leaf: $\mathrm{O}(\log n)$ time.

- Find the two boundaries of the given range in the leaves u and v.
\square Report all the leaves in maximal subtrees between u and v.
- Mark the vertex at which the search paths diverge as $\mathrm{V}_{\text {split }}$.
- Continue to find the two boundaries, reporting values in the subtrees: When going towards the left (right) endpoint of the range:

Input Range: 3.5-8.2 If going left (right), report the entire right (left) subtree.When reaching a leaf, it needs to be checked.

Running-Time Analysis

- k : output size

Leaves: $\mathrm{O}(k)$ time
\square Internal nodes: $\mathrm{O}(k)$ time (since this is a binary tree)
\square Paths: $\mathrm{O}(\log n)$ time
Total: $\mathrm{O}(\log n+k)$ time
\square Worst case: $k=n \rightarrow \Theta(n)$ time
\square Counting: O(log n) even in the worst case. How?

General Idea

\square Build a data structure storing a "small" number of canonical subsets, such that:

- The canonical sets may overlap.
- Every query may be answered as the union of a "small" number of canonical sets.
\square Needs the geometry of the space to enable this.
- Two extremes:
- Singletons: $\mathrm{O}(k)$ query time, even for counting.
- Power set: $O(1)$ query time, $O\left(2^{n}\right)$ storage.

2D Trees

Input: A set of points in 2D.
Bound the points by a rectangle.
\square Split the points into two equal-size subsets, using a horizontal or vertical line.

- Continue recursively to partition the subsets, alternating the directions of the lines, until point subsets are small enough (of constant size).Canonical subsets are subtrees.In higher (k) dimensions: Split directions alternate between the k axes.
\square In k-D it is called " k - D tree".
In 2-D: Used to be called "2-D tree";
 now (slang) called "2-D k-D tree".

Two Possible Improvements

\square Instead of finding the median from scratch each time:
\square Spend (twice) $O(n \log n$) preprocessing time on sorting all points (once according to x , and once according to y).

- Finding the median will be easier, but will still require linear time.
- Questions:
\square Why linear and not, say, logarithmic time?
- Is it an asymptotic improvement?

To overcome the last pitfall, copy the point subsets to the children trees (to avoid "jumps"). Thus, finding the median will require constant time. Unfortunately asymptotically there will be no improvement. Why?

Range Counting/Reporting

\square Each node in the tree defines an axis-parallel rectangle in the plane, bounded by the lines marked by this vertex's ancestors.

- Label each node with the number of points in that rectangle.

Range Counting/Reporting (cont.)

Given an axis-parallel range query R, search for this range in the tree.
\square Traverse only subtrees which represent regions overlapping R.

- If a subtree entirly contained in R :
- Counting: Add up its count.
- Reporting: Report entire subtree.

Time-Complexity Analysis

$\square k$ nodes are reported. How much time is spent on internal nodes? The nodes visited are those that are stabbed by R but are not contained in R. How many such cells exist?
Theorem: Every side of R stabs $\mathrm{O}(\sqrt{ } n)$ cells of the tree.
\square Proof: Extend the side (w.l.o.g., horizontal) to a full line.
In the first level it stabs two children, and in the next level it $Q(n)= \begin{cases}1 & n=1 \\ 2+2 Q\left(\frac{n}{4}\right) & \text { else }\end{cases}$ stabs two out of the four grandchildren. Thus, the recursive equation is:

$$
=O(\sqrt{n})
$$

\square Total query time: $\mathrm{O}(\sqrt{n}+k)$.

kd-Trees: Higher Dimensions

\square For a d-dimensional space:

- Same algorithm.
- $O(d)$ time is needed to handle a point.
- Construction time: $O(d n \log n)$.
- Space Complexity: O(dn).
- Query time complexity: $\mathrm{O}\left(d\left(n^{1-1 / d}+k\right)\right)$.
\square Note: For large d, full scan is almost equally good!
\square Question: Are kd-trees useful for non-orthogonal range queries, e.g., disks, convex polygons?
\square Fact: After $\mathrm{O}\left(d n \log ^{d-1} n\right)$ preprocessing time, using d-D range trees, orthogonal range queries can be solved in $\mathrm{O}\left(d\left(\log ^{d-1} n+k\right)\right.$) time using $\mathrm{O}\left(d n \log ^{d-1} n\right)$ space.

Multi-Level Data Structure

Construct a tree ordered by x coordinates.
\square Each inner vertex v contains a pointer to a secondary tree, that contains all the points of the primary subtree ordered by y coordinates.
\square Points are stored only in the secondary trees.

Range Tree: Construction

\square Same as a 1D-Tree, except that in each level the secondary trees are built as well.
\square Theorem: The space complexity is $\Theta(n \log n)$.
\square Proof: The size of the primary tree is $\Theta(n)$. Each of its $\Theta(\log n)$ levels corresponds to a collection of secondary trees that contains all the n points.
\square Construction time (naïve analysis):

$$
\begin{aligned}
T(n) & = \begin{cases}\mathrm{O}(1) & n=1 \\
\mathrm{O}(n \log n)+2 T\left(\frac{n}{2}\right) & \text { else }\end{cases} \\
& =\mathrm{O}\left(n \log ^{2} n\right)
\end{aligned}
$$

Range Tree: Improved Construction

However, there is no need for repeated sorting by y coordinates!
\square Instead, we can sort by y only once (in $O(n \log n)$ time), and copy data in the recursive calls in linear time.
\square The resulting recursive equation is:

$$
\begin{aligned}
T(n) & = \begin{cases}\mathrm{O}(1) & n=1 \\
\mathrm{O}(n)+2 T\left(\frac{n}{2}\right) & \text { else }\end{cases} \\
& =\mathrm{O}(n \log n)
\end{aligned}
$$

\square Overall: $\mathrm{O}(n \log n)$ time.

Range Tree: Search

\square Given a 2D range, we simulate a 1D search and find subtrees sorted by x.
\square Instead of reporting the entire subtrees, we invoke a search in the secondary trees sorted by y, and report only the points in the query range.

Search: Analysis

Time complexity:

$$
\begin{aligned}
& T(n)=O(\log n)+\sum_{v}\left(\log n+k_{v}\right)=O\left(\log ^{2} n+k\right) \\
& \begin{array}{rccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
\text { traversing } & \text { calls to } \\
\text { traversing } \\
\text { reporting }
\end{array} \\
& \text { primary secondary secondary } \\
& \text { structure structure structure }
\end{aligned}
$$

\square The running time can be reduced to $O(\log n+k)$ by using fractional cascading.

Points in Non-General Position

\square Question: How can we handle sets of points which are not in general position, i.e., with multiple points with the same x coordinate?
\square Answer: By two-step order checks. When comparing according to x, resolve ties by y, and vice versa.
\square This splits points into two sides, having the same effect as infinitesimally rotating the plane.
Theorem: The modified order checks preserve the correctness of the preserve th

