

On the Agenda

The Art Gallery Problem

- Polygon Triangulation

Art Gallery Problem

Given a simple polygon P, say that two points q and r can see each other if the open segment $q r$ lies entirely within P.
\square A point p guards a region $R \subseteq P$ if p sees all points $q \in R$.

Given a polygon P, what is the
 minimum number of guards required to guard P, and what are their locations?

Observations

The entire interior of a convex polygon is visible from any interior point. (Why?)
\square A star-shaped polygon requires only one guard located in its kernel.

kernel

Art Gallery Problem: Easy Upper Bound

\square Theorem (to be proven later):
Every simple planar polygon with n vertices has a triangulation into $n-2$ triangles.
$\square n-2$ guards suffice for an n-gon:

- Subdivide the polygon into $n-2$ triangles (triangulation).
- Place one guard in each triangle.

Diagonals in Polygons

- A diagonal of a polygon P is a line segment connecting two vertices, which lies entirely within P.

Theorem: Every polygon with $n>3$ vertices has a diagonal.

\square Proof: Find the leftmost vertex v. Connect its two neighbors u and w. If this is not a diagonal there must be other vertices inside the triangle $u v w$. Connect v with the vertex v ' farthest from the segment $u w$. This must be a diagonal.

- Questions:

1. Why is $v^{\prime} v$ a diagonal?
2. Why not connect v with the leftmost vertex inside $u v w$?

Diagonals in Polygons

- A diagonal of a polygon P is a line segment connecting two vertices, which lies entirely within P.

Theorem: Every polygon with $n>3$ vertices has a diagonal.

Proof: Find the leftmost vertex v. Connect its two neighbors u and w. If this is not a diagonal there must be other vertices inside the triangle $u v w$. Connect v with the vertex v^{\prime} farthest from the segment $u w$. This must be a diagonal.

- Questions:

1. Why is $v^{\prime} v$ a diagonal?
2. Why not connect v with the leftmost vertex inside $u v w$?

Complexity of Triangulations

\square Theorem: Any triangulation of a simple polygon with n vertices consists of $n-3$ diagonals and $n-2$ triangles.
\square Proof: By induction on n :
\square Basis: A triangle ($n=3$) has a triangulation (itself) with no diagonals and one triangle

- Inductive step:

1. For an n-vertex polygon, construct a diagonal dividing the polygon into two polygons with n_{1} and n_{2} vertices such that $n_{1}+n_{2}-2=n$. (Why "-2"?)
2. Triangulate the two parts of the polygon.
3. Diagonals: $\left(n_{1}-3\right)+\left(n_{2}-3\right)+1=\left(n_{1}+n_{2}-2\right)-3=n-3$;

Triangles: $\left(n_{1}-2\right)+\left(n_{2}-2\right)=\left(n_{1}+n_{2}-2\right)-2=n-2$.

Art Gallery Problem: Upper Bound

- Color the vertices of the (triangulated) polygon with three colors such that there is no edge between two vertices with the same color.
\square Question: Why is this possible?
(Hint: The dual of any triangulation is a tree with vertex degree at most 3. Full proof later.)
- Corollary: All triangles are 3-colored.
\square Pick the color that is the least used. This color is
 used in at most $\lfloor n / 3\rfloor$ vertices.
\square Place a guard on each vertex with this color.
Due to the corollary all the triangles are guarded!
$\square \Rightarrow$ New upper bound: $\lfloor\mathrm{n} / 3\rfloor$

3-Coloring

Theorem: Every triangulated polygon can be 3-colored
\square Proof: Consider the dual graph.

- Since every diagonal disconnects the polygon, the dual graph is a tree.
- Since every node in the graph is the dual of a triangle, its degree is ≤ 3.
- Since any tree has a leaf, any triangulation has an ear (a triangle containing two polygon edges).
- Finally, by induction on n :

Basis: Trivial if $n=3$.
Induction: Cut off an ear. 3-color the remaining (n-1)-gon. Color the nth vertex with the third color different from the two on its supporting edge.

3-Coloring

Theorem: Every triangulated polygon can be 3-colored.Proof: Consider the dual graph.

- Since en diagon disconnects the polygon, th Jual aph is a tree.
- Since every In the graph is the

- Binyctriang soma tllea\$, arr2ytriangles, triantrida ratias ab un (eatrilantylangle contain...ig two polygumedges).
- Finally, by induction on n :

Basis: Trivial if $n=3$.
Induction: Cut off an ear. 3-color the remaining ($\mathrm{n}-1$)-gon. Color the nth vertex with the third color different from the two on its supporting edge.

A Matching Lower Bound

\square Fact: There exists a polygon with n vertices, for which $n / 3$ guards are necessary.

- Therefore, $\lfloor\mathrm{n} / 3\rfloor$ guards are needed in the worst case.

$\mathrm{O}(n \log n)$-Time Polygon Triangulation

A simple polygon is called monotone with respect to a direction v if for any line ℓ perpendicular to v, the intersection of the polygon with ℓ is connected.
\square A polygon is called monotone if there exists any such direction v.

- A polygon that is monotone with respect to the x - (or y-) axis is called x - (or y-) monotone.

Question 1: How can we check in $\mathrm{O}(n)$ time whether a polygon is y-monotone?

Question 2: What is a polygon that is monotone with respect to all directions?

Triangulation Algorithm - cont.

1) Partition the polygon into y-monotone pieces
("חתיכות מונוטוניות").
2) Triangulate each y-monotone piece separately.

y-Monotone Polygons

\square Classifying polygon vertices:
A start (resp., end) vertex is a vertex whose interior angle is less than π and its two neighboring vertices both lie below (resp., above) it.
A split (resp., merge) vertex is a vertex whose interior angle is greater than π and its two neighboring vertices both lie below (resp., above) it.

- All other vertices are regular.

y-Monotone Polygons (cont.)

Theorem: A polygon without split and merge vertices is y-monotone.
\square Proof: Since there are only start/end/regular vertices, the polygon must consist of two y-monotone chains.

\square To partition a polygon to monotone pieces, eliminate split (merge) vertices by adding diagonals upward (downward) from the vertex.
Naturally, the diagonals must not intersect!

Monotone Partitioning

\square Classify all vertices.
\square Sweep the polygon from top to bottom.
\square Maintain the edges intersected by the sweep line in a sweep line status (SLS sorted by x coordinates).
\square Maintain vertex events in an event queue (EQ sorted by y coordinates). All events are known in advance!

- Eliminate split/merge vertices by connecting them to other vertices (to be explained later).
the lowest vertex (seen so far) above the sweep line visible to the right of the edge.
\square helper(e) is initialized by the upper endpoint of e.
Center for Graphics and Geometric Computing, Technion

Monotone Partitioning (cont.)

\square A split vertex may be connected to the helper vertex of the edge immediately to its left.
\square However, a merge vertex should be connected to a vertex which has not been processed yet!
\square Clever idea: Every merge vertex v is the helper of some edge e, so that v will be resolved either
when e disappears; or when v ceases to be the helper of e. It will be the last time v can be resolved!

Monotone Partitioning Algorithm

\square Input: A polygon P, given as a list of vertices ordered counterclockwise. The edge e_{i} immediately follows the vertex v_{i}.
\square Construct EQ containing the vertices of P sorted by their y-coordinates. (In case two or more vertices have the same y-coordinate, the vertex with the smaller x-coordinate has a higher priority.)Initialize SLS to be empty.While EQ is not empty:

- Pop vertex v;
- Handle v.
(No new events are generated during execution.)Idea: No split/merge vertex remains unhandled!

Monotone Partitioning

Handling a start vertex $\left(\mathrm{v}_{\mathrm{i}}\right)$:

- Add e_{i} to SLS
- helper $\left(e_{\mathrm{i}}\right):=v_{\mathrm{i}}$

Implementation detail: Only "left" edges (for which the polygon is on the right) need a helper and are thus kept in the status.

Monotone Partitioning

\square Handling an end vertex $\left(v_{\mathrm{i}}\right)$:

- If helper $\left(e_{i-1}\right)$ is a merge vertex, then connect v_{i} to helper $\left(e_{i-1}\right)$ (Why?!)
- Remove e_{i-1} from SLS

Monotone Partitioning

\square Handling a split vertex $\left(v_{i}\right)$:
\square Find in SLS the edge e_{j} directly to the left of v_{i}

- Connect v_{i} to helper $\left(e_{\mathrm{j}}\right)$
- helper $\left(e_{\mathrm{j}}\right):=v_{\mathrm{i}}$
- Insert e_{i} into SLS
$\square h e l p e r\left(e_{\mathrm{i}}\right):=v_{\mathrm{i}}$

Monotone Partitioning

\square Handling a merge vertex $\left(v_{\mathrm{i}}\right)$:

- If helper $\left(e_{\mathrm{i}-1}\right)$ is a merge vertex, then connect v_{i} to helper $\left(e_{\mathrm{i}-1}\right)$
- Remove e_{i-1} from SLS
- Find in SLS the edge e_{j} directly to the left of v_{i}
\square If helper $\left(e_{j}\right)$ is a merge vertex, then connect v_{i} to helper $\left(e_{\mathrm{j}}\right)$
$\square h e l p e r\left(e_{\mathrm{j}}\right):=v_{\mathrm{i}}$

Monotone Partitioning

- Handling a regular vertex $\left(v_{\mathrm{i}}\right)$:
- If the polygon's interior lies to the left of v_{i} then:
- Find in SLS the edge e_{j} directly to the left of v_{i}
- If helper $\left(e_{j}\right)$ is a merge vertex, then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{j}}\right)$
- helper $\left(e_{\mathrm{j}}\right):=v_{\mathrm{i}}$

Else:

- If helper $\left(e_{i-1}\right)$ is a merge vertex, then connect v_{i} to helper $\left(\mathrm{e}_{\mathrm{i}-1}\right)$
- Remove e_{i-1} from SLS
- Insert e_{i} into SLS
- helper $\left(\mathrm{e}_{\mathrm{i}}\right):=v_{\mathrm{i}}$

Proof of Correctness: Split Vertices

\square Assume that the split vertex v_{5} was connected to v_{2}.
\square Assume that $s=v_{5} v_{2}$ intersects another original edge e.
\square Draw horizontal lines through v_{5} and v_{2}.
\square Where can the endpoint of e, that is to the left of s, be?

Below ℓ_{1} : Impossible. (Why?)
Between ℓ_{1} and ℓ_{2} : Ditto. (Why?)
Above ℓ_{2} : Ditto. (Why?)
\square Now assume that s intersects another diagonal. Why can't that be?
\square Conclusion:
Split events are resolved correctly.

Proof of Correctness (cont.)

Merge vertices: Exercise.

Complete the details of the proof as an exercise.

Triangulating a y-monotone Polygon
In Theory
Sweep the polygon from top to bottom.
\square Greedily triangulate anything possible above the sweep line, and then forget about this region.
When we process a vertex v, the unhandled region above it always has a simple structure: Two y-monotone (left and right) chains, each containing at least one edge. If a chain consists of two or more edges, it is reflex, and the other chain consists of a single edge whose bottom endpoint has not been handled yet.

- Each diagonal is added in $\mathrm{O}(1)$ time.

Triangulating a Y-monotone Polygon In Practice

\square Continue sweeping while one chain contains only one edge, while the other edge is concave.
\square When a "convex edge" appears in the concave chain, triangulate as much as possible by connecting the new vertices to all visible
 vertices of the concave chain.
\square When the edge in the other chain terminates, connect it to all the vertices of the concave chain using a "fan".
Time complexity: $O(k)$, where k is the complexity of the polygon.
Question: Why?!

Total Time-Complexity Analysis

\square Partitioning the polygon into monotone pieces:
$\mathrm{O}(n \log n)$
(every vertex event is handled in $\mathrm{O}(\log n)$ time)
\square Triangulating all the monotone pieces: $\Theta(n)$
(every vertex event is handled in $\Theta(1)$ time)
Total: $\mathrm{O}(n \log n)$

