

Triangle Orientation

$$
\text { Area }=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

The sign of the result indicates the orientation of the vertices.

- Positive triangle \equiv counter-clockwise direction \equiv left turn.Negative triangle \equiv clockwise direction \equiv right turn.

Line-Segment Intersection

\square Theorem: Segments $\left(p_{1}, p_{2}\right)$ and $\left(p_{3}, p_{4}\right)$ intersect in their interiors if and only if
$-p_{1}$ and p_{2} are on different sides of the line $p_{3} p_{4}$; and

- p_{3} and p_{4} are on different sides of the line $p_{1} p_{2}$.

\square This can be checked by computing the orientations of four triangles. Which?
\square Special cases:

Computing the Intersection

$$
\begin{array}{ll}
p(t)=p_{1}+\left(p_{2}-p_{1}\right) t & 0 \leq t \leq 1 \\
q(s)=q_{1}+\left(q_{2}-q_{1}\right) s & 0 \leq s \leq 1
\end{array}
$$

Question: What is the meaning of other values of s and t ?

Solve (2D) linear vector equation for t and s :

Point in Polygon

\square Given a polygon P with n sides, and a point q, decide whether $q \in P$.
\square Solution A: Count how many times a ray from q to infinity intersects the polygon. $q \in P$ if and only if this number is odd.

\square Time complexity: $\Theta(n)$
\square Question: Are there any special cases?

Plane-Sweep Paradigm

\square Problem: Given n line-segments in the plane, compute all their intersections.
\square Variant: Report \# of intersections.
\square Another variant: Is there any pair of intersecting segments?
\square Assumptions:
\square No line segment is vertical.

- No two segments overlap in more than one point.

- No three segments intersect at a common point.

Naive algorithm: Check each pair of segments for intersection. Complexity: $\Theta\left(n^{2}\right)$ time, $\Theta(n)$ space.

Segment-Intersection Algorithm

\square An event is any endpoint or intersection point.Sweep the plane from left to right using a vertical line.

- Maintain two data structures:
- Event priority queue: sorted by x coordinate.
Sweep-line status: stores segments currently intersected by the sweep line, sorted by y coordinate.

Basic Idea

We are able to identify all intersections by looking only at adjacent segments in the sweep line status during the sweep.

Theorem: Just before an intersection occurs (infinitesimally-close to it), the two respective segments are adjacent to each other in the sweep-line status.

In practice: Look ahead: whenever two line segments become adjacent along the sweep line, check for their intersection to the right of the sweep line.

Detailed Algorithm

- Initialization:
- Put all segment endpoints in the event queue, sorted according to x coordinates. Time: $\mathrm{O}(n \log n)$.
- Sweep line status is empty.
- The algorithm proceeds by inserting, deleting, and handling discrete events from the queue until it is empty.

Detailed Algorithm (cont.)

\square Event of type A: Beginning of a segment (left endpoint)
Locate segment position in the status.
Insert segment into sweep line status.
Test for intersection to the right of the sweep line with the segments immediately above and below. Insert intersection point(s) (if found) into the event queue.

Time complexity:

n events, $\mathrm{O}(\log n)$ time for each $\rightarrow \mathrm{O}(n \log n)$ in total.

Detailed Algorithm (cont.)

\square Event of type B: End of a segment (right endpoint)

Locate segment position in the status.

- Delete segment from sweep line status.

Test for intersection to the right of the sweep line between the segments immediately above and below. Insert intersection point (if found, and if not already in the queue) into the event queue.
\square Time complexity:

n events, $\mathrm{O}(\log n)$ time for each $\rightarrow \mathrm{O}(n \log n)$ in total.

Detailed Algorithm (cont.)

\square Event of type C: Intersection point

- Report/count the point.
- Swap the two respective line segments in the sweep-line status.
- For the new upper segment: Test it for intersection against the segment above it in the status (if exists). Insert intersection point (if found, and if not already in the queue) into the event queue.
- Do a similar action for the new lower segment (check against the segment below it, if any).
Time complexity:
k such events, $\mathrm{O}(\log n)$ each

$$
\rightarrow \mathrm{O}(k \log n) \text { in total. }
$$

Example

Complexity Analysis

\square Basic data structures:
Event queue: heap
Sweep line status: balanced binary tree
\square Each heap/tree operation requires $\mathrm{O}(\log n)$ time.
(Why is $\mathrm{O}(\log k)=\mathrm{O}(\log n)$?)
\square Total time complexity: $\mathrm{O}((n+k) \log n)$.
If $k \approx n^{2}$ this is slightly worse than the naive algorithm! But if $k=o\left(n^{2} / \log n\right)$ then the sweep algorithm is faster.
Note: There exists a better algorithm whose running time is $\Theta(n \log n+k)$.
\square Total space complexity: $O(n+k)$.
Question: How can this be improved to $\mathrm{O}(n)$?
(Hint: Which events are [temporarily] redundant in the queue?)

Planar Graphs and Meshes

> Every manifold mesh is planar !!

The Linearity Relation

Theorem: In a planar graph, $E=O(V)$ and $F=O(V)$.
\square Proof:

- We may assume that the graph is maximally triangulated (this may only increase E and F).
- Every face is bounded by 3 half-edges $\Rightarrow 3 F=2 E \Rightarrow E=3 F / 2$
- By Euler's formula: $V-E+F=2 \Rightarrow V-3 F / 2+F=2 \Rightarrow F=2(V-2)=O(V)$
- Similarly, $F=2 E / 3 \Rightarrow V-E+2 E / 3=2 \Rightarrow E=3(V-2)=O(V)$

