
1

Computational GeometryComputational Geometry

Chapter Chapter 44

Linear ProgrammingLinear Programming

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
1

On the AgendaOn the Agenda

 Linear programming

 Smallest enclosing disk
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Linear Programming:  DefinitionLinear Programming:  Definition
 Define:

xi – the amount of food of type i – variables (1id).

j – types of vitamins (1jn)j types of vitamins (1jn).

aji – the amount of vitamin j in one unit of food i.

ci – the number of calories in one unit of food i.

 Constraints (we need to consume some minimal 
amount of every vitamin):

11 1 12 2 1 1d da x a x a x b   
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 Minimize: the total number of calories consumed:

1 1 2 2( ) d dC x c x c x c x   

1 1 2 2n n nd d na x a x a x b   




:

:

TMinimize c x

Subject to Ax b

Linear Programming:  GeometryLinear Programming:  Geometry

 Each constraint defines a half-space in 
the d-dimensional space.

 The feasible region is the (convex) 
intersection of these half-spaces.

 Question:  Why is the feasible region 
convex?

 We will discuss the planar case (d = 2), 
in which each constraint defines a
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in which each constraint defines a      
half-plane.
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More GeometryMore Geometry

 The solution to the linear program is the p g
(or a) point in the feasible region that is 
extreme in the direction of the target 
function.

 Observation: Any bounded linear 
program that is feasible either has

A unique solution, which is a vertex of 

c
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the feasible region; or

Infinitely-many solutions that are a face 
of the feasible region which is 
perpendicular to the target function.

 Proof: By convexity.

Degenerate CasesDegenerate Cases

 The feasible region may be:

E tEmpty

Unbounded

A line/ray/line-segment

A point

 The solution may be:
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Not unique
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The Simplex AlgorithmThe Simplex Algorithm

 Assume without loss of generality that 
the target function points “downwards”.

 Construct (some of) the vertices of the 
feasible region.

 Walk edge by edge downwards until 
reaching a local minimum (which is also 
a global minimum).

 In Rd, the number of vertices might be
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 In R , the number of vertices might be 
(n⌊d/2⌋), and the algorithm may traverse 
(n⌊d/2⌋) of them.

History of Linear ProgrammingHistory of Linear Programming

 Mid 20th century: Simplex algorithm, time complexity (n⌊d/2⌋) 
in the worst case.  Practically, this algorithm is commonly used 
due to its efficient expected running time (linear in n).p g ( )

 Early 1980’s:  Khachiyan’s ellipsoid algorithm with time 
complexity poly(n,d). 

 Early 1980’s:  Karmakar’s interior-point algorithm with time 
complexity poly(n,d).

 1984:  Nimrod Megiddo’s parametric-search algorithm:
Time complexity O(Cdn) (linear in n), where Cd is a constant 
dependent only on d.
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dependent only on d.

His initial constant was as high as 22^d.

Later the constant was improved to 3d^2.

There were further improvements of Cd.

This is optimal when d is constant.
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O(O(n n log log nn))--Time D&C Time D&C 22DD--LP AlgorithmLP Algorithm

 Input: 
n half-planes.

A t t f ti th t ( l ) i t dA target function that (w.l.o.g.) points down.

 Algorithm:
1. Construct the feasible region of the whole problem:

a. Partition the n half-planes into two sets of size n/2.

b. Compute recursively the feasible region for each group.

c Compute the intersection of the two feasible regions
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c. Compute the intersection of the two feasible regions.

2. Check the target function on the vertices of the feasible 
region.

D&C:  TimeD&C:  Time--Complexity AnalysisComplexity Analysis
 The complexity of the intersection of two 

convex n-gons is O(n).  Why?
 Stage 1 c: Stage 1.c:

Intersection of two convex polygons (of n
vertices): solved by a plane-sweep algorithm.
No more than four segments are 
simultaneously in the SLS, and there are O(n) 
events (vertices and intersections) in the EQ.  
Total time:  O(n);  Worst case:  (n) time.

 Stage 2:
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 Stage 2:
Time of finding the vertex minimizing the 
target function: O(log n).

 The total time is the solution of the 
recursive equation T(n) = 2T(n/2) + O(n), 
which is T(n) = O(n log n).
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O(O(nn22))--Time Incremental AlgorithmTime Incremental Algorithm

 Start by intersecting two halfplanes.

 Add halfplanes one by one, and update the optimum 
vertex by solving a 1-D linear-programming problem 
on the new line.

We will handle first the addition of a halfplane when 
the feasible region is already bounded;  then we will 
handle the unbounded case.
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Incremental Algorithm:  NotationIncremental Algorithm:  Notation

l1

h2 C2

v3
l3

C3

Definitions:Definitions:

the ith halfplanehi :

the line that defines hili :

the feasible region after i constraintsCi :

h1C1

l2
v2

3
h3

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
12

the optimum vertex of CiVi :
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Incremental Algorithm:  Basic TheoremIncremental Algorithm:  Basic Theorem

 Theorem:
1 If vi 1hi then vi = vi 1 hi1. If vi-1hi, then vi  vi-1.

2. If vi-1hi, then either

a.  Ci=
or

b.  Ci = Ci-1hi and vi lies on li.

 Proof:

hi-1

hi

vi-1

hi

hi

vi
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 Proof:
1. Trivial. Otherwise vi would not have

been optimum before.

2a. Also trivial.

i

Basic Theorem (cont.)Basic Theorem (cont.)

2b. Assume on the contrary that vi is not on li. 
v must be in C By convexity the entire hivi must be in Ci-1.  By convexity, the entire 
line segment vivi-1 is in Ci-1 . 

Consider vj, the intersection point of the 
segment vivi-1 with li.  By definition, vj is in 
Ci, and by linearity it is better than vi. 

hi-1

vi-1

hi

vi
vj

li
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This is a contradiction.
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Incremental Step:  Given Incremental Step:  Given vvii--11 & & hhii, Find , Find vvii

 If vi-1hi (can be checked in O(1) time), then 
don’t do anything (v = v )don t do anything (vi = vi-1). 

 Intersect all hj (j<i) with li, generating i-1 rays 
representing feasible half-unbounded intervals 
(in the direction of the target function).

 If lj and li are parallel, then the entire line is 
either good (so ignore it), or bad (so report  
“ l ti ”)
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“no solution”).

 Intersect the i-1 rays in (i) time.  How?

 If the intersection is empty, then report “no 
solution”, else report the lowest point.  How?

Complexity AnalysisComplexity Analysis

2
n


 Time:

)()()( 2

3

nOiOnT
i

 


(Summation starts from 3 since two 
halfplanes that certify that the 
problem is bounded are found in the 
initialization step.)
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(n2) in the worst case.

 Space:  (n).
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Unbounded LPUnbounded LP
 Input:  The entire LP program.

 Output:  An indication that the feasible region is either
A Unbounded (+ a ray completely contained in it); orA.  Unbounded (+ a ray completely contained in it);  or

B.  Bounded (+ two of the halfplanes that make it so).

 Algorithm:   See in [BKOS, §4].

 Time:  (n).

 Space:  (n).

 The time & space of the entire algorithm remain the same.
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 Comments:
The procedure may detect that the problem is infeasible.

When we are not interested in unbounded problems, we can 
arbitrarily define a target function, based on the first two 
halfplanes, that makes the problem bounded.

An An ((nn))--Time Randomized VersionTime Randomized Version

 Is there a good order that will make the algorithm run in 
( ) ti ? Y th i b t f t t l fi di thi(n) time? Yes, there is, but unfortunately finding this 

order requires O(n2) time.   ☹

 The randomized version is exactly like the deterministic 
one, except that the order of the lines is random.
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 Theorem: The expected running time of the random 
incremental algorithm (over all n! permutations of the 
halfplanes) is (n).
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Complexity AnalysisComplexity Analysis

 There are n iterations.

If vi = vi-1 (no optimum change): O(1) time;

Otherwise:                                    O(i) time.

 Define random variables

 The expected running time is:













1

1

0

 1

ii

ii
i vv

vv
x
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n n

i i i
i i

O E x O i E x O n O i E x
 

    

Complexity Analysis (cont.)Complexity Analysis (cont.)

Backward analysis:

 Q:  What is E[xi]?

A:   Exactly Pr[vi-1hi].

 Question:  So, when given the optimum                    
after i halfplanes, what is the probability                    
that the last halfplane affected the optimum?

 Answer:  2/i, because a change can occur                
only if the last processed halfplane is one of               

vi
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o y e as p ocessed a p a e s o e o
the two halfplanes that define vi.

More precisely:
At most 2/i, to take into account three lines passing through vi.

It is actually 2/(i-2), since the first two halfplanes are fixed.
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Complexity Analysis (cont.)Complexity Analysis (cont.)

1

2
( ) Pr( )i i iE x v v  1

3 3

( ) Pr( )

2
( ) ( ) ( ) ( ) ( )

i i i

n n

i
i i

E x v v
i

O n O i E x O n O i O n
i



 



      
 

 
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Expected Expected ((nn) Time.) Time.

Just to Make Sure…Just to Make Sure…

 False Claim:

The probabilistic analysis is for the average set of 
halfplanes.  Hence, there exist bad sets of 
constraints for which the algorithm’s expected 
running time is ω(n) (more than (n)), and there exist 
good sets of constraints for which the algorithm’s 
expected running time is o(n) (less than (n)).

 True Claim:

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
22

 True Claim:
The probabilistic analysis is valid for all sets of 
halfplanes.  The expected time complexity is over 
all permutations of any set of halfplanes.  In this 
respect all sets are “good”.
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Smallest Enclosing DiskSmallest Enclosing Disk

 Input: n points.

 Output: The disk of minimum radius that Output:  The disk of minimum radius that 
encloses all the points.

 Theorem: Let P be a finite set of points, 
and let D be its smallest enclosing disk.

1. The length of an arc of D defined by 
consecutive points is at most .

2 If D is defined by two points of P then
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2. If D is defined by two points of P, then 
these two point are diametrical on D.

 This immediately implies an O(n4)-time 
algorithm.  (How ?)

Underlying TheoremUnderlying Theorem
Idea: Use an incremental algorithm, processing one point at a time.

Notation: D is the smallest enclosing disk of the first i pointsNotation: Di is the smallest enclosing disk of the first i points.

Theorem:  If piDi-1 then pi is on the boundary of Di.

Proof:

By a continuous deformation
between Di-1 and Di.

r2

Di-1
q1
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i 1 i

r1

a

pi

Di

q2

q3
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Expected Expected ((nn))--Time Incremental AlgorithmTime Incremental Algorithm

Procedures:

MinDisk(P): Find the smallest enclosingMinDisk(P):  Find the smallest enclosing            
disk of a set of points P.

MinDisk1(P,q):  Find the smallest              
enclosing disk of a set of points P, given
that some point q is on its boundary.

MinDisk2(P,q1,q2):  Find the smallest        
enclosing disk of a set of points P given that some
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enclosing disk of a set of points P, given that some 
points q1 and q2 are on its boundary.

 Disk(q1,q2,q3):  Find the disk defined by three non-
collinear points q1, q2, and q3.  (Obvious.)

Incremental Algorithm (cont.)Incremental Algorithm (cont.)

MinDisk(P):

 D2 = the minimum disk defined by p1 and p2.

(That is, the disk whose diameter is p1p2.)

 For each point pi (3≤i≤n):
If pi  Di-1 then Di = Di-1;

Else Di = MinDisk1(Pi-1,pi).
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 Return Dn.
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Incremental Algorithm (cont.)Incremental Algorithm (cont.)

MinDisk1(P,q):

 D1 = the minimum disk defined by q and p1.

(That is, the disk whose diameter is qp1.)

 For each point pi (2≤i≤|P|):
If pi  Di-1 then Di = Di-1;

Else Di = MinDisk2(Pi-1,q,pi).
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 Return Dn.

Incremental Algorithm (cont.)Incremental Algorithm (cont.)

MinDisk2(P,q1,q2):

 D0 = the minimum disk defined by q1 and q2.

(That is, the disk whose diameter is q1q2.)

 For each point pi (1≤i≤|P|):
If pi  Di-1 then Di = Di-1;

Else Di = Disk(q1,q2,pi).

Center for Graphics and Geometric Computing, TechnionCenter for Graphics and Geometric Computing, Technion
28

 Return Dn.
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TimeTime--Complexity AnalysisComplexity Analysis
 Use backward analysis for a random point ordering.

 Total expected time complexity:
In the lo est le el

||P

In the lowest level:

In the middle level:

In the highest level:

 Question: Why 2/i and 3/i ?
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 Question:  Why 2/i and 3/i ?

 Linear expected running time.

Worst case:  (n3).  (When?)


