
1

Computational GeometryComputational Geometry

Chapter Chapter 55

Orthogonal Range SearchingOrthogonal Range Searching

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 1

On the AgendaOn the Agenda

 k-D Trees

 Range Trees Range Trees

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 2

2

Orthogonal Range SearchingOrthogonal Range Searching

 Problem: Given a set of n points in
d, preprocess them such that

ti ti th k i t Yreporting or counting the k points
inside a d-dimensional axis-parallel
box will be efficient.

 Desired output-sensitive query time
complexity – O(k+f(n)) for reporting
and O(f(n)) for counting, where
f(n)=o(n) e g f(n)=O(log n) X

Y

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 3

f(n)=o(n), e.g. f(n)=O(log n).

 Sample application: Report all cities
within 20 KM radius of Tel Aviv.
(Here the range is actually a circle.)

X

Range Searching: Range Searching: 11DD

 In a one-dimensional space, points are real numbers,
and a range is defined by two numbers a and b.and a range is defined by two numbers a and b.

 A simple O(log n)-time algorithm:
Sort points (O(n log n) time preprocessing).

(Binary) search for a and b in the list (O(log n) time).

List all values in between.

 C t b il li d t hi h di i

a b

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 4

 Cannot be easily generalized to higher dimensions.
(Why not ?).

3

Range Searching: Range Searching: 11D TreeD Tree

 Range tree solution:
Sort points.p

Construct a balanced binary
tree, storing the points in its
leaves.

Each tree node stores the
largest value of its left
subtree.

-4 -2 0 1 3 5 7 11

1

-2 5

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 5

7304-

0 1 3 5 7 11-2-4

Range Searching in a Range Searching in a 11D TreeD Tree

 Finding a leaf: O(log n) time.
 Find the two boundaries of the given

1

Input Range: 3.5-8.2

1
g

range in the leaves u and v.
 Report all the leaves in maximal

subtrees between u and v.
 Mark the vertex at which the search

paths diverge as Vsplit.
 Continue to find the two boundaries,

reporting values in the subtrees:
Wh i t d th l ft

1

-2 5

730-4

1

Vsplit
5

3 7

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 6

5
When going towards the left
(right) endpoint of the range:
If going left (right), report the
entire right (left) subtree.

 When reaching a leaf, it needs to be
checked.

0 1 3 5 7 11-2-4 117

4

RunningRunning--Time AnalysisTime Analysis

 k: output size

 Leaves: O(k) time

 Internal nodes: O(k) time (since this is a binary tree)

 Paths: O(log n) time

 Total: O(log n + k) time

Worst case: k = n → (n) time

 C i O(l) i h H ?

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 7

 Counting: O(log n) even in the worst case. How?

General IdeaGeneral Idea

 Build a data structure storing a “small” number of
canonical subsets, such that:

Th i l t lThe canonical sets may overlap.

Every query may be answered as the union of a “small”
number of canonical sets.

 Needs the geometry of the space to enable this.

 Two extremes:
Si l t O(k) ti f ti

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 8

Singletons: O(k) query time, even for counting.

Power set: O(1) query time, O(2n) storage.

5

Example (Example (11D)D)

15 V-split

1 4 9 14 17 22 25 29

3 12 20 27

7 24

{4,7}

{9,12,14,15}

{17,20}

{22}

canonical subset

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 9

1 3 4 7 9 12 14 15 17 20 22 24 25 27 29 31

2 23

u v

{3} {22}

The canonical subsets are subtrees (overkill in 1D).
What is the space consumption?

22D TreesD Trees

 Input: A set of points in 2D.
 Bound the points by a rectangle.
 S lit th i t i t t l i b t Split the points into two equal-size subsets,

using a horizontal or vertical line.
 Continue recursively to partition the subsets,

alternating the directions of the lines, until
point subsets are small enough (of constant
size).

 Canonical subsets are subtrees.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 10

 In higher (k) dimensions: Split directions
alternate between the k axes.

 In k-D it is called “k-D tree”.
In 2-D: Used to be called “2-D tree”;
now (slang) called “2-D k-D tree”.

6

22D Tree: ConstructionD Tree: Construction
 Partition the plane into axis-

aligned rectangular regions.

 Nodes represent partition

L1

L3L2

L4

L6

B
A

C

E
G

F
H

 Nodes represent partition
lines, and leaves represent
input points.

 The bottleneck is finding the
median, but this requires
only linear time!

 Time complexity:

L1

L2 L3

L5
L7

D

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 11

 Time complexity: 2 3

L7L6L5L4

C D E F G HBA

(1) 1

()
() 2 1

2

() (log)

O n

T n n
O n T n

T n O n n

Two Possible ImprovementsTwo Possible Improvements

 Instead of finding the median from scratch each time:
Spend (twice) O(n log n) preprocessing time on sorting all
points (once according to x and once according to y)points (once according to x, and once according to y).

Finding the median will be easier, but will still require linear
time.

 Questions:
Why linear and not, say, logarithmic time?

Is it an asymptotic improvement?

 To overcome the last pitfall copy the point subsets to

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 12

 To overcome the last pitfall, copy the point subsets to
the children trees (to avoid “jumps”). Thus, finding
the median will require constant time. Unfortunately
asymptotically there will be no improvement. Why?

7

Range Counting/ReportingRange Counting/Reporting

 Each node in the tree defines
an axis-parallel rectangle in the

L1
L4

L6

F
plane, bounded by the lines
marked by this vertex’s
ancestors.

 Label each node with the
number of points in that
rectangle.

L1

L L

L5

L3L2

L7

B
A

C

D

E

G
H

8

4 4

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 13

L2 L3

L7L6L5L4

C D E F G HBA

22 2 2

Range Counting/Reporting (cont.)Range Counting/Reporting (cont.)
 Given an axis-parallel

range query R, search for
this range in the tree.

L1L4
L6

B
A E

F

Rg

 Traverse only subtrees
which represent regions
overlapping R.

 If a subtree entirly
contained in R:

Counting: Add up
its count.

L1

L2 L3

LLLL

L5

L3
L2

L7

B

C

D

G HL1

L2

L L

I
L8

9

4 5

2 2 2 3

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 14

Reporting:
Report entire
subtree.

L7L6L5L4

C D E F G

H

BA

L4

A B

L5

C L8

I

2

2

8

TimeTime--Complexity AnalysisComplexity Analysis
 k nodes are reported. How much time is spent

on internal nodes? The nodes visited are those
that are stabbed by R but are not contained in Rthat are stabbed by R but are not contained in R.
How many such cells exist?

 Theorem: Every side of R stabs O(n) cells of
the tree.

 Proof: Extend the side (w.l.o.g.,
horizontal) to a full line.
In the first level it stabs two
hild d i h l l i

else22

11
)(n

Q

n
nQ

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 15

children, and in the next level it
stabs two out of the four grandchildren.
Thus, the recursive equation is:

 Total query time: O(n + k).

 4

Q

 nO

kkdd--Trees: Higher DimensionsTrees: Higher Dimensions

 For a d-dimensional space:
Same algorithm.
O(d) time is needed to handle a pointO(d) time is needed to handle a point.
Construction time: O(d n log n).
Space Complexity: O(d n).
Query time complexity: O(d (n1-1/d+k)).

 Note: For large d, full scan is almost equally good!
 Question: Are kd-trees useful for non-orthogonal

range queries, e.g., disks, convex polygons?

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 16

g q , g , , p yg

 Fact: After O(d n logd-1n) preprocessing time,
using d-D range trees, orthogonal range queries can
be solved in O(d (logd-1n + k)) time using
O(d n logd-1n) space.

9

MultiMulti--Level Data StructureLevel Data Structure

 Construct a tree ordered
by x coordinates.

 Each inner vertex v
contains a pointer to a
secondary tree, that
contains all the points of
the primary subtree
ordered by y coordinates.

 P i d l i

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 17

 Points are stored only in
the secondary trees.

Ordered by X

Ordered by Y

Range Tree: ConstructionRange Tree: Construction

 Same as a 1D-Tree, except that in each level the
secondary trees are built as well.

 Theorem: The space complexity is (n log n).

 Proof: The size of the primary tree is (n). Each of
its (log n) levels corresponds to a collection of
secondary trees that contains all the n points.

 Construction time (naïve analysis):
1)1(O n

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 18

)log (O

else
2

2) log (O

)(
)(

2 nn

n
Tnn

nT

10

Range Tree: Improved ConstructionRange Tree: Improved Construction

 However, there is no need for repeated sorting by y
coordinates!

 Instead, we can sort by y only once (in O(n log n) time),
and copy data in the recursive calls in linear time.

 The resulting recursive equation is:

else2)(O

1)1(O
)(n

Tn

n
nT

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 19

 Overall: O(n log n) time.

) log (O

2
)(

nn

Range Tree: SearchRange Tree: Search

 Given a 2D range, we
simulate a 1D search and
find s btrees sorted bfind subtrees sorted by x.

 Instead of reporting the
entire subtrees, we invoke
a search in the secondary
trees sorted by y, and
report only the points in the
query range

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 20

query range.

Ordered by X

Ordered by Y

11

Search: AnalysisSearch: Analysis

 Time complexity:

)(l)(l)(l)(2 kOkOT

 Th i i b d d O(l k) b

)(log)(log)(log)(2 knOknnOnT
v

v

traversingtraversing calls to traversing reporting calls to traversing reporting
primary secondary secondary primary secondary secondary
structure structure structurestructure structure structure

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 21

 The running time can be reduced to O(log n + k) by
using fractional cascading.

Points in NonPoints in Non--General PositionGeneral Position
 Question: How can we handle sets of

points which are not in general position,
i.e., with multiple points with the same x, p p
coordinate?

 Answer: By two-step order checks.
When comparing according to x,
resolve ties by y, and vice versa.

 This splits points into two sides, having
the same effect as infinitesimally rotating
the plane

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion 22

the plane.
 Theorem: The modified order checks

preserve the correctness of the
algorithms.

