

On the Agenda

\square Linear programming
\square Smallest enclosing disk

Linear Programming: Definition

- Define:
- x_{i} - the amount of food of type i - variables ($1 \leq i \leq \mathrm{d}$).
- j - types of vitamins ($1 \leq j \leq n$).
- $a_{i j}$ - the amount of vitamin j in one unit of food i.
- c_{i} - the number of calories in one unit of food i.

Constraints (we need to consume some minimal amount of every vitamin):

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 d} x_{d} \geq b_{1} \\
& \vdots \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n d} x_{d} \geq b_{n}
\end{aligned}
$$

Minimize: the total number of calories consumed:

Linear Programming: Geometry

\square Each constraint defines a half-space in the d-dimensional space.
\square The feasible region is the (convex) intersection of these half-spaces.Question: Why is the feasible region convex?

We will discuss the planar case $(d=2)$, in which each constraint defines a half-plane.

More Geometry

The solution to the linear program is the (or a) point in the feasible region that is extreme in the direction of the target function.

Observation: Any bounded linear program that is feasible either has

- A unique solution, which is a vertex of the feasible region; or
Infinitely-many solutions that are a face of the feasible region which is perpendicular to the target function.
Proof: By convexity.

Degenerate Cases

\square The feasible region may be:

- Empty
- Unbounded

A line/ray/line-segment

- A point

The solution may be:

Not unique

Center for Graphics and Geometric Computing, Technion

The Simplex Algorithm

[Assume without loss of generality that the target function points "downwards".
\square Construct (some of) the vertices of the feasible region.
Walk edge by edge downwards until reaching a local minimum (which is also a global minimum).

- In R^{d}, the number of vertices might be $\Theta\left(n^{\lfloor d / 2\rfloor}\right)$, and the algorithm may traverse $\Theta\left(n^{\lfloor\alpha / 2\rfloor}\right)$ of them.

History of Linear Programming

- Mid $20^{\text {th }}$ century: Simplex algorithm, time complexity $\Theta\left(n^{\lfloor\mathrm{d} / 2\rfloor}\right)$ in the worst case. Practically, this algorithm is commonly used due to its efficient expected running time (linear in n).
E Early 1980's: Khachiyan's ellipsoid algorithm with time complexity poly (n, d).
E Early 1980's: Karmakar's interior-point algorithm with time complexity poly (n, d).
- 1984: Nimrod Megiddo's parametric-search algorithm:

Time complexity $\mathrm{O}\left(C_{d} n\right)$ (linear in n), where C_{d} is a constant dependent only on d.

- His initial constant was as high as $2^{2^{\lambda d} d}$.
- Later the constant was improved to $3^{a^{n}}$.

There were further improvements of C_{d}.
This is optimal when d is constant.

O($n \log n$)-Time D\&C 2D-LP Algorithm

- Input:
- n half-planes.
- A target function that (w.l.o.g.) points down.
- Algorithm:

1. Construct the feasible region of the whole problem:
a. Partition the n half-planes into two sets of size $n / 2$.
b. Compute recursively the feasible region for each group.
c. Compute the intersection of the two feasible regions.
2. Check the target function on the vertices of the feasible region.

D\&C: Time-Complexity Analysis

\square The complexity of the intersection of two convex n-gons is $\mathrm{O}(n)$. Why?
\square Stage 1.c:
Intersection of two convex polygons (of $\leq n$ vertices): solved by a plane-sweep algorithm.

- No more than four segments are simultaneously in the SLS, and there are O(n) events (vertices and intersections) in the EQ. Total time: $\mathrm{O}(n)$; Worst case: $\Theta(n)$ time.

\square Stage 2:

- Time of finding the vertex minimizing the target function: $\mathrm{O}(\log n)$.
The total time is the solution of the recursive equation $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+\mathrm{O}(n)$, which is $\mathrm{T}(n)=\mathrm{O}(n \log n)$.

$\mathrm{O}\left(n^{2}\right)$-Time Incremental Algorithm

\square Start by intersecting two halfplanes.
\square Add halfplanes one by one, and update the optimum vertex by solving a 1-D linear-programming problem on the new line.
\square We will handle first the addition of a halfplane when the feasible region is already bounded; then we will handle the unbounded case.

Incremental Algorithm: Notation

Definitions:
h_{i} : the $i^{\text {th }}$ halfplane
l_{i} : the line that defines h_{i}

C_{i} : the feasible region after i constraints
V_{i} : the optimum vertex of C_{i}

Incremental Algorithm: Basic Theorem

Theorem:

1. If $v_{i-1} \in h_{i}$, then $v_{i}=v_{i-1}$.
2. If $v_{i-1} \notin h_{i}$, then either
a. $C_{i}=\varnothing$
or
b. $C_{i}=C_{i-1} \cap h_{i}$ and v_{i} lies on I_{i}.
\square Proof:
3. Trivial. Otherwise v_{i} would not have been optimum before.
2a. Also trivial.

Basic Theorem (cont.)

2b. Assume on the contrary that v_{i} is not on I_{i}. v_{i} must be in C_{i-1}. By convexity, the entire line segment $v_{i} v_{i-1}$ is in C_{i-1}.

Consider v_{j}, the intersection point of the segment $v_{i} v_{i-1}$ with l_{i}. By definition, v_{j} is in C_{i}, and by linearity it is better than v_{i}.

This is a contradiction.

Incremental Step: Given $v_{i-1} \& h_{i}$, Find v_{i}

\square If $v_{i-1} \in h_{i}$ (can be checked in $\mathrm{O}(1)$ time), then don't do anything $\left(v_{i}=v_{i-1}\right)$.
\square Intersect all $h_{j}(j<i)$ with I_{i}, generating $i-1$ rays representing feasible half-unbounded intervals (in the direction of the target function).
If l_{j} and I_{i} are parallel, then the entire line is either good (so ignore it), or bad (so report "no solution").
\square Intersect the $i-1$ rays in $\Theta(i)$ time. How?
If the intersection is empty, then report "no solution", else report the lowest point. How?

Complexity Analysis

Time:
$T(n)=\sum_{i=3}^{n} O(i)=O\left(n^{2}\right)$
(Summation starts from 3 since two halfplanes that certify that the problem is bounded are found in the
 initialization step.)
$\Theta\left(n^{2}\right)$ in the worst case.
\square Space: $\Theta(n)$.

Unbounded LP

\square Input: The entire LP program.
\square Output: An indication that the feasible region is either
A. Unbounded (+ a ray completely contained in it); or
B. Bounded (+ two of the halfplanes that make it so).
\square Algorithm: See in [BKOS, §4].
\square Time: $\Theta(n)$.
\square Space: $\Theta(n)$.
The time \& space of the entire algorithm remain the same.
\square Comments:

- The procedure may detect that the problem is infeasible.
- When we are not interested in unbounded problems, we can arbitrarily define a target function, based on the first two halfplanes, that makes the problem bounded.

An $\Theta(n)$-Time Randomized Version

\square Is there a good order that will make the algorithm run in $\Theta(n)$ time? Yes, there is, but unfortunately finding this order requires $\mathrm{O}\left(n^{2}\right)$ time. ${ }^{*}$
\square The randomized version is exactly like the deterministic one, except that the order of the lines is random.
\square Theorem: The expected running time of the random incremental algorithm (over all n ! permutations of the halfplanes) is $\Theta(n)$.

Complexity Analysis

\square There are n iterations. If $v_{i}=v_{i-1}$ (no optimum change): $\mathrm{O}(1)$ time; Otherwise: $\mathrm{O}(i)$ time.
D Define random variables

$$
x_{i}= \begin{cases}1 & v_{i} \neq v_{i-1} \\ 0 & v_{i}=v_{i-1}\end{cases}
$$

\square The expected running time is:

$$
\sum_{i=3}^{n}\left[O(1)\left(1-E\left(x_{i}\right)\right)+O(i) E\left(x_{i}\right)\right] \leq O(n)+\sum_{i=3}^{n}\left[O(i) E\left(x_{i}\right)\right]
$$

Complexity Analysis (cont.)

Backward analysis:

$\square \mathrm{Q}:$ What is $\mathrm{E}\left[x_{i}\right]$?
A: Exactly $\operatorname{Pr}\left[v_{i-1} \notin h_{j}\right]$.
\square Question: So, when given the optimum after i halfplanes, what is the probability that the last halfplane affected the optimum?
\square Answer: 2/i, because a change can occur
 only if the last processed halfplane is one of the two halfplanes that define v_{i}.
\square More precisely:

- At most $2 / i$, to take into account three lines passing through v_{i}.
- It is actually $2 /(i-2)$, since the first two halfplanes are fixed.

Just to Make Sure...

\square False Claim:
The probabilistic analysis is for the average set of halfplanes. Hence, there exist bad sets of constraints for which the algorithm's expected running time is $\omega(n)$ (more than $\Theta(n)$), and there exist good sets of constraints for which the algorithm's expected running time is $o(n)$ (less than $\Theta(n)$).

- True Claim:

The probabilistic analysis is valid for all sets of halfplanes. The expected time complexity is over all permutations of any set of halfplanes. In this respect all sets are "good".

Smallest Enclosing Disk

\square Input: n points.Output: The disk of minimum radius that encloses all the points.
\square Theorem: Let P be a finite set of points,
 and let D be its smallest enclosing disk.

1. The length of an arc of D defined by consecutive points is at most π.
2. If D is defined by two points of P, then these two point are diametrical on D.
\square This immediately implies an $\mathrm{O}\left(n^{4}\right)$-time algorithm. (How?)

Underlying Theorem

Idea: Use an incremental algorithm, processing one point at a time.

Notation: D_{i} is the smallest enclosing disk of the first i points.

Theorem: If $p_{i} \notin D_{i-1}$ then p_{i} is on the boundary of D_{i}.

Proof:
By a continuous deformation between D_{i-1} and D_{i}.

Expected $\Theta(n)$-Time Incremental Algorithm

Procedures:
\square MinDisk(P): Find the smallest enclosing disk of a set of points P.
\square MinDisk1 (P, q) : Find the smallest enclosing disk of a set of points P, given
 that some point q is on its boundary.
\square MinDisk2($\left.P, q_{1}, q_{2}\right)$: Find the smallest enclosing disk of a set of points P, given that some points q_{1} and q_{2} are on its boundary.
$\square \operatorname{Disk}\left(q_{1}, q_{2}, q_{3}\right)$: Find the disk defined by three noncollinear points q_{1}, q_{2}, and q_{3}. (Obvious.)

Incremental Algorithm (cont.)

MinDisk(P):

D $D_{2}=$ the minimum disk defined by p_{1} and p_{2}. (That is, the disk whose diameter is $p_{1} p_{2}$.)
\square For each point $p_{i}(3 \leq i \leq n)$:
If $p_{i} \in D_{\mathrm{i}-1}$ then $D_{i}=D_{i-1}$;
\square Else $D_{i}=\operatorname{MinDisk} 1\left(P_{i-1}, p_{i}\right)$.
\square Return D_{n}.

Incremental Algorithm (cont.)

MinDisk1(P,q):
$\square D_{1}=$ the minimum disk defined by q and p_{1}. (That is, the disk whose diameter is $q p_{1}$.)
\square For each point $p_{i}(2 \leq i \leq|P|)$:

- If $p_{i} \in D_{i-1}$ then $D_{i}=D_{i-1}$;
- Else $D_{i}=\operatorname{MinDisk2}\left(P_{i-1}, q, p_{i}\right)$.
\square Return D_{n}.

Incremental Algorithm (cont.)

MinDisk2 $\left(P, q_{1}, q_{2}\right):$
$\square D_{0}=$ the minimum disk defined by q_{1} and q_{2}.
(That is, the disk whose diameter is $q_{1} q_{2}$.)
\square For each point $p_{i}(1 \leq i \leq|P|)$:
\square If $p_{i} \in D_{i-1}$ then $D_{i}=D_{i-1}$;

- Else $D_{i}=\operatorname{Disk}\left(q_{1}, q_{2}, p_{i}\right)$.
\square Return D_{n}.

Time-Complexity Analysis

\square Use backward analysis for a random point ordering.
\square Total expected time complexity:

- In the lowest level: $\sum_{i=1}^{|P|} O(1)=O(|P|)$
- In the middle level: $\sum_{i=2}^{|P|}\left(O(1)+O(i) \frac{2}{i}\right)=O(|P|)$
- In the highest level: $\sum_{i=3}^{n}\left(O(1)+O(i) \frac{3}{i}\right)=O(n)$
\square Question: Why $2 / i$ and $3 / i$?
\square Linear expected running time.
\square Worst case: $\Theta\left(n^{3}\right)$. (When?)

