
1

Computational GeometryComputational Geometry

Chapter Chapter 44

Linear ProgrammingLinear Programming

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
1

On the AgendaOn the Agenda

 Linear programming

 Smallest enclosing disk

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
2

2

Linear Programming: DefinitionLinear Programming: Definition
 Define:

xi – the amount of food of type i – variables (1id).

j – types of vitamins (1jn)j types of vitamins (1jn).

aji – the amount of vitamin j in one unit of food i.

ci – the number of calories in one unit of food i.

 Constraints (we need to consume some minimal
amount of every vitamin):

11 1 12 2 1 1d da x a x a x b   

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
3

 Minimize: the total number of calories consumed:

1 1 2 2() d dC x c x c x c x   

1 1 2 2n n nd d na x a x a x b   




:

:

TMinimize c x

Subject to Ax b

Linear Programming: GeometryLinear Programming: Geometry

 Each constraint defines a half-space in
the d-dimensional space.

 The feasible region is the (convex)
intersection of these half-spaces.

 Question: Why is the feasible region
convex?

 We will discuss the planar case (d = 2),
in which each constraint defines a

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
4

in which each constraint defines a
half-plane.

3

More GeometryMore Geometry

 The solution to the linear program is the p g
(or a) point in the feasible region that is
extreme in the direction of the target
function.

 Observation: Any bounded linear
program that is feasible either has

A unique solution, which is a vertex of

c

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
5

the feasible region; or

Infinitely-many solutions that are a face
of the feasible region which is
perpendicular to the target function.

 Proof: By convexity.

Degenerate CasesDegenerate Cases

 The feasible region may be:

E tEmpty

Unbounded

A line/ray/line-segment

A point

 The solution may be:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
6

Not unique

4

The Simplex AlgorithmThe Simplex Algorithm

 Assume without loss of generality that
the target function points “downwards”.

 Construct (some of) the vertices of the
feasible region.

 Walk edge by edge downwards until
reaching a local minimum (which is also
a global minimum).

 In Rd, the number of vertices might be

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
7

 In R , the number of vertices might be
(n⌊d/2⌋), and the algorithm may traverse
(n⌊d/2⌋) of them.

History of Linear ProgrammingHistory of Linear Programming

 Mid 20th century: Simplex algorithm, time complexity (n⌊d/2⌋)
in the worst case. Practically, this algorithm is commonly used
due to its efficient expected running time (linear in n).p g ()

 Early 1980’s: Khachiyan’s ellipsoid algorithm with time
complexity poly(n,d).

 Early 1980’s: Karmakar’s interior-point algorithm with time
complexity poly(n,d).

 1984: Nimrod Megiddo’s parametric-search algorithm:
Time complexity O(Cdn) (linear in n), where Cd is a constant
dependent only on d.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
8

dependent only on d.

His initial constant was as high as 22^d.

Later the constant was improved to 3d^2.

There were further improvements of Cd.

This is optimal when d is constant.

5

O(O(n n log log nn))--Time D&C Time D&C 22DD--LP AlgorithmLP Algorithm

 Input:
n half-planes.

A t t f ti th t (l) i t dA target function that (w.l.o.g.) points down.

 Algorithm:
1. Construct the feasible region of the whole problem:

a. Partition the n half-planes into two sets of size n/2.

b. Compute recursively the feasible region for each group.

c Compute the intersection of the two feasible regions

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
9

c. Compute the intersection of the two feasible regions.

2. Check the target function on the vertices of the feasible
region.

D&C: TimeD&C: Time--Complexity AnalysisComplexity Analysis
 The complexity of the intersection of two

convex n-gons is O(n). Why?
 Stage 1 c: Stage 1.c:

Intersection of two convex polygons (of n
vertices): solved by a plane-sweep algorithm.
No more than four segments are
simultaneously in the SLS, and there are O(n)
events (vertices and intersections) in the EQ.
Total time: O(n); Worst case: (n) time.

 Stage 2:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
10

 Stage 2:
Time of finding the vertex minimizing the
target function: O(log n).

 The total time is the solution of the
recursive equation T(n) = 2T(n/2) + O(n),
which is T(n) = O(n log n).

6

O(O(nn22))--Time Incremental AlgorithmTime Incremental Algorithm

 Start by intersecting two halfplanes.

 Add halfplanes one by one, and update the optimum
vertex by solving a 1-D linear-programming problem
on the new line.

We will handle first the addition of a halfplane when
the feasible region is already bounded; then we will
handle the unbounded case.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
11

Incremental Algorithm: NotationIncremental Algorithm: Notation

l1

h2 C2

v3
l3

C3

Definitions:Definitions:

the ith halfplanehi :

the line that defines hili :

the feasible region after i constraintsCi :

h1C1

l2
v2

3
h3

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
12

the optimum vertex of CiVi :

7

Incremental Algorithm: Basic TheoremIncremental Algorithm: Basic Theorem

 Theorem:
1 If vi 1hi then vi = vi 1 hi1. If vi-1hi, then vi vi-1.

2. If vi-1hi, then either

a. Ci=
or

b. Ci = Ci-1hi and vi lies on li.

 Proof:

hi-1

hi

vi-1

hi

hi

vi

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
13

 Proof:
1. Trivial. Otherwise vi would not have

been optimum before.

2a. Also trivial.

i

Basic Theorem (cont.)Basic Theorem (cont.)

2b. Assume on the contrary that vi is not on li.
v must be in C By convexity the entire hivi must be in Ci-1. By convexity, the entire
line segment vivi-1 is in Ci-1 .

Consider vj, the intersection point of the
segment vivi-1 with li. By definition, vj is in
Ci, and by linearity it is better than vi.

hi-1

vi-1

hi

vi
vj

li

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
14

This is a contradiction.

8

Incremental Step: Given Incremental Step: Given vvii--11 & & hhii, Find , Find vvii

 If vi-1hi (can be checked in O(1) time), then
don’t do anything (v = v)don t do anything (vi = vi-1).

 Intersect all hj (j<i) with li, generating i-1 rays
representing feasible half-unbounded intervals
(in the direction of the target function).

 If lj and li are parallel, then the entire line is
either good (so ignore it), or bad (so report
“ l ti ”)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
15

“no solution”).

 Intersect the i-1 rays in (i) time. How?

 If the intersection is empty, then report “no
solution”, else report the lowest point. How?

Complexity AnalysisComplexity Analysis

2
n


 Time:

)()()(2

3

nOiOnT
i

 


(Summation starts from 3 since two
halfplanes that certify that the
problem is bounded are found in the
initialization step.)

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
16

(n2) in the worst case.

 Space: (n).

9

Unbounded LPUnbounded LP
 Input: The entire LP program.

 Output: An indication that the feasible region is either
A Unbounded (+ a ray completely contained in it); orA. Unbounded (+ a ray completely contained in it); or

B. Bounded (+ two of the halfplanes that make it so).

 Algorithm: See in [BKOS, §4].

 Time: (n).

 Space: (n).

 The time & space of the entire algorithm remain the same.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
17

 Comments:
The procedure may detect that the problem is infeasible.

When we are not interested in unbounded problems, we can
arbitrarily define a target function, based on the first two
halfplanes, that makes the problem bounded.

An An ((nn))--Time Randomized VersionTime Randomized Version

 Is there a good order that will make the algorithm run in
() ti ? Y th i b t f t t l fi di thi(n) time? Yes, there is, but unfortunately finding this

order requires O(n2) time. ☹

 The randomized version is exactly like the deterministic
one, except that the order of the lines is random.

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
18

 Theorem: The expected running time of the random
incremental algorithm (over all n! permutations of the
halfplanes) is (n).

10

Complexity AnalysisComplexity Analysis

 There are n iterations.

If vi = vi-1 (no optimum change): O(1) time;

Otherwise: O(i) time.

 Define random variables

 The expected running time is:













1

1

0

 1

ii

ii
i vv

vv
x

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
19

   
3 3

(1)(1 ()) () () () () ()
n n

i i i
i i

O E x O i E x O n O i E x
 

    

Complexity Analysis (cont.)Complexity Analysis (cont.)

Backward analysis:

 Q: What is E[xi]?

A: Exactly Pr[vi-1hi].

 Question: So, when given the optimum
after i halfplanes, what is the probability
that the last halfplane affected the optimum?

 Answer: 2/i, because a change can occur
only if the last processed halfplane is one of

vi

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
20

o y e as p ocessed a p a e s o e o
the two halfplanes that define vi.

More precisely:
At most 2/i, to take into account three lines passing through vi.

It is actually 2/(i-2), since the first two halfplanes are fixed.

11

Complexity Analysis (cont.)Complexity Analysis (cont.)

1

2
() Pr()i i iE x v v  1

3 3

() Pr()

2
() () () () ()

i i i

n n

i
i i

E x v v
i

O n O i E x O n O i O n
i



 



      
 

 

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
21

Expected Expected ((nn) Time.) Time.

Just to Make Sure…Just to Make Sure…

 False Claim:

The probabilistic analysis is for the average set of
halfplanes. Hence, there exist bad sets of
constraints for which the algorithm’s expected
running time is ω(n) (more than (n)), and there exist
good sets of constraints for which the algorithm’s
expected running time is o(n) (less than (n)).

 True Claim:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
22

 True Claim:
The probabilistic analysis is valid for all sets of
halfplanes. The expected time complexity is over
all permutations of any set of halfplanes. In this
respect all sets are “good”.

12

Smallest Enclosing DiskSmallest Enclosing Disk

 Input: n points.

 Output: The disk of minimum radius that Output: The disk of minimum radius that
encloses all the points.

 Theorem: Let P be a finite set of points,
and let D be its smallest enclosing disk.

1. The length of an arc of D defined by
consecutive points is at most .

2 If D is defined by two points of P then

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
23

2. If D is defined by two points of P, then
these two point are diametrical on D.

 This immediately implies an O(n4)-time
algorithm. (How ?)

Underlying TheoremUnderlying Theorem
Idea: Use an incremental algorithm, processing one point at a time.

Notation: D is the smallest enclosing disk of the first i pointsNotation: Di is the smallest enclosing disk of the first i points.

Theorem: If piDi-1 then pi is on the boundary of Di.

Proof:

By a continuous deformation
between Di-1 and Di.

r2

Di-1
q1

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
24

i 1 i

r1

a

pi

Di

q2

q3

13

Expected Expected ((nn))--Time Incremental AlgorithmTime Incremental Algorithm

Procedures:

MinDisk(P): Find the smallest enclosingMinDisk(P): Find the smallest enclosing
disk of a set of points P.

MinDisk1(P,q): Find the smallest
enclosing disk of a set of points P, given
that some point q is on its boundary.

MinDisk2(P,q1,q2): Find the smallest
enclosing disk of a set of points P given that some

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
25

enclosing disk of a set of points P, given that some
points q1 and q2 are on its boundary.

 Disk(q1,q2,q3): Find the disk defined by three non-
collinear points q1, q2, and q3. (Obvious.)

Incremental Algorithm (cont.)Incremental Algorithm (cont.)

MinDisk(P):

 D2 = the minimum disk defined by p1 and p2.

(That is, the disk whose diameter is p1p2.)

 For each point pi (3≤i≤n):
If pi  Di-1 then Di = Di-1;

Else Di = MinDisk1(Pi-1,pi).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
26

 Return Dn.

14

Incremental Algorithm (cont.)Incremental Algorithm (cont.)

MinDisk1(P,q):

 D1 = the minimum disk defined by q and p1.

(That is, the disk whose diameter is qp1.)

 For each point pi (2≤i≤|P|):
If pi  Di-1 then Di = Di-1;

Else Di = MinDisk2(Pi-1,q,pi).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
27

 Return Dn.

Incremental Algorithm (cont.)Incremental Algorithm (cont.)

MinDisk2(P,q1,q2):

 D0 = the minimum disk defined by q1 and q2.

(That is, the disk whose diameter is q1q2.)

 For each point pi (1≤i≤|P|):
If pi  Di-1 then Di = Di-1;

Else Di = Disk(q1,q2,pi).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
28

 Return Dn.

15

TimeTime--Complexity AnalysisComplexity Analysis
 Use backward analysis for a random point ordering.

 Total expected time complexity:
In the lo est le el

||P

In the lowest level:

In the middle level:

In the highest level:

 Question: Why 2/i and 3/i ?

|)(|)1(
1

POO
i




)()
3

)()1((
3

nO
i

iOO
n

i




|)(|)
2

)()1((
||

2

PO
i

iOO
P

i




Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
29

 Question: Why 2/i and 3/i ?

 Linear expected running time.

Worst case: (n3). (When?)

